FN Archimer Export Format PT J TI A semiempirical model of the normalized radar cross-section of the sea surface - 1. Background model BT AF KUDRYAVTSEV, V HAUSER, D CAUDAL, G CHAPRON, Bertrand AS 1:1,2;2:3;3:3;4:4; FF 1:;2:;3:;4:PDG-DRO-DOPS-LOS; C1 Natl Acad Sci, Inst Marine Hydrophys, Sevastopol, Ukraine. Nansen Int Environm & Remote Sensing Ctr, St Petersburg, Russia. Univ Versailles, CNRS, Ctr Etud Environm Terr & Planetaires, Velizy Villacoublay, France. Inst Francais Rech Exploitat Mer, Plouzane, France. C2 NATL ACAD SCI, UKRAINE NANSEN INT ENVIRONM & REMOTE SENSING CTR, RUSSIA UNIV VERSAILLES, FRANCE IFREMER, FRANCE SI BREST SE PDG-DRO-DOPS-LOS IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france copubli-int-hors-europe copubli-sud IF 2.992 TC 110 UR https://archimer.ifremer.fr/doc/00000/10182/9580.pdf LA English DT Article DE ;ocean surface waves;radar cross section;short wind waves;wave breaking;Bragg scattering;non Bragg scattering AB Multiscale composite models based on the Bragg theory are widely used to study the normalized radar cross-section (NRCS) over the sea surface. However, these models are not able to correctly reproduce the NRCS in all configurations and wind wave conditions. We have developed a physical model that takes into account, not only the Bragg mechanism, but also the non-Bragg scattering mechanism associated with wave breaking. A single model was built to explain on the same physical basis both the background behavior of the NRCS and the wave radar Modulation Transfer Function (MTF) at HH and VV polarization. The NRCS is assumed to be the sum of a Bragg part (two-scale model) and of a non-Bragg part. The description of the sea surface is based on the short wind wave spectrum (wavelength from few millimeters to few meters) developed by Kudryavtsev et al. [1999] and wave breaking statistics proposed by Phillips [1985]. We assume that non-Bragg scattering is supported by quasi-specular reflection from very rough wave breaking patterns and that the overall contribution is proportional to the white cap coverage of the surface. A comparison of the model NRCS with observations is presented. We show that neither pure Bragg nor composite Bragg model is able to reproduce observed feature of the sea surface NRCS in a wide range of radar frequencies, wind speeds, and incidence and azimuth angles. The introduction of the non-Bragg part in the model gives an improved agreement with observations. In Part 2, we extend the model to the wave radar MTF problem. PY 2003 SO Journal Of Geophysical Research Oceans SN 0148-0227 PU Amer Geophysical Union VL 108 IS C1 UT 000181554900002 DI 10.1029/2001JC001003 ID 10182 ER EF