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Abstract—In this paper, the synthetic aperture radar (SAR) 
process of Hie ocean surface mapping is studied using a decompo
sition based on a Volterra model. By a mathematical expansion 
of the complex exponential of the complete SAR transform, these 
models decompose the nonlinear distortion mechanisms of the 
SAR spectrum over different spectra of polynomial interactions. 
Thus, they offer an alternative modeling (to the exact SAR trans
form) giving a theoretical separation between the SAR Fourier 
components linearly derived from the sea surface elevation and 
the artifacts created by nonlinearities of the SAR mapping of the 
ocean surface. The main results of this paper consist of the sys
tematic assessment of such an approximation of the ocean surface 
SAR imaging process. Higher order statistics (HOS) of the SAR 
transform and their calculus and implementation are presented. 
In fact, nonlinearity detection, location (in the Fourier domain) 
and quantification can only be performed by HOS, reduced here 
to a second-order Volterra Model. The Voltcrra expansion of the 
SAR imaging process opens new theoretical inversion schemes 
since under certain conditions on the linear part, Volterra models 
are easily invertible. Our method is first tested on simulated SAR 
images in order to validate the HOS tools. We then show results of 
this nonlinearity analysis performed on images from the ERS-1 
satellite and we present cases of nonlinearity detection. 

Index Terms—Higher order statistics, radar mapping, SAR, sea 
surface, Volterra models. 

I. INTRODUCTION 

A SYNTHETIC aperture radar (SAR) is an active electro
magnetic instrument which allows the detection of large 

scenes with very high resolution. It is independent of the diurnal 
cycle and weather conditions. Fig. 1 presents a sea surface im-
agette obtained by the ERS-1 SAR. Visible crest lines of this 
radar image are about five kilometers long. Such waves are not 
too common and this image can be considered as an illustrative 
example of the known distortion associated with SAR mapping 
[9]. From the pioneering work of Alpers and Rufenach [1] and 
[4], the SAR imaging process of the sea surface has been widely 
studied and is indeed known to be nonlinear (i.e., it does not sat
isfy the classical criteria of linear systems [26]). 

Current SAR transform decomposition of the sea mapping 
is usually achieved in two steps. The first one consists of the 
modulation of the backscattered energy (around its mean CTQ) 
by the sea surface. This step is divided into two different mech
anisms: a geometric effect known as the tilt modulation, due 
to the variation of the angle between the sea surface and the 
racial' beam (see [28], [29]) and a hydrodynamic effect due to 
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Fig. I. SAR image of the sea surface. 

the non uniformity of the gravity capillary wave spectrum. The 
backscattered energy is proportional to this spectrum for Bragg 
backscattering [2], [II], [16], [22]. Although many parameters 
are still unknown, this latter hydrodynamic modulation is as
sumed to be linear. Both modulations produce a real aperture 
radar (RAR) image, i.e., an image of the frozen sea surface. The 
second step in SAR mapping is the modulation associated with 
the sea surface motion. Orbital wave velocities produce Doppler 
shifts leading to d(x) misplacements of the RAR pixel in the 
SAR image (so-called "velocity bunching"). 

Following Hasselmann and Hasselmann [9], SAR Fourier co
efficients are given by 

XszAk) = \A\~l • j Xrm(iv) • e ? - k < x ) • • dr. (1) 

where A is a given surface and x. a two-dimensional (2-D) array 
having a range and azimuthal components. For the remaining 
part of this paper, kx will denote the azimuthal component of 
the wavenumher vector k. while kv will be the range component. 
Since the displacement is along the azimuthal axis we then have 
k • d(x) = kx • |f/(.'i:)|. The complete nonlinear transform pre
sented in (1) includes the decrease in effective resolution caused 
by the stretching/contraction of the RAR pixel due to the orbital 
velocity dispersion into the radar resolution cell. Following such 
a model, the SAR mapping nonlinearity comes from the com
plex exponential in expression (1). 

The first main contribution of this paper is to expose and ex
amine the approximation of the complete nonlinear transform 
by a Volterra model. We list below four reasons why such an 
approximation is of interest. 

• First, this decomposition will help to better understand the 
nonlinear SAR transform. In Volterra models, the non
linear interactions are explicitly separated into nonlinear 
interactions of different orders and consequently the non
linear interactions are separated in the frequency domain 
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as will be seen in Section 1V-A. The identification of 
different orders of nonlinear interactions (especially the 
linear and quadratic components) facilitate the compre
hension of the nonlinearity analysis (i.e., detection, loca
tion and quantification of nonlinearity) using higher order 
statistics (HOS) as detailed in Section II and enables the 
amount of nonlinear energy "created" by the nonlinear 
SAR transform to be quantified, and a decision to be made 
concerning whether the process is linear or not. 

• Although the SAR spectrum expansion has been already 
investigated by Krogstad [15] in the one-dimensional 
(1-D) case, the 2-D case can present spectrum rotation 
(not conveyed in the 1-D case). One of the contributions 
of this paper is to better understand such phenomena by 
expanding the SAR spectrum over polynomial spectra as 
stated above. 

• Nonlinear time-series modeling using HOS methods with 
an underlying Volterra modeling makes it possible to 
estimate unknown Volterra kernels. Applied to the SAR 
process, these methods would allow the RAR transfer 
function to be identified and then the usual assumption of 
linearity at this stage of the SAR imaging process to be 
verified. These methods can work whether input data of 
the Volterra model, i.e., measured sea elevation, (see for 
instance [13], [20], [25]) are available or not ([17]). 

• Finally, the Volterra decomposition makes it possible to 
easily invert the SAR transform. Indeed, Volterra models, 
under some restrictions on the first kernel, are post-invert-
ible by another Volterra model. This means that the kernels 
of this post-inverse model are derived from those of the di
rect Volterra model. Moreover, this new inversion scheme 
can be performed directly on the image and not only on the 
spectrum like the regularized inversion process proposed 
by Hasselmann and Hasselmann in [9]. Single look com
plex (SLC) images being widely used nowadays, there is 
great interest in finding an inversion process conserving 
the phase information (i.e., complex data). However, be
fore inverting the SAR transform, a systematic verifica
tion of the validity of the SAR transform expansion using 
Volterra kernels must be performed. The main part of this 
paper is devoted to this subject. 

Another important contribution of this paper lies in the theo
retical calculation of the SAR transform bispectrum. We recall 
that nonlinearity analysis from an observed output of possibly 
nonlinear systems without input data (that is generally the case 
with SAR image) can only be performed with HOS. Obviously, 
both contributions are closely linked since, as will be seen in 
Section II-B, the SAR transform bispectrum is not easy to in
terpret. Volterra models are useful in this case since existing 
methods of nonlinear systems identification by HOS usually as
sume a Volterra modeling. For instance, the methods for nonlin
earity location and quantification use HOS but also assume that 
the nonlinear system is a second-order Volterra model. 

When dealing with SAR nonlinearity analysis with Volterra 
models and HOS, our first step involves recalling the basic re
sults of the different domains tackled in this paper. HOS theory 
is discussed in the first section, while classical and new results 
concerning the SAR transform spectrum and bispectrum are 

given in the second section. Section III is devoted to Volterra 
models and to the SAR transform expansion using these models 
from a theoretical point of view. In Section IV-A, we develop 
a comparison between the SAR spectrum obtained by the com
plete nonlinear transform of (1) and the spectrum of Volterra 
models of different orders in order to examine the validity of the 
SAR transform expansion using Volterra models. For this com
parison, we compute the spectra by assuming the sea surface 
to be Gaussian distributed and derived from a JONSWAP spec
trum [12]. Some of the sea states that we will examine are not 
realistic especially the combination of certain wavelengths and 
significant wave heights Ha (defined as Ha — 4\J'E{(2(x)} 
where ((x) is the sea surface elevation). Nevertheless, since 
our purpose is to examine the SAR transform decomposition on 
Volterra models, feasibility must be verified for all sea states 
within a reasonable sea parameter range (lis between 0 and 
10 m and wavelength between 100 and 500 m). Nonlinearity 
analysis being necessarily performed with HOS, the validity of 
the SAR decomposition for third-order statistics is presented in 
Section IV-B. This validity is verified from the point of view 
of bispectrum distances and from the point of view of nonlin
earity statistical index values (used for nonlinearity detection) 
in the hypothesis testing framework. Section V presents nonlin
earity analysis for real SAR images (from the ERS-1 satellite) in 
light of the results presented in the previous sections. We show 
that we can detect nonlinear events when they are present in the 
images. 

II. NONLINEARITY ANALYSIS A N D HIGHER ORDER SPECTRA 

When dealing with nonlinearity issues, we must first address 
the problem of the presence or the absence of nonlinearity in 
the observed signal. If nonlinearities are present, we then have 
to identify which Fourier component artifacts it has produced. 
A second step of the analysis thus consists of a nonlinearity 
location in the Fourier domain and we finally have to perform 
the estimation of the Fourier component energy part provided 
by this nonlinearity, i.e., the quantification of the nonlinearity. 
This nonlinearity analysis can only be performed with higher 
order spectra. 

A. Definitions and Properties 

In the Fourier domain, the information concerning the signal 
is divided into the magnitude and phase of the Fourier coeffi
cients. The spectrum can be defined as the Fourier transform of 
the autocorrelation function or as the mathematical expectation' 
of the Fourier transform coefficients 

+oo 

S(k) = ] T M$(n)e-i'k>» = E {x(k) • X*{k)} 
11 — — C O 

with Mf(n) =E {X(i) • X(i -I- n)} 

and X(k) = ] T X{n)e~j-k-n. (2) 
7 f, — — C O 

A spectrum, being real valued, does not provide phase informa
tion but, polyspectra and especially bispectra can convey phase 
information (f ,ese quantities being complex valued). The third-
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order moment of a stationary signal is expressed as the mathe
matical expectation of the triple product of the discrete signal 

M? (m, n 2) = E {X(i) • X (i -|- m) • X (t + n 2)} . (3) 

The third-order cumulant is then defined by 

C* (nu 7 i 2 ) = (?n,?), 2) - I'o • (m - n2) 

-I0 • M* (ni) - I0 • M? (n 2) + 2/^ (4) 

where IQ is the mean of the process. 
For zero mean processes, the third-order cumulant and mo

ment are then equal. A fundamental property of the third-order 
cumulant is that it is null for Gaussian processes [19], [21]. 
The bispectrum can be defined as the Fourier transform of the 
third-order cumulant or as the mathematical expectation of the 
Fourier transform of the signal 

-¡-00 +oo 

B(kltk2)= E C?(n1,n2)e-Hk>-n>+k>-n> 
7i-i — — OO 7l2 = - 0 0 

=E {! • X (k2) • X* (h + A : 2 ) } 

- I 0 - S { k 1 ) S ( k 1 + k2)-I0-S(k1)S(k2) 

- Io • S (k2) S (ki) + 2IQS (ki)S (fc2) (5) 

Mechanisms for nonlinearity detection using phase coupling 
detection (i.e., phase coherence detection) are explained in 
Appendix A and are detailed again on a second-order Volterra 
model in Section ILT-A. 

When studying nonlinearities, bicoherence is a fundamental 
quantity which can be derived from higher order spectra. It can 
be seen as the normalized bispectrum, and is defined by 

P(h,k2) = 
\B(h,k2)\2 

S(k1)-S(k2)-S(k1 + k2)' 
(6) 

In the case of a linear process, the bicoherence becomes flat, 
i.e., constant for all pairs (ki, k2) [8]. The nonlinearity index, 
proposed by Subba Rao and Gabr in [27] and recalled in Ap
pendix A, tests whether the estimated bicoherence samples have 
the same mean (flatness test). This is a statistical hypothesis 
testing providing only a probability a, generally equal to 0.9 
or 0.95 (and called the "significance level"), that the signal is 
linear. The usual procedure for hypothesis testing is to set up 
this probability and to theoretically derive a reference threshold 
of the statistical index from its theoretical pdf, under the hypoth
esis that the signal is linear. If the measured index is lower than 
this threshold, the image is declared to be linear with a proba
bility a while if it is greater, the observed image is declared to 

be nonlinear. Two important parameters for statistical hypoth
esis testing are as follows. 

• "Type I Error" probability: That is the probability of 
declaring an image to be nonlinear although it is linear. 
The probability is then given by (1 - a). 

• "Type II Error" probability: That is the probability of clas
sifying an image as linear although nonlinear. The proba
bility is denoted ¡3. 

For a fixed value of a, the smaller {3 is, the easier the detec
tion of nonlinearity will be, since errors of misclassification are 
reduced. The ¡3 parameter depends on the theoretical spectrum 
and bispectrum of data contrary to a, which depends only on 
the feet that the bicoherence is flat. 

B. Spectrum and Bispectrum of the Complete SAR Transform 

From (1), the SAR spectrum can easily be calculated using a 
Gaussian assumption for the sea surface [9], [14] 

fi - |2-

e ^ ) 2 - M ' " M G { x , kx) • e - j k xdx - S{k) 

(7) 

with 

G(x,kx) = {l+M^(x)+j-kx-(M^(x)-M^d(-x)) 

+ k2

x • {M?L(0) - M<2

d(x)) • (MJ d(0) - M?{-x)) 

where Mrr{x) = E{XRSLR(0)Xiai(x)} is the RAR image au
tocorrelation, Mrd(x) = E{XRAR(0)Xd{x)} is the cross cor
relation between the RAR image and the displacement due to 
velocity bunching and Mdd(x) = E{XD(0)Xd(x)j is the dis-

-fc;-M|"(0) conveys placement autocorrelation. The coefficient e 
the loss of resolution due to azimuth smearing. Assuming that 
the RAR function is linear, the bispectrum is given by (8) shown 
at the bottom of the page, with 

A (kl kj.x, x1) =l + j (kl {Mrd (x' - x) - iVFd (*')) 

+ k2

x (MRD{0) - Mrd (a/)) 

B {kx,k2

x,x, x1) =1 + j (kx (MRD(0) - Mrd(x)) 

+ kl (Mrd (x - x1) - Mrd(x))^j 

B m (h,k2) • e ~ ^ ^ 2 + k ^ - M " d ^ 

/
-|-oo /•-j-oo 

-oo J —OO 

[M r , '(a;) • A (kl,k2

x,x, x1) + Mrr (x1) B (kl,kl,x, x') + Mrr (x - x') G (kx,k2

x,x, x') 

+ j - A {kl, k?x,x, x') • B {kl,kl,x, x') • G {k\, k\,x, x')\ • e - j ^ X i + k ^ ) dxx • dx2 

- a0S (k2) • 6 (ki) - a0S (h) • S (k2) - o0S (h) S (i; x + k2) - a3

a • S (h) 6 (k2) (8) 
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C (kl,klx,x') =1 • ./(/.•; (Mrd(-ti:) - M"'(0)) 

+ k2

x {Mrd (-a;') -Mr,'(0))j (9) 

and fcj;,^ are the azimuthal component of the wavenumber vec
tors k\, A;2, respectively. Tliis result is achieved by introducing 
(1) into the second definition of the bispectrum definition (see 
(5)) and proceeding like Krogstad [14] (see Appendix B). Ex
tracting information from the complete transform bispectrum 
is not easy, because of the complexity of the expression. In
deed, higher order moments are expressed as a product of the 
second-order moments of Gaussian fields, i.e., the displacement 
of the RAR pixel and the RAR pixel itself which are both lin
early linked to the sea surface. Furthermore, because the bis
pectrum support is a four-dimensional (4-D) structure, a simple 
analysis is not possible. However for the quasi-linear transform 
[9], obtained by expanding the exponential in (8) (A;.J. and kfv 

small), bispectrum is found to be null, since the SAR image is 
thus a linear filtering of a Gaussian sea surface. 

III. VOLTERRA M O D E L S 

A. Definition and Properties 

Volterra models are commonly used for nonlinearity analysis 
and have been developed by Schetzen [26]. In these models, the 
output values Y(n) can be expressed as a polynomial of input 
data 

r (n) = A 0 + X > (*(«) ) (10) 

with 

n i = — oo n i = — co 

• X i n - n ^ - ' - X i n - m ) (11) 

or in the Fourier domain 
A' 

Y(k) = h08(k) + H!(k)X(k) + E T i ? ( A » ) ) ( 1 2 ) 

with 

;=2 

TF(fi(X(n))) 

Hi I 'i; — E ^ ' ' ^ ' i ' • • •' h 
¡ = 1 

• X (ki-i) dki • • • dki-i (13) 

and i > 2. The term . . . ,77,,:) is the i //i-order kernel of 
the Volterra series (which generalizes the Taylor development) 
and Hj(k — Xw=i h, &ii • • •. h-i) its Fourier transform. We 
can interpret Volterra models as a bank of filters, extending the 
linear case [seen as a first-order Volterra model (FOVM)]. The 
main idea behind Volterra models is to relate the usual transfer 
function concept to more general cases involving nonlineari-
ties and to describe simply the frequency behavior of this non

linear transfer function. For instance, an analytic expression of 
the second-order Volterra model (SOVM) in the Fourier domain 
is given by (setting N = 2 in (10)) 

-|-co 

•X(k-kj)dkj. (14) 

The output of the quadratic kernel is the interaction between 
two harmonics of the input signal weighted by -ff2(A;./, k - kj), 
the wavenumber sum of these two waves being equal to h. The 
spectrum 5N(&) of the Volterra model of order N can be written 
by introducing (10) in (2) as 

N V 

(15) 
V=l (/=! 

where SVt,,(k) is the cross spectrum between the interactions of 
orders p and q as seen in Appendix C. Under the Gaussian input 
data assumption, SVi„(k) is non null only if p + q is even (see 
also Appendix C). For instance, the SOVM spectrum is given 
by 

53(fc) =S M (ft) + S2,2(fc) 

= |£r 1 (fe) | 2 f i i | j i ( fe) + 

EllXik^Xik-kjM }dkj. (16) 

The SOVM spectrum is thus the sum of a linear "spectrum" 
and a "quadratic" spectrum. As discussed in [18], the quadratic 
interactions of a real finite bandwidth signal, such as the sea 
surface, are divided into two spectra. 

• One is located over the low wavenumber components 
(called destructive interactions, because they are produced 
by two waves with opposite wavenumbers). 

• The other, the constructive interaction spectrum, is cen
tered on twice the dominant wavelength of the original 
spectrum. 

The third-order Volterra model (TOVM) spectrum, the 
TOVM model being deduced from the SOVM by adding a 
cubic kernel, is also the sum of linear, quadratic and cubic 
spectra, and a supplementary cross linear-cubic spectrum. 

In the same manner, the bispectrum of a Volterra model of 
order N can be calculated by introducing (14) into (5) and is 
given by 

N v '1 

# N ;/••,./.•:;) = E E E Bv,i.r (ki-h) (17) 

in which Br>qtr(ki, fc2) is the bispectrum of interactions of or
ders p, q, r. As for the spectrum, the bispectrum is non null only 
if p + q + r is even (see Appendix C). For instance, the SOVM 
bispectrum is given by (18) shown at the bottom of the next 
page. We verify that two kinds of phase coupling are detected 
by the bispectrum. 

• Primary phase-coupling phenomena (PPCP, -B 2 , i , i 
Aw)) occurring between two waves and their quadratic 

interactions. 
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• Secondary phase-coupling phenomena (SPCP, 82,2,2 
( A : : i , A:-j)) existing between three waves created by 
quadratic interactions. 

The advantage of phase-coupling phenomena duality is 
that nonlinearity detection is still possible even if the linear 
kernel is identically null, i.e., if all original signal waves 
have been removed. This case occurs in the SAR transform 
since for some cases the linear contribution is approximately 
null. The drawback lies in the difficulty in identifying what 
kind of phase coupling is detected by the bispectrum, i.e., 
if the detected phase coupling can be interpreted or not as 
the phase coupling of two original signal waves and their 
quadratic interaction. The identification of the kind of phase 
coupling is important for distinguishing the linear compo
nents (i.e., linear spectrum) from the quadratic artifacts pos
sibly observed in a 2-D signal. The use of homogeneous 
bicoherence tables (HBTs) see Appendix A or [18]) is rel
evant for determining the kind of phase coupling detected, 
the PPCP and the SPCP not being located at the same place 
in these tables. As a matter of fact, in these two tables, 
the linem- signal components cross the lines kx — k2. and 
ky = k2 and thus the linear spectrum can be located by 
using this property as will be seen in Sections IV-B and V. 
However, this method assumes implicitly that the nonlinear 
system is an SOVM, and for this reason we need to decom
pose the SAR transform into Volterra models. Finally, the 
quantification is done by also assuming an SOVM with some 
restrictions and by estimating the quadratic spectrum by [see 
(16)] 

S2,2(k) = S2(k).TRA(k) (19) 

where TaA{k) is the cross bicoherence table (CBT) as 
proved in Appendix A. 

B. Application to the SAR Transform 

The SAR transform expressed in (1) can always be expanded 
over Volterra models since the exponential expansion is valid 

over the complex plane. The discrete space formula of (1) can 
be written as 

with Xmr(i) -act 

and d(i) 

1 + 

•|-oo 

-f-00 

Trm(k)X(k) • ej-k4dk 

D(k)X(k) • ef-^dk. (20) 

The R/V ratio defines an intrinsic parameter of the data ac
quisition as it relates the radial distance from the satellite to 
the ground to the speed of the spacecraft. The SAR Volterra 
kernel expression is achieved by expanding the relationship be
tween the sea surface Fourier coefficients X(k) and the SAR 
Fourier coefficients Xsiu.(k) on the polynomial basis. By ex
panding (20), into (21) shown at the bottom of the next page 
and by comparing this result and the theoretical Volterra ker
nels given in (13), the SAR Volterra kernels can be identified as 

Hn (ki,..., kn) — 
{ j - k x ^ ) n D ( h ) . . . D ( k n ) 

n 
, 1 1 - 1 

+ 
{j-kx$)n LT™*(h)D(k2)...D(kn) 

(n - 1)! 
(22) 

Using this expansion, we obtain the same results as Hassel¬
mann and Hasselmann [9]. The SAR spectrum is found to be 
the sum of an infinite number of terms implying the cross cor
relation between the RAR image and the displacement field and 
the autocorrelation of the displacement field. This result on the 
SAR spectrum can also be retrieved by directly expanding the 
SAR spectrum (7), thus explaining the increase in the spec
tral tails due to higher order nonlinearity as already reported 
by Krogstad et al. in [15]. For discrete space formalism, az
imuth smearing is not included in the kernel of (22) (the orbital 
velocity being uniform inside the sampled cell resolution), and 
must be taken into account by multiplying all the Volterra ker
nels of (22) by a coefficient e~k*'Mx ( 0)/ 2. The spectrum show 
then a decrease equal to e~k*'M'x ^ . This modeling of the Az
imuth Smearing agrees with the loss in resolution for the bis
pectrum, since -((/s|.)2 + (k2)2 + (kl + kl)2) • M<J?(0)/2 = 

B2 (h,k2) = 0 2 , 1 , 1 (h,k2) + £ 2 , 2 , 2 k2) 

=I-h (h) • dh (k2) • m (kuk2) • E | | X (fci)|2 • | X (fe2)i 

+ Hi (h) • H{ (ki + fc2) • II2 (-k,uki + k2) • E | | l (kitf • \X (ki + k2)\2 

+ Hi (k2) • H; (AH + k2) • H2 (-k2,ki + k2) • £ < j j x ( A ; 2 ) | 2 • | * ( A * + A ; 2 ) | 2 

+ / //•; ( - A ; 2 + kj,ki + k 2 - k:i) • H2 (kh k2 - kj) • //.;' (/,>/•'! + k2 - ky) 
J —OO 

• E I \jt (k2 - kj)\2 • \X (ki + k2 - kj)\2 • \X (kj)]"} dkj ( l i 
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-((fc*)2 + (kl)2 + k„ • kl) • M^'(0) which is the decrease of 
resolution of the bispectrum (8). 

IV. THEORETICAL RESULTS 

In order to validate the SAR expansion using Volterra 
models, we computed the spectral and bispectral distances 
between Volterra models of different orders and the complete 
SAR transform of (1). The spectrum and the bispectrum of 
the complete transform were computed using expression (7) 
and (8), respectively. The SAR spectrum and the bispectrum 
of the SAR Volterra models were computed by introducing the 
expression of the Volterra models (12), using the kernels de
duced from the SAR transform (22) in the spectrum definition 
(2). Similarly, the bispectrum was computed by introducing 
the SAR kernels in definition (5). We also estimated the 
spectrum and bispectrum by averaging the Fourier Transform 
of simulated images. Since results are quite close we only 
display the theoretical ones. Tests were performed for values 
of the significant waveheight Hs equal to 3, 5, 7, and 9 in, and 
the wavelength values were chosen to be 100, 200, and 500 m 
with the angle of propagation with respect to the range axis 
being between 0° and 90°. The radar parameters, especially 
the incidence angle and the R/V ratio, were set to be equal 
to the ERS-1 parameters (i.e., an incidence angle of 23° and 
R/V = 115). Because our goal is to compare several stochastic 
processes (the complete SAR transform and its approximation 
by Volterra models) with an underlying physical process, we 
chose the spectral distance between a spectrum Si(k) and a 
spectrum S2{k) to be: 

AS 
+ 00 

\Siik) - S2(k)\z dk (23) 

among all the possible definitions of spectral distance collected 
by Basseville in [6]. Moreover, in order to better understand the 
SAR spectrum shape and the order of the nonlinear interactions 
involved in this shape we defined the spectrum weight of the 
interactions of order p and order q [see (15)] as 

p,<i 100-
iL^sM(k)dk 

H-co 
SN(k)dk 

(24) 

The collection of weights of the different subspectra of a spec
trum of a Volterra model of order TV (defined in (24)) is called 

the "energy distribution". Similar to the spectral distance, we 
define the bispectral distance between a bispectrum />'; (/,-;, k2) 
and a bispectrum B2(ki,k2) as 

AB = 
- j -OO 

/i|(A':.A-,} /i; ;{A';.A' ; !)|- </Av/A'2. 

(25) 
The next two sections give deeper insight into the approxima
tion of the SAR transform by Volterra models. Section IV-A 
presents the spectral comparison between the spectrum of the 
complete SAR transform and the spectra of Volterra models of 
different orders whilst Section IV-B gives some results derived 
from nonlinearity indices and Incoherence tables. 

A. Spectral Analysis 

Figs. 2-5 present the spectral and bispectral distances in deci
bels and "energy distribution" for a wavelength of 200 m, and 
for significant waveheights o f = 3,5, 7, and 9 m. Figs. 7-12 
present the spectra of a complete SAR transform (used as the 
reference) and Volterra models up to the fifth order. The con
tribution of each kernel can be deduced by comparing different 
Volterra model spectra as discussed in this section. We present 
these configurations because the SAR transform changes from 
a quasi-linear behavior to a strongly nonlinear one as explained 
below. For these results, we can formulate the following six 
conclusions. 

• The cross spectra Sp+2tP(k), such as the linear-cubic spec
trum or the quadratic-tetric spectrum, are negative (as seen 
in the energy distribution of Figs. 2-5 since W3t i and Wit2 

are negative for all cases). This is logical since the inter
actions of orders p + 2 and p are in phase opposition (due 
to j in the exponential expansion; see (22)). This remark 
explains (with some other reasons detailed below) why in
teractions of orders greater than three do not contribute 
strongly to the SAR spectrum shape (as seen below) since 
5P I P_2(fc) and SPtP(k) cancel each others out as seen, for 
instance, in the symmetry of W^j and W ^ i or and 
Wi ,2 of the energy distribution in Figs. 2-5. 

• For common sea states, i.e., TIS smaller than 5 m and 
wavelengths greater than 200 m, the SAR process is 
widely dominated by the linear kernel (see W\t\ in the 
energy distribution in Fig. 2). In the spectral distance of 
Fig. 2, there are few improvements produced by higher 

( + ° ° 1 
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R • kx 

V 

-{-CO p-\-03 
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Fig. 2. Spectral and bispectral distances and energy distribution for H„ — 3 and a wavelength of 200 m. 
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Fig. 3. Spectral and bispectral distances and energy distribution for H„ = 5 and a wavelength of 200 m. 
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Fig. 4. Spectral and bispectrai distances and energy distribution for H„ — 7 and a wavelength of 200 m. 
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Fig. 5. Spectral and bispectral distances and energy distribution for H, = 9 and a wavelength of 200 m. 
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Fig. 6. Second error type P for a = 0.9, a = 0.95, a = 0.99. 
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order kernels since all the spectral distance curves are 
quite close as depicted in Fig. 2. However, the corrections 
due to the cubic kernel cannot be neglected and, even if 
they are weak, they contribute to the decrease of spectral 
peaks which are stronger in the FOVM spectrum than in 
the SAR spectrum [see Fig. 7(a) and (b)]. 

• For high sea states, we can see a behavior change, since 
the spectrum turns from a linear mode observed for small 
dominant wave direction angles (below 55° for Hs = 5 
and below 45° for./:/., = 7, Hs = 9) to a quadratic mode. 
Equivalent linear and quadratic spectra exist for a narrow 
range of angles generally centered around 45°, as seen in 
Figs. 9 and 10. In fact, for all these sea states, the SAR 
spectrum shape is very close to the SOVM shape while the 
FOVM spectrum is almost null [compare Fig. 11(a), (b), 
and (c)]. Moreover, as seen in Figs. 4 and 5, the weight 
of the linear spectrum (Wi,i) decreases to zero while the 
quadratic spectrum ( W ^ ) is close to 100. This quasi-bi-
modal behavior, which passes within a small range of 
angles from a linear mode to a quadratic mode, can be 
explained by two competitive phenomena. They are as 
follows. 

1) When the original spectrum is closer to the azimuth 
axis, more quadratic interactions are created. The 
quadratic spectrum is located on a strip in the 
azimuth direction. The high azimuthal components 
are eliminated by azimuth smearing (so there 
are few constructive quadratic interactions in the 
SAR process) while the low azimuthal quadratic 
components are removed due to the factor (kx)2 

in the quadratic kernel (see (22) for n — 2). This 
low-high quadratic component removal explains 
the shape of the destructive quadratic interaction 
spectrum which is divided into almost symmetrical 
spectra (Figs. 11 and 12) and presents a large 
bandwidth in the range direction (see Figs. 9-12). 
Consequently, a large range bandwidth (or as 
mentioned by some authors, "cigar" shape [5]) is 
characteristic of the quadratic mode. 

2) The linear components are removed by azimuth 
smearing as the propagation angle increases. See 
for instance, Fig. 9, in which the dominant wave 
in the linear spectrum has an angle of 20° (while 
the input spectrum propagation angle was 45°) 
and thus seems to have turned toward the range 
axis (this point is retrieved even when the SAR 
process is linear). We note that azimuth smearing 
is a nonlinear phenomenon, but does not produce 
interactions. Therefore, this phenomenon is not 
detectable nor quantifiable by HOS methods. 

• Higher order nonlinearities are also limited in a strip since 
low azimuthal components are eliminated by (kx)n and 
high azimuthal components are removed by the azimuth 
smearing. The contributions of these interactions are 
then located in the SAR spectrum "basis" (i.e., the small 
spectrum values located over all the frequency plane 
[see Figs. 7(a), 9(a), 11(a)]. This explains why these 

nonlinearities, even if they do not contribute to the SAR 
spectrum shape, are not necessary negligible. 

• As already noted [9], [14], the predominant phenomenon 
is so-called Velocity Bunching, which defines the shape 
of the SAR spectrum. The RAR modulation thus con
tributes to spectral asymmetries with regard to the range 
axis. As explained by Hasselmann and Hasselmann [9] 
for the quasi-linear transform (Figs. 7 and 8), the two 
spectral peaks are not strictly symmetrical. The phenom
enon is also present for the quadratic kernel, the quadratic 
spectrum not being symmetrical with regards to the az
imuthal axis (Figs. 9-12). A process solely dominated by 
the velocity bunching interactions could not lead to such 
asymmetries. 

• A final conclusion, drawn from those above, is that the 
SAR spectrum shape is generally given by the linear 
Volterra kernel spectrum and in some cases by the 
quadratic kernel spectrum. The contribution of higher 
order interactions is mainly located in the spectrum basis 
and is sensitive up to the tenth order (for higher orders the 
corrections are negligible). This latter result thus gives 
an idea of the possible truncation order for an acceptable 
approximation of the SAR process by Volterra models 
and consequently gives a first design for the possible 
post-inverse Volterra model (not discussed in this paper). 

B. Bispectral and Nonlinearity Analysis 

The nonlinearity analysis was performed for three cases: a 
linear one (with 73"., = 7 m, a wavelength of 200 m and an angle 
of 0°), a mixed case with both a linear spectrum and a quadratic 
one (Hs = 7 m, a wavelength of 200 m and an angle of 45°), and 
a quadratic case (Hs = 7 m, a wavelength of 200 m and an angle 
of 90°). The SAR spectrum decompositions for these three cases 
are depicted in Figs. 7-12, respectively, with the Volterra model 
spectrum up to the fifth order. 

• The calculated bispectrum values [using (8)] are quite 
small and consequently the deduced values of the bico-
herence [using (6)] are also small. The Volterra model 
bispectrum [using (17)] and bicoherence [using (6)] 
values are generally much greater. For this reason, the 
bispectrum closest to the SAR bispectrum is generally 
the FOVM bispectrum which is null (see Figs. 2-5). 
Moreover the bispectral distance increases with the 
Volterra model order and we have to add high order 
interactions for converging to the SAR bispectrum. As 
a first conclusion we can state that, even if the higher 
order interactions do not contribute strongly to the spec
trum shape, their contribution is more important for the 
bispectrum. However, the bispectrum of SOVM is also 
quite close to the SAR bispectrum and the approximation 
of the SAR transform by a SOVM is then most valid for 
Volterra kernel identification by the methods cited in the 
introduction [13], [17], [20], [25]. 

• Results on the nonlinearity detection by the statistical 
index of Subba Rao and Gabr [27] are quite satisfactory 
since the Type II Error probability (3 is generally below 
0.1 for a = 0.9 and below 0.2 for a = 0.99 (see Fig. 6). 



Fig. 7. (a) Spectrum of the complete SAR transform; (b) Volterra model of order 1 ; (c) Volterra model of order 2; for swell propagating along the range 
axis ( i f « = 7 m and for a wavelength of 200 m). 



Fig. 8. 
(Hs = 

(a) Spectrum of Volterra model of order 3; (b) Volterra model of order 4; (c) Volterra model of order 5; for swell propagating along the range axis 
7 m and for a wavelength of 200 m). 
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Fig. 9. (a) Spectrum of the complete SAR transform; (b) Volterra model of order I ; (c) Volterra model of order 2; for swell propagating with an angle of 
45° with regards to the range axis (Ha = 7 m and for a wavelength of 200 m). 
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k>: 

Fig. 10. (a) Spectrum of Volterra model of order 3; (b) Volterra model of order 4; (c) Volterra model of order 5; for swell propagating with an angle of 
45° with regards to the range axis (Hs = 7 m and for a wavelength of 200 m). 



Fig. 11. (a) Spectrum of the complete SAR transform; (b) Volterra model of order 1; (c) Volterra model of order 2; for swell propagating along the 
azimuthal axis (Hs = 7 m and for a wavelength of 200 m). 



Fig. 12. (a) Spectrum of Volterra model of order 3; (b) Volterra model of order 4; (c) Volterra model of order 5; for swell propagating along the azimuthal 
axis (Hs = 7 m and for a wavelength of 200 m). 
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T A B L E I 

T Y P E II E R R O R P R O B A H I I . I T Y , F O R T H E C S T 

A N D V O L T E R R A M O D E L U P T O T H E S I X TH O R D E R 

Linear mode Mixed mode Quadratic mode 

C S T 0.04 0.04 0.08 

Order 2 0.10 0.10 0.10 

Order 3 0.30 0.19 0.24 

Order 4 0.28 0.40 0.28 

Order 5 0.8G 0.86 0.86 

Order 6 0.50 0.53 0.59 

An important point is that the classification between linear 
and nonlinear images does not depend on the nonlinearity 
energy since detection performance is quite good for both 
quasi-linear systems and for quadratic systems. Results 
of nonlinearity detection obtained on Volterra models are 
not as good although the bispectrum and the bicoherence 
values are stronger (see Table I). These values are quite 
similar and the bicoherence is flatter than the bicoherence 
of the SAR transform. 

• Although bicoherence tables, tested on simulated images, 
are not a reliable tool for nonlinearity detection (due to the 
bicoherence variance estimation), they can provide a reli
able location of the linear spectrum. Fig. 13 illustrates the 
linear spectrum location in the case of a mixed mode. The 
detection of the maximum values along the lines A,-*. = kfs, 
and ky = k2 leads to a linear component with a projec
tion of about 150 m in the range direction and 600 m in 
the azimuth one. In Fig. 9(b), we verify that the "linear" 
spectrum is located at this wavenumber. However, the au
tomatic linear spectrum determination, from the HBTs is 
not necessarily a trivial task, because linear and quadratic 
spectra can be connected (see Figs. 9 and 10) or the linear 
spectrum can be split (see Figs. 7 and 8). 

• Nonlinearity quantification by using (19) is, in practice, 
the most difficult goal to achieve due to the high variance 
of the bicoherence estimates. Results obtained on simu
lated images give a nonlinear energy overestimation. Since 
the linear and the quadratic spectra are generally not lo
cated at the same place in the frequency domain, we can 
get around the quantification problem by simple location 
and delimitation of both spectra by using the results of 
Section IV-A under the restrictions noted above. 

V. RESULTS ON ERS-1 IMAGES 

The nonlinearity analysis method was tested for four ERS-1 
(400 x 600) imagettes (the parameters are recalled in Table II). 
These imagettes were segmented into sixteen 128 x 128 subim-
agettes with some overlapping. The spectrum and bispectrum 
of the image were estimated by averaging X(k) • X*(k) and 
X(ki) • X(k,2) • X*(ki + k,2) calculated on each sub-image. 

Fig. 13. HBTs for SAR simulated image, mixed mode (Range-Range top, 
Azimuth-Azimuth bottom). 

T A B L E I I 

E R S - 1 I M A G E D A T A : D A Y , H O U R , L A T I T U D E , L O N G I T U D E , 

D O M I N A N T W A V E L E N G T H ( D W ) , E S T I M A T E D A Z I M U T H C U T O F E ( A C O ) , 

E S T I M A T E D N O N L I N E A R I T Y I N D E X qs 

Number Day Hour Lat. Long DW ACO ?l 

1 C Oct. 93 23:39:36 24.72 341.18 417 147 4.38 

2 30 Sep. 93 23:35:27 50.62 336.80 68 246 6.42 

3 29 Sep. 93 12:16:27 22.1G 313.80 229 371 8.08 

4 5 Oct. 93 0:41:02 18.34 326.81 226 593 9.31 

Results on these real SAR images agree with both the spectral 
and bispectral calculations, and with the nonlinearity index cal
culation. Here, we present the spectrum, the CBT and in one 
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case the HBTs for these four images. The nonlinearity index es
timates (gi) in Table II lead to a conclusion of linearity with a 
significance level a = 0.97 (if <ji < 5.693 under the conditions 
given in Appendix A). 

• The first image presents a spectrum with a narrow band
width in the azimuth direction (kx), with a peak around 
400 m (see Fig. 14) and the estimated azimuth cut-off 
around 100 m. The spectrum does not contain quadratic 
components (either scattered in the spectrum basis or lo
cated in a dominant quadratic spectrum). In the CBT rep
resentation (see Fig. 14), some components are darker than 
in the spectrum but this is due to bicoherence estimate 
variance rather than to nonlinearity detection. This image 
illustrates the case of a linear image of waves traveling 
in the azimuth direction, thus demonstrating that the SAR 
process for such a configuration can be linearly modeled. 

• The second image has a dominant wavelength in the 
Range direction and the nonlinearity index leads to the 
conclusion of a nonlinear signal (see Table II). The 
comparison between the spectrum and the CBT (Fig. 14, 
second line) indicates stronger values (darker compo
nents) in the CBT for azimuthal components around 
300 m, verifying the nonlinearity location along this 

axis as seen for simulated images. However, a nonlinear 
energy quantification by (19) leads to a low amount of 
nonlinear energy, thus proving that this image can also be 
considered as representative of the linear mode defined in 
Section IV-B. 

* For the third image, the nonlinearity index also indicates 
a nonlinear signal, but the spectrum and the bicoherence 
table do not provide information about the nonlinearity 
location (all the Fourier components having nonlinearly 
interacted). From the HBTs of Fig. 15, we deduce that 
the linearly filtered original spectrum has a wavelength 
projection on the range axis around 150 and 500 m on 
the azimuth axis. Consequently, the spectral peak, in the 
45° direction, is a quadratic artifact of the SAR process. 
This spectrum is close to the one of Fig. 9 for an orig
inal wave spectrum propagating in the 45° direction. We 
note that the quadratic kernel asymmetry is more impor
tant here than for the calculated spectra of Section IV-A, 
thus meaning that RAR modulation can be assumed to be 
different from the one used for our calculations. 

• The fourth and last signal is also nonlinear according to the 
nonlinearity index (see Table II). The spectral tail (with re
gards to radial bandwidth) is unusually long. This tail can 
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Fig. 14. (Continued) Top: Spectrum and C B T for image 3. Bottom: Spectrum and C B T for image 4. 

be interpreted as constructive interactions, as verified on 
the HBTs. The fact that the spectrum is close to the range 
axis without spectrum splitting leads us to assume that the 
original spectrum has been compressed onto the range axis 
under Azimuth Smearing effects, a result verified by the 
high estimated azimuth cutoff (see Table II). We found a 
similar SAR spectrum for high Hs and for waves prop
agating with an angle of 30°, the proximity of the orig
inal wave spectrum to the range axis explains why no de
structive quadratic interactions are detected. This image is 
an illustration of the nonlinearity quantification problem 
of Azimuth Smearing nonlinear effects, since SAR non-
linearities have not created nonlinear interactions for this 
image but have only filtered original components out. The 
image in Fig. 1 presents this kind of nonlinearity. 

VI. DISCUSSION A N D CONCLUSION 

The results presented in this paper detail SAR transform 
modeling by a Volterra expansion for a better understanding 
of SAR spectral distortion. We show in this paper that the 
specific SAR mapping can be stated as being bimodal (ei
ther linear or quadratic). Tools derived from HOS, such as 

the nonlinearity index of Subba Rao and Gabr [27] or bico-
herence tables, give fairly robust nonlinearity detection and 
location even if they are both disturbed by an intrinsic es
timate variance problem (already reported by [7], [23], and 
[24]). This estimate variance prevents nonlinearity quantifi
cation. The tools used for nonlinearity location and detec
tion assume Volterra modeling (up to the second order) and 
thus need the results of the decomposition of the SAR trans
form on Volterra models in order to give coherent results. 
A next step will be to use the Volterra model in the SAR 
inversion problem. But, in order to retrieve the sea spec
trum from the SAR spectrum by post-inverse Volterra fil
tering, the direct linear kernel must not be null. This condi
tion is not satisfied for the SAR linear kernel due to Azimuth 
Smearing. However, unlike linear systems, the loss of infor
mation by filtering (such as Azimuth Smearing) is not nec
essarily definitive for nonlinear systems. Indeed, the removed 
input Fourier components were somehow "recoded" by con
volution of the quadratic kernel with other input Fourier com
ponents in the frequency domain, and could be recovered 
from this quadratic kernel. Thus the use of Volterra models, 
especially the SOVM, for SAR transform inversion, with a 
more sophisticated method, remains an open question. 
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Fig. 15. HBTs for the third image (Top: Range-Range, Bottom: Azimuth-
Azimuth). 

APPENDIX I 

In order to illustrate the mechanisms which have some effects 
on phase coupling detection, we consider the following signal: 

X(n) = A 1 e : i ( k l - u + ' p ^ + A 2 e j { k ^ n + V 2 ) 

+ XgeM*'+**>•"+*!•> + B • ei((*i+**>•»+¥>!+**) 

(26) 

where <p; are random phases uniformly distributed over [0, 2VT], 
By using the bispectrum definition (5), we find that only the 
quadratically phase coupled part interferes in the bispectrum as 
B(ki,k2) = E{A\ • A2 • B}/8, while the spectrum is the sum 
of both components S(/ci + k2) = E {A\ -I- B2} /4. For gen
eral variables, the bicoherence expression does not lead to inter
esting results 

[E{A1 -A2 -B}Y 

E{A2}-E{A2}-E{Ä2 + B2} 
(27) 

but if we made the assumptions that B = a • / l j • A 2 and 
the Ai are independent Rayleigh variables (i.e., the input data 
are Gaussian), then the bicoherence gives the ratio of nonlinear 
energy over total energy at wavenumber k\ + k2 

E{B2} S„ 1„(fc 1 + fc2) 
P(k1,k2) = -=rl 

(28) 
E{A2 + B2} S{k!+k2) 

As seen in Section III, the assumption B = a • A \ • A 2 is verified 
for the second-order Vol terra Model and the relation (28) is only 
valid for this model. 

• Bicoherence being a 4-D structure, the information of the 
bicoherence is not immediately accessible for a global 
analysis. We thus propose to compress the bicoherence in
formation, by summation along one of the three pairs of 
non redundant axes (kl,k2.), (A:*.,/i;J), (k^k2.), into 2-D 
structures, the bicoherence tables. The bicoherence tables 
are consequently defined as (see [18]) 

f-|-co />-\-oo 

p{klkl,klkl)dkldkl TA A (k}c, k2.) = 

TRR {ky)k2

!t) — 

TRA (kl,kl) = 

~oo 
fco + <X) 

-|-03 /'-Î-CO 

P ( 4 i ky, k~, k-) dkl.dk2 

P (^i i kyi ky) dkxdk2. 

(29) 

The CBT, range-azimuth, TRA{k), gives the ratio of the 
total nonlinear energy over the total energy. In fact, by 
using (28) the complete quadratic energy is given by the 
sum of all quadratic interactions over the Fourier domain 
(i.e., for each pair of wavenumbers, the sum of which is 
equal to ki + k,2). The ratio of quadratic energy is given 
by P{ki + k2 — kj, kj)dkj. By bispectral symmetry 
[see definitions (5) and (6)], we obtain 
-f CO 

/'(',': + k 2 - kj,kj)dkj 

-|-co 

4-oo + 0O 

P{kl+kl,kl + kl,ki,ki)dkidkl 

=TRA(k1+k2) (30) 

and thus, the total quadratic energy is quantified by 

SRN,A (fei + k2) = S (ky + k2) • TRA (ki -I- fc2) (31) 

The homogeneous tables (TAA{kl,k2.) and 
TRR (k}nk2)) have a different interpretation but they can 
be seen as the amount of energy between two waves, the 
azimuthal component of which is equal to k}. and k2 (ky 
and k2, respectively). Especially, two harmonics of an 
original signal with a limited bandwidth spectrum have 
close wavenumber and their interactions are located in the 
homogeneous tables along the line kx = k% (respectively, 
ky = ky). This property is useful for recovering the 
linearly filtered original spectrum location. 
The index proposed by Subba Rao and Gabr begins by 
choosing p values of different sample of the estimated bi
coherence P(k\, k2) and forming the vector colon Y = 

http://dkl.dk2
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(Yi,Y'>,..., YP)T and by constructing around each point 
(A:i, A;2) a fine frequency grid with 

N 
= A:, 

kl (,„;) 

with 

--kl + 
• d • 7r 

N 
k] {m\ 

rny • d • ix 
N 

my • d • 7r 

N 

ml = - ./. ./ • 1,. 
ml = - J , - J + 1,. 

•7+1, . ml

y = - .7, 

ml = - . T;-J+ 1,. 

. , ( ) , . . . . / -

. , J - 1 , J 
, ( ) , . . . , / -

, „ 7 - 1 , . / 

1,./ 

«4 ^ 0 

(32) 

E 

The distance ri between the points must be chosen in such 
a way that: 

B{kl{rnl),kl (ml),kx (m2

;),A:* {m2))} 

= B(k1,k2) V (mlmlmlml) (33) 

see [27] or [10] for a discussion of this condition. We then 
obtain n = 8J + 1 trials Y;, of Y. The problem is to test 
whether all the variables have the same mean and it is a 
well-known problem of symmetry addressed by Anderson 
in [3]. Since the mean of this value is not known, Subba 
Rao and Gabr define the pX(p - 1) matrix by 

/ I - 1 0 0 ••• 0 \ 

B = 
0 1 - 1 0 0 

(34) 

0 1 -I J \ o ••• o 

and we calculate Y — B • W. This array of variables 
is zero mean under the null hypothesis, i.e., the signal is 
linear. The remaining part of the test is based on the T2 

Hostelling test. It needs to introduce the variables 

f = 7litY> a n d 2 =^E (^- ? ) ( yi- ; P ) t (35) 
i~l 7=1 

where t denotes the transposed matrix. The T2 Hostelling 
statistics T2

 = F E " 1 ? i s then 
( n - p + 1) 

qi = T£ (36) 

and follows, under the null hypothesis, a central 
F(j,_itJl_p+i}(x) distribution where p — 1 and n — p + 1 
are the degree of freedom of the distribution. The central 
F distribution with p and n — p degrees of freedom is 
given by 

N P / 2 - 1 

Fc(z) 
1 (n-l)j 

( « - i ) . r ( ^ ) 1 + ( n - l ) 

i / 2 - 1 ' (37) 

Obviously, when the hypothesis H0 is verified, T2 is close 
to zero and this hypothesis is then accepted if T 2 is lower 
than any threshold zQ determined by the significance 
level a. 

Fc(z)dz = a. (38) 

For instance, for a — 0.97, with n = 17 and p = 7 (we 
use these values for the tests of Section IV-B) then zQ = 
5.693. When the signal is nonlinear qi is a noncentral F 
distribution, the noncentrality parameter being 

(39) 

where v is the true mean vector and 5 the true covariance 
matrix of random variable array Y. The non central F-dis-
tribution (with noncentrality paraiheter r 2 and p and n - p 
degrees of freedom) is given by 

Fnc(z) = 
• ( „ - i ) r ( ^ ) 

-|-00 

E 
T2 ) [(,:.-!)] 

( l / 2 ) p + / - l _ 

I = o i ! r ( | + i ) [ l + T^rryj 

The type II error probability is thus given by 

0= / Fnc(z)dz 
Jo 

(40) 

(41) 

APPENDIX II 

By applying the bispectrum definition (5) to the S A R expres
sion of (1) 

B s a r (An, A:2) 

=E { l s a r (A ; i) • (A:2) • X ; a r (An + k2)} 

- E { l s a r (An) • Xmt (k2)} • E { l s * a l . (An + A;2)} 

- E {X S M (h) • X;ar (h + k2)} • E {xsai. (A;2)} 

- E [Xsli, (k2) • X * a l . (A;i + A;2)} • E {x s a r (An)} 

+ 2-73 { X s a r (An)} • E { X s a r (A;2)} 

• E { x ^ ( k i + k 2 ) ) 

=E { .V....,:. (ki) • .\„„ (A:2) • .V.::l:. (fei + A:2)} 

- o"0 • 5 s a l- (h)S (ki + A;2) - a0 • 5 s a r (A;2) 5 (ki) 
- a0 • S m t (An) 5 (k2) +2-al-6 (ki) • 5 (A;2). (42) 

Proceeding as Krogstad in [14], we have (43) shown at 
the bottom of the page. By applying the stationarity of 

E {xsai. (An) • x s a i. (k2) • .v;„. (An + A;2)} 

Lim, 
= \A\^ . A^""" I [ [ E IeJ<-W-')-^)) • ei-*l-W*")-«*)) . Xr!iV(x) • X , . a l . (,;') • .V,, r (,;")) 

\A\ + O 0 J x e A J x , e A , Jx„eAn I > 

= \A\ 

• e-i-*'-(*'-*) • e-*-k*<*"-*dx • dx' • dx" 
-3 L i m 

\A\ - 4 + o o J, x£A Jx'eA' Jx"eA' 
H (;r../:'..r".A-j.;A-;} • e ^ ^ ' - ) • e ~ ^ x " - ^ d x • dx' • dx" (43) 
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the sea surface up to the order 3, (43) can be rewritten 
as 

E [X^ih) • Xsiil.(k2) • X ^ i h + k2)} 

-\M-2

IAI

Lim.^ I I // (./•..(:'./•'.!../:•;} • ^ 

with 

|/1| -> + 0 0 J.,.eA J x , e A , 

• e~j-k2 X'dx • dx' 

H(x,x\kl,kl) 

=E {.V,,,r [>') • X r a r ( » • X^We-^HW-W) 
. e - j - & ' - ( r f ( 0 ) - r f ( . T ) ) } _ 

This expression can be calculated by considering the six-ele
ment random array 

X = (Xm(x), A , , U . ( . 7 / ) , XM(0), d(x), d (x1), d(0)f (44) 

of mean vector 

/.t = [ff0) <ro, ffo, 0,0,0] (45) 

and of covariance matrix By considering the first character
istic function we get (46) shown at the bottom of the page, 

and observing that H(x, x', kx,k'2.) can be calculated with the 
derivative of its first three variables 

(93 </) ( 0 J 1 , LQ2, 07;) , WA , U>b, U>0 ) I 

we obtain (8). 

IO,0,0,fc, ,fc 2,-fci - f e 

- . 7 - / / ( : ' % , ( 4 7 ) 

APPENDIX III 

The cross spectrum between, the interactions of order p and 
q is obtained by introducing (13) in the second definition of the 
spectrum (see (2)). We obtain 

Sp,<i(k) =7p,</0) + l'p,q{k) if ?J + q and 

Sp,<i(k) =lv,<i(k) else (48) 

with (49) shown at the bottom of the page. Under the Gaussian 
assumption of the input signal (the sea surface is assumed to be 
Gaussian as in [9] or [14]), X(k) is complex, jointly Gaussian 
and X(ki) can be considered as independent of X(k2) if k\ ^ 
± ^ 2 [19], [21]. If one Fourier component independent of the 
other Fourier components'is present in (49), then the mathemat
ical expectation can be expressed as the product of the mean 
of this Fourier component with the mean of the product of the 
other Fourier components. Since X(k) is zero mean, the ex
pectation in (49) is null. Then, the expectation in the last part 
of (49) is not null only if all the Fourier components can be 

/ (T2M^(0) a2M>2

r(x-x') a2MV(x) tr0MiD(0) a0MZd{x - x1) a0M^d(x) \ 
ffgM2

rr(>' - x) o-gMr(O) a2My{x') a0M^d(x'-x) cr 0MJ r f(0) C T Q M J ' V ) 

a2MiJ(x) T2

0M^(X') ffgAf2

rr(0) a0Mi-d(-x) 
aoM$D{0) a0Mid{x' - x) a0Mi'd(-x) MDD(0) 

a0M^d{x - .7:') aoMiD{0) a0M^d(~x') Mdd(x - x') 
\ aoM^ix) a0A4d{x') cT 0iV/ 2

r i i(0) Mdd(x) 

a0M^d(-x') C T O M ^ ( 0 ) 
M^(x - x') M^d(x) 

MiD{0) Mdd{x') 
Mdd{x') MDD(0) ) 

< / ; ( W I , U ; 2 , U J 3 , W 4 , W 5 , O J 6 ) = E { e j ( - i ^ M + " 2 - A ^ ( ^ ( 4 6 ) 

7p,,(fc) =E 
+ 0 0 ,.+co / P - l \ / P - l \ 

+ 0 0 r+00 / 'I-1 \ / 9 - 1 \ 

//,; (k Y, C <- i -v« /,• - k'n • -v :/•;)••• A - (A :;_O,//.•; • • • : 
0 0 V ,n=l / V m=l / 

+ 0 0 /.+co / P -1 \ / 9-1 
( ̂  ~ E ^'' ^ ' ' ' ' ' k p ~ 1 J ( ̂  ~~ E ' ' ' ' • ' ^ ' i / -

°° V ¡ = 1 J \ m = l 

E \ x [ k - J ^ k^j • x (ki) ...x (kp-i)x* (k - kCj • x* • • • x* I • • • dkp.idk[ • • • dfe;_x 

(49) 



LE CAILLEC et al: SAR IMAGING PROCESS OF THE OCEAN SURFACE 699 

grouped by pair, the elements of this pair being complex conju
gate (i.e., the wavenumber vectors are opposite). This yields to 
the expression given in (16) for instance. Moreover, when the 
number of Fourier components involved in the expectation of 
(49) is odd (i.e., p + q is odd), this condition is never satisfied 
and the spectrum is always null. In the same way, the bispec-
trum of the Volterra model is calculated by introducing (13) in 
(5) and the bispectrum is non null only if p -I- q + r is even. 
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