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INTRODUCTION

The Atlantic bluefin tuna (BFT) is a large pelagic (top
predator) and highly migratory fish living in temperate
waters, usually from 35 to 60° N (Mather et al. 1995).
BFT has been continually exploited in the Mediter-
ranean Sea since ancient times (Ravier & Fromentin
2001). However this species, which is relatively sensi-
tive to exploitation (Fromentin & Fonteneau 2001), is
now suspected to be overfished and overexploited
(Anonymous 2003), so that fishery-independent data
becomes critical. Obtaining trustworthy information
from scientific surveys, however, implies a better
understanding of the relationship between BFT
population dynamics (especially the dynamics of its
spatial distribution) and main oceanic features (Fro-
mentin 2003). The spatial association between schools

of large pelagic fishes and oceanic features has
already been established in the literature (e.g. Olson
et al. 1994). For instance, surface fronts recently
appeared to play a key role in the feeding, growth and
physiology of large pelagic fishes (e.g. Dagorn et al.
2000, Lutcavage et al. 2000). However, this type of
investigation remains rare because of a lack of
adequate and precise data on the spatial distribution
of fishes together with coincident oceanographic
measurements (Laurs et al. 1984), as well as of infor-
mation in the vertical dimension (remote-sensing
being mainly limited to 2D; see e.g. Brill et al. 1999,
2002). Recent advances in electronic tagging and
improved 3-dimensional mapping of the ocean have
circumvented this last difficulty, but an in-depth analy-
sis of the spatial distribution of BFT schools in relation
to key environmental factors is still needed. 
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Our purpose was to test whether BFT school distrib-
ution in the Gulf of Lions can be solely explained by
key environmental variables. To do this, we compared
count data of Atlantic bluefin tuna obtained by aerial
surveys with sea surface temperature or ocean colour
obtained by high-resolution sensors (Advanced Very
High resolution Radiometer, AVHRR, and Sea-viewing
Wide Field of View Sensor, SeaWiFS). Several quanti-
tative methods (some rarely, if ever, applied in marine
ecology) have been used to analyse these data. An
edge-detection technique was developed to enhance
frontal variability in the studied area. Estimates of the
first and second moments (i.e. the mean and the vari-
ance) of the school distributions were also computed
and modelled in relation to oceanic variability. A non-
parametric measure, based on the point-process frame-
work (Diggle 1983), was applied to test possible rela-
tionships between the spatial distribution of the BFT
schools (e.g. point-like data) and oceanographic fields
and features (considered as continuous). 

DATA

Bluefin count data from aerial surveys. As part of
the EU STROMBOLI project (EU-DG XIV Contract
99/022), the French Institute for the Exploitation of the
Sea (IFREMER) conducted aerial surveys in the Gulf of
Lions, which is a well known feeding area for juveniles
(Farrugio 1981). Surveys were carried out between
2000 and 2002 in an attempt to derive an abundance
index for juvenile bluefin tuna (Fromentin 2002). This
technique appeared appropriate since BFT spend most
of their time in the top 10 m of the sea (Lutcavage et al.
2000). Aerial spotting has regularly been carried out
since 1993 along the Southern Australian coasts on
juveniles of Southern bluefin tuna (Cowling & O’Reilly
1999) and has been also tested on large Atlantic
bluefin tuna in the West Atlantic (Lutcavage & Kraus
1995). Flights were performed during calm days of
August and September and included 2 scientists and a
professional pilot. Two flight paths (covering the east-
ern and the western part of the gulf) were followed,
each path being completed in about 5 h. The total area
covered is broadly delimited by (3° 5’ E, 5° 2’ E) and
(42° N, 43° 3’ N). Each school spotted during a survey
day, as well as each daily track, was precisely located
through a GPS and a GIS (Geographical Information
System)-equipped laptop (for more details on the aer-
ial surveys see Fromentin 2002). The aerial surveys
yielded a total of 80 juvenile BFT schools in 2000 from
6 flight days, 77 in 2001 from 8 flight days and 54 in
2002 from 16 flight days. Field validation was con-
ducted using purse-seiner log-books and involved
professional spotters (Fromentin 2002).

Remote-sensing data. High-resolution data sets cov-
ering the ocean’s surface include measurements from
various types of sensors (e.g. radiometers, scattero-
meters, radars). Among the most popular in fisheries
oceanography are the ‘Sea-Surface Temperature’
(SST), and the ‘Ocean Colour’ (OC). SST is derived from
brightness temperature using AVHRR, while OC is
calculated from backscattering light level using Sea-
WiFS. SST and OC have been mostly used in statistical
models of the ocean, as tracers of its dynamics and in-
dices of patchiness (Mahadevan & Campbell 2002), or
within data assimilation schemes for ecosystem models
(Hofmann & Friedrichs 2001). Beyond visual inspection,
their main use in fisheries oceanography is to compen-
sate the lack of coincident physical measurement of
a given fishing operation (e.g. Bigelow et al. 1999, Maury
et al. 2001). Various space/time resolutions are available
for these 2 sensors, from 1.1 km (local area coverage
data, or LAC) to 4 km (sub-sampled global area cover-
age, or GAC) and 9 km. Here we used the highest avail-
able resolution, i.e. 1.1 km. The SeaWiFS LAC daily raw
radiances were downloaded from NASA’s Distributed
Active Archive Center (http://eosdata.gsfc.nasa.gov/
data/dataset/SEAWIFS/). Level-2 AVHRR SST maps
were supplied by the Centre de Météorologie Spatiale of
Lannion (France). The ground resolution of this product
is 2 km (Brisson et al. 2001). A total of 76 SST images
(30 in 2000, 29 in 2001 and 17 in 2002) and 49 OC images
(19 in 2000, 21 in 2001 and 9 in 2002) were collected
to span the whole survey period. Images spoiled by
clouds and nebulosity were discarded.

Data merging. All images from both sources were
remapped on a Mercator grid with a common res-
olution of one-hundredth of a degree. Daily maps of
schools spotted and remote-sensing images have been
combined for illustration purposes in Figs. 1, 2 & 4.
Quantification studies were all conducted on the daily
observations, since the merging process can have no
ecological meaning.

METHODS

SeaWiFS data L1–L2 processing. A Level-1 to Level-
2 process chain was set up using SEADAS software (Fu
et al. 1998). We used the OC-4 algorithm (O’Reilly et
al. 1998) to derive Type a chlorophyll concentrations
from the raw radiances:

Chl a (mg m–3) = 10(a0 + a1· R + a2·R 2 + a3·R 3) + a4, with

with Rrs denoting raw radiance at a given wavelength.
OC-4 is less accurate in coastal (Case II) than in
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oceanic (Case I) waters, because of high back-scatter-
ing of light due to suspended matter, and tends there-
fore to overestimate chlorophyll concentrations in
coastal waters (Gohin et al. 2002). However, this
limitation was not so critical for our purpose because
(1) BFT schools are offshore (Fig. 1), and (2) we
were mainly interested in image processing and front
detection.

Front enhancement. An automatic front-enhance-
ment algorithm can prove valuable in the objective
assessment of the so-called ‘tuna-front’ association.
Various edge-detection techniques are described in
the literature, involving isotherm-contouring, empiri-
cal orthogonal functions (Chiswell 1994), surface-
fitting (Shaw & Vennell 2000), convolution with
kernels (Simpson 1990, Canny 1986), and specifically
designed algorithms (Cayula & Cornillon 1995). Sys-
tematic analysis of AVHRR images has resulted in
databases of ocean fronts (Ullman & Cornillon 1999)
and improved knowledge of frontal dynamics (Miller
2000). Nonetheless, frontal analysis of remote-sensing
images remains rare in fisheries science and is mostly
used in applied fisheries oceanography to support
fishing activities.

We implemented the Canny-Deriche filter (Canny
1986) using the ‘Interactive Data Language’ (IDL). This
choice was mainly because of its simplicity and its
wide use in image-processing. The method basically
involves 4 steps: (1) image-smoothing through convo-
lution with a Gaussian filter, (2) gradient computation
in both (x and y) directions, (3) non-maxima suppres-
sion across the edges, (4) hysteresis thresholding along
the edges.

An additional step is invoked to remove fronts
smaller than a given length. The parameters involved

are the width of the Gaussian filter, the width of the
gradient estimator, and the low/high hysteresis thresh-
olds. Various values of these parameters were tested
empirically. Daily maps of front distribution were
archived and summed to produce maps of front density
over the survey period (see Fig. 4).

Spatial analysis. A variety of methods used in vari-
ous research fields, such as statistical mechanics in
physics, oceanography, epidemiology, plant ecology or
mining statistics, are now available for studying spatial
processes in ecology. Detailed reviews can be found in
recent methodological papers (e.g. Fortin et al. 2002).
Measures of spatial structure can be roughly separated
into 2 types (Dale et al. 2002): methods dealing with
the spatial autocorrelation of gridded or continuous
fields of data (e.g. correlograms and variograms) and
methods used in the frame of point-pattern analysis
(distance-based indices which consider precisely
located particles or individuals; e.g. Ripley 1976). Both
measures were applied in this study and are discussed.

Estimating local average: Point-process analysis
comprises various tools to study the first and second
moments of the spatial distribution of individuals
(Diggle 1983). Its first-order property is the intensity,
λ(s ) (or density surface), e.g. the mean number of
events per unit area defined at Point s: 

where E(Y(ds)) is the expected number of individuals per
area ds. For a stationary (homogeneous) Poisson process,
λ(s) will be constant over the study area, so λ(s) = λ. Clas-
sic methods for estimating the intensity usually involve
quadrat counting. However such a method induces a loss
of information at scales smaller than the quadrat size,
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Fig. 1. Sightings of juvenile Thunnus thynnus schools in (a) 2000, (b) 2001, and (c) 2002. Bathymetry is shown by black lines, 
fish school locations by dots
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and interpolative autocorrelation, especially for small
data sets (Fortin et al. 2002). We therefore introduce
kernel-smoothing, a non-parametric method to estimate
the density of individuals at location s:

where k is a user-specified kernel of bandwidth b and
smoothing parameter τ. Kernel-smoothing is an inter-
esting way to study the spatial distribution of free-
ranging animals. By characterising k through a Gauss-
ian function, λ (s) is given the following ecological
meaning: it can be seen as the probability, p, of finding
an individual near any spatial locus after a given period
of time t, under the assumption of an unbiased random
walk in an homogeneous environment (Gardiner 1983).

p(x,y,t) = ∫
∞

–∞
p(x,y,0) · KD(x,y,t)dxdy, where

KD is a Gaussian kernel of standard deviation 1332Dt,
with D the diffusion coefficient and t the integration
time interval. In practice, this integral is computed as a
convolution product in the Fourier space. The density
estimate will inherit the properties of the kernel, but its
choice is not as critical as the choice of the window
width (Stoyan & Stoyan 1994). The bandwidth of the
Gaussian kernel is related to the diffusion coefficient
D, which can be approximated from the average speed
of a randomly-walking individual as: 

where ∆x is the average displacement over time inter-
val ∆t. The resulting intensity surface can be inter-
preted as a potential ‘search area’. Ultrasonic teleme-
try applied to juvenile BFT and archival tags on adult
BFT provided several records of swimming speeds
(Lutcavage et al. 2000, Brill et al. 2002). According to
these records, the average speed is about 6 km h–1,
yielding a diffusion coefficient of 18 km2 h–1. The stan-
dard deviation of the daily redistribution kernel used
in this study is therefore set at 1332Dt ≈ 30 km (with time,
t = 24 h).

Estimating spatial variance: The semivariogram
(Matheron 1971) is used in geostatistics to describe
how samples are related to distance. An estimate of
the semivariogram is:

where N(h) is the number of pairs Z(Xi) and Z(Xj)
separated by a distance h. Geostatistics are used when
several sampling/recording stations cover the area of

study or, as in plant ecology, when this area is subdi-
vided in smaller objects (e.g. blocks or quadrats). The
quantity of interest is then the number of individuals
per unit block. In the case of animal ecology, mobile
individuals (e.g. travelling between quadrats) may bias
the spatial statistics. More generally, this new arrange-
ment in the data induces interpolative autocorrelation
on a scale similar to the size of each quadrat (Fortin et
al. 2002). The same problem can be addressed when
considering smoothed density surfaces and most types
of count data.

The Lagrangian, or point-process, framework
appeared more suitable for our purpose (Diggle 1983).
However, linking spotting data (e.g. point-like data) to
the ‘oceanscape’ (e.g. gridded remote-sensing fields in
the present study) appears problematic since the 2 pro-
cesses are essentially different. We therefore firstly
compared schools spotted to delimited fronts and
eddies, and then analysed location-based data (fish
schools) in relation to density-based data (gridded
fields). Both can be achieved in the point process
framework. 

The second-order property is the number of events
by pairs of areas:

For a stationary Poisson process,γ(si,sj) = γ(si – sj) = γ(d),
i.e. γ depends only on the direction and distance be-
tween si and sj. An equivalent of this quantity in geo-
statistics would be the semi-variogram. A second-order
statistic in the point process is given by Ripley’s K-
function (Ripley 1976), widely used in ecology: it mea-
sures spatial structure at different ranges, under the
assumption of homogeneity and isotropy. An estimate
of K is provided by:

where δij is 1 if ||xi – xj || ≤ d,0 otherwise.
An edge-effect correction is necessary near the

boundaries of the study area (Ripley 1977). Under
Complete Spatial Randomness (CSR), such as the Pois-
son process, the expected K(d) is equal to π ·d2. A
variance-stabilised version of K̂ is the Besag function
(Besag 1977):

L̂(d) = 1333K̂ (d)�π – d3

L(d) = 0 is equivalent to K(d) = π ·d2 and indicates CSR;
L(d) > 0 indicates more clustering than expected from
a Poisson process (e.g. CSR); L(d) < 0 indicates more
repulsion than expected.

Point-pattern analysis in ecology has a 1-to-1 equiva-
lent in statistical physics, namely ‘smoothed particles
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dynamics’, in which similar techniques are used
(e.g. pair correlation functions and kernel estimates).
Another point is that classic geostatistical methods can
be used on the modelled intensity surface (as well as
spatial indices on the quadrat counts), but the structural
(interpolative) autocorrelation induced by smoothing
may severely bias the second-moment estimate.

Accounting for heterogeneity when estimating spa-
tial variance: Spatial heterogeneity is fundamentally
inherent to natural ecosystems. The assumption of
homogeneity and isotropy is thus violated, and the sys-
tem may be characterised by spatial autocorrelation
driven by the environment (e.g. resource availability),
or arising from intraspecific interactions (e.g. schooling
or swarming). Therefore, spatial aggregation can arise
from dependence on a patchy underlying process (for
example food: plankton or nekton), without necessarily
having (second-order) interaction mechanisms between
individuals (the reverse is also possible). It is thus
important to allow for heterogeneity when specifying
an underlying model. Following Foldager & Pedersen
(2002), we modelled the spatial distribution of ob-
served fish schools, conditional on a model taking into
account process (e.g. biotic) heterogeneity, environ-
mental variability, and possible interaction effects
between fish aggregates. In practice, intensity λ(x) is
fitted to the point data as a linear combination of exter-
nal variables using the method of maximum pseudo-
likelihood (Besag 1975). The external variables con-
sidered in this study were sea surface temperature,
chlorophyll concentration, and distance to nearest
thermal or ocean-colour front. Compared to the homo-
geneous Ripley’s K, which assumes a Poisson random
distribution, the heterogeneous version of Ripley’s K
(Baddeley et al. 2000) assumes a user-defined intensity
surface λ(x) = f (environment) and can be written as:

Kheterog can reveal second-order aggregative proper-
ties, conditional on the environment (the CSR model
is, in this case, an heterogeneous Poisson process of
intensity λ(x)). In other words, the question we asked
was ‘Are the fish schools more or less aggregated than
expected when linking them to environmental de-
scriptors?’. Point-process statistics appear well suited
to our purpose, compared to Generalised Linear
Models (which are good at explaining models, but are
likely to fail if insufficient data is available), and geo-
statistical methods (which are generally useful for
extracting the spatial structure of objects, but are in-
efficient in modelling the process underlying the
observed patterns). Still, the goodness-of-fit of point-
pattern models is highly sensitive to the specification
of the intensity surface, which requires good a priori

knowledge. All statistics were implemented using the
R language (Ihaka & Gentleman 1996), while point
processes were analysed using the Spatstat package
(Baddeley & Turner 2002, available at: www.maths.
uwa.edu.au/~adrian/spatsat.html).

RESULTS

Spatial structure of BFT school patterns

Kernel density estimates between 2000 and 2002
showed a heterogeneous distribution over the survey
area: most schools were irregularly located offshore
in the southern area of the survey (Fig. 2). Classic
geostatistical methods were performed on the daily
smoothed-density surfaces. Empirical variograms ex-
hibited a range of around 40 km, with roughly linear
increases for shorter distances (Fig. 3). However, the
variograms were highly variable from day-to-day and
secondarily from year-to-year; both total variance
and range varied extensively. While the variance
appeared clearly related to the number of BFT
schools spotted (i.e. the more detections, the greater
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Fig. 2. Thunnus thynnus school density in the Gulf of Lions
in 2000–2002, estimated with Gaussian kernel filter width 

of 30 km
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the variance), changes in range appeared more sen-
sitive to the smoothing kernel bandwidth, as indi-
cated by additional sensitivity-analysis. Spatial auto-
correlation curves rapidly decreased to low values
around 40 km (a range similar to these of the vari-
ograms), but zero values were not obtained until
80 km (Fig. 3). Comparison of these curves with the
autocorrelation of a Gaussian signal of squared-error
D = 18 (dashed lines in Fig. 3), provided information
about additional features present in the data (e.g
those remaining after smoothing). The main differ-
ences between the 2 curves appeared at around
30 km, which roughly corresponds to the bandwidth.
Note that these curves were estimated by Fourier
transformation of the data and were therefore
smoother than the empirical variograms. Variance-
stabilised Ripley’s K were positive for all distances,
which indicate aggregation/clustering in the station-
ary case (Fig. 3). All 3 annual curves exhibited peaks
between 10 and 80 km, indicating more aggregation
than would be expected from a random Poisson pro-
cess at these ranges.

A sensibility analysis was conducted using various
kernel bandwidths (i.e. school swimming speeds of 3, 6
and 9 km h–1). As expected, the small-scale structure of
BFT school patterns tended to fade when using large
bandwidths, whereas low bandwidths led to high spa-
tial variability (e.g. roughness). An average speed of
6 km h–1 appeared a satisfying trade-off for the inter-
pretation of the correlation curves, and was further-
more sensible from a biological viewpoint.

Sea-surface dynamics in the Gulf of Lions

The frontal dynamics of the Gulf of Lions were
derived from daily remote-sensing images collected
during the aerial survey periods (i.e. mainly August
and September 2000, 2001 and 2002; Fig. 4). The
observed dynamics therefore correspond to the sum-
mer season. The mean surface temperature of the
water masses in the study zone was between 21 and
22°C. The mean chlorophyll concentration slightly
exceeded 0.3 mg m–3, with a peak in the middle of
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Fig. 3. Spatial statistics for
Thunnus thynnus school den-
sity in 2000, 2001, and 2002.
Top panels: daily empirical
variograms (grey lines) with
yearly-average (black line)
superimposed; middle panels:
spatial autocorrelation of in-
tensity surface (black line)
and spatial autocorrelation
induced by kernel-smoothing
(dashed line); bottom panels:
corresponding Ripley K func-

tions
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area. A strong north-south gradient was seen in sur-
face temperature, whereas the ocean colour as well
as the front density maps displayed more complex
and patchy structures. The extension of the Rhône
plume was well delimited in the mean chlorophyll
field. In general, frontal zones are more visible on
ocean-colour maps, and these were well covered by
the survey path (Fig. 4). The Gulf of Lions is regu-
larly covered by high- and low-altitude clouds,
making conventional radiometers often inefficient.
Cloud-free images display characteristic patterns of
temperature and ocean colour delimited by fronts,

jets and eddies, as seen for example in Fig. 5. This
area extends from the Rhône river mouth (NE corner)
to Cape Béar (SW corner), roughly following the
1000 m isobath. This is a clear sign of the discharge
of water masses containing high concentrations of
particulate and dissolved organic matter and nutri-
ents interacting with the general dynamics of the
Liguro-Provencal current. This kind of pattern is
often seen when the northern wind jet (known as the
mistral and tramontane) weakens, making the Rhône
plume clearly visible due to its cold signature and
high nutrient content.
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Fig. 4. (a) AVHRR
sea-surface tempera-
ture (°C), (b) SeaWiFS
chlorophyll concentra-
tion (mg m–1), (c) ther-
mal front density, and
(d) ocean-colour front
density (%), averaged
over survey period

(2000, 2001, 2002)
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Superimposed locations of BFT schools on
environmental maps

Plotting BFT schools spotted during 2000, 2001 and
2002 on the corresponding ocean-colour and tempera-
ture maps clearly revealed that the fish distributions

were not random. Preliminary visual inspections re-
vealed that they were generally close to surface struc-
tures such as the Rhône plume and, at a more local
scale, to thermal and ocean-colour fronts. The maps
corresponding to 9 September 2000 are provided as
an illustrative example in Fig. 5. Few isolated schools
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Fig. 5. Remote-sensing images on 9 September 2000 showing fish school (Thunnus thynnus) locations (+). (a) AVHRR sea-
surface temperature; (b) thermal fronts; (c) SeaWiFS chlorophyll a concentrations; (d) ocean-colour fronts
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were spotted on this specific day; most were clustered
in 2 major aggregates in relatively cold, nutrient-rich
waters originating from the Rhône river mouth. They
also appeared closely associated with some straight
thermal/ocean-colour fronts crossing the flight tran-
sects. To assess the significance of this apparent asso-
ciation, frequency histograms of surface-layer temper-
ature and chlorophyll a concentrations were computed
using values for that day at all BFT school locations.
Histograms of distances to the nearest thermal and
ocean-colour fronts were also computed, and are
shown in Fig. 6. Then, the empirical distributions of
these 4 variables were gathered (e.g. using values for
that day at all grid points in the whole survey area).
Comparison of those 2 kinds of distributions allowed
us to determine if the BFT schools spotted on a spe-
cific day gathered in parallel with particular values of
oceanographic variables, or if the values at each school
location only reflected the oceanographic situation in
the Gulf of Lions.

The BFT schools apparently occupied very narrow
ranges of temperature (between 20.5 and 21.5°C) and
phytoplankton concentrations (0.2 to 0.3 mg m–3). They
also showed a preference for short distances to ocean-
colour fronts (between 0 and 10 km) and, to a lesser

extent, to thermal fronts. Kolmogorov-Smirnov 2-sample
tests (Sokal & Rohlf 1969) confirmed that the distribu-
tions of these variables were highly different from their
empirical distributions in the whole area. The null
hypothesis H0 was ‘BFT schools and external factors
are distributed similarly’; the alternative hypothesis
was ‘the spatial distribution of BFT schools and ex-
plaining factors are dissimilar or weakly overlapping’.
H0 was rejected in most cases, but less strongly so for
the distribution in relation to fronts (p = 2 × 10–8 and
p = 1 × 3.10–9 for sea-surface temperature and phyto-
plankton concentration, respectively; p = 0.05695 and
p = 0.00029 for distances to nearest thermal front and
nearest ocean-colour front, respectively). This result
can be thus interpreted as follows: sea-surface tempera-
ture fields and phytoplankton fields were not randomly
recorded by the BFT schools. The schools showed a pref-
erence for narrow ranges of environmental values which
appeared to coincide with frontal regions. These results
show that, although BFT schools may have sought pre-
cise values of surface temperature and/or phytoplank-
ton, it is more likely that the frontal regions (that on this
specific day showed strong surface variability) were
better described by narrow peaks in SST or OC histo-
grams than the strengths of the gradients themselves.
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Fig. 6. Distribution of
4 environmental de-
scriptors during survey
on 9 September 2000.
(a) Sea surface temper-
ature, (b) chlorophyll
concentration, (c) dis-
tance to nearest ther-
mal front, and (d) dis-
tance to nearest ocean-
colour front. Continu-
ous line: data recorded
over the whole area;
vertical bars: data re-
corded at each school 

location
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BFT school distribution linked to the environment

In an attempt to account for non-stationarity on a
daily basis, the inhomogeneous versions of Ripley’s K
were computed as a function of a linear combination of
external descriptors. Data for 9 September 2000 is
again shown here for illustration. We fitted 4 point-
process models, always including the distance to the
flight path as an explanatory variable (i.e. to account
for patterns induced by the sampling design). The fol-
lowing combinations were tested: (1) a combination of
the distances to the nearest ocean-colour and thermal
fronts, (2) the distance to the nearest thermal front
along with the surface-temperature field, (3) the dis-
tance to the nearest ocean-colour front along with the
phytoplankton field, and (4) all 5 variables (Fig. 7). The
intensity surfaces were fitted as third-order polynomi-
als of these variables using the method of maximum
pseudolikelihood, and the inhomogeneous Ripley’s K
was then computed taking each fitted intensity surface
as the CSR null model. The variance-stabilised K
is expected to be zero at all scales under the CSR

hypothesis. Values above zero at a specific scale indi-
cate over-aggregation, whereas values below zero
indicate over-spreading. 

The goodness of fit of the various models are illus-
trated by the Ripley K curves in Fig. 8. On this specific
day, the model including temperature and phyto-
plankton performed better at short scales (e.g. less
than 20 km) than the models depending on distance to
fronts or on distance to flight path only. Distance to
flight path was an important variable in all models. As
expected, the total model (gridded fields + distance to
fronts + distance to flight path) performed the best and
the K curve displayed values close to zero from scales
between 0 and 40 km. As can be seen, the probability
surface conditional on the total model is more
restricted than those of the other models and the great
majority of the BFT schools were distributed in the
areas of highest probabilities (Fig. 7). However, the K
curve of the total model displayed slight positive
values at around 5 km and became largely negative
beyond 40 km, indicating that the model could not
explain some spatial structures at very small and large
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Fig. 7. Intensity surface as a function of (a) distance to plane flight-path, (b) temperature and ocean-colour field, (c) distance to
nearest thermal and ocean-colour front and (d) all 5 variables (+). Fish (Thunnus thynnus) schools spotted on 9 September 2000.
Distance to plane flight path calculated as perpendicular distance between fish school GPS location and on-board record of plane track
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scales. In other words, the results of the various models
indicated that BFT school patterns were closely related
to (or well delimited by) oceanic features, except at the
smallest (<10 km) and largest (>40 km) scales, where
no detection occurred in potentially favourable zones. 

DISCUSSION

Hydrodynamics of the Gulf of Lions

The dynamics of the Gulf of Lions has been
described in past studies using remote sensing data
and in situ measurements from moored buoys and
research cruises as well as numerical models (e.g.
Demarcq 1985, Estournel et al. 1997). This area is
under the influence of 3 dominant processes: (1) strong
northern winds inducing coastal upwelling, (2) the
massive discharge of nutrient-rich waters from the
Rhône and (3) offshore branches of the Liguro-Proven-
cal current. The first assessment of front occurrence
in the Gulf of Lions was by Demarcq (1985), using
AVHRR-derived temperature maps and CZCS  (NASA
Coastal Zone Color Scanner)-derived ocean-colour
maps. Using new and more powerful algorithms, we
have here shown that ocean-colour fronts are mostly
located in the Rhône plume’s extension, while thermal

fronts appeared more scattered and
related to other mechanisms, such as
stirring and mixing with the Liguro-
Provencal current. Furthermore, our
results showed that thermal and ocean-
colour fronts were decoupled in space
and time, especially offshore. This is in
agreement with previous findings on the
patchiness of these variables. In fluid
dynamics, various energy inputs from
thermal and gravitational origins result in
convection and advection processes lead-
ing to the formation of spatial discon-
tinuities, where enhanced horizontal and
vertical stirring occurs. Such surface het-
erogeneity can be seen on sea-surface
temperature maps. Biological processes
(e.g. reproduction, recruitment, growth)
are by nature aggregative, leading to
added patchiness in geophysical vari-
ables such as ocean colour. It has been
shown by Mahadevan & Campbell (2002)
that the characteristic response time of
phytoplankton to stirring and nutrients
is different to that of temperature in
response to heat fluxes. Phytoplankton
may therefore be a patchy variable, with
more underlying processes than tempera-

ture, which appears to be a more pertinent tracer of
ocean circulation. In the special case of remote-sens-
ing, Mueller & LaViolette (1981) stated that ocean-
colour fronts are suggestive of turbulent diffusion,
whereas thermal fronts reveal shear instabilities.
Moreover, the AVHRR infrared sensor only records
temperature at the very surface, whereas pigment con-
centration is integrated throughout the upper layer of
the ocean. Thus, the position of thermal and OC fronts
match only to a certain extent, both in space and time.
The implications of these facts are discussed below.

Spatial distribution of bluefin tuna schools

The empirical variograms tend to indicate a spatial
structure of the BFT schools at around 40 km, but var-
ied widely from day to day. The underlying processes
(be they physical or biological) are thus likely to change
over time. The second-order characteristic of a point-
process (Ripley’s K ) as well as the spatial autocorrela-
tion plots revealed that the fish schools were clustered
over a wider range of scales (from 10 to 80 km), indicat-
ing more aggregation than expected from a random
process. As the biophysical properties of the surround-
ing water masses may influence the BFT schools, their
spatial structure is likely to reflect this relationship.
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Superimposing the schools detected by aerial sur-
veys on environmental maps effectively showed that
their spatial distribution was linked to some specific
oceanic features. This visual inspection was in agree-
ment with the histograms and Kolmogorov-Smirnov
tests, which showed that the schools were not ran-
domly distributed in relation to sea-surface variables
on a daily basis. It was also shown that, while clusters
of schools were found mostly in the vicinity of frontal
lines, these ‘preferred’ zones were better characterised
in general by narrow ranges of SST and/or phyto-
plankton concentrations. However, we believe that
this cannot be interpreted straightly as preferences:
pooling the whole set of data over 2000, 2001, and 2002
yielded different results, as shown in Fig. 9. Tempera-
ture exhibited 3 peaks at 16, 21 and 24°C (correspond-
ing to a seasonal signature during the different survey
periods), whereas chlorophyll concentration exhibited
a single peak at 0.25 mg l–1. It was not possible to
establish any preference: the distributions of these
values at each school location were not significantly
different from their empirical distribution over the
entire survey area. This was confirmed by the accep-
tance of H0 in the Kolmogorov-Smirnov tests (p = 0.102
and p = 0.303 for SST and OC respectively). On the

other hand, the distances to the nearest surface front
still displayed a preference for small values (roughly
less than 10 km); H0 was rejected for ocean colour
fronts (p = 0.028) and, to a lesser extent, for thermal
fronts (p = 0.071). This is interpreted as follows: when
pooling the daily data, local relationships may vanish,
while association with frontal features remains sig-
nificant. Our conclusion is that fronts are ubiquitous
features at the sea surface and may be better suited
to describing relationships over entire seasons, while
optima in SST or OC appear more difficult to charac-
terise since they strongly depend on local conditions
(both in space and time). Concerning front detec-
tion and characterisation, alternative techniques (e.g.
dynamics-oriented, gradient-independent algorithms)
may be worth investigating in fisheries oceanography,
such as the method developed by Cayula & Cornillon
(1995).

BFT school distributions were in general well deter-
mined by the oceanic features (gridded fields and dis-
tance to thermal and ocean colour fronts) as soon as
flight path was taken into account. We were able to
roughly model the spatial distribution of BFT schools
and to reproduce the situation from a simple visual
superimposition of the sightings on environmental
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Fig. 9. Distribution of
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bined. (a) Sea surface
temperature, (b) chlo-
rophyll concentration,
(c) distance to nearest
thermal front, and
(d) distance to nearest
ocean-colour front.
Continuous line: data
recorded over the
whole area; vertical
bars: data recorded at 

each shool location
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maps. The spatial distribution of the BFT schools
appears thus clearly non-stationary, since (1) sampling
autocorrelation was induced by the survey design
(i.e. the transect-sampling, although the number of
sightings decreased exponentially in relation to the
perpendicular distance of the flight), producing an
incompletely mapped data set, and (2) BFT school
distributions appeared generally linked to the ocean
‘landscape’, which displayed a variety of scales in its
surface variability (e.g. long- and small-range gradi-
ents). This latter process in itself can induce autocorre-
lation and non-stationary distributions in marine
species, particularly if the distribution of the schools
spotted does not span the whole range of environmen-
tal variables.

However, several results also clearly pointed out that
some spatial structures were still unexplained by
oceanic features, especially at very small (<10 km) and
larger (>40 km) scales. Such an outcome could be due
to (1) environmental factors other than those examined
in this study being of importance (e.g. the spatial
distribution of a prey species); (2) Ripley’s K being
biased at larger scales, since the number of compar-
isons decreases as lag increases (this would not, how-
ever, explain over-aggregation at small scales); (3)
fast-moving fronts that are difficult to spot, as the time
of the survey flight and the recording time of the
images can differ by several hours; (4) some biological
and/or behavioural processes that led to a departure
from aggregation driven by environmental constraints.
For instance, the migration patterns of juvenile BFT
within the study area (i.e. the Gulf of Lions), which
remain largely unknown, could explain such departure
at large scales. At smaller scales, over-aggregation
could also be due to interactions between BFT juvenile
schools, leading to unexpectedly large schools in spe-
cific zones. Another major cause for clustering on feed-
ing grounds may be the spatial distribution of prey,
such as clupeids, that are strongly affected by oceano-
graphic variability. Indeed, the interplay between den-
sity-independent responses to environmental features
and density-dependent social behaviour is likely to
produce complex patterns over a variety of scales
(Steele 1989, Flierl et al. 1999).

Potential benefits of association between tuna and
ocean fronts

Our results showed that surface fronts are important
in partially explaining the spatial distribution of juve-
nile bluefin tuna schools. Ocean fronts are synoptic
structures (or ‘features’) that form at the interface
of neighbouring water masses with different oceano-
graphic characteristics. They are associated with con-

vergent flow, which results in the trapping of material
in the frontal region. The advection of nutrients in con-
junction with enhanced turbulence form a suitable
basis for primary production (e.g. Longhurst 1998) and
leads to enrichment, concentration and retention of
phytoplankton and zooplankton at the fronts (e.g.
Bakun 1996). Many marine fishes therefore concen-
trate at fronts during their early life stages (Lough &
Manning 2001). The association of top predators with
coastal or permanent geostrophic fronts has also been
documented by Laurs et al. (1984), Fiedler & Bernard
(1987), and Santos (1994). Inagake et al. (2001) and
Lutcavage et al. (2000) described qualitatively such an
association for the Pacific and the Western Atlantic
bluefin, respectively. Several hypotheses were pro-
posed to explain such association, among them the use
of fronts as preferred foraging areas, the benefits of
sharper temperature gradients for thermal regulation,
or a loose association with trapped floating material as
meeting points or navigation cues. Kirby et al.’s (2000)
explicit modelling of tuna behaviour led to the conclu-
sion that swimming and diving patterns of individuals
at fronts are influenced by a diversity of external fac-
tors (ambient temperature, prey availability, etc.) dri-
ving internal factors (thermal stress, stomach fullness,
etc.). Still, accurate field data is needed to finely tune
and validate such explanatory models. Our results
indicate that the association between juvenile BFT and
frontal meanders may be linked to feeding behaviour,
since tuna schools did not show striking preference for
the warm or cold side of thermal fronts, while enrich-
ment and mixing of water masses are key processes in
the Gulf of Lions. Foraging in the vicinity of a phyto-
plankton front may be a trade-off between prey avail-
ability and hunting efficiency linked to water clarity.
This is in agreement with previous findings that the
relationship between tuna aggregions and frontal
meanders is most probably indirect and trophic-
related, a finding confirmed by aerial spotting ob-
servations in this study (J.M.F. pers. obs.). Advected
material at fronts can provide a favourable feeding
environment for small clupeids, which in turn are for-
aged by bluefin tuna. Direct processes such as thermal
regulation may be less relevant (Brill et al. 1999,
Boustany et al. 2001). The identification and under-
standing of these indirect processes is a challenging
task in explaining the small-scale behaviour of tuna. 

Conclusions

In this study, we were able to provide some statistical
evidence of a close association between schools of
juvenile bluefin tuna and oceanic features, an associa-
tion documented for this species in other areas but

261



Mar Ecol Prog Ser 269: 249–263, 2004

never before quantified. Point-pattern analysis and
modelling offered a convenient way of linking the spa-
tial distribution of discrete events (BFT schools) and
sea-surface variability. This is of importance for future
work, since the role of these oceanic features must be
explicitly modelled, or at least properly parameterised,
when describing the distribution of pelagic species.
However, the generalisation of these results is limited
by problems inherent to measurement and survey
design (e.g. sensitiveness of radiometers and spotters
to cloud covering), the lack of objective definition of
frontal regions, and the difficulty of inferring dynami-
cal processes from superimposed static patterns or
‘snapshots’. Null models of heterogeneous spatial
aggregation then become difficult to specify. We
believe that, in such a Lagrangian framework, disper-
sion statistics can benefit from individual dynamics,
and we shall conduct further work on fish behaviour,
as recorded by pop-up archival tagging in the Medi-
terranean Sea. The ultimate goal of this approach is to
provide a basis for the stochastic parameterisation of
fish movements in environmentally explicit population
models.
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