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The Emissivity of Foam-Covered Water Surface at
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Results From the Frog 2003 Field Experiment
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Abstract—Sea surface salinity can be measured by microwave
radiometry at L-band (1400-1427 MHz). This frequency is a
compromise between sensitivity to the salinity, small atmospheric
perturbation, and reasonable pixel resolution. The description
of the ocean emission depends on two main factors: 1) the sea
water permittivity, which is a function of salinity, temperature,
and frequency, and 2) the sea surface state, which depends on the
wind-induced wave spectrum, swell, and rain-induced roughness
spectrum, and by the foam coverage and its emissivity. This study
presents a simplified two-layer emission model for foam-covered
water and the results of a controlled experiment to measure the
foam emissivity as a function of salinity, foam thickness, incidence
angle, and polarization. Experimental results are presented, and
then compared to the two-layer foam emission model with the
measured foam parameters used as input model parameters. At
37 psu salt water the foam-induced emissivity increase is ~0.007
per millimeter of foam thickness (extrapolated to nadir), in-
creasing with increasing incidence angles at vertical polarization,
and aecreasing with increasing incidence angles at horizontal
polarization.

Index Terms—Brightness temperature, emission, foam, mi-
crowave radiometry, salinity, sea.

I. INTRODUCTION

HE IMPROVEMENT of weather prediction, e.g., for nat-
ural catastrophes, requires the knowledge of soil mois-
ture (SM) and sea surface salinity (SSS) on a global scale. The
knowledge of the SSS distribution at a global scale with a mod-
erate revisit time is important to climate predictions, since SSS
is a tracer of sea surface currents and an indicator of the differ-
ence between evaporation and precipitation (E-P). Water den-
sity is determined by temperature and salinity, and hence the
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thermo-haline circulation can also be monitored by SSS mea-
surements. Salinity monitoring is useful to improve the quality
of the El Nifio Southern Oscillation (ENSQO) numerical model
predictions, as well [1], [2].

At present, there are two planned space missions to measure
global sea surface salinity maps with [0-30-day revisit time:
the Soil Moisture and Ocean Salinity (SMOS) Earth Explorer
Opportunity mission from the European Space Agency (ESA),
and the Aquarius Earth System Science Pathfinder (ESSP) mis-
sion from the National Aeronautics and Space Administration
(NASA), with launch dates in February 2007 and September
2008, respectively.

The SSS retrieval from microwave radiometric measurements
is based on the fact that the dielectric constant of seawater is
a function of salinity and temperature [3]. The sensitivity of
brightness temperature (T'5) to SSS is maximum at low mi-
crowave frequencies, and the optimum conditions for salinity
retrieval are found at L-band, where there is a protected band for
passive observations (1400-1427 MHz). However, even at this
frequency the sénsitiv_ity of Tg to SSS is low: 0.5 K per psu for
a sea surface temperature (SST) of 20 °C, decreasing to 0.25 K
per psu for an SST of 0 °C. Since other variables influence the
Tp signal (polarization, incidence angle, sea surface tempera-
ture, roughness and foam), unless they are properly accounted
for, the SSS determination will be erroneous.

During SMOS Phase A two field experiments named the
Wind and Salinity Experiment (WISE) were sponsored by the
ESA in the fall of 2000 and 2001 to better understand the wind
and sea state effects on the L-band brightness temperatures.
They consisted of acquiring long time series of Tz from an
oil rig in the northern Mediterranean Sea to relate it to the sea
surface roughness (wind speed, significant wave height) and
the instantaneous foam coverage {4].

Several effects were not completely understood during the
WISE field experiments: the emissivity of foam and the impact
of rain and oil slicks on the T'g variations. Under Spanish Na-
tional funds, the Foam, Fain, Oil Slicks and GPS Reflectom-
etry (FROG) field experiment was carried out at the Institut de
Recerca i Tecnologia Agroalimentaries (IRTA) facilities at the
Ebro River delta.

This work is organized into two well-defined parts. In the
first one, a two-layer sea foam emission model at L-band is

0196-2892/$20.00 © 2005 [EEE
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Fig. 1. Geometrical configuration for thermal emission from foam-covered
ocean. The foam layer is region | and is absorptive and scattering. Region 2
is air bubbles embedded in sea water and is absorptive (from [5]; see Fig. 3).

presented. In the second one, the FROG 2003 field experiment
is described, and the foam emissivity measurements at vertical
and horizontal polarizations are presented in a wide range of
water salinities from 0-37 psu. These measurements are then
compared to the model presented in the first part using the
measured foam parameters: bubble radii histograms, bubbles’
water coating thickness, derived bubbles’ packing coefficient,
foam layer thickness, and the void fraction beneath the foam
layer.

II. SEA FOAR IMISSIVITY MODELING AT L-BAND

Foam and whitecaps belong to the class of colloidal systems
that include two phases: atmospheric gases and sea water. In
the present work, the foam layers at the ocean surface are mod-
eled as a medium of densely packed sticky spherical air bub-
bles, coated with thin seawater coating, following the approach
of Guo et al. [5]. The dipole approximation model developed by
Dombrovskiy and Raizer [6] is then used to describe the effec-
tive permittivity of the system.

A. Brightness Temperature Modeling of the
Foam—-Water System

Following Guo et al. [5], it is assumed that foam on the
ocean surface is composed of nearly spherical coated bubbles
described by an outer radius v, made of an air core with per-
mittivity e,, surroundéd by a shell of sea water with thickness
& and permittivity ey. The foam-covered ocean is modeled
by the succession of three media: the air (region 0), a foam
layer defined as a region of effective permittivity ey, with a
layer thickness d (region 1), and the underlying seawater with
some air bubbles (region 2) with permittivity e, (see Fig. 1).
Boundaries between each region are assumed flat.

The brightness temperature of the foam—water system at inci-
dence angle §; and polarization p = h (horizontal) or v (vertical)
is then equal to

Top(0) = T, [1 = 1R, (0:)F M

where T} is the foam layer physical temperature, the coefficient
R, is the reflection coefficient of the foam layer medium with
the effective dielectric constant £ v, and is given by

R0 = RO (03)e =720 ]R};Q(Hi)
R,(0;) = =32 ROV(0;) RI%(0;) (2)

where ¥ is an attenuation factor that depends on the foam layer
thickness d, the electromagneticwavelength Ag, and the effec-
tive permittivity €y

9d
P = e — sin2 ;. 3)
Ao

In (2), Rgl are the Fresnel reflection coefficients between the air
(region 0) and the foam (region 1)

VeENa — sin? b,

RN _coslbi) = = (4a)
cos(f;) + Vena —sin®0;
g
RO (gy) = OS00) = Vewe — sin (4b)

eEna 08(0;) + VeEna — sin® 6,

and R},Q are the Fresnel reflection coefficients between foam
(region 1) and water (region 2)

92
VEyw — 8in” f;

ENe — Sin’ (6;) —

(5a)
\/ENQ — sin® (0:)+Vew — sin? 8,
ewi/Ena —sin®(0;) — ena Ve —sin® b;
Ri?(8;) = . (5b)

ewt/Ena —sin?(0;) + enaVew —sin?b;

Region 2 consists of air bubbles embedded in the ocean back-
ground and is assumed to be absorptive. To solve (1)-(5), one
needs to define an effective permittivity for region I, namely
ENa, and for region 2, namely €.

B. Effective Permittivity of Sea Foam Formations at L-Band
The main parameter of the previous multilayer emissivity
model for foam is the effective permittivity ey, of the foam
layer considered. To define this parameter, the well-known
Lorenz—Lorentz and van de Hulst equations can be used and
modified for the polydispersed system of bubbles. The first
formula takes into account dipole interaction of bubbles in a
close-packed dispersed system (the quasi-static approxima-
tion). The van de Hulst equations describe the contribution of
the multipole moment of bubbles into the effective permittivity
of the system. Spectral calculations by Cherny and Raizer [7]
show that the first resonant electromagnetic effects by van de
Hulst’s mechanism occur for bubbles’ radius a & Ag/4. At
L-band (Ag = 21 cm); this corresponds to bubble diameters
on the order of 10 cm. Such very large bubbles are extremely
rare at the sea surface and therefore, the multipole mechanism
may be neglected at L-band for which only the dipole term
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may be considered. In the present work, we use the dipole ap-
proximation model developed by Dombrovskiy and Raizer [6]
to describe the effective permittivity of the system. It involves
the use of a modification of the Lorenz—Lorentz equation and
yields the following simple formula for the complex effective
permittivity e y0f a foam layer {6], [7]:

L+ 3aN-a(
ENa = __...___...__._._L.z (6)
1— 37N - N-a(r)
where <
Nl = w [ alr)py(r)dr o

—i [ r3pp(r)dr

and NN is the volumeltric concenttatlon of the bubbles, ce(r) is the
complex polarizability of a single bubble with external radius v,
r 1s the so-called packing coefficient or stickiness parameter,

and p¢(r) is the normalized probability distribution function of

the bubbles’ size. In natural media such as foam, the densely
packed particles can have adhesive forces that make them adhere
to form aggregates. This effect is accounted for in the model by
the stickiness parameter r, which is inversely proportional to
the strength of the attractive forces between bubbles [8].

According to Dombrovskiy and Raizer {6], the complex po-
larizability depends on the external radius of the bubbles r, the
complex permittivity of the shell medium (salt water) €,,, and
the bubbles’ filling factor ¢ = 1 — §/r following

(6w — 1)(2ey + 1)(1 = ¢°)
(Ew + 2)(25\\' -+ 1)(]— - (]“) + 95\\'(13

a(r) =

®)

Since the bubble size distribution depends on the vertical po-
sition within the foam layer, the effective permittivity depends
on the vertical position as well: ey, = eno(z). In the sim-
plest case, the foam—water system may be modeled as a succes-
sion of elementary foam layers, each of them having a homoge-
neous effective dielectric constant. However, the exact depen-
dence of such function with vertical position, which depends
on the vertical distribution of the bubbles’ size, is very poorly
known. It is very likely that the vertical distribution of the bub-
bles’ size p (7, z) is a function of the intensity and scale of the
underlying breaking event. Moreover it will certainly strongly
evolve during a transient breaking event. Nevertheless, in order
to keep a tractable number of parameters in the present model,
we choose to consider a uniform vertical distribution of bubbles’
sizes py(r, z) = pp(r) within the foam layer.

The foam void fraction (i.e., the ratio of the volume of air to
the total volume of the foam) depends on the distribution of the
bubbles’ filling factor ¢. Therefore, the distribution of bubbles
radii p(r) together with the distribution of coating thicknesses
1(8) determine the foam layer void fraction. In the present sim-
plified model, we fixed the value of the shell thickness 4, but
the outer bubble radius 7 is a random variable. According to
Dombrovskiy [9], this approximation reflects an experimentally
established fact for an emulsion layer of foam (young foam),
but it requires verification for a foam with honeycomb structure
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Location of the WISE and FROG field experiments.

Fig. 2.

(aged foam). Numerous observations of oceanic bubble size dis-
tributions are reported in the literature based on acoustic, photo-
graphic, optical, and holographic methods [11]. Currently, it is
not clear how to parameterize the ocean surface bubble size dis-
tribution. Following Bordonskiy et al. [12] and Dombrovskskiy
and Raizer [6], we used a « distribution for the size distribution
function of the bubbles

AB+L

)= sy e ©

where A and B are parameters of the distribution with 7, =
A/ B being the most probable radius.

Finally, to calculate €, a simple physical model based on in-
duced dipoles is used. Let €5, denote the permittivity of the sea-
water (see [13] for gy at L-band), and f, the fractional volume
occupied by the air bubbles. Then, the effective permittivity ey,
is given by the Maxwell-Garnett mixing formula [5]

1+2fwy

W= gy o
where
1- Egw
T ——_A 11
Y T 26 (b

Note that the effective permittivity €y here does not include
scattering extinction, which is small due to the fact that the sea-
water is heavily absorptive. According to our simplified emis-
sivity model for foam, the brightness temperature induced by a
sea foam layer is a function of

TB = flll]CtiOll((}.,j, ./.7 D, T‘ia Tp) 57 1, d» /(n SSS> SST) (l 2)

where #; is the radiometer incidence angle, f the electromag-
netic frequency, p is the polarization, 7 is the foam physical
temperature, 1, is the most probable radius, § is the bubbles’
water coating thickness, # is the bubbles’ packing coefficient
(same as stickiness parameter), d is the foam layer thickness,
fa is the void fraction beneath the foam layer, and finally, SSS
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Fig. 3. (a) Pool filled with water during a foam emissivity measurement
incidence angle scan. (b) Detail of the air diffusers used to generate foam.

and SST are the sea surface salinity and temperature, respec-
tively. All these parameters are either known (6;, f, p) or mea-
sured (T, 13, 0, d, fa, SST, SS8), except the packing coefficient
(x) that will be derived by minimizing the rms error between
the FROG 2003 measurements and the theoretical model (see
Section I1I-B).

III. SEA FOAM EMISSIVITY MEASUREMENTS AT L-BAND
A. FROG 2003 Field Experiment Description

The FROG 2003 experiment was sponsored by the Spanish
Government to determine the emission of these factors. The
controlled experiment was performed at the facilities of the In-
stitut de Recerca en Teécniques Agropecuiiries (IRTA) at Poble
Nou del Delta, in the Ebro River mouth (Fig. 2).

The L-band Automatic Radiometer (LAURA) radiometer [4]
was mounted on one side of a3 m x 7 m pool filled with a mix-
ture of sea water and fresh water from the Ebro River. The river
water was mixed with the sea water to adjust the salinity over
the range from 0-37 psu [Fig. 3(a)]. A metallic net was mounted
around the pool, and at the edges the net was inclined 45° to re-
flect the sky radiation, avoiding contamination of the measure-
ments from ground radiation collected through the secondary

TRANSACTIONS ON GEOSCIENCE AND REMOT

SENSING, VOL. 43, NO. 5, MAY 2005

Fig. 4. Suile of instruments deployed to acquire ancillary data. (a) Six sub-
surface temperature sensors. (b) Metal bars of the instantaneous surface level
sensor. (¢) and (d) Array of 16 gold electrodes of the air fraction measurement
system. (e) Periscope with video camera to acquire vertical foam profiles.
(F) Infrared radiometer to measure surface emission with foam. (g) Video
camera to derive surface foam coverage [as in (h)].

lobes of the antenna, and enlarging the radio-electric horizon.
The measurement strategy consisted of performing incidence
angle scans from 25° to 55°, in 5° steps, and measuring the sur-
face’s emissivity with the foam generators off, on, and finally
off again at each incidence angle. All measurements were per-
formed after sunset to avoid sun-contamination, and the pool was
oriented to the north which minimized the Galactic background
noise. Foam was created by a network of 104 air diffusers placed
at the bottom of the pool, and connected to an adjustable air
pump with a maximum air flow of 500 m3/h [Fig. 3(b)].
A series of instruments was deployed to acquire ancillary data
to be used as inputs to theoretical models as follows:
six temperature sensors located below the water surface
[Fig. 4()];
* two metallic bars used in a conductivity-based instanta-
neous surface level sensor [Fig. 4(b)];
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Fig. 5 F(_)zun verti.cal [)l'f)fi]es at different salinities (scale in centimeters). () 0 psu, (b) 5 psu, (c) 10 psu, (d) 15 psu, (e) 20 psu, (f) 25 psu, (g) 30 psu, (h) 37 psu,
and (i) horizontal view ol nawral sea surface bubbles (photograph from Gran Canaria island, $SS33.8 psu, reference size = 0.50 Euro coin).

= array ol 16 gold elecirodes [Fig. 4(c)] of a conductivity-
based subsurface void fraction profiler |Fig. 4(d)];

> Ultrak video camera with a large angular lens mounted on
a periscope to acquire foam vertical profiles [Fig. 4(e)];

= CIMEL CE 312 four-band thermal-infrared radiometer:
8-13, 11.5-12.5, 10.5-11.5, and 8.2-9.2 pum [Fig. A0,
from the Universitat de Valéncia,

* Sony SSC-DC393 video camera and zoom [Fig. 4(g)]
to match the field of view to the radiometer’s antenna
beam [Fig. 4(h)], used to derive the water surface’s foam
coverage;

e portable meteorological station used to measure air tem-
perature, pressure and relative humidity, and wind speed
and direction.

B. Radiometric Measurements
Foam-Free Measurements: The first measurements con-
sisted of measuring the emissivity of the flat water surface at
different salinity levels
Water s 1 resne 2 r
ey ™ (f,0,8SS,8ST)=1 — I'[""“ (0, ¢,(f,85S,SST)).
‘ (13)
Down-welling radiation and finite beamwidth effects were
corrected. As expected, the brightness temperatures (or alterna-
tively emissivities) decrease with increasing salinity levels, in
agreement with the theory using the Klein-Swift dielectric con-
stant model [9].!
I'The goodness of the agreement between the modeled T and the measured

Ty is ~0.12 K. Salinity retrievals using measured T’y exhibit a 0.26 psu bias
for the SSS from 0-37 psu, and SST from 14 °C 1o 20 °C.
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Detail of foam and bubbles vertical profiles. (a) Fresh water and (b) 15 psu. Corresponding bubble radius histograms. (c) Fresh water: mean radius =

802 pm, median radius = 789 jem and (d) 15 psu (mean radius = 437 jom, median radius = 423 pm).

Foam Measurements: As explained in Section 1, in addition
to the foam surface coverage needed to estimate the foam emis-
sivity from the measurements, modeling foam emission requires
the knowledge of: 1) the foam layer thickness; 2) the bubbles’
radii distribution; 3) the bubbles’ water coating thickness; 4) the
stickiness parameter; and 5) the air fraction beneath the foam
layer, as follows.

°

The foam layer thickness was measured by the video
camera mounted on the periscope. For the same air flow
rate the foam thickness is very small for fresh water
(lower surface tension) and increases with increasing
salinity (higher surface tension). Fig. 5 presents nine
vertical profiles corresponding to nine different salinities
from 0-37 psu. Automated image processing was used
to determine the mean thickness of each photogram in a
systematic manner.

The estimation of the bubbles’ radii distribution required
the recognition of isolated bubbles, and finding the equiv-
alent spherical bubble. Fresh water bubbles are larger,
and their shape is less spherical than salty water bubbles.
The measured mean radii are: ~0.80 mm for fresh water
bubbles [Fig. 6(a) and 6(c)], ~0.63 mm at 5 psu, and
nearly constant and approximately equal to ~0.44 mm
above 10 psu [Fig. 6(b) and 6(d)].

In order to check the goodness of the artificially gener-

ated foam as compared to natural foam encountered over
the sea after a wave splash, 80 photographs of the sea
surface (SSS ~ 33.8 psu) were acquired in the coasts
of the Gran Canaria istand after wave breaking. A top
view is shown Fig. 7(a), with its corresponding histogram
[Fig. 7(b)]. This is representative of the whole volume,
since the foam contained only one layer of bubbles.2 The
most noticeable features of the histogram are that the av-
erage radius is ~0.60 mm, as compared to ~0.40 mm
for the artificially generated bubbles (Fig. 6), and that the
histogram is less symmetric around the mean value, with
a much longer tail, which corresponds to larger bubbles
formed from combinations of smaller ones. The best fit
by a gamma function bubble radii pdf is also shown in
Fig. 7(c), showing that the measured histogram is more
peaky and narrower than the gamma pdf.
Bubbles’ coating thickness measured from zooms of the
vertical profiles (e.g., Figs. 6 and 7) are in the {0~20-p:m
range. However, this is not a critical parameter, since the
foam emissivity, as predicted by the theoretical model ex-
plain in Section II, shows little variation with it.

20ther experiments [10] have shown the agreement between the bubble size
histogram of artificially generated sea foam and natural sea [oan.
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Fig. 7. (a) Top view of natural sea foam (Gran Canaria Island, scale: 50 euro cent coin). (b) Bubble radius histogram (mean radius = 781 jtm, most probable
radius = 595 pm. (¢) Corresponding bubble radius histogram (higher peak function), and best fit by a ganuma function (lower peak).

TABLE 1 optimum # values are chosen to minimize the overall rms
ESTIMATED PACKING COEFFICIENT &, MINIMIZING THE RMS ERROR BETWEEN error at both polarizations.

THE FROG 2003 MEASUREMENTS AND THE THEORETICAL MODEL S X ) ..
: = The void fraction beneath the foam layer is also a critical

58S Oplimum« (H-pol)  Optimum« (V-pol)  Average « parameter. [ts determination from video imagery is subject
of H-and V-pol to large uncertainties due to the depth of the field of view
5 0.14 0.03 0.08 o o .
10 040 0.04 0.07 (~1 cmy). To avoid this problem, the relative conductivity
15 0.13 0.11 012 between foam and the air—water mixture below and water
20 0.13 0.12 0.12 was measured. Curtayne’s equation [14]
25 0.17 0.15 0.16
30 0.17 0.15 0.16 1
4 T Foa, [
M o2 0.17 o9 Trowm _ Ly gbs 4 g2) (14)
TWater 3
° The bubbles’ .pucking coe[’ﬁc;ient or stickiness parameter relates the ratio of the foam and water conductivities to the
plays a very important role in the foam emission. How- liquid fraction ¢;. The void fraction beneath the foam layer
ever, since no direct means has been found to measure it, f.. can then be determined as

the approach followed has been its determination by min-
imizing the rms error between the model and the mea-
surements. Table I shows the different values of x found
for different salinities and polarizations. Above 10 psu the
values at both polarizations are very close, as expected, but Fig. 8 shows two time series of the evolution of f, for each
for low salinities they are significantly different, which is  of the 16 gold electrodes. Fig. 9 shows the corresponding av-
not understood, although it may be attributed to the more erage and standard deviations of f, of each electrode. From
flattened shape that the large bubbles have at low salini-  these plots, derived from measurements acquired with the same
ties, as compared to high salinities. In the third column the  air flow, it can be appreciated that for fresh water f,, is ~15% to

Jo =100 (1 = ¢y). (15)
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Fig. 8.  Air—water content (f,) time sequence for every electrode. (a) SSS =
0 psu (15 electrodes, the top electrode was air) and by SSS = 37 psu (16
electrodes).

20% beneath the foam layer, increasing sharply just below the
water surface, while for salty water, f, is much lower, ~5%,
and the foam layer is thicker.

Fig. 10 shows a typical foam emissivity measurement corre-
sponding to a salinity of 33.21 psu. Radiometers’ raw data (mV)
are shown at H- (lower plot) and V- (upper plot) polarizations,
and incidence angle (from 25° to 55°, lower panel) as a func-
tion of the time [Fig. 10(a)]. The L-band surface emissivity is
plotted at H- (lower plots) and V- (upper plots) polarizations of
the foam-free surface (dotted line) and with foam (solid line).
The foam coverage as a function of the incidence angle is shown
in green in Fig. [0(b). The average foam coverage for all inci-
dence angles is 86.4%.

The foam emissivity can be derived from (16)

P(EO\}(L‘(()) = F. Foml\(()) [ I—v] ()}I\Eun((}) (16)
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Fig. 9. Air-water fraction (f,) mean value and standard deviation of
instantaneous values (o, divided by 10) for every electrode at SSS = 0 to
37 psu. Each parallel gold electrode (3 mm X 4 mm, total 16 electrodes) is
separated by 2 mm from the adjacent electrode (vertical scale equals 8 cm).
Element number 16 is located above the surface, and hence the air—water ratio
is 100%.

where F' is the foam fraction coverage (in the sea it is deter-
mined by the wind, the air-sea instability, the fetch, the salinity
etc., [15]) from which the variation with respect to the flat sur-
face can be derived

?ﬂfdl(()) \\’al(x((})

Aeh,v((}):CFomn(()) \\’41(1((}) =

v Chv

a7

Fig. 11(a)-(h) shows the intercomparison of the FROG mea-
surements of ¢4t (dotted line) and e (solid lines with
circles) scaled to 100% coverage (16), and the theoretical
values computed using the mode! described in Section II with
the measured foam parameters as inputs (solid lines with tri-
angles). The values of the stickiness parameter used are the
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Fig. 10.  Foam emissivity measurement at 33.21 psu. (Lower curves) H-polarization and (upper curves) V-polarization, with (solid line) foam and (dotted line)
without foam. (a) Radiometers’ raw data (millivolts) versus (lower plot) incidence angle and (b) surface’s emissivity and (light gray plot) foam coverage as a
function of incidence angle. The variation of the surface’s foam coverage versus incidence angle is due to the variation of the foam patterns generated by the array

of diffusers in the 3 m X 7 m pool [see Fig. 4(h)].

optimum ones found at each salinity, which in general in-
creases with SSS as the bubbles are more densely packed, as
shown in Table I. The rms error between the measured data
and the theoretical foam emissivity model is calculated and
shown in each figure (oay,) and varies from 0.008 to 0.017
at H-polarization, and from 0.011 to 0.033 at V-polarization.
In general the agreement is much better at H-polarization than
at V-polarization. At V-polarization, the measured values show
a larger variation with incidence angle than the model predic-
tions, which requires further analysis and refinement of the
model. At H-polarization the agreement is excellent, except at
low salinities, where there is a bias between the measured and
predicted emissivites at all incidence angles.

Asshown by Guo et al. [5, Figs. 6-8], the presence of foam in-
creases the brightness temperature (emissivity) almost linearly
with foam thickness until it saturates.? Finally, Fig. 12 shows the
measured Aey, (#) values normalized to the foam thickness as
a function of the salinity at H- and V-polarizations. The oscil-
lations in Figs. 12(a) and 12(b) at low salinity levels are due
to the small values of the foam thickness, which are difficult to
measure [e.g., Fig. 5(a)]. Fig. 12(c) and (d) shows the smoothed
values.

As found during the WISE measurements [16], at L-band
the foam emissivity increase is larger at V-polarization than at
H-polarization, and it increases with incidence angle at V-polar-
ization, while it decreases at H-polarization. In order to get the
same foam brightness temperature increase as in WISE [16], the
effective foam thickness (assumed to be the same for all foam
patches regardless of the type of foam) should be approximately
8 mm.

3Brightness temperature saturation depends on bubble size and frequency. At
37 GHz it takes place for foam thickness around 4-8 cm, and at 19 GHz around
16-22 cm [5, Fig. 6]. No numerical simulations have been reported at L-band,
but the saturation thickness must be much larger. Indeed, in the FROG 2003
measurements, the emissivity increase is very modest, which suggests that the
thickness of the generated foam is far away from the saturation thickness.

I'V. CONCLUSION

The presence of foam increases the emitted brightness
temperature, since it acts as a transition layer that adapts the
wave impedance of the two media: water and air. The increase
depends on the fraction of the sea surface covered by foam
F(Uyp), which is usually parameterized in terms of the wind
speed, but it depends on other factors, such as wwe air—sea
temperature difference, the sea surface temperature, the fetch,
etc. [15]

e’fota[(a) :F(Ul()) . e;—;‘oam + [l _ F(U]_())] i e‘Seu

P P
— e[b)ca + F(Ul()) i [ezl;“omn _ GIS,(’.EL:I

=60 + F(Urg) - Aefoo™. (18)

The FROG 2003 experiment has provided the first reported
L-band emissivity measurements of artificially generated foam
on a salt sea water surface over a wide range of incidence an-
gles and salinities at both polarizations. The ancillary data ac-
quired (foam thickness, air-water fraction, bubble size distri-
bution and water coat thickness) have been used as inputs of
a simple two-layer theoretical model. The intercomparison of
model outputs with the measured emissivities has allowed the
retrieval of the packing coefficient, which is approximately r =
0.112 for all salinities, and x = 0.19 at S.5.S = 34 psu. At V-pol
the model and the measurements tend to disagree at higher salin-
ities, and at H-pol at lower salinities. From 6-34 psu, the agree-
ment is very good. In addition, the contribution of errors in the
estimation of the foam emissivity to the error of the sea sur-
face emission are attenuated by a factor equal to the sea surface
foam coverage (~1% at 15 m/s). The results obtained in FROG
2003, and the foam emissivity and coverage derived from WISE
2001 measurements, indicate that an effective foam thickness of
~8 mm may be appropriate to model in a simple way the foam
contribution to sea surface emission.
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