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Blind Sub111ari11e Seisll1ic Deconvolution 
for Long Source Wavelets 

Benayacl Nsiri, Associate Membel; IEEE, Thierry Chonavel, Jean-:tdarc Boucher, Senior Men/bel; IEEE, ancl 
Hervé Nouzé 

!lbs/mc/-In seismic deconvolution, blind approaches must 
be considered in situations where rel1ectivily sequence, source 
wavelet signal, and noise power level are unlmown. In the presence 
of long source wavelets, strong interference among the reflectors 
contributions makes the wavelet estimation and deconvolution 
more complicated. In this papel~ we solve this problem in a 
two-step approach. First, we estimate a moving average (MA) 
truncated version of the wavelet by means of a stochastic expec­
tation-maximization (SENI) algorithm. Then, we use Prony's 
method to improve the wavelet estimation accuracy by fitting an 
autoregressive moving average (ARMA) model with the initial 
tnmcatecl wavelet. Moreover, a solution to the wavelet initializa­
tion problem in the SEM algorithm is also proposed. Simulation 
and real-data experiment results show the significant improve­
ment brought by this approach. 

Index TeJ'llIs-Hernoulli-Gaussian (HG) process, blind clecon­
volution, Gibbs sampler, maximum likelihood (ML), maximum 
pnsterior mocle (MPM), Monte Carlo Markov chains (MCMCs) 
methods, Prony algorithm, seismic cleconvolution, stochastic 
expectation-maximization (SEM). 

1. l'1TRODUCTION 

T HE aim of marine sei smic exploration is to recover the 
geological structure of the sea bottom lithography from 

the analysis of reftected acoustic waves, originating in a seismic 
wavelet emitted by an acoustic source. The recorded seismic 
trace can be modeled as the convolution between a source 
wavelet and a reftectivity sequence, in the presence of additive 
noise [1]. It is often necessary to apply an inverse transform, 
called deconvolution, to ob tain the reftectivity sequence and 
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to improve the detection accuracy of layers trom seismic data 
records. If the source wavelet is lcnown, reflectivity can be 
recovered quite easily from the seismic trace [1]. However, in 
marine seismic deconvolution, the source wavelet is not exactly 
Imown, at least for the following two rcasons: acoustic sources 
sucll as air gllns and sparlcers cannot be sufficiently controlled 
in operational conditions, and the received signal is modified 
by the ghost phenomenon causee! by multiple reftections on 
the free sea surface and high-frequency absorption during 
propagation. In practice, a simple way to account for these later 
phenomena consists in modeling them through distortion of the 
wavelet [2]. Then, the source wavelet is not exactly lcnown and 
a blind deconvolution procedure must be applied to recover the 
unlcnown source wavelet and the reftectivity sequence [3]. 

If the wavelet is sufficiently short, as in high-resolution 
marine seismic exploration [2], where the studiecl seabed 
thiclcness is only about 100 m with a resolution of 1 m, blind 
deconvolution gives only sma11 improvements compared to 
raw seismic traces. On the contrary, in some experiments, the 
emitted wavelet must have a very small frequency bandwidth 
to penetrate deeper in the soil. As a consequence, we get a long 
oscillating wavelet. In this case, the seismic image obtained by 
stacking up consecutive traces is bluued and blind deconvolu­
tion is really useful in producing quality images for geologists. 
In such situations, estimating directly the model parameters as 
in [4] generally yields a high variance of the wavelet estimator. 

Sa far, many techniques have been proposed to solve the 
problem ofblind deconvolution with respect to different criteria. 
They are based on the classical hypothesis of reftectivity white­
ness. One early technique that copes with the presence of noise 
is based on Wiener filtering [1], [3]. It supplies a minimum phase 
wavelet from the second-order statistical content of the trace 
signal. Unfortunately, this approach is not satisfactory since the 
source wavelet is usually nonminimum phase. Thus, further sta­
tistical information upon the reftectivity sequence must be con­
sidered to recover the wavelet phase [5]. 

The sparse nature of the reftectivity sequence is not well 
described by a Gaussian model, as ffssumed when minimum­
variance deconvolution [3] is appliecl. In addition, non­
Gaussianity is mandatory for blind deconvolution of scalar 
signaIs convolved with a nonminimum phase filter. A main 
underlying idea in using higher order statistics is highlighting 
non-Gaussianity of the deconvolved sequence by maximizing 
contras t criteria [6], [7]. 

Many related solutions have bccn tcsted. In particular, 
wavelet spectrum envelope can be estimated by using an au­
toregressive 1l10ving average (ARMA) model of the wavelet, 
that is, a wavelet with rational transfer function. Its phase can 
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be recoverecl by maXll11lZlI1g a kurtosis criterion [8] thanles 
to reflections through the unit circle of zeros of the moving 
average (!VIA) part, that is, the polynomial part of the wavelet. 
Alternatively, multispectral techniques can be usecl, for in­
stance, by recovering the phase of the bispectrum of the trace 
arter il bas been whitenecl al. the second orcier [9]. 

The main clifficulty of these approaches is that they require 
a large amount of data to achieve reliable estimation. But, in 
general, seismic trace signais often contain less them 1000 sam­
pies, leading to limitee! performance with the aforementioned 
approaches. 

Another way of applying the whiteness hypothesis for cle­
convolution consists in minimizing the mutual information rate 
[10]. It is related to the Küllback-Leibler divergence, which 
measures the independence degree of the deconvolved data se­
quence. Unfortunately, this method is not robust with respect to 
additive noise level, and its performance clrops as the signal-to­
noise ratio (SNR) decreases. 

Instead of considering higher order statistics or general pur­
pose information criteria, a nice way to l'ully account both for 
non-Gaussianity and sparseness ofthe reflectivity sequence con­
sists in considering a prior probability model for the reflectivity 
sequence. In [Il], Mendel introduced a Bernoulli-Gaussian 
(BG) moe!el of the rdlectivity sequence. The Bernoulli variable 
indicates the presence or absence of a reflector. This model has 
been extended to a mixture of t,vo Gaussian distributions by 
associating the high-variance Gaussian distribution to strong 
reflectors [4], [Il]. More precise1y, conditional to the value 
(zero or one) of the Bernoulli variable, the sequence at the point 
under consideration has a Gaussian distribution with either low 
or high variance, the later case corresponcling to the presence 
of a reflector. Recovering this retlectivity sequence l'rom the 
data and the corresponding unclerlying state (strong or weak 
reflectivity) enables layers localization in the subsurface. The 
direct optimization of the corresponcling likelihood criterion 
is unfeasible in practice ancl many approximate solutions to 
this problem have been proposed. In particular, the single most 
lilœly replacement (SMLR) [11] is a suboptimal solution to 
this problem. It works in the following two Iterative steps: 1) 
an estimate of the wavelet is calculated l'rom clata and an esti­
mated reflectivity sequence and 2) one reflector is updated (the 
one that achieves best posterior likelihood increase) with this 
wavelet. The SMLR works in real time, but il may converge to 
a local optimum. The iterated window maximization algOlithm 
[12] looks very similar to the SMLR, but insteae! of modifying 
only one variable at each step, many variables are updatecl at 
the same time, leading to improved estimator. 

The posterior mean estimator of the reflectivity sequence can 
be fOLll1d by using Monte Carlo Markov chains (MCMCs) [13], 
at the expense of higher computational effort. 

As far as unknown parameters such as the wavelet or possibly 
unknown parameters of the BG model or additive noise variance 
are concerned, a standard tool for estimating them is the expec­
tation-l11aximization (EM) algorilhm [14], [15] that maximizes 
the likelihood functional of the completed data model, that is the 
model that accounts for hidden variables corresponding here to 
the reflectivity and its underlying Bernoulli process. But, due to 
its deterministic structure, the EM converges to a local optimum. 
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This problem can be overcome by using stochastic versions of 
lhe ENI algorithm, namely, the stochastic EM (SE1VI) algorithtn 
[16], [17] or lhe stochastic approximation EM (SAEM) [18]. 
Finally, the estimation of the BG noise ancl source wnvelel pa­
rameters can nlso be solved by means of MeMC techniques in 
a fully Bayesian framework. In this case, parameters' prior dis­
tributions are introc1ucecl [19]-[22]. A comparison of SEM and 
Bayesian approaches can be fOLmcl in [4]. 

After parame ter estimation, il furtber step is carriecl out to 
enable rdleclivity sequence deconvolution. This is achieved by 
the maximum posterior mode (MPNI) methocl [23], [24], which 
also involves MCMC simulation through Gibbs sampling [25]. 
Let us note tbat an alternative to the MPM for BG deconvolution 
is the closely related but suboptimal iterated conditional mocle 
(lCM) algorithm [26]. 

SEM and Bayesianapproaches have been applied mostly with 
short wavelets. Let us remark that the short wavelet case has 
been extendecl to multichannel deconvolution [27]. So far, the 
long wavelet case has not been considered often, despite its prac­
tical interest [28]. In fact, clealing with long unknown wavelets 
is a clifficult tasle. In such situations, direct ARMA modeling of 
the wavelet generally appears to fail and estimating the param­
eters of a long MA model generally yields high variance of the 
wavelet estimator. 

In this paper, we propose a new method to deal with long 
ARlVIA wavelet sources in reflectivity bline! deconvolution that 
overcomes the aforementionecl problems within the framework 
of classical blincl seismic deconvolution techniques. More pre­
cisely, the following two-step approach is proposed. The first 
step yields a robust estimation of a truncated version of the 
wavelet by using the maximum-likelihoocl (ML) approach, via 
an SEM algorithm. Then, an improved wavelet estimation is 
achieved by fitting an ARMA model with the initial wavelet trun­
cated version (MA model), using Prony's algorithm [29], [30]. 

In addition, we propose an efficient method to estimate the 
order of the initial MA wavelet, based on a tradeoff between 
bias and variance, and we introduce a new criterion to ensure 
an accurate wavelet impulse response initialization in the SEM 
procedure. These are important practical issues for achieving 
accurate wavelet estimation. 

This paper is organized as follows. In Section II, we describe 
the data model and the standard SEM and MPM procedures for 
blincl reflectivity c1econvolution. In Section III, we describe our 
two-step improved wavelet estimation procedure. In Section IV, 
we adclress the problems of the initial MA wavelet orcier selec­
tion and of its initial choice in the SEM procedure. In Section V, 
we show on simulations and on real-data experiments the signif­
icant improvement brought by this a,pproach. Fiaally, we SUl11-

marize our work in Section VI. 

II. DATA MODEL AND STANDARD PROCEDURES FOR BUND 

REFLECTIVITY DECONVOLUTION 

The blind submarine cleconvolution aims at restoring the se­
quence of sea bottom reflectivity. The observecl signal consists 
of a noisy version of the retlectivity sequence convolvecl with 
the source wavelet 

L 

YI, = L h(r"_'i + 'lU/;" k = 1, ... , N (1) 
·i=O 
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where h = (h,J"=O,L is the wave/et finite-impulse response 
of lcngth L, l' = (T,J"=l,N is the rel1ec ti vit y sequence, and 
w = (W,J"=l,N is the observation white noise sequence with 
variance o·.~J. The rellectivity process l' is described by means of 
a generalized BG process [Il], characterized by an underlying 
state model q = (qd":=O,N with q" = 1 at high rel1ectivity 
points and q/,: = 0 at low reflectivity points. Thus, 1'1,: condi­
tional to I)/,: is distTibuted according to a zero-l11ean Gaussian 
distribution with variance (Ji if Il'': = 1 and (J6 if Il/,: = 0 

with /\ = P( q/,: = 1) being the probability of having a reflector 
at position k, and (Ji » (J6. The BG distribution parame ter 
vector will be denoted by B (h, /\, (J6, (Ji , (J~v)' For salee of 
darity, we recall derivations of the standard SEM and MPM 
procedures. 

fi.. Maximum Likelihood 

To solve the decollvolutioll problem, olle needs to estimate 
a. For that, we can use the log-likelihood criterion lnp(yIB) 
[3]. Unfortunately, direct maximization of the log likelihooe! 
is unfeasible. However, we are confrontee! with an incomplete 
data problem [14] where the incomplete data are given by 
z = (z/,: h=O,N, with z/,: = (ql" T"J. Then, we are lee! to work 
with the log likelihooe! of the completed data moe!el, detinee! 
by L(y, zlB) = lnp(y, zIB). Since z = (q, l'), p(y, zlB) can be 
written as 

p(y, zlB) = p(ylz, B)p(rlq, B)p( qIB). (3) 

Each component of this equation can be expressed easily. 
As q is a vector of independent Bernoulli variables, p( qlB) = 
TI~1 p( I)/':IB) = TI~=1 Àqk (1 - /\)1- Qk • Furthennore, the vari­
ables Tk are independent conditional to the vmiables 1)". Ac­
cordingly 

N 

p(rlct,B) = II p(Tklql'" B) 
k=1 

( l B) 1 k=1 

r 

f(YI'-(h*Th)21 
p Y z, = (2 2 )N/2 exp -----')-(J-=-2---

1fŒw .:..J 'W 

L(y, zlB) = -(y - Hr)T(y - Hl') 
2(J~ 

-S1~Z) _ So(~) _ (N) ln ((J;) 
2(J1 2(J0 2 

-1- n1(q) ln (~) -1- no(q) ln ((1 -/\)) (Jl. (JO 

where (or.) represents convolution, with 

S1(Z) =rQr, So(z) = 1'(1 - Q)r, Q = cliag(q) 

(4) 

(5) 

n1(q)=e{q, no(q)=N n1(q), Hr=Rh (6) 

B. Gibbs Sa/llp/er 

\Vhen the complete data vector z is known, with respect to B, 
maximizing p(ylz, B) is straightforward [see (5)]. ]n practice, 
z is unknown, but it can be simulatecl using the Gibbs sampler 
[31], which consists of an iterative random simulation accorcling 
to the probability distribution p(z"ly, z-J.:) (/;; 1, ... , N), 
where z_" (zO,,,.,Zk-l,ZJ.:+l,,,.,ZN). The moti­
vation of the Gibbs sampling is that iterative drawing of 
entries X/,: , k l, ... , N, of a vector x = (:7:1, ... , XN) 
l'rom p(a:",lx-d amounts to simulating the whole distri­
butions of x [31] in a generally much simpler way. Note 
that p(z/':Iy, z_,,) p(TI,lqk, y, z-k)p(q/,:Iy, z-d, where 
p(Tklq", y, Z-k) ,....., N (7nQk , (J~J (Il'" = 0,1). The expressions 
of 7n qk , (J~k' and p( qk = lly, Z-k) = 1 - p( ql.: Oly, Z-k) 

can be found in [33]. 
For the simulation of z, l iterations of the Gibbs sampler are 

implemented as follovvs [13], [25]. 
For i = 1, ... , l and le = l, ... , N, do the following: 
• compute p(l)" = lly, z-d [sec (1)]; 
• simulate qii) ,....., B(p(l)/,: = lly,z-J.:)) (B(p) den otes the 

Bernoulli distribution with parameter p); 

o simulate Tki
) ,....., JV (7nqk , (J~k) ; 

o update zii): z~:i) = (l)k,T,,). 

C. SEN! Algorithm 

Since we can now simulate z with the Gibbs sampler, the 
SEM algorithm can be used to estimate B. The SEM algorithm 
is a stochastic version of the EM where the expectation step is 
replaced by simulation of one vm'iable z. Starting from an initial 
parameter e(O), an iteration of SEM consists of the following 
steps, for iterations i = l, ... ,1: 

o SE step: simulate Z(i) ,....., p(zly, B(i)); 

• M step: ê(i) = arg maxlip(y Iy, B). 
The SEM does not converge pointwise. It generates a Markov 

chain whose statiollmy distributioll is more or less concentrated 
around the ML parame ter estimator. A natural pmameter esti­
mate from an SEM sequence (B(i) ).i=1, ... ,I is the mean of the it­

erates value (1 - la) -1 ~f=Io+1 B(i) where the tirst 10 bum-in 
iterates have been discarded. An alternative estimate would be 
the parameter (BCi)), i E {10 -1- 1, ... , I}, leading to the highest 
likelihood. 

Leaving for darity the iteration exponent O(i), the SEM al­
gorithm can be summm'Ïzed as follows. 

• Initialization: choose B(O) and z(O). 

• For'i = l, ... ,N! 
- E step: simulate z ,....., p( zly, B); 
- M step: calculate the parameters 

1; = (RTR)-1RTy, ô-; = N- 1 Il y - RI; II~ 
"2 r T (1 - Q)r rTQr 

.À = N-1e? q, (J - ô-î = -- (7) o - N _ qT q , qT q 

where Ilu 112 = 'LlT'Ll. 

D. MPM Deconvolutio/J 

:1) and H and R are the convolution matrices associated with h At the end of the SEM procedure, B is well estimated while 
and l', respectively. reflectivity l' is not. The fact that the wavelet is accuratcly es-
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timated while reflectivily pmameters me not can be unclerslood 
easily: The wavelet estimation benef1ts l'rom multiple rel1eclors 
diversity, and since it has Cl sl1100th shape, its mean square or 
ML estimate i5 liule affected by rellector position small shifts or 
close reflectors overlapping. On the contrary, the parameters of a 
single reflector do not benent [rom averaging effects in their es­

timation. Similarly, parameters (\ (T6, o'L (T'~I) represenlnoise 
and rel1ectivity statistics. Thus, they also ail benefit more [rom 
statistical averaging since the record is long. Therefore, an ad­
ditional deconvollltion procedure based on the MPM algorithm 
is performed for recovering r l'rom kno\vledge of () [33]. 

As the () pélrameters, and, in particular, wavelet h, are com­
pletely estirnated by the SEM procedure, the deconvolution is 
no longer blind. But wc still need to estimate the hidden vari­
ables in vector z from the observation. 

To estimate z, let us remark that the posterior log lilœlihood 
of z conditional to y and () is 

(y Hr)T(y - Hr) rTQr 
L(z 1 y ,()) = - .'-'------'--,.:.::.---'- - --;;-

2(T~v 2(Tj' 

rT(I - Q)r . 
---'----~-"-'-- -1- j(Cf, A, (Tl, (T2) 

20"6 
(8) 

where the function J (Cf, A, (Tl, 0"2) does not depend on r. The 
principal separation [11] a110ws us to address the maximization 
of L(zly, ()) in the following two steps: 

• cletection: q = arg maxqp( qly); 
• estimation: f = argmax"p(rly,q). 
lnp(rly, éj) is quadratic in r, for fixed q, leacling to 

The detection step is not so easy, because the vector q has 2N 

(N is the signallength) configurations. Testing aIl of them is not 
possible. Insteacl, the posterior mode of each indiviclual Cf" can 
be searchecl applying for the MPM [19], [24]. 

The MPM algorithm simply generates samples of z clrawn 
l'rom p(zly, ()) just as for the Gibbs sampler used in the SEM 
algorithm and described at the end of Section II-B. Then, l'rom 

these samples (Cfi
i
) , Tii )) i=l,1' a decision is made upon each 

Cfb and T" is estimated cOllditionally to Cf" as fo11ows, 

• Detect Cf'" 

A _ -- ~ Cf", if Cfk > S 
{ 

1 l (i) 

qk- 1-1010 -1-1' 

• Estimate r~k 

0, otherwise. 

[ 

~ 
i=10+1 

[ 

~ (l_qki»)"~,i) 
i=IO+l 

[ 

~ (l-ql.i») 
i=Io+l 

ifif,,=l 

otherwise. 

(10) 

(11) 
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For s = O.S, cÎk is the posterior mode of fil:· Other values or 
s correspond to other Bayesian cost fUl1ctions [34]. 

m. IMPROVED WAVELET ESTIMATION 

In some seismic experiments, the wavelet impulse response h 
is quite long. In such cases, the mean square error (MSE) of the 
estimaLor is quite large. In particular, the last coeffîcients of h, 
which have small values, are poorly estimated. For this reason, 
searching for a vector h with reducec1length generally enables 
a good compromise between bias and variance properties of the 
estimator. However, performing the MPiVI deconvolution with a 
truncated wavelet will clegrade detection and estimation perfor­
mance for the reflectivity sequence. 

The true wavelet can be c1escribecl by an MA model 
of length Lü [MACLo) model] with transfer fllnction 

h(z) ~1=ü,Lo hlz-l. To avoid using a model with 
many parameters when Lo is large, one could instead use 
an ARMA(p, Cf) model, that is a wavelet with transfer function 

in the for111 (~I=O,q blz-l)/(l -1- ~k=l,1J akz-k). In general, 
one can talce p and Cf much smaller than Lü, in particular, 
when dealing with long oscillating wavelets where oscillations 
are well modeled by poles of the ARMA mode!. However, as 
discussed in the introduction, direct use of an ARMA model in 
the SEM procedure generally l'ails. Hence, we have cleveloped 
the approach clescribed hereafter. 

First, we use the SEM procedure described in Section II with 
an MA(L) wavelet model, with L smaller than the true wavelet 
length Lü [35]. Then, l'rom this truncated estimate of the 

wavelet, with transfer function hMA (z) = ~k=O,L hMA,kZ-k, 

we look for an ARMA(p, Cf) wavelet with transfer function 

~ b1Z-1 

1 ( ) I=O,q L 1 -k) 
'ARMA Z = '\' -k = 'ARMA,kZ. (12 

1 -1- L, a"z 
10=1,1' 10=0,= 

Then, the idea is to choose coefficients (adk=l,l' and (bl)I=O,q 
such that hARMA,k ~ hMA,k for k = 0, ... , L. This can be 
achieved in a rather simple way by nùnimizing 

where bl = 0 for 1 > Cf. This method is known as Prony's 
methocl [29], [30]. Straightforwarcl calculations show that the 
optimum of J(a, b) is (â, b) = argmina,b J(a, b), where 

and 

â=-(H{1HlrlH{1v, b=Ho[l â]T (14) 

Ho = 

Hl = 

o 
ho 

hq_ 1 

hq:.-1 h.q -
2 

r 

hq hq-l 

hLmax hLmax-l 
T 

V = [hq+l"" ,hLm,xl , 

h"~, 1 
hLm~x-p 

Lmax - Cf > p. (lS) 
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Fig.!. Estimated wavelet for clifferent initializations. 

To estimate the respective orders ]J and q of the AR and MA 
parts, in [8], [36], we have proposed to use a Kurtosis maxi­
mization criterion. Although this criterion is efficient in many 
cases, il may not be very satisfactory in certain situations. AI­
ternatively, we propose to estimate]J and q by use of an exhaus­
tive sem·ch. For this aim, we use a nestedloop with ]J and q as 
indices. The optimum for (p, q) is obtained when the criterion 
J(â, b) is minimum. We will cali SEM+P (P for Prony) the 
pm'ameter estimation procedure that we have just proposed that 
consists in applying the SEM algorithm followed by an ARIvIA 
extension of the initial MA wavelet estimate. 

IV. INITIAL MA MODEL ORDER SELECTION AND MAXIMUM 

POSITION SELECTION 

We now consider two important practical issues for the 
SEM+P algorithm working properly. Note that these consider­
ations can be useful for many other algorithms. 

A. Initial NIA NIodel Order Selection 

In this section, we explain how the length L of the initial 
MA( L) wavelet can be selectecl. Our approach is basecl on an 
MSE criterion. The iclea is to look for the order L, for which the 
estimated wavelet is as close as possible to the true wavelet h. 
Unfortunately, the true wavelet itself is not known in practice. 
As the wavelet length is in some (possibly large) interval [h, 12 ], 

we consicler ail the wavelet estimates (1~z)z=z"z2 supplied by the 
SEM algorithm for these choices of l. The MSE criterion would 
leacl to choosing L = arg minlE[ll hl Il l~l - h Il. Since h is 
unknown, we estimatecl it as 

(16) 

If we compare the functions MSE: 1 -+11 l~(l) - h 11 2 ancl 

MSE: 1 -+lll~(I) - h 11 2 , we have checkecl on simulations that 

15 
SAMPLE 

20 25 

they roughly behave in the same way (see Section V). Thus, a 
goocl choice for L is 

(17) 

B. Maximum Position Selection 

It is weil known that the nonminimum phase structure of the 
wavelet h makes its estimation complicated. One may think 
that, clue to the stochastic approximation of the expectation in 
the first step of the SEM algorithm, it should not be sensitive 
to the initialization parameters, but this is not the case. This 
problem has already been pointed out in [37], where a simu­
lated annealing version of the SAEM algoritlml is proposecl to 
solve the deconvolution problem. 

As mentionecl previously, the wavelet estimation is not ro­
bust with respect to the initialization. If we initialize h with the 
vector e'i, i = 1, ... , kl> that has ail entries equal to zero ex­
cept the 'Ïth one which is equal to 1, we observe that the SEM 
algorithm yields an estimate of h with its maximum at entry i. 
As an example, Fig. 1 shows an estimated wavelet obtained for 
distinct initializations in the case of Ricker' s wavelet. 

To unclerstand this phenomenon, let us remark that the knowl­
edge of the data vector y, given by y = h * r + w, permits us 
to recover h up to a time translation and an amplitude shift but 
not h, since we also have 

(18) 

for any amplitude a and any delay 7, where h r ancl r -r de­
note, respectively, the functiol1 h delayed by 7 and r c\elayed 
by -7. This explains why the SEM algorithm c\oes Ilot look for 
a wavelet with its maximum, apart l'rom the position 'i of the 
nonzero component of the initial guess ei. This interpretation is 
impressively confirmed by simulations: For more than 99% of 
the simulations, the estimated wavelet has its maximum at po­
sition i when il is initialized with e·i. 
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Fig. 2. Gaussian mixture reOeclivity sequence. 

To end this discussion, let us remark that one should not con­
clude l'rom relation (18) that any initialization would be satis­
factory due to the delay compensation between h T and r_ T • In­
deed, this would be true only if the searched wavelet support 
were infinite. Bere, bad initialization may cause poor estimation 
of the wavelet, due to the limited wavelet support. We have seen 
in Section II that limiting the support is necessary to achieve a 
good parame ter estimation performance. 

We propose a deterministic procedure for initializing the 
MA( L) wavelet estimate. First, we have performed the decon­
volution for each initialization 8i (i = l, ... , k1) of h. Then, 
we note Ci = 1 if the estimator obtained from initialization 
8i has a positive derivative at the Oligin, and Ci = -1 if it is 
negative. It can be checked on simulations that C = (Ci )i=l,k1 

changes sign for entries i corresponding to local optima of the 
true wavelet. A justification of this phenomenon is presented in 
the Appendix. Simulations on several ex amples show the very 
good practical behavior of this technique (see Section V). The 
retained solution for the maximum position is chosen among 
the entries of C for which its sign changes, by selecting the 
one for which the kurtosis of the estimated reflectivity r is 
maximum. 

V. RESULTS 

In this section, we evaluate performance of the proposed 
methods for the wavelet estimation and for the SEM algorithm 
initialization, through simulations and real data experiments. 

IL Simulation Results 

We will define the SNR as 

IEEE JOURNAL OF OCEANIC ENGINEERING. VOL. 32. NO. 3, JULY 2007 

w 
o 
:::J 
1-
Z 
(9 

0.8 

0.6 

~ -0.2 

-OA 

-0.6 

-0.8 

100 200 300 400 500 600 700 800 900 
SAMPLE 

Fig. 3. Noisy seismic data (SNR = 10 clB). 

0.6 

0.5 

OA 
w 
en 
~ 0.3 

0.2 

0.1 

15 20 25 30 35 40 45 
length 

Fig. 4. MSE: "-" ; WISE: ", , ,H. 

TABLE 1 
SEM DECONVOLUTION: ESTIMATED PARAl'VIETERS FOR SNR = 13 dB 

,\ a ô a, a~ 
True 0.1 2.5x10 4 0.1 2.5x10 

Estimated (long wavelet) 0.23 5x10 4 0.095 2x10 
Estimated (lruncated wavclet) 0.13 1.3x10 4 0.1 3xl0 

" 
'1 

4 

with À = 0.1, CT6 = 2.5 x 10-4 , CTi = 0.1, and CT~ 10-4
. 

A typical reflectivity sequence is presented in Fig. 2. The cor­
responding seismic trace is presented in Fig. 3. This synthe tic 
trace is generated by using the long convolution wavelet shown 
in Fig. 5. 

SNR = 10 log (/\CTI
2

E
h ) 

CTw 

To show that il is better to use a truncated wavelet estimator 
instead of a full length one, we compare the quality of the es­

(19) timators for parameters (/\, CT6, CTI , CT;u) in both cases. In addi­
tion, we check this for SNR = 8 dB and SNR = 13 dB, which 

where Eh is the source wavelet energy and La is the wavelet 
l 'l'E L-1 ",La 12 engt 1. h = a 0i=1 1i' 

1) Refiectivity and Noise Parameters: The reflectivity se­
quence samples are distributed according to a Gaussian mixture 

roughly corresponds to the range of SNR values in practical ex­
periments. Results are presented in Tables l and II. It clearly 

1 . . f (\ ? ? ?)' appears t lat better parameter estUl1atlOn'or /\, CTo, CTi, CT;u 1S 

achieved with the truncated wavelet. One main difference be-
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TABLE If 
SErvI DECONVOLliTION: ESTIMATE\) PARAMETERS l'OR SNR :=: 8 dI3 

- A CJ- -"Œ2 (J~) 
I---·-·-n:ue--···---·-o-.I-~fu::r--[T- ID ·1 

Estimatecl (long \l'avelel) 0.21 Li x 10 <1 O:O;~-~:3X:i(j=r 
ESlimated (trul1cateci wavelet) D.n 1.2 x 10 <1 0.11 1.5 x 10 4 

TABLE lU 
KliRTOSIS OF î· FOR THE SEM PROCEDURE INITIALIZED FROM THE FIRST 

LOCAL !VIAXIMA OF 1; DETECTE\} FROM C (yVAVELET OF FIG. 5) 
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tween using truncated and full size wavelet is that in the second 
case there are more degrees of freedom; in particular, the trun­
cated wavelet can be seen as a full size one with zeroed last 
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25 30 

coefficients. Thus, the long size wavelet can be ac\justec1 to fit 
more potential reflectors in the seismic trace. This explains why 
/\ is overestimatec1 when the long wavelet is usec1. 

2) Wavelet Estimation: One important issue c1iscussec\ in 
Section IV-A was the choice of the length of the truncatec1 
wavelet. For data of Fig. 4, we computec1 the empirical function 

MSE (l -+111;(1) - h 112) and the true MSE (l -+111;(1) - h 11 2
). 

The shape of both criteria is roughly the same, which n~s it 
meaningful choosing the position of the minimum of MSE to 
define the length L of the truncatecl wavelet. 

The problem of wavelet initializationled us to define the func­
tion C (see Section IV-B). As mentioned in Section IV-B, initial­
izations with wavelets with only one nonzero entry at a transi­
tion of function C are retainecl. The kurtosis of the deconvolved 
sequence with the corresponding estimated wavelets can be seen 
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Fig. 10. Estil11ated Marl11ousi's wavelet. 

in Table III. The maximum of the kurtosis is achieved for ini­
tialization at position 9 (eg) which corresponds to the wavelet 
maximum position. 

We tested the standard SEM procedure [4] with several 
wavelets. They are represented in Figs. 5-8 together with the 
corresponding C functions. Vertical lines n~present the tran­
sitions of C between values -1 and -1- 1. We check that in aIl 
cases there is a good match between these transitions and the 
local optima of the wavelet. Figs. 5-8 show the corresponding 
deconvolution wavelets. We can see that the short wavelets 
(Figs. 10-12) are weIl estimated, which justifies using the 
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standard SEM procedure in such cases. On the contrary, the last 
part of the long wavelet is poorly estimated. 

Now, let us show that the proposed SEM -1- P wavelet estima­
tion procedure works better for long wavelets than the standard 
SEM. Indeecl, we can observe in Fig. 13 that the two-step esti­
mation (truncated wavelet estimation followed by Prony exten­
sion) achieves almost perfect long wavelet recovery. Figs. 9 and 
13 show the significant gain of the SEM -1- P against the SEM. 
Furthermore, to study impravements brought by the deconvolu­
tion method, we consider the following performance indices: 

MSE1 represents the errar energy of the estimated wavelet, 
while lVISE2 represents the error of noiseless data reconstruc-
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Fig. 13. Estimated wavelet by SEM + P. 

TABLE IV 
MSE! AND MSE2 PERFORMANCE INDICES FOR SEM AND SEM + P 

METHODS (W AVELET OF FIG. 5) 

MSEl (dB) MSE2 (dB) 
SNR (dB) 10 1 13 10 T 13 

SEM -0.2 1 -8.8 17 1 6 
SEM+P -13.2 1 -16.6 5 T 3 

tion, that is, the convolution of wavelet and reflectivity. Indeed, 
direct comparison of rand f is not suitable since r is a sparse 
spike train sequence and thus very small reflector location off­
sets may lead to high MSE Il r - î' 11

2
. 

Table IV confirms the improvement of the performance in­
dices MS El and MSE2 [see (20)], with the SEM + P pro­
cedure compared to the standard SEM when applied to a long 
wavelet. 

3) Reflectivity Estimation: Once the wavelet h and model 
distribution parameters (/\, 0'5, O'r, O'~) are estimated, we are 
able to recover the reflectivity sequence by means of the MPM 
algorithm. We are going to see that the quality of the estimator of 
(/\,0'5, O'r, O'~) strongly influences the estimation performance 
of r. 

The reflectivity sequence estimated by the SEM + MPM 
and the (SEM + P) -1- MPM algorithms are given, respectively, 
in Figs. 14 and 15. Note that after applying the algorithms, 
it may occur that instead of one reflector two neighboring 
reflectors are found, either contiguous or separated by only 
one sample. Then, a postprocessing procedure can be appliecl 
to fuse these reflectors at their gravit y center with cumulatecl 
amplitudes [4]. With the SEM + MPM approach (Fig. 14), 
there are often many neighboring strong reflectors, which 
prevents applying this technique, while it has been possible to 
apply it with the (SEM -1- P) + MPM (Fig. 15) because distinct 
reflectors hacl sufficiently separated contributions, leacling to 
mu ch better results than the standard SEM + MPM procedure 
(Fig. 14). 
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Fig. 14. Estimated reflectivity sequence by SEM + MPM (SNR = 8 dB). 
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Fig. 15. Estimateclreflectivity sequence by (SEM + P) + MPM (SNR = 8 dB). 
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Fig. 16. Data record (trace 602). 

B. Real-Data ExperÏlnents 

Here, we consicler real clata acquired by IFREMER,l con­
sisting of seismic traces obtained from an innovative manner 
for synclu'onizing a clllster of air gllns to achieve deeper penetra­
tion. The fact that the sources are not synchronizecl in tbeir firing 

IFrench Research Institllte for Exploitation of the Sea-Institllt Français cie 
Recherche pour L'Exploitation cie la Mer (IFREMER), Bretagne, France. 
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TABLE V 
ESTIMATED !'ARAMETERS FOR SIIOT 1 AND 40, AND MEAN OF 50 SII01'S 

ESlimaled paramcler /\ u'~J o·~ u~ 

Shot 1 0.050 3.0 x 10 ·U O.009S 4.5 x 10 
Shol '10 0.06S 1.3 x 10 0 0.OOS9 6.1 x 10 

Me~U1 for 50 shols 0.066 1.5 x 10 G 0.0090 6.0 x 10 
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" 
Il 

0 

order but on their time of maximum energy will decrease the 
signal bandwiclth, and increase significantly the low-frequency 
content, and thus, the penetration. Each source is composed of 
13 air guns, shooting a wavclct cvcry 20 s with spectrum band­
width 0-128 Hz. The multitrace streamer is composed of 360 
clusters of 16 hydrophones. Its role is to improve the SNR by 
summing the received signaIs. The length of the streamer is 
4.5 km and each cluster is separated by 12.5 m. 
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Fig. 20. Estimated wavelet by SEM + P. 

A typica1 recorded trace is prese\lted in Fig. 16. Fig. 17 shows 
the full1ength wave1et estimated by SEM, while Fig. 18 repre­
sents a truncatecl wavelet estimated by SEM together with the 
conesponding C function. The wave1et in Fig. 17 does not cor­
respond to the kind of wavelet generated by air guns. 

Fig. 19 shows that a good choice for the truncated wavelet 
1ength is 130 ms and Fig. 20 shows the Prony extension of the 
truncatecl wavelet estimate (SEM + P estimate). Fig. 21 shows 
the deconvolution results obtainecl for several traces. Fig. 22 
presents the wavelets estimated by the SEM + P algorithm for 
clifferent recorclecl seismic traces. We can observe that these 
wavelets are somewhat distinct, and thus, wavelet estimation 
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Fig.21. (a) Real data (traces 402 to 406). (b) Estimatec\ wavelet by SEM + P. (c) Estimated reflectivity by (SEM + P) + MPlvI. 

is necessary on each trace for proper recovery of reflectivity. 
However, there is a good similarity among them, and thus, the 
wavelet estimated for one trace could be a good illitialization 
candidate for the deconvolution of the other traces. 

The parameters (\ aB, ai , a~) estimated with the SEM al­
gorithm are presented in Table V. The noise variance seems to 
be the parameter that more varies among traces. 

The seismic profile is presented in Figs. 23 and 24. We can see 
the deconvolution results obtained with our approach. On raw 
data presented in Fig. 23, the main reflectors are about 200-ms 
width (see seafloor, for example), and composed of an alterna­
tion of two black and three white phases. In Fig. 24, after de­
convolution, the reflectors are reduced to a single black phase, 
about 70 ms wide. Thus, the deconvolution, as expected, im­
proves substantially the resolution of the section. The decrease 
of the signal width enables us to define more precisely the re­
lationships between the c1ifferent seismic units: For example, it 
is now much easier to follow the top of the erosional surface 
at the top left of the seismic line. It helps discriminating real 
events from artifacts: A seismic reflector, about 300 ms below 
the seafloor, with a negative polarity, the polarity and existence 
of which were not obvious, is now weIl imaged. Weaker reflec­
tors which were not visible because of their interferences with 
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Fig. 23. Seismic profile. Y-label: shot number. X-label: lime (s). 

bouncing of the m'\ior reflectors are now apparent (see, for ex­
ample, reflectors just below the seafloor). 

VI. CONCLUSION 

In this paper, we have proposee! a new approach for bline! de­
convolution of seismic clata in the presence of a long wavelet:. 
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101 

We have shown that the estimation of a truncatec1 wavelet fol­
lowec1 by an ARlVIA extension (SEM -1- P) yielc1s improvec1 
wavelet estimation, comparecl to the classical SEM approach. 
We have also proposecl a new methocl for choosing the truncatecl 
wavelet order. Furthermore, an efficient procedure has been pro­
posecl for the wavelet initialization in the SEM algorithm. Simu-
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lations and real-data experiments have shown that our approach 
achieves significant improvement. 

ApPENDIX 

In this section, we justify why the proposed criterion for max­
imum position selection works efficiently, as shown in the sinlLl­
lation part. Let us recaIl, as cliscussecl in Section IV-B, that when 

the impulse response h is initialized with one at the kth entry 
and zeros at other entries, the SEM algorithm converges to a 
solution where the estimated h has its maximum at position /;;, 
In other worcls, we can say that the SEM algorithm looks for a 
solution that minimizes the non11 error Il y - Rh Il with a max­
imum constraint at position k" 

Let us rephrase this idea in the continuous time domain, We 
are lecl to sem'ch for a solution ht that achieves minimum error 
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norm under the nul! derivative constraint h~o = O. In muthc­
matical tel1ns, we are consiclering the following constrained op­
timization problem: 

(21) 

Equivalently, problem (21) can be rewritten in the Fourier trans­
Conn cJomain 

where yU) denotes the Fourier transform of g( t) and B is the 
signal bancJwiclth. Using Lagrange multipliers (see, for instance, 
[38]) and introducing real and complcx variations of h, yields the 
following conditions upon the solution of problem (22), denoted 
by Mtol(f): 

{ 

2Re{[7~(f)h.(tol(f) - y(f)]*f(f)} + A2i7rfe2i7Tfto = 0 

2'ÏIm{[-?(f)M t olU) - y(f)]*7C,(f)} + 'IA2i7rfe2i7Tfto = O. 
(23) 

Indeed, considering the functional 

J(Îl, /\) = L IYU) - f(f)Îl(f)1 2df 

+A L (2i7rf)e2i7TftoÎltoU)c4f (24) 

and denoting by 5Î1r.(f) any real valued small variation of h.(f), 
the optimality constraint J(Îl.(tol + 5ÎL,., /\) - J(ÎL(tol , A) = 0 
yielcJs 

L [f(f)'h,(tolU) - f)(f)]7C,*U) + [7c,U)h.(tolU) - yU)]" 

xfU) + /\(2i7rf)e2i7Tfto] 5Îlr U)clf = 0 (25) 

leacJing thus to the tirst equation of (23). The second equation of 
(23) is derived in a similar way by considering imaginary s111a11 
variation of Îl.U). Then, sUl11ming both equations of (23) yields 

with N = (1 + i)/\j2. Then, the solution of (22) is of the form 

, . yU) (2i7r f)e- 2ir.
f

l:o 
h(tol(J) = 7C,U) - N IfU)12 (27) 

Now, let us denote hU) f)U)p-1 Cf), which cor­
responds to the true wavelet in the noise-free case. 
After we insert solution (27) in the constraint equation 
h~o = JB(2'17r f)e2i7ffto Î1to (f)clf = 0, it fo11ows: 

N = h,~o (L (2'11'1 f) 2 IPU)I- 2c(r) -1 (28) 

Thus, l'rom (27) and (28), we get the time-domain solution 
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Now, let us remark that 

CI 1 .{.,-, () ,(toll 1 . t .-ear y, l' 1'0 = '),0 C langes slgn at, /;0 If Il. has a 
local optimum at point to. This shows that, provicling the true 
wavelet has an horizontal tangent at point 0, the derivative of 
the estimatecl wavelct h,(ll changes sign around point!; =to 
[note that the tenn in the parenthesis in (30) is always positive]. 
We have checlced that this result remains true for wavelets h 
with small tangent slopes at point 0 which corresponds to most 
practical situations, where wavelets have a smooth shape and 
thus small slope at the origin. 
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