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Abstract:  
 
Based on new multi-channel seismic data, swath bathymetry, and sediment echosounder data we 
present a model for the interaction between strike-slip faulting and forearc basin evolution off north-
western Sumatra between 2°N and 7°N. We examined seismic sequences and sea floor morphology 
of the Simeulue- and Aceh forearc basins and the adjacent outer arc high. We found that strike-slip 
faulting has controlled the forearc basin evolution since the Late Miocene. The Mentawai Fault Zone 
extends up to the north of Simeulue Island and was most probably connected farther northwards to 
the Sumatran Fault Zone until the end of the Miocene. Since then, this northern branch jumped 
westwards, initiating the West Andaman Fault in the Aceh area. The connection to the Mentawai Fault 
Zone is a left-hand step-over. In this transpressional setting the Tuba Ridge developed. We found a 
right-lateral strike-slip fault running from the conjunction of the West Andaman Fault and the Tuba 
Ridge in SSW-direction crossing the outer arc high. As a result, extrusion formed a marginal basin 
north of Simeulue Island which is tilted eastwards by uplift along a thrust fault in the west. The shift of 
strike-slip movement in the Aceh segment is accompanied by a relocation of the depocenter of the 
Aceh Basin to the northwest, forming one major Neogene unconformity. The Simeulue Basin bears 
two major Neogene unconformities, documenting that differences in subsidence evolution along the 
northern Sumatran margin are linked to both forearc-evolution related to subduction processes and to 
deformation along major strike-slip faults.  
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1. Introduction  

 

Oblique convergence of colliding plates is a common feature at convergent margins. 

Partitioning of strain results in two major structural components: One that is perpendicular 

to the trench, represented by folds and thrusts in the accretionary prism, and a second 

component, accommodating the oblique convergence in strike-slip faults parallel to the 

trench (Beck et al., 1993; Beck, 1983; Fitch, 1972; Malod and Mustafa Kemal, 1996; 

McCaffrey, 1991). Examples of such strike-slip motions are the Liquine-Ofqui Fault 

(Cembrano et al., 1996) and Atacama Fault (Cembrano et al., 2005) in Chile or the Queen 

Charlotte/Fairweather fault system in Alaska (Doser and Lomas, 2000). Studying such 

major strike-slip systems is crucial to understand the evolution of oblique margins and their 

behavior in terms of forearc basin evolution.  

 

The study area is located off north-western Sumatra between 2°N and 7°N, covering the 

offshore region between the Mentawai Fault Zone and West Andaman Fault and the 

Sumatran Fault Zone (Fig. 1). Strong tectonic forces influence this area where the 2004 

Mw 9.0 Sumatra-Andaman and 2005 Mw 8.6 Nias Island earthquakes nucleated (Engdahl 

et al., 2007). The right-lateral offshore fault systems and the onshore Sumatran Fault Zone 

accommodate the trench-parallel component of the oblique convergence between the 

Indo-Australian and the Eurasian Plates (Diament et al., 1992; Malod and Mustafa Kemal, 

1996; Samuel and Harbury, 1996; Sieh and Natawidjaja, 2000). The study area includes 

the Simeulue- and Aceh forearc basins and parts of the outer arc high. The studied basins 

show a change in water depth from about 1300 m in the Simeulue Basin to about 2800 m 
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in the Aceh Basin and are clearly separated by an anticlinal structure that is elevated 

above the seafloor and referred to as Tuba Ridge by Malod et al. (1993). 

 

The main purpose of this work is the assessment of the structural evolution of the strike-

slip fault system and its relation to the forearc basin evolution off northern Sumatra based 

on the combined analysis of reflection seismic data, swath bathymetry and high resolution 

parametric echosounder data. The availability of a nearly complete swath bathymetric map 

in combination with a dense grid of seismic datasets of different resolutions allows us to 

address the questions of when strike-slip movements started and if these movements 

have had a notable influence on the evolution of the forearc basins. Our data make it 

possible to distinguish the interaction of the Mentawai Fault Zone and the West Andaman 

Fault in the Simeulue area which is not yet fully understood.  

 

 

2. Tectonic evolution of the western Sunda Arc 

 

Along the Sunda arc the oceanic Indo-Australian Plate subducts beneath the continental 

Eurasian Plate. The rate and direction of convergence of the Indo-Australian Plate with 

respect to the Eurasian Plate show a decreasing and slightly anticlockwise trend from 

southeast to northwest (Fig. 1). Based upon GPS measurements Prawirodirdjo and Bock 

(2004) proposed convergence rates of 61 mm/y (N17°E) off the Sunda Strait and 51 mm/y 

(N11°E) off northern Sumatra. The plate motion model NUVEL-1A (DeMets et al., 1994) 

gives values of 70 mm/y (N20°E) and 61 mm/y (N15°E) respectively. A clockwise rotation 

of Sumatra and Malaya of about 20° relative to Eurasia since the Late Miocene (Ninkovich, 

1976; Nishimura et al., 1986) or Oligocene (Holcombe, 1977) was caused by the collision 

and indentation of India into Eurasia (Daly et al., 1991; Longley, 1997) and is the reason 
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for a northward increasing obliquity of the subduction along the Sunda Arc. The curvature 

of the margin results in a plate convergence that gradually changes from nearly 

perpendicular subduction off Java to highly oblique subduction off northern Sumatra 

(Moore et al., 1980). Along the northwestern Sunda Arc strain partitioning and the 

development of arc-parallel strike-slip faults took place (Malod and Mustafa Kemal, 1996). 

The most prominent strike-slip shear zone is the Sumatran Fault Zone located on the 

Sumatran mainland along the volcanic arc (Bellon et al., 2004) which forms the Barisan 

Mountains (Fig. 1). The Sumatran Fault Zone accommodates most of the right-lateral 

strain of the relative plate motion and is proposed to have been active since the Mid 

Miocene (McCarthy and Elders, 1997). However, a distinct amount of arc-parallel strain is 

taken up by right-lateral strike-slip fault systems along the western edges of the forearc 

basins, namely the Mentawai Fault Zone and West Andaman Fault (Diament et al., 1992; 

Malod and Mustafa Kemal, 1996; McCaffrey, 1991). The Mentawai Fault Zone extends 

from the Sunda Strait in the south to at least the Island of Nias at about 1.5°N where it is 

probably connected with the Sumatran Fault Zone along the Batee Fault (Milsom et al., 

1995). Likely the Mentawai Fault Zone extends farther north into the Simeulue Basin 

(Diament et al., 1992). The West Andaman Fault extends southwards from the Andaman 

Islands to the Simeulue Basin along the western border of the Aceh Basin (Curray, 2005). 

As pointed out by Curray et al. (1979) the Sumatran forearc acts as a sliver plate bounded 

to the west by the trench, below by the subducting plate, and to the east by the Sumatran 

Fault Zone. As a consequence the forearc sliver consists of elongated strips moving to the 

northwest. This was further refined by Malod and Kemal (1996) proposing two forearc 

microplates between the outer arc high and the Mentawai Fault Zone, separated by the 

Batee Fault. The western border of the northern microplate is represented by the West 

Andaman Fault.  
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3. Methodology 

 

We had approximately 2800 km of multi-channel seismic (MCS) data available in the study 

area from a total of more than 9700 km acquired during two research cruises with RV 

SONNE in 2006. Shot distance was 50 m and we used a digital 240-channel streamer of 3 

km length with a receiver spacing of 12.5 m, towed at a water depth of 6 m. The acoustic 

signal was generated by a tuned G-gun array of 16 units comprising a total volume of 50.8 

l operated at air pressure of 14.5 MPa. Data were recorded with a sampling interval of 2 

ms and 14 s length. Stacking velocities were picked at regular intervals of 3 km along 

every line. Pre-stack processing included resampling to 4 ms, trace editing, CMP-sort 

(nominal 30-fold coverage, 6.25 m spacing), Ormsby bandpass filter (6-12-60-160 Hz), 

polygon f-k filter (window of 60 traces and 1 s length), zerophase spiking deconvolution 

(52 ms operator length, 1 s design window beginning shortly below seabottom reflection), 

amplitude correction for spherical divergence based on stacking velocities (1/(t×v^2)), 

normal moveout correction (40% stretch mute), and Radon velocity filter for multiple 

suppression (rejecting velocities differing more than ± 20% of corresponding stacking 

velocity). After stack we applied a space and time variant Ormsby bandpass filter (upper 

window: 10-20-60-100 Hz, lower window: 6-12-50-100 Hz), a minimum phase predictive 

deconvolution and a post-stack Kirchhoff time migration with 90% of stacking velocities.  

 

Additionally, digitized scans converted to Segy-format from single-channel recordings 

acquired during the SUMENTA cruises in the early 90s (Izart et al., 1994; Malod et al., 

1993; Malod and Mustafa Kemal, 1996) were available with a total length of about 4800 

km in the study area. 
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Together with the MCS data, high resolution parametric echosounder data (difference 

frequency of 3.5 kHz) were recorded with the ATLAS PARASOUND system at a sampling 

rate of 40 kHz. The data were resampled to 8 kHz, bandpass filtered (1.75-2.1-3.8-4 kHz) 

and the envelope seismic attribute applied for visualization. 

 

The swath bathymetric data is a compilation of Japanese (Soh, 2006), British (Henstock 

et al., 2006; Tappin et al., 2007), French (Graindorge et al., 2008; Sibuet et al., 2007), 

American (RR0705, Cruise Report, 2007) and German (Ladage et al., 2006) datasets 

recorded in the area during several cruises. The bathymetric datasets were provided either 

in different native binary multibeam-system formats or as dumped grid data in xyz-ascii 

format. The data were used as delivered, i.e. no further editing was performed, and 

merged using the MB-System software package (Caress and Chayes, 1996). For gridding, 

the different surveys were given priorities by a weighting scheme based on aerial coverage 

and data quality to minimize artifacts and inconsistencies in regions of overlap. Gridding 

was performed with a grid spacing of 100 m and maps plotted with the GMT software 

package (Wessel and Smith, 1991).  

 

 

4.  Structural Analysis 

 

The evaluated area off northern Sumatra covers three basin domains: The Aceh Basin, the 

Simeulue Basin and a smaller basin located northwest of Simeulue Island. For clarity, we 

introduce the name Tuba Basin for this depression (Fig. 1). 

 

A morphological analysis of the seafloor based on bathymetric data was carried out to 

identify tectonic structures. 2-D MCS data were used to determine the type and time of 
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activity of the structures. We used simultaneously recorded high-resolution echosounder 

data to verify if such structures affected the uppermost sedimentary layers thus indicating 

recent activity. 

 

4.1 Aceh Basin 

 

The Aceh Basin is the northernmost forearc basin off Sumatra and is located in the 

conjunction between the West Andaman Fault and the Sumatran Fault Zone. It has a 

northward narrowing triangular shape covering an area of about 6600 km^2 with the 

northern tip reaching up to the island of Greater Nicobar (Fig. 1). From there, the basin 

spans southward for about 260 km where it is bordered by the Tuba Ridge (Fig. 1; Mosher 

et al., 2008). In E-W direction the basin has a width from the West Andaman Fault to the 

inner slope of about 65 km. To the east, the inner slope leads over to the Sumatran 

mainland and, offshore the northern tip of Sumatra, the Sumatran Fault Zone. The basin is 

filled with well stratified sedimentary sequences of an average thickness of 2 s two-way 

traveltime (TWT) that increases southwards. The architecture of the Aceh Basin is quite 

uniform in the south, while it becomes complex in the north. 

  

The western border of the Aceh Basin is coincident with the West Andaman Fault. 

Bathymetry (Fig. 2A) shows a NNW-SSE-striking, mainly linear feature with a well defined 

main fault and several subordinate fault lines imaged as anticlines. These branch off into 

both the forearc basin and the outer arc high. The inset in Fig. 3 shows the typical 

expression of the main fault line of the West Andaman Fault along the Aceh Basin, a small 

depression filled syntectonically with westward dipping sediments, described in detail by 

Seeber et al. (2007). It is enframed at both sides by anticlines of about 6 km in width. The 

easternmost anticline is built up by the entire Neogene sedimentary column of the Aceh 
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Basin. The deformation affected the youngest sediments indicating a recent activity of the 

West Andaman Fault, also evidenced by fault plane solutions (Kamesh Raju et al., 2007). 

 

In the entire basin the base of the well stratified sediments is formed by a distinct 

unconformity (Figs. 3, 4 and 5). This unconformity is of regional extent and was probably 

caused by uplift and subsequent erosion of the forearc area off Sumatra. It was interpreted 

in all forearc basins along the Sumatran trench as of Oligocene/Early Miocene age 

(Beaudry and Moore, 1985; Izart et al., 1994; Karig et al., 1979; Karig et al., 1980; Malod 

et al., 1993; Rose, 1983; Schlüter et al., 2002; Susilohadi et al., 2005; van der Werff, 

1996). From this widespread extent and the narrow position to the Simeulue Basin where 

the age is proved by drilling we propose that the basal unconformity in the Aceh Basin is 

also of base Neogene age. On top of the basal unconformity two well layered sedimentary 

sequences are divided by an angular unconformity. Sequence A has a maximum thickness 

of 4 s (TWT) in the southern Aceh Basin near the Tuba Ridge (Fig. 5). Farther north, it 

thins to 1.4 s (TWT) and is trenchward rotated (Fig. 3). Sequence B is horizontally layered 

and onlaps the unconformity below. The main depocenter of sequence B is located in the 

central Aceh Basin (Fig. 3) with a maximum thickness of about 1.3 s (TWT). The whole 

depocenter of the Aceh Basin shows a northward migrating trend of subsidence over time. 

 

Fig. 6A spans over 120 km from the West Andaman Fault to the Sumatran Fault Zone and 

covers the northern part of the Aceh Basin and the area adjacent to the east. Again, the 

main line of the West Andaman Fault is developed as a narrow synsedimentary filled 

depression (km 7). The deformed area at the transition to the forearc basin is composed of 

uplifted and deformed sediments. The narrow depocenter contains two sedimentary 

sequences above the acoustic basement (km 17-33). The lower one is confined to the 

eastern part of the basin (km 25-33) and is subdivided into two subsections. Sub-parallel 



 

 10

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

reflectors dominate in the basal section. The upper section contains westward dipping 

reflectors, downlapping on the sediments below. The upper sequence of the basin is well 

layered and downlaps onto the lower sequence in the east. Here, this sequence shows a 

divergent reflection pattern, indicating a deposition syntectonically to subsidence (km 25-

30).  

 

In the area between the Aceh Basin and the Sumatran Fault Zone to the east an erosional 

truncation separates deformed sediments from a package with sub-parallel configuration 

atop. The internal configuration of the sediments below the erosional truncation points to a 

deposition in a basin setting and we refer to this area as Paleo Aceh Basin. Incisions of a 

channel (see Fig. 1) are visible on the profile shown in Fig. 6A from km 50-58. Below these 

incisions an older sedimentary basin is imaged (km 40-60). It contains two major 

sedimentary sequences with the upper onlapping on the lower one and is bounded to the 

east by an extensional fault (km 59). A distinguishing of the individual sedimentary 

sequences was impossible with the data at hand. The sedimentary fill might either be 

interpreted as consisting of only sequence B (similar the northern Aceh Basin) or as 

sequences A and early B (similar the southern Aceh Basin). We tentatively interpret the 

erosional truncation as separating sequence A from early sequence B because of the 

distinct onlapping reflection pattern also found in the southern Aceh Basin and because we 

observe a general westwards migration of the western border of the northern Aceh Basin. 

 

Further eastwards sediments below the erosional truncation are strongly folded. Folding 

can be followed on seismic sections (Fig. 6B) on a line across the area east of the Aceh 

Basin in southern direction to the eastern edge of the Tuba Ridge. We interpret a non-

active strike-slip fault similar to the Sumatran Fault Zone and West Andaman Fault. 
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4.2 Tuba Basin 

 

The Tuba Basin is a narrow depression to the south of the Aceh Basin. It is separated from 

the latter by the Tuba Ridge, a zone of compressional uplift. Fig. 5 shows the large 

anticline of the Tuba Ridge from km 58-75 uplifting the basin sediments for more than 700 

m to the south and 1000 m to the north over the surrounding ocean floor. The Tuba Basin 

is trench-parallel elongated, and extends over 160 km in NW-SE direction with a maximum 

width of about 70 km, totaling in an area of about 6000 km^2. To the west it is confined by 

the outer arc high which is cut by a right-lateral strike-slip fault running from the western 

end of the Tuba Ridge in SSW-direction (Fig. 2B). The northern part of the basin is 

occupied by a depression covering an area of approximately 1200 km^2 with side lengths 

of about 27 km and 50 km. Here, the seafloor is at a maximum water depth of about 2200 

m whereas it reaches depths of 1700 m in the southerly located area. The sedimentary 

infill is generally thin with a maximum thickness of about 1.2 s (TWT; Fig. 7). The northern 

depression is bounded to the south by normal faults and crossed by a W-E striking 

escarpment of about 80 m (Figs. 2B and 5, km 83 and inset). Most likely this part of the 

Tuba Basin was disconnected from the Aceh Basin by the formation of the Tuba Ridge 

because reflectors of sequence A, though heavily folded and dragged, can be followed 

through the Tuba Ridge into the northern Tuba Basin (Fig. 5). 

 

Bathymetry of the southern basin part (Fig. 2C) shows a steady northwest-directed 

inclination with a slope angle of about 1.4° (Fig. 7) from the outer arc high in the west to 

the eastern boundary of the basin where the recent depocenter is located (Figs. 7, km 45-

55 and 8, km 32-40). Tilting of the basin is documented by a circular buildup structure on 

the ocean floor (Figs. 2C and 8, km 15-20) which exhibits the same inclination. Several 

folds with a NW-SE strike are distinct in the bathymetric map, the most prominent at the 
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border to the outer arc high (Fig 2C). The seismic image shows a steep high-amplitude 

reflector band below this fold (Fig 7, km 6-12) which we interpret as a thrust fault. Uplift 

along this fault may have resulted in a tilting of the western part of the Tuba Basin and 

subsequent compressive deformation of the sedimentary succession in the basin (Fig. 5, 

km 125-132; Fig. 7, km 22-55; Fig. 8, km 25-40). The reflection pattern of the sequences 

and basement of the Tuba Basin differ from the other forearc basins and are merely typical 

for the outer arc high.  

 

4.3 Simeulue Basin 

 

With an area of about 15,000 km^2, the Simeulue Basin is the largest forearc basin off 

northern Sumatra. It is a northward narrowing, trench-parallel elongated depression and 

extends over 260 km in NW-SE direction and approximately 100 km in SW-NE direction. 

The maximum water depth is about 1300 m (Berglar et al., 2008). The basin contains a 

sedimentary succession of Early Miocene to recent age (Beaudry and Moore, 1985; 

Berglar et al., 2008; Karig et al., 1979; Rose, 1983) of up to 5 s (TWT).  It is bounded to 

the south by the Banyak Islands and to the west by Simeulue Island and a ridge-like 

structure separating it from the Tuba Basin. To the east a well defined slope and shelf 

passes into the Sumatran mainland. 

  

The stratigraphy and subsidence of the Simeulue Basin was described in detail by Berglar 

et al. (2008): The base of the stratified sediments is formed by the regional basal Neogene 

unconformity. Atop, three major stages of subsidence and deposition were identified. 

Subsidence in the Simeulue Basin was initiated during the Early and Middle Miocene in 

the western part of the basin where half grabens formed. A second major stage took place 

during the Late Miocene and Pliocene when the accretionary wedge west of the basin 
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consolidated and formed the distinct outer arc high. This resulted in a consistently 

subsiding trough along the western border of the basin and a broad shelf in the eastern 

part. The last phase of the second stage was characterized by a westward shift of the 

depocenter probably associated with the initiation of strike-slip faulting. The Pleistocene to 

recent stage shows relatively uniform subsidence across the basin except for the central 

part where uplift and subsequent normal faulting at the crests of the uplifted areas 

occurred. 

 

The Simeulue Basin is characterized by two styles of deformation, namely large anticlines 

with normal faulting at the crest and strike-slip related faulting and folding. Fig. 9 (km 108-

128) shows an example of an anticline with subsequent normal faulting. The faults 

penetrate from the ocean floor down to Early Miocene sediments on top of an anticline of 

about 70 km in width. The crest is subject to erosion exposing Pliocene sediments. The 

deep reaching normal faults and the size of the anticline suggest uplift of the basement. 

Bathymetry (Fig. 2D) reveals the surficial shape of the anticline as semicircular in 

northeastern direction towards the basin, pointing to either a NE-dipping crest line or a 

dome-like architecture of this area of uplift. The SW-NE strike of the normal faults follow 

the axis of the anticline (Fig. 2D).  

 

An example of strike-slip related faulting and folding is the elongated structure of NW-SE 

strike separating the Simeulue- and Tuba Basins north of Simeulue Island (Fig. 2C). 

Seismic sections (Figs. 8, km 48-63 and 9, km 0-20) depict a positive flower structure of 

about 15 km in width and 800 m in height. We interpret this structure as the main line of 

the transpressional fault continuing the Mentawai Fault Zone north of the Banyak Islands 

up to the east of the Tuba Ridge. The deformation extends farther into the Simeulue Basin 

as documented by blind reverse faults deforming the basin sediments (Fig. 8, km 70-80). 
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Fig. 2D shows a large channel circuiting a fold; similar anticlines are located to the NW as 

well as on Simeulue Island. 

 

The transition from the outer arc high south of Simeulue Island into the southwestern basin 

part is illustrated on Figs. 2E and 10. There, a series of wrench faults is observed. 

Interfingering sedimentary packages (Fig. 10, km 15-20) depict the alternating intensity of 

deformation and uplift of wrench faults that resulted in changing direction of sediment 

supply into the basin. The northeastern wrench fault on Fig. 10 (km 25-30) exhibits 

onlapping reflectors with upwards decreasing angles marking the initiation of deformation 

in Late Miocene to Pliocene time. The recent activity of this fault is revealed by uplift and 

erosion of youngest sediments imaged in subbottom profiler data (inset).  

 

 

5. Discussion 

 

An earlier interpretation based on single-channel seismic data proposed a common 

stratigraphy for the entire forearc basin region off northern Sumatra (Izart et al., 1994). 

These authors correlated sedimentary sequences from the Nias Basin, previously 

described by Beaudry and Moore (1981) and Matson and Moore (1992) in the south to the 

Aceh Basin in the north. However, we propose that the basin evolution differs significantly 

from south to north. 

 

The stratigraphic framework of the Simeulue Basin established by Berglar et al. (2008) 

was calibrated with published data of exploration wells (Beaudry and Moore, 1985; Karig 

et al., 1979; Rose, 1983) and the temporal delimitation of identified tectonic structures is 

well constrained. The Simeulue Basin evolved in three major stages. To distinguish in 
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detail the sedimentary sequences in the Aceh Basin, we reviewed the old seismic data and 

combined them with our newly acquired MCS data. In contrast to the Simeulue Basin we 

found only two main stages. Independently from the stratigraphic position of the 

sedimentary fill in the Aceh Basin, this is a clear indication of the different evolution of the 

forearc basins. The evolution of the forearc basins is apparently much more complex than 

previously assumed. 

 

The main depocenter of sequence A is located in the southern Aceh Basin. Recently, this 

part was subject to uplift and folding, as documented by exposure and subsequent erosion 

of sequence A (Fig. 5). Since this uplift, the depocenter moved considerably northwards 

while the southern part is sediment-starved. The age of unconformity A/B in the Aceh 

Basin is not determinable without doubt by sequence stratigraphy. It may be either of Mid 

Miocene age, as the oldest major Neogene unconformity in the Simeulue Basin, or 

considerably younger.  

 

Strike-slip movements are a direct consequence of the oblique convergence of colliding 

plates and thus are of regional extent. We propose that these strike-slip movements in the 

forearc basins off Sumatra can be used to tie the evolution scenarios for the basins. In the 

Simeulue Basin the initiation of strike-slip movement started earliest in the Late Miocene 

(Fig. 10; Berglar et al., 2008). In the Aceh Basin sequence B can clearly be associated 

with the initiation of strike-slip movement along the West Andaman Fault. Here, strike-slip 

faulting replaced a former, now inactive fault, as e.g. imaged on Fig. 6A (km 70-80) and 

the depocenter of the northern Aceh Basin probably migrated westward over time. If our 

assumption is right, the unconformity between sequence A and B in the Aceh Basin then 

would approximately be at the Miocene/Pliocene boundary. The onset of movements 

along the West Andaman Fault thus resulted in a significant north- and westward shift of 
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the depocenter in the Aceh Basin and is an ongoing process (Seeber et al., 2007). 

Extensional faulting (Fig. 6A, km 33 and 59) at the eastern edges of the narrow half 

graben like depocenters and the westward dip of sequence A (Fig. 3) may be explained by 

the slightly curved geometry of the West Andaman Fault resulting in a releasing bend. 

 

The two major forearc basins in the study area, namely the Simeulue- and the Aceh 

Basins, thus evolved step by step. While subsidence continued in the Aceh Basin 

(sequence A) a major Mid/Late Miocene unconformity in the Simeulue Basin marks 

differences in basin evolution. With the initiation of strike-slip faulting, subsidence 

expanded considerably eastwards in the Simeulue Basin, but the Mentawai Fault Zone 

itself affected only the westernmost part of the basin. In contrast, the sediments of the 

northern Aceh Basin were deformed by the northward continuation of the Mentawai Fault 

Zone. The cessation of this northermost fault section (Fig. 11) and subsequent jump of 

strike-slip movement initiated the West Andaman Fault. The Aceh Basin adapted to the 

structural reorganization by erosion of the Paleo Aceh Basin and a shift of the depocenter 

to the west and north to the recent position. 

 

The complex evolution of the Simeulue Basin is also documented in the interaction of two 

different styles of deformation: (1) Uplift and subsequent erosion accompanied by deep 

reaching normal faults, and (2) strike-slip faulting and folding along the western border of 

the basin.  

 

(1) Uplift and basin inversion starting in the Pleistocene is probably related to reactivation 

of lower Miocene half graben structures responsible for the initial Neogene subsidence of 

the basin (Berglar et al., 2008). The recent activity is proven by bathymetric steps with 

SW-NE strike caused by the normal faults at the crest of the anticlines (Fig. 2D). Two 
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bottom simulating reflectors (Fig. 9, km 115-123) may indicate a rapid recent uplift, where 

the gas hydrates did not had time to adjust to the changes of the gas hydrate stability zone 

(Foucher, 2002; Popescu et al., 2006; Posewang and Mienert, 1999). The deep reaching 

normal faults visible on seismic sections (Fig. 9) are caused by recent local uplift of 

Neogene or even deeper structures at the edge of the basin close to Simeulue Island, 

possibly due to tilting of Early/Mid Miocene basement blocks as described by Berglar et al. 

(2008). It can be speculated that this reactivation of block rotation may be related to 

changes in dip of the subducting oceanic crust directly below (Franke et al., 2008) or to 

local changes in plate coupling resulting in inhomogeneous compensation of tectonic slip 

(Ammon, 2006; Ammon et al., 2005; Briggs et al., 2006). 

 

(2) Strike-slip deformation led to primary faulting along the main fault line and secondary 

folding to both sides of the main fault. The main fault line along the western boundary of 

the Simeulue Basin is imaged on Figs. 2D, 8 and 9. As the location and trend at the 

western rim of the forearc basin is similar to that of the Mentawai Fault Zone in the 

southerly located Bengkulu Basin (Diament et al., 1992) we attribute the strike-slip fault in 

the Simeulue Basin to this system. The secondary folds are sigmoidal shaped, with their 

axis more or less parallel to the main fault line and lengths of about 10-20 km (Figs. 2C-E, 

9 and 10). These are the surficial expression of wrench faults typically found along the 

Sumatran forearc basins (Diament et al., 1992). Fig. 9 shows several structures related to 

wrench faulting. Km 58-70 is occupied by an area of local uplift. As revealed by the 

bathymetric data (Fig. 2D), this is an anticline which is cut along strike by the seismic 

section. It has a visible length of about 12 km on the surface and a sigmoidal shaped hinge 

line. Directly south of this anticline onshore topography depicts a similar shaped structure 

on Simeulue Island, but with a mirrored form. The striking similarity of both structures led 
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us to interpret the position of the trend of the main Mentawai fault line between these folds, 

along the eastern shelf off Simeulue Island.  

 

The Mentawai Fault Zone is connected to the West Andaman Fault by the Tuba Ridge 

(Figs. 2B and 5). In our view the Tuba Ridge is a transpressional uplifted area of a left-

hand step-over in the right-lateral strike-slip system, showing typical secondary folding to 

the north (Fig. 2B; Fig. 5, km 40-50). A second, SSE-trending right-lateral strike-slip fault 

meets the West Andaman Fault at its southernmost tip at the transition to the Tuba Ridge 

(Fig. 11), similarly described by Seeber et al. (2007). This fault is traceable on bathymetry 

data across the entire outer arc high and accretionary prism to the Sumatra Trench. In this 

regime the northern Tuba Basin to the south of the Tuba Ridge extruded in southward 

direction leading to deeply seated extensional normal faults evident in our seismic data 

(Fig. 5, km 75-100). Overlying sediments are recently affected and the uppermost strata 

are torn (Figs. 2B and 5, inset). A thrust fault bordering the southern Tuba Basin to the 

west (Figs. 2C, 7 and 8) gives evidence for recent compression and tilting in that part of 

the basin. The Tuba Basin is bordered in landward direction by ridges which act as 

barriers hindering sediments to enter the basin making determination of timing of 

deformation difficult. Because even the uppermost strata were subject of thrusting and 

folding (Fig. 5, km 125-132; Fig. 7, km 22-55; Fig. 8, km 25-40) we speculate that the 

thrust fault and minor reverse faults within the basin are active. 

 

 

6. Conclusion 

 

From these findings we conclude the following evolution scenario for the strike-slip 

systems and the forearc basins off NW Sumatra: Since their initiation in the Late Miocene 
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strike-slip faults have controled the forearc basin evolution off northern Sumatra. The 

northern branch of the Mentawai Fault Zone is traceable along the western boundary of 

the Simeulue Basin. Until the Miocene/Pliocene boundary the Mentawai Fault Zone was 

most probably connected to the Sumatran Fault Zone. Until that time the depocenter of the 

northern Aceh Basin was located further eastwards. In the Lower Pliocene the Aceh 

section of the Mentawai Fault Zone jumped westward or left-hand to the position of the 

West Andaman Fault. The shift of the fault was accompanied by a west- and northward 

shift of the depocenter in the Aceh Basin. The Tuba Ridge is a result of compression at 

this left-hand step-over. This ridge and the Mentawai Fault Zone isolate the Tuba Basin 

from terrigenous sediment sources leading to its recent sediment starved setting. A NNE-

SSW trending right-lateral strike-slip fault cuts from the Sumatra Trench through the 

accretionary prism and outer arc high. Interaction of this fault with the West Andaman 

Fault leads to subsidence and extrusion of the northern Tuba Basin, the southern Tuba 

Basin is tilted and compressed by uplift along a thrust fault. Initiation of strike-slip 

movement in the Simeulue Basin is accompanied by an expansion of subsidence for 

several kilometers in the direction of Sumatra. Recent inversion is observed in the 

Simeulue Basin which we attribute either to change in dip of the oceanic crust or to 

changes in coupling of the upper and lower plates. 
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Figure Captions 

 

Figure 1: 

Bathymetric map off northern Sumatra. Lines indicate positions of seismic sections (Figs. 

3-10), boxes of detailed bathymetry (Fig. 2). Land image is derived from SRTMv2 data, 

light bathymetric background from the GEBCO One Minute Grid. The inset shows the 

regional tectonic setting of the Sumatran subduction zone. IFZ = Investigator Fracture 

Zone. Sumatran Fault Zone (SFZ), Mentawai Fault Zone (MFZ), Batee Fault (BF), West 

Andaman Fault (WAF) and deformation front are based on Sieh and Natawidjaja (2000). 

Ages of the oceanic crust are after Müller et al. (1997) and Deplus et al. (1998) in million 

years. Gray arrows indicate relative plate movements based on NUVEL-1A (DeMets et al., 

1994), black arrows based on CGPS (Prawirodirdjo and Bock, 2004). 

 

Figure 2: 

Detailed bathymetric maps of the study area. Letter order is from NW to SE (note different 

scale of maps). See Fig. 1 for location of maps and color scale. 

A: Aceh Basin. The West Andaman Fault (WAF) is a mainly linear feature with subordinate 

faults branching off both into the forearc basin and outer arc high. 

http://dx.doi.org/10.1016/S0743-9547(96)00068-2
http://dx.doi.org/10.1029/90EO00319
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B: Southern Aceh- and northern Tuba Basins. The Tuba Ridge connects the West 

Andaman Fault and Mentawai Fault Zone (MFZ) through a left-hand step-over. A right-

lateral strike-slip fault cuts the outer arc high resulting in extrusion of the northern Tuba 

Basin. 

C: Southern Tuba- and northern Simeulue Basins. The Mentawai Fault Zone developed a 

positive flower structure separating the basins. The Tuba Basin is tilted eastwards by uplift 

along a thrust fault at the western boundary. 

D: Western Simeulue Basin and part of Simeulue Island. Sigmoidal shaped anticlines 

indicate the main line of the Mentawai Fault Zone on the eastern shelf off Simeulue Island. 

Normal faults with SW-NE strike are located at the crest of a semicircular uplifted area. 

E: Southwestern Simeulue Basin. The transition of the outer arc high to the basin is 

characterized by wrench-fault related anticlines. 

 

Figure 3: 

MCS profile across the central Aceh Basin. Older sediments (A) are tilted westwards and 

the depocenter moved trenchward (B). The inset illustrates the typical expression of the 

West Andaman Fault (WAF) in the Aceh segment. See Fig. 1 for location of profile. 

 

Figure 4: 

MCS profile across the southern Aceh Basin. Older basin sediments (A) are uplifted and 

deformed by the West Andaman Fault (WAF), leaving little sedimentation space for 

Sequence B. See Fig. 1 for location of profile. 

 

Figure 5: 

MCS profile covering the southern Aceh Basin, Tuba Ridge and northern Tuba Basin. 

Older sediments of the northern Tuba Basin belonged to the depocenter of the Aceh Basin 
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before the formation of the Tuba Ridge. Sediment echosounder data (inset) show tear of 

youngest sediments due to extrusion. See Fig. 1 for location of profile. 

 

Figure 6: 

A: MCS profile from the West Andaman Fault (WAF) to the Sumatran Fault Zone (SFZ). 

Sediments of sequence A are deformed by an older strike-slip fault. The depocenter of the 

Aceh Basin moved westward over time. 

B: Single-channel seismic profile located on the eastern slope of the Aceh Basin showing 

the non-active strike-slip fault. See Fig. 1 for location of profiles. 

 

Figure 7: 

MCS profile across the central part of the Tuba Basin perpendicular to the main axis of the 

basin. A thrust fault uplifting and tilting the western part of the basin is clearly imaged. 

Sediments are deformed by reverse faults due to tilting. See Fig. 1 for location of profile. 

 

Figure 8: 

MCS profile covering the southern Tuba- and northwestern Simeulue Basins. In between, 

the Mentawai Fault Zone (MFZ) developed a positive flower structure. The Tuba Basin is 

sediment starved and more than 300 m deeper than the Simeulue Basin. An eastward 

inclined buildup-structure indicates uplift along a thrust fault tilting the Tuba Basin and 

resulting in compression and reverse faulting. See Fig. 1 for location of profile. 

 

Figure 9: 

MCS profile across the western part of the Simeulue Basin parallel to the main axis of the 

basin. The Mentawai Fault Zone (MFZ) is developed as a positive flower structure. An 

anticline with normal faulting at the crest indicates recent uplift (inset with sediment 
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echosounder data). Note the “double” BSR in the uplifted region. See Fig. 1 for location of 

profile. 

 

Figure 10: 

MCS profile covering the southwestern part of the Simeulue Basin and adjacent outer arc 

high. Alternating intensity of wrench faulting is documented by interfingering sedimentary 

packages caused by changing direction of sediment supply. The inset with sediment 

echosounder recordings illustrates recent uplift of youngest sediments. The solid line 

marks the initiation of the easternmost wrench fault. See Fig. 1 for location of profile. 

 

Figure 11: 

Tectonic structures in the working area. WAF = West Andaman Fault; SFZ = Sumatran 

Fault Zone; BF = Batee Fault; MFZ = Mentawai Fault Zone; TR = Tuba Ridge. The 

northern branch of the Mentawai Fault Zone jumped westwards to the position of the West 

Andaman Fault. A transpressional step-over formed the Tuba Ridge. A right-lateral strike-

slip fault runs from the conjunction of the West Andaman Fault and Tuba Ridge in SSW-

direction crossing the outer arc high, resulting in extrusion of the Tuba Basin which is tilted 

eastwards by uplift along a thrust fault.
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