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Abstract:  
 
Recent geophysical and geotechnical data acquired on the Nice shelf to the east of the 1979 landslide 
source area, suggest slow deformations processes which could lead to future catastrophic slope 
failure. According to these preliminary interpretations, it is of major interest to perform a slope stability 
evaluation to define the hazard and quantify the danger related to a probable instability on this slope. 
A probabilistic approach is proposed here using a modified version of the SAMU_3D model, a 3-D 
slope stability software recently developed by Sultan and others to account for complex geometry. The 
3-D analysis is based on the upper bound theorem of plasticity developed by Chen and others. One of 
the main features of the original model is to allow complex critical failure surfaces, suitable for complex 
bathymetry (i.e. canyons). A probabilistic approach was added to the former deterministic model to 
consider the effect of sediment parameter variability and uncertainty (undrained shear strength and 
unit weight) on the likelihood of failure. Such an approach allows an estimation of the reliability of the 
results. Monte Carlo simulation was used to represent the variability of the factor of safety given a 
specific number of trials. Identification of the critical failure surface previously based on a deterministic 
analysis is thus performed in terms of probability of failure (or probability of a factor of safety lower 
than a reference value). According to the undrained shear strength distribution profiles with depth, 
obtained using different models (down to 30 and 60 m depth) at several sites and to the parameter 
uncertainty, high probability of failure (around 50%) is found for the Nice slope indicating that the 
sediment in this area is highly metastable.  
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1. Introduction 
 
 
 
Submarine slope failures are one of the main processes for long-distance sediment 

transport and for shaping seafloor morphology. In addition, they represent an 

important hazard to the coastal community as well as the off-shore exploitation of 

marine resources. Slope stability assessment methods are of major interest to 

evaluate the likelihood of failure and the danger associated with such events. In 

many cases, the conventional deterministic slope stability analysis corresponds to a 

simplification of the problem, providing results based on averaged sediment 

parameters which tend to eliminate the effect of parameter uncertainty on the 

estimated performance of the slope. Probabilistic methods allow refining conventional 

evaluations by integrating specific data variability related to the site into the final 

result. On the other hand, a 3-D slope stability evaluation allows us to propose more 

realistic failure surfaces represented by complex shapes associated with complex 

bathymetry and obviously a more realistic safety factor compared to the 2-D 

approach. The SAMU_3D software (Sultan et al., 2007 N. Sultan, M. Gaudin, S. 

Berné, M. Canals, R. Urgeles and S. Lafuerza, Analysis of slope failures in 

submarine canyon heads: an example from the Gulf of Lions, Journal of Geophysical 

Research 112 (2007), p. F01009 10.1029/2005JF000408. Full Text via CrossRef | 

View Record in Scopus | Cited By in Scopus (4)Sultan et al., 2007) was developed to 

face this problem using a broad range of complex shapes to test the 
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critical failure process. This paper addresses the integration of a probabilistic method in the 58 

recent 3-D slope stability evaluation software (SAMU_3D) by using the Monte Carlo 59 

simulation. Numerous examples showed the interest of the probabilistic method for geohazard 60 

problems (Nadim, 2002; Nadim and Lacasse, 2003; Lacasse and Nadim, 2007). The latter be 61 

applied to the present-day Nice shelf and slope (Figure 1), south coast of France, where a 62 

significant slide took place on October 16, 1979.  63 

The 1979 lanslide (Figure 2) occured at the place of the fill used during the construction of 64 

the new Nice harbour with a removed sediment mass estimated between 2 to 3 million 3m  of 65 

fill and about 7 millions 3m  of underlying sediments, mainly clayey silt and silty sand, which 66 

composes the deltaic deposits (Seed et al., 1988). Gennesseaux et al. (1980) showed that a 67 

flow of several hundred million 3m  of sediment was likely at the origin of the cable breaks at 68 

distances of about 90 and 120 km off-shore from Nice, suggesting a significant erosion 69 

process downslope following the initial event. According to Mulder et al. (1997), the initial 70 

slide then turned into a debris flow and turbidity current with progressive erosion and water 71 

incorporation. Despite a series of observation reported from different witnesses, the triggering 72 

mechanics and the precondition to failure was not well understood.  73 

More recently, Dan et al. (2007) proposed a new slope stability assessment of the Nice slope 74 

based on sediment cores and piezocone CPTU data; the latter highlight the presence of a 75 

sensitive clay bed between 30 mbsl and 45 mbsl. Numerical simulations show that under high 76 

deviatoric load, creeping of the sensitive clay layer could lead to a shear resistance loss and 77 

thus be at the origin of the 1979 slide. A decrease of the effective stress induced by seepage of 78 

freshwater due to the exceptionally heavy rainfall is likely the triggering mechanisms which 79 

led to the Nice slope failure. The “sensitive layer” hypothesis is supported by the good 80 

correlation between the maximum thickness of the sliding mass and the depth of the sensitive 81 

clay layer. Furthermore, the progressive failure scenario according to the creeping process 82 
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agrees well with the observations mentioned in the official report (cracks, settlements, 83 

failures, collapses) during land filling operations.  84 

Beyond the 1979 accident the aim of this paper is to provide a new approach to highlight the 85 

significant hazard related to present-day slope at the Nice shelf area. A present-day slope 86 

stability evaluation in the vicinity of the 1979 landslide area will be performed thanks to the 87 

piezocone CPTU data recovered recently during the 2007 PRISME cruise (Sultan et al., 88 

2008). 89 

 90 

 91 

Deterministic 3-D slope stability analysis 92 

 93 

For complex and heterogeneous slopes, 1-D or 2-D slope stability analysis is untimely and is 94 

prone to lead to oversimplification with inaccurate results, especially when sediment layer 95 

thicknesses are variable along the slope. In this case, a 3-D analysis is required for an accurate 96 

evaluation of the slope stability. The SAMU_3D software (Sultan et al., 2007) proposes a 3-D 97 

stability analysis method based on the upper bound theorem of plasticity (Chen et al., 2001a, 98 

2001b); the latter method avoids simplifications related to the use of the limit equilibrium 99 

methods concerning static and kinematic admissibility (Yu et al., 1998). The second interest 100 

of the SAMU_3D software concerns the complex geometry proposed to test the failure 101 

surfaces and simulate the critical one. The equation defining the shape of an arbitrary failure 102 

surface depends on eight parameters which allow to test a broad range of geometries prone to 103 

sliding and thus to get the corresponding range of factor of safety. The kinematically 104 

admissible velocity field implies that plastic velocity be inclined at an angle 'ϕ  (internal 105 

friction angle) to the failure plane. 106 

 107 
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 108 

Probabilistic approach 109 

 110 

The impact of soil parameters variability (or model uncertainty) on a slope stability 111 

assessment can be evaluated through the use of probability methods. Many published studies 112 

tackle the soil parameters uncertainty through 2D slope stability evaluations even though the 113 

use of the 2D-domain generates an error inherent to the problem simplification. We have here 114 

the opportunity to combine a 3D model to a probability approach in order to provide a more 115 

realistic evaluation of the slope stability conditions. 116 

The modified SAMU_3D software proposes a search algorithm for locating the critical slip 117 

surface with the highest probability of failure instead of the lower safety factor as this is 118 

commonly done with the deterministic approach. The probability of failure is calculated using 119 

a Monte Carlo simulation which provides a set of deterministic safety factors corresponding 120 

to a series of trials. Monte Carlo simulation is a class of computational algorithms for 121 

simulating the behaviour of physical systems using random (or pseudo-random) numbers. The 122 

simulation is based on the repetition of algorithms with a large number of calculations 123 

involving variables defined with probability distributions. This results in a series of number 124 

with a specific distribution (mean and standard deviation) allows to estimate the probability of 125 

getting the unknown final parameter (i.e. factor of safety) in a certain range of values.  126 

 127 

 128 

Application to SAMU-3D software 129 

 130 

The development of a Monte Carlo scheme is quite simple. Some input parameters defining 131 

the model are represented using a probability distribution which allows computing a set of 132 
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resulting safety factors according to the parameters uncertainty. Many random variables 133 

distribution (for geotechnical engineering material properties) appear to be well represented or 134 

approximated by a normal Probability Density Function (PDF) but others distribution types 135 

are available (lognormal, uniform, triangular, etc…). The normal distribution is used in this 136 

paper to represent both the distribution of undrained shear strength and unit weight. Then, the 137 

probability to get a value x  (x is the variable of interest) lying between σ1± ( σ  is the 138 

standard deviation)  is 68 %. In other words, this means that if a soil has a mean cohesion of 139 

34.5 kPa with a standard deviation of 8.14, 68% of a series of samples should have their value 140 

between 26.36 kPa (34.5-8.14) and 42.64 kPa (34.5+8.14). 141 

In equation form, this gives for the normal distribution, 142 

 143 

( )
( )

πσ

σ

2

22 2/uxe
xf

−−

=     (1) 144 

 145 

where u is the mean value of x.  146 

 147 

Figure 3 shows two typical normal distributions with different means and standard 148 

deviations. One with low mean and low standard deviation (PDF 1) and another one with high 149 

mean and high standard deviation (PDF 2). Though the PDF 1 mean value is closer from the 150 

unity (and thus from the failure domain), the higher probability of failure corresponds to PDF 151 

2 according to the respective areas for factors of safety below 1.0 (Figure 3; left diagram).   152 

These functions are defined without any limit but truncations can be applied if minimum and 153 

maximum values are specified.  154 

 155 

The procedure for modelling a variable probability distribution from its mean and standard 156 

deviation is decomposed in four steps: 157 
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1) Define the probability density function representing as well as possible the natural data set 158 

for each parameter assumed to show variability. 159 

2) Calculate the Cumulative Distribution Function which provides the probability to get 160 

values from measurements in a specific range. 161 

3) Invert the previous function in order to get a percent point function or a sampling function; 162 

the latter allows to get some values around a specific parameter according to their previously 163 

defined distribution. In the sampling function, the x-axis represents the range of expected 164 

random numbers; for each random number generated, the function generates a parameter 165 

whose occurrence frequency corresponds to the previously defined distribution.  166 

4) Generate a series of aleatory (or pseudo-aleatory) numbers which will provide, in 167 

combination with the sampling function, a series of values corresponding to the expected 168 

frequency distribution. 169 

 170 

Then, calculations using the former deterministic model are made with each data set of 171 

generated values to get a distribution of results as this could be expected in reality. From the 172 

resulting distribution of factors of safety, it is then easy to estimate the probability of failure 173 

(or the probability to have a factor of safety lower than a reference value if no factor of safety 174 

below 1.0 is found). In this paper, the modified SAMU_3D program calculates a safety factor 175 

associated to 5 %  probability to be lower than this reference value. The latter level (5%) was 176 

defined to ensure that the probability is representative of the standard deviation rather than the 177 

average value of the normal distribution. Figure 3 (right diagram) shows an example for 178 

which 5% probability are calculated for both distributions; the latter provides 5% probability 179 

to have a factor of safety below 1.025 and 0.68 with PDF 1 and PDF 2 respectively. In terms 180 

of probability of failure, PDF 2 corresponds to the most critical one. The program keeps in 181 

memory the lowest factor of safety from different trials associated to 5% probability to find a 182 
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value below this reference in the distribution which is equivalent to the probability of failure 183 

as search criterion. The number of trials was tested between 100 and 1000 to ensure this 184 

parameter has no significant effect on calculation results.  185 

It is worth noting that the spatial variability of soil parameters was not considered in 186 

calculations; this means that for each trial, the parameters were considered constant over the 187 

length of each layer. This leads to provide lower safety factors and thus lower constant with 188 

5% probability to have a factor of safety lower than the reference value. The failure 189 

probability is calculated when one factor of safety at least out of the total number of trials is 190 

found below 1.0. 191 

 192 

 193 

Validation of the 3D-deterministic model 194 

 195 

A validation of SAMU-3D is proposed with a simple case studied by many researchers; the 196 

critical slip surface and corresponding safety factor are searching for a 3D homogeneous 197 

slope. The dimensions of the study area are 25*40 meters and the slope gradient is about 26° 198 

(1:2). The soil parameters are those used by Xie et al. (2004) and are:  199 

3/64.17;10;8.9 mkNkPac =°== γφ  200 

The critical slip surfaces are proposed for two different shapes; a rectangular shape for direct 201 

comparison with Xie et al. (2004) results and a free shape to get the critical surface 202 

corresponding to the lowest safety factor; the latter was considered to show the interest of 203 

using a complex geometry with the energy approach (SAMU_3D). 204 

The comparison of different modelling (2D and 3D-models) for this simple case is shown in 205 

Table 1. The 3D-safety factors obtained with SAMU_3D (FOS=1.41 and FOS=1.35; Figures 206 

4 and 5) are in good agreement with the 3D-safety factor resulting from Monte Carlo 207 
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simulation performed by Xie et al. (2004; FOS=1.42). The complex geometry of the critical 208 

failure surface proposed by SAMU_3D allows to get a factor of safety below 1.40. The others 209 

2D-calculations provide lower safety factors (FOS below 1.35) as expected for the 2D-210 

models.   211 

 212 

Validation of the 3D-probabilistic model: the James Bay embamkment 213 

 214 

Another validation concerning the probabilistic approach results is proposed with the James 215 

Bay embankment. This case was well studied in terms of probability for 2-D models by 216 

Christian et al. (1994) and El-Ramly et al. (2002). The embankment, composed of sand, is 12 217 

m height with a 56 m wide berm at mid-heigth between both slopes (Figure 6). Below the 218 

sand, there is a succession of soils; clay crust (4 m on average), marine clay (8 m on average), 219 

lacustrine clay (6.5 m on average) and the underlying till layer with relative high strength. In 220 

terms of uncertainty, the main concern is the large scatter in the strength measurements for 221 

Marine and Lacustrine clays leading to high standard deviations for the latter. Ladd (1983, 222 

1991) and Christian et al. (1994) quantified the data dispersion for eight parameters whose 223 

variability was considered in the stability analysis (Table 2). 224 

  225 

The variables are modelled using a normal density distribution function and are truncated to 226 

+/- 3 standard deviations for the strength of the marine and lacustrine clay as for Khran & 227 

Lam (2004 & 2007) and for El-Ramly et al. (2002). The critical failure surface considered by 228 

Christian et al. (1994) and El-Ramly et al. (2002) has a circular shape and is shown on Figure 229 

7. No spatial variability was considered in the Monte Carlo simulation during the present 230 

slope stability evaluation; this means that there is one single sampling of statistical soil 231 
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properties for each layer during computation (no variability of soil properties with distance in 232 

the same layer).  233 

   234 

Using the 3D probabilistic model (SAMU_3D_PROB), the critical slip surfaces are found for 235 

a safety factor around 1.80 (Figure 8). This is well above the previous 2-D-results 236 

(FOS=1.46; Christian et al., 1994; El-Ramly et al., 2002). The ratio of 3-D and 2-D safety 237 

factor is commonly around 1.1 (Christian et al., 1994) which should provide a factor of safety 238 

around 1.6 considering the 2-D lowest safety factor (FOS=1.46). In the 3-D model, the neutral 239 

line corresponds to the 2-D critical slip surface but the other adjacent lines constituting the 3-240 

D shape being shallower (from the deepest part up to the sediment surface), the resulting 241 

safety factor is obviously higher since the sliding is easier on a deeper surface in this case.  242 

 243 

The Nice airport area 244 

On 16th of October 1979, a significant slide occurred on the Nice continental slope in the 245 

vicinity of the airport (Figure 2). In this area, the slope gradient is rather high and can reach 246 

up to 40 ° (Figure 9). This disastrous event led to the loss of human lives and substantial 247 

damages. A part of the platform enlargement, corresponding to an extension of the Nice 248 

airport fated to be a harbour, collapsed into the sea, generating a tsunami wave of 2-3 meter 249 

height (Genesseaux et al., 1980). Seed et al. (1988) highlight the very heavy rainfall (about 25 250 

cm in 4 days) which preceded the slide during several days, increasing the artesian pressure in 251 

the pervious layers of the delta deposits. The authors proposed an early interpretation of the 252 

observed events preceding the slide, which involves a massive under-water landslide triggered 253 

by a slide in the port fill, and the resulting landslide-induced tidal wave. However authors 254 

raises an important question concerning the mechanism at the origin of the slide in the port 255 

fill. The role of a quick-clay-type process as the source of a liquefaction-type slide for the 256 
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1979 Nice event was considered by Seed et al. (1988) highly unlikely after examination of 257 

clays and clayey silts recovered in the area. Computed factors of safety for slip surfaces 258 

extending to bottom of clayey silt layer provided a critical value around 1.35 for conditions 259 

after construction of fill and considering artesian pressure increase.  260 

Finally, Seed et al. (1988) concluded that the most likely cause of the slide is a static 261 

liquefaction process affecting the loose silty sand triggered by a tidal drawdown; the latter 262 

phenomenon was associated to a tidal wave generated by a submarine slide in the Var canyon 263 

about 15 kms off-shore. The authors mentioned another hypothesis they considered unlikely, 264 

involving a failure occurring initially in the port fill and resulting in a landslide which 265 

generates a tidal wave. 266 

Numerous examples of landslides in coastal environments are suspected to be associated with 267 

a period of low tide preceding the event (Orkdals Fjord slide, Norway, Terzaghi, 1956; 268 

Trondheim Harbor slide, Norway, Andresen & Bjerrum, 1967). It is also worth noting that 269 

similar pore pressure conditions in the soil (artesian pressure) were reported for the Nice 270 

airport area as well as for the Orkdals Fjord (Seed et al., 1988).  271 

Based on CPTU data and numerical modelling, Dan et al. (2007) proposed a scenario 272 

involving a sensitive clay layer between 30 and 45 mbsf and a creep process to explain the 273 

slope failure. This hypothesis is supported by the good agreement between the maximum 274 

thickness of the removed sediment and the depth of the sensitive clay layer. The authors 275 

highlight the metastable situation of the Nice slope prior to the platform enlargement and 276 

confirm the on-site observations during land filling operations (cracks, settlements, failures 277 

and embankment collapses) with a long-term creeping failure scenario. 278 

 279 

Recent Observations from bathymetry, geotechnical and geophysical data 280 
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Recent geophysical and geotechnical data acquired by Sultan et al. (submitted) bring 281 

evidences of slow post-slide deformations and confirm the need to control the present-day 282 

stability of the slope resulting from these significant processes evolving with time.   283 

The slope gradient map (Figure 9), achieved using bathymetric data resulting from the 1979 284 

event, display a series of quite visible escarpments around the slide scar, bordering the airport 285 

on the shelf (ESC1 to ESC5). The latter might result from the 1979 slide event or suggest a 286 

post-slide on-going slow deformation process downslope the shelf, following the 1979 slide 287 

event. The combination of both scenari is also possible with the 1979 slide event initiating the 288 

escarpments which are now in an on-going process of deformation.  289 

According to Demers et al. (1999), a reduction in tip resistance of about 10-50% observed 290 

using piezocone profiles could be attributed to plastic zones related to progressive failure 291 

phenomena. In other words, creep and progressive failure would be associated with a loss of 292 

strength in the clay mass. This means that piezocone tests performed in the Nice shelf area 293 

showing a reduction of the tip resistance of 10-40% on specific sites (40% at site 12-02; 294 

Figure 10) could suggest a softening of the clay related to a progressive deformation in a 295 

slope of precarious stability such as the Nice slope and lead to failure conditions in a short or 296 

medium term.  297 

Furthermore, during the PRISME cruise (2007), a series of 3.5 kHz sediment penetration 298 

profiles were acquired on the shelf near the 1979 event slide scar; one of  them is represented 299 

on Figure 11 (3.5 khz profile CH43001). The profiles displays some features (seismic 300 

discontinuities) on the border of the shelf suggesting processes such as slow displacements of 301 

the sediment mass, in agreement with the shear zone expected from CPTU data (Figure 10). 302 

According to these evidences, we propose to carry out an new evaluation of the present-day 303 

slope stability in the vicinity of the slide area using the probability approach associated to the 304 
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SAMU_3D software (Sultan et al., 2007) based on new data recovered during the 2007 305 

PRISME cruise (Sultan et al., 2008). 306 

 307 

Case study: The Nice airport 308 

 309 

According to a probable progressive deformation in the vicinity of the Nice airport slope, the 310 

slope stability in this area should be performed in terms of drained conditions. In the absence 311 

of data such as cohesion and internal friction angle, the undrained conditions will be 312 

considered as the critical ones in the present slope stability evaluation. Drained conditions 313 

will be considered during a next stage, when soil parameters will be available.   314 

 315 

Materials 316 

 317 

CPTU data and cores recovered in the vicinity of the slide scar during the PRISME cruise 318 

were used for this study (Figures 12 and 14). CPTU data enable to model the undrained shear 319 

strength profile versus depth (Figure 13) while cores provide information about unit weight 320 

of the sediment (Figure 15). The latter are the two main parameters associated to the 321 

bathymetry for this slope stability assessment. 322 

 323 

Undrained shear strength 324 

 325 

An empirical relation relates uS  (undrained shear strength of the sediment) to the corrected 326 

cone resistance and allows the modelling of the Su distribution with depth (Robertson & 327 

Robertson, 2006); 328 

 329 
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 331 

where tq  is the corrected cone resistance, voσ is the total in situ vertical stress and kN  is an 332 

empirical cone factor. According to Lunne et al. (1997) and Robertson & Robertson (2006), 333 

the kN  parameter varies from 10 to 20 for normally consolidated marine clays. An average 334 

value of Su will be considered using 15=kN  while the minimum value  ( 20=kN ) will 335 

enable to evaluate the uncertainty with depth through the standard deviation. Modelling 336 

results for the 9 sites are shown on Figure 13.  337 

The following step is an evaluation of the representative undrained shear strength profile with 338 

depth for the slope stability assessment and the corresponding averaged uncertainty with 339 

depth. This is done by using the appropriate Su profile for the area considered (model 1; down 340 

to 30 meter depth) or by averaging all the Su profiles modelled from CPTU data in a single 341 

one (model 2; down to 60 meter depth): the uncertainty is quantified by using the difference 342 

between the minimum (US  profile from 20=kN ) and the mean (US  profile from 15=kN ) 343 

profiles and is assumed to roughly correspond to three standard deviations. 344 

 345 

Unit weight  346 

 347 

The unit weight of the sediment which composes the shelf southward the Nice airport area is 348 

estimated from cores collected on and around the shelf using both non-destructive gamma 349 

density measurements with GEOTEK MSCL (Multi-Sensor Core Logger) and direct water 350 

content evaluation on samples. A series of seventeen cores were recovered from the Nice 351 

shelf and slope area during the Prisme cruise (Figure 14) which enable an accurate estimate 352 
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of the average value of the sediment unit weight on the whole zone. An example of output 353 

results regarding gamma-density measurements is shown in figure 15 with values ranging 354 

mainly between 1.8 and 2.0 3/ cmg  for the sediment recovered inside the slide scar as well as 355 

for the sediment found on the shelf. 356 

 357 

Model 1 (failure expected down to 30 meter depth) 358 

 359 

The US  distribution with depth profile used to represent the sediment column depends on the 360 

location of the expected failure surface. For example, the US  profile 12-2 (from CPTU site 361 

12-2) is assumed to represent the Su distribution with depth (equation (1) and 15=kN ; 362 

Figure 13) in the western part of the shelf, down to 30 meter depth; this is done to account for 363 

local variations with depth (20-30 m) observed on Su values at different sites (mainly for 364 

CPTU sites 12-2 and 12-3) and to propose a more detailed spatial evaluation of slope stability. 365 

The uncertainty for each Su model was estimated from the gap between the minimum 366 

(equation 1; 20=kN ) and the mean (equation 2; 15=kN ) Su profiles (Figure 13).  367 

 368 

Model 2 (failure expected down to 60 meter depth) 369 

 370 

A second model is took into account with a single average profile for the Su distribution with 371 

depth down to 60 meter; this average profile is obtained from a compilation of all the Su 372 

profiles available on the shelf (CPTU 11-1 to 11-6, 12-2 and 12-3),  equation (2) and 15=kN  373 

(Figure 16) and extrapolated down to 60 meter depth according to the average gradient in the 374 

first 30 m depth. This model emphasizes the average Su gradient in this area down to 60 375 

meter depth, rather than local variations of Su values as those observed at 20-30 meter depth, 376 
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in order to evaluate the likelihood to get a deep failure (between 30 and 60 meter depth) 377 

though any information is available for this range of depth.  378 

 379 

Standard deviation 380 

 381 

The standard deviation is assumed to correspond to one third the negative (or positive) 382 

uncertainty; in others words the value of negative (or positive) uncertainty is large enough to 383 

correspond to three standard deviations (Table 4). The confidence interval ( σ⋅3  or 3 384 

standard deviations) is representative of 99.73% of the dataset and only 0.27% do not 385 

correspond to the probability distribution model.  The uncertainty of the Su models was 386 

estimated considering the gap between the minimum (equation 2; 20=kN ) and the mean 387 

(equation 2; 15=kN )  values of Su profiles. For the first model (0-30 m depth) this is done 388 

using the real values for each site while for the second model (0-60 m depth) the minimum 389 

and average gradients based on the compilation of data are considered (Figure 16).   390 

 391 

Results of stability analysis 392 

 393 

First model (0-30m): 394 

 395 

Figures 17 (2D-horizontal), 18 (2D-vertical) and 19 (3D) display the expected critical failure 396 

surface involving the first 30 m of the sediment column according to the CPTU data 397 

recovered on the shelf. This critical surface correspond to a probability of failure of 50% 398 

(Figure 20) and is located in the area showing a strong shear strength decrease around 25  399 

meter depth (15 kPa; CPTU 12-2) and a high slope gradient. The volume of sediment of the 400 

most likely failed mass is around 640 000  3m . It is worth noting that, in our model, the 401 
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geometry of the layers (and the weak layer as well) is simply assumed  parallel to the 402 

bathymetry in the absence of further information from the other CPTU sites regarding the 403 

weak layer location (Figure 18); this is obviously at the origin of the convex shape at the 404 

bottom of the failure wake when the “weak layer” option of the SAMU-3D software provides 405 

the critical situation (higher probability of failure). 406 

 407 

Second model (0-60m) 408 

 409 

For the sediment mass down to 60 meter depth, the most likely failure surface is shown on 410 

figures 21 to 23. The safety factor corresponding to 5% probability to get a lower value in the 411 

distribution is 1.05 (around 0.04% probability of failure from approximation; Figure 24). 412 

This critical failure surface is found for a mean Su profile (compilation of the Su profiles on 413 

the shelf) extrapolated to 60 meter depth from the mean gradient between 0 and 30 meter 414 

depth and using a “free-shape” mode (different from the previous “weak layer” mode). The 415 

volume of the expected sediment mass to be removed is around 6 600  000 3m .  416 

 417 

Discussion 418 

 419 

As previously mentionned, in the absence of information regarding drained conditions 420 

parameters (internal friction angle and cohesion), we propose a slope stability evaluation in 421 

terms of undrained conditions which should correspond to the critical case using the simplest 422 

approach. A more advanced evaluation for drained conditions will be performed later, with 423 

the possibility to integrate creeping and softening of the material.    424 

The results of the 2-D (Xie et al., 2004) and 3-D (SAMU_3D; Sultan et al., 2007) stability 425 

analysis concerning the simple homogeneous slope are in good agreement (FOS=1.41 for 426 
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both models). SAMU_3D even provides a lower safety factor (FOS=1.35) using a more 427 

complex geometry for the failure surface.. 428 

Comparisons of probability of failures between 2-D (literature) and 3-D (this study) James 429 

Bay model are complex; this is due to the lateral extent of the 3D-failure shape which tends to 430 

reduce the weight of the sediment column on the failure surface borders and thus increase the 431 

total safety factor. Consequently, the probability of failure decreases. Furthermore, the 1.1 432 

ratio between the 2D and 3D analysis (Christian et al., 1994) was calculated for slope models 433 

with homogenous sediment for which  the shear resistance and the unit weight did not vary 434 

with depth; the use of an heterogeneous sediment model with SAMU_3D might explain this 435 

high 2D-3D ratio (1.23).  436 

Moreover, the energy approach used with SAMU-3D presents some differences compared to 437 

the classical equilibrium method; one of them concerns the virtual velocity estimated for each 438 

element of the model; for non-cohesive sediments, At failure, the velocity vector do an angle 439 

with the failure surface which corresponds to the friction angle. This tends to draw the virtual 440 

velocity vector a bit nearer of the upward direction for the elements corresponding to non-441 

cohesive soils and thus tends to increase the safety factor.  442 

 443 

The standard deviation considered with the Su profiles for the Nice slope was estimated using 444 

a rough procedure but represents quite well the order of magnitude which can be expected 445 

from measurements. Obviously, the resulting probability of failure strongly depends on this 446 

uncertainty but remains in the range of a reasonable value for the site and the uncertainty 447 

considered. 448 

Down to 30 meter depth, the critical failure surface and the corresponding probability of 449 

failure is obviously related to the presence and geometry of the weak layer observed on the Su 450 

profile (western part of the shelf). High probability of failure (50%) is found on the western 451 
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part of the shelf ; this is related to the geometry of the model considered with a weak layer 452 

mimicking the seafloor at a constant depth below seafloor. This model provides a specific 453 

failure surface shape (weak layer mode) as shown on Figure 18. Obviously, the probability of 454 

failure should be lower with a slightly inclined plane to model the weak layer (constant low 455 

inclination) as the slope angle of the shear zone is preponderant in the resulting slope stability. 456 

Unfortunately, there is no evidence suggesting the weak layer geometry in this area.   457 

 458 

For the second model, the assumption made between 30 and 60 meter depth results in a 459 

probability of failure less critical than using the presence of a weak layer but the mass 460 

involved is well bigger (larger failure). The probability of failure (FOS<1.05) is still high 461 

(5%) and remains in the domain of unstable conditions. The reliability index is found around 462 

3.6. 463 

The behaviour of sensitive clay observed at 35-40 meter (Sultan et al., 2004 and Dan et al., 464 

2007) depth and the possible degradation of its resistance with time was not considered in our 465 

approach. 466 

Geotechnical and geophysical investigations carried out in late 2007 to the East of the 1979 467 

landslide scar show the presence of several seafloor morphological steps rooted to shallow 468 

sub-surface discontinuities. Moreover, in situ piezocone measurements demonstrate the 469 

presence of several shear zones at the border of the shelf break at different depth below the 470 

seafloor (Sultan et al., submitted). Numerical calculations carried out in the present work 471 

confirm the possible start-up of a progressive failure mechanism and the very likely 472 

occurrence of a future submarine landslide in the studied area. 473 

 474 

Conclusion 475 

 476 
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According to CPTU measurements and resulting Su profiles with depth, the most critical 477 

conditions for the stability of the shelf concern sediment down to 30 meter depth in the 478 

western part of the shelf (CPTU 12-2). 479 

 480 

A maximum probability of failure of 50% was estimated for the upper part of the sediment 481 

column (0-30m) for the slope exposed westward (CPTU 12-2) using a weak layer surface 482 

mimicking the seafloor at constant depth. A model with a planar weak layer will provide a 483 

lower probability of failure but still in the range of metastable conditions. 484 

 485 

Extending the Su gradient observed for the sediment column in the depth range 0-30 m  down 486 

to 60 meter depth, the probability of failure of the corresponding sediment mass is 487 

significantly reduced but still high (5% probability for FOS<1.05 ) and the volume of the 488 

sediment mass likely to be removed increases. 489 

 490 

Such results indicate that the Nice slope is highly unstable for the first 30 meter depth and that 491 

further studies should be performed to sharpen this evaluation and to extend it to greater 492 

depth; it is not unlikely that deeper weak layers exist, like the one observed at 30 meter depth 493 

below seafloor on a couple of sites, which might increase the probability of failure of a bigger 494 

sediment mass and will endanger human activities in the vicinity of the Nice airport area. 495 

 496 
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Figure 1: Bathymetry of the Nice continental slope; the white rectangle corresponds to the 916 
slide area located in the vicinity of the Nice airport (adapted from Mas et al., 2007) 917 
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Figure 2: Bathymetry in the vicinity of the 1979 Nice slide; the embankment which 957 
disappeared during the slide is represented with a dashed line on the post-slide map. 958 
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Figure 4: 2D horizontal (a) and 2D vertical (b) projections of the critical failure surface for 1029 
the homogeneous slope; FOS=1.41 (rectangular shape).  1030 
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Figure 5: 2D horizontal (a) and 2D vertical (b) projections of the critical failure surface for 1040 
the homogeneous slope; FOS=1.35 (free shape).  1041 

 1042 
 1043 
 1044 
 1045 
 1046 
 1047 
 1048 
 1049 



 38

 1050 
 1051 
 1052 

 1053 
 1054 
 1055 

Figure 6: James Bay configuration for average conditions (from Krahn & Lam,, 2007 ). 1056 
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Figure 7: Shape and position of critical slip surface (from Krahn & Lam,, 2007). 1064 
 1065 
 1066 
 1067 

 1068 
 1069 
 1070 
 1071 
 1072 
 1073 
 1074 
 1075 
 1076 
 1077 
 1078 
 1079 
 1080 
 1081 

 1082 



 39

 1083 
 1084 
Figure 8: Critical slip surfaces (surface projection and vertical profile) and corresponding 1085 
safety factors for different geometry;  black line correspond to the 2D-critical slip surface 1086 
defined by El-Ramly et al. (2002) and Krahn & Lam (2007) for the James Bay embankment.  1087 
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Figure 9: Present-day slope gradient in the vicinity of the 1979 Nice slide; a dashed line 1105 
represents the slide scar (top) and the different escarpments (bottom).  1106 
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Figure 10: Tip resistance (qc) and lateral friction (fs) measurements for different sites on the 1133 

shelf in the viciniy of the Nice airport; the shear zone is suggested by the decrease observed 1134 

around 25 meter depth on both profiles (qc and fs); sites location are shown on Figure 12. 1135 
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Figure 11: 3.5 khz profile CH43001 showing the presence of two discontinuities to the NE at 1162 

the edge of the slope (for location see figure 9). The two discontinuities prolongation fit quite 1163 

well with the small seafloor morphological step. A gas plume or fresh water flow can be 1164 

observed in the water column above the morphological depression (trace: 3660-3670);  1165 

PFM11-S3 and PFM11-S4 corrspond to PFM11-3 and PFM11-4 respectively in this paper; 1166 

from Sultan et al. (submitted). 1167 
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Figure 12: Position of CPTU profiles (PRISME cruise, 2007) in the vicinity of the Nice slide 1200 
escarpment (dashed-line). The arrow represents the direction of the slide. 1201 
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Figure 13: Undrained shear strength profiles versus depth for the 9 sites (modelled using 1236 
Lunne et al., 1997). The reference data (black line) corresponds to the site PFM11-01. 1237 
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Figure 14: Position of coring (PRISME cruise, 2007) in the vicinity of the 1979 Nice slide 1270 
escarpment (dashed-line). Filled circles correspond to the unit weight profiles shown on 1271 
Figure 15. 1272 
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Figure 15: Unit weight profiles versus depth for 6 sites in the vicinity of the Nice airport slide 1293 
area (from GEOTEK MSCL measurements).  1294 
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Figure 16:  Extrapolation of the Su distribution model with depth down to 60 meter depth 1318 
according to the average gradient; estimation of uncertainty from Su profile modelled with 1319 
Nk=20; (model 2: 0 to 60 meter depth).  1320 
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Figure 17: Critical failure surface in terms of probability of failure; weak layer option; 30 1356 
meter depth (no vertical exaggeration). 1357 
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Figure 18: Critical failure surface in terms of probability of failure; 30 meter depth (no 1395 
vertical exaggeration). The convex shape was imposed during computations (weak layer 1396 
option). 1397 
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Figure 19: 3D view of the Nice airport bathymetry with slide scar corresponding to the 1433 
critical failure surface in terms of probability of failure;  Su profile from CPTU 12_2 site; 1434 
weak layer option at 30 meter depth. 1435 
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Figure 20: Results of Monte Carlo simulation; probability density function of the safety 1463 
factor for the critical failure surface down to 30 meter depth; 100 trials.  1464 
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Figure 21: 2D horizontal projection of critical failure surface in terms of probability of 1497 
failure; 60 meter depth. 1498 
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Figure 22: Critical failure surface in terms of probability of failure; 60 meter depth. 1535 
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Figure 23: 3D critical failure surface with the undrained shear strength profile down to 60 1580 
meter depth.   1581 
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Figure 24: Results of Monte Carlo simulation; probability density function of the safety 1615 
factor for the critical failure surface down to 60 meter depth; 100 trials.  1616 
 1617 
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