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1 Introduction 
 
 
In stratified rotating turbulence and in planetary fluids, vortices play an essential role in the 

transport of momentum, heat and tracers. The baroclinic instability of vortices has been 

studied with normal- mode perturbations ([1], [2], [3]). The nonlinear evolution of these 

vortices, perturbed with normal modes, usually leads to multipolar vortices. Part 1 of this 

paper has compared the properties of linear baroclinic instability of vortices with piecewise-

constant potential vorticity, perturbed with normal modes or with singular modes. In a time-

varying flow, the resonance of baroclinically neutral waves and of the forcing can lead to 

parametric instability, in particular for parallel flows ([4]). Parametric instability has not yet 

been studied for vortex flows. Theoretical elements underlying this instability have been 

developed in ([5]). Here, we consider the parametric resonance of neutral waves with a 

periodic external forcing which modifies the baroclinic velocity of this vortex. We study the 

properties of this parametric instability. 

 

 

2 Model equations and parametric instability of an oscillating baroclinic vortex 

 

The forced two-layer quasi-geostrophic equations describe the evolution of layerwise 

potential vorticity 

 

dq j = E j (r, t),  q j = ∇2ψj + Fj(ψk − ψj ) 
dt 
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where qj is the layerwise potential vorticity (the subscripts j = 1, 2 denote upper and lower layers re-
spectively, and k = 3− j), Fj are the layer coupling coefficients (Fj = f2

0 /g
′Hj), Hj is layer thickness,

and H = H1 +H2. The internal deformation radius is Rd =
√
g′H1H2/f0

√
H and γ is its inverse. The

term Ej(r, t) is a time periodic forcing of the baroclinic mean flow.
If neutral waves traveling on the vortex periphery resonate with this forcing (like a pendulum whose
axis of rotation oscillates vertically), they can be amplified via the process of parametric instability.

Part 1 of the paper has shown that the linear instability of a two-layer vortex with piecewise-
constant potential vorticity can be described in vertical modes by the equation ∂tX = AX with
X(ηt, ηc) and

A = −i
(

a b
c d

)

Calling Vt(1), Vc(1) the barotropic and baroclinic velocities of the mean flow, at the vortex boundary,
we have a = lVt(1)(1−1/l), b = lVc(1)(1−1/(2lI1(γ)K1(γ)), c = lVc(1)(1− (Il(γ)Kl(γ))/(I1(γ)K1(γ))

and d = lVt(1)(1 − 2Il(γ)Kl(γ)) + ξlVc(1)(1 − (Il(γ)Kl(γ))/(I1(γ)K1(γ)), where ξ = (1 − δ)/
√
δ with

δ = H1/H2.

3 Parametric instability near marginality of baroclinic instability

We assume that the mean baroclinic velocity is close to that at marginality of baroclinic instability
(called V 0

c at the vortex boundary). The time periodic forcing adds a weak unsteady component to
this velocity to allow parametric instability. The baroclinic azimuthal velocity at the vortex boundary
is then written

Vc(1) = V 0
c [1 + εh(t)]

with ε << 1, h(t) is a time periodic function. Under these conditions, the linearized dynamics matrix
is

A = A0 + εh(t)A1

A0 is given by the expression of A hereabove with Vc(1) = V 0
c . Note that marginality of baroclinic

instability is defined by (a0 − d0)
2 + 4b0c0 = 0. The four terms of A1 are given by

a1 = 0, b1 = V 0
c (1 − 1/(2lI1(γ)K1(γ)), c1 = V 0

c (1 − (Il(γ)Kl(γ))/(I1(γ)K1(γ)) and d1 = ξV 0
c (1 −

(Il(γ)Kl(γ))/(I1(γ)K1(γ)). It is easily shown that matrices A0 and A1 do not commute if Vt 6= 0, and
therefore parametric instability is possible ([5]).

The calculations developed in [4] are adapted to our case. The contour perturbation X is expanded
in powers of ε as X = X0 + εX1 + ε2X2 + .... The fast time is t0 = lb0t, slow times are defined by
t1 = εt0, t2 = ε2t0....
First, we assume that h(t) = Hcos(ωt0) + εG. H is the amplitude of the oscillatory part of the mean
flow, G is the supercriticality of the mean flow (if positive, or the subcriticality if negative) and ω is the
pulsation of the oscillatory mean flow. This will allow parametric resonance of neutral Rossby waves,
associated with the potential vorticity jump at the vortex boundary, with the oscillatory baroclinic
mean flow.
To simplify the linear instability equations, we define the new variables

Yj = Xj exp(il(a0 + d0)t0/2), B0 = A0 +
il

2
(a0 + d0)Id,

where Id is the identity matrix. The linear equations are now written

∂t0Y0 = B0Y0

∂t0Y1 + ∂t1Y0 = B0Y1 +Hcos(ωt0)A1Y0

∂t0Y2 + ∂t1Y1 + ∂t2Y0 = B0Y2 +Hcos(ωt0)A1Y1 +GA1Y0
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Calling (yjt, yjc) the components of Yj , and setting α = (d0 − a0)/(2b0), β = d1/b0, the equations at
zeroth order in ε are

∂t0y0t = iαy0t − iy0c

∂t0y0c = −iαy0t + iα2y0c

By differentiating the equations in t0, we can show that the neutral waves are described by ∂t0Y0 = 0
and by y0c = αy0t.
At first order, the equations are

∂t0y1t + ∂t1y0t = iαy1t − iy1c − iHcos(ωt0)y0c

∂t0y1c + ∂t1y0c = −iαy1t + iα2y1c + iα2Hcos(ωt0)y0t − iαβHcos(ωt0)y0t

We differentiate each equation in t0 to find ∂2
t0
Y1, we make use of the fact that ∂t0Y0 = 0, and then

we integrate ∂2
t0
y1t to find

y1t = −H

ω2
[α(2α − β)cos(ωt0) + iαωsin(ωt0)] y0t

and y1c is readily obtained via the first equation of this first order system, as

y1c = i∂t1y0t +
iH

ω2
[ωα(α− β)sin(ωt0) + iα2(2α− β)cos(ωt0)] y0t

Finally, at second order in ε, the equations are

∂t0y2t + ∂t1y1t + ∂t2y0t = iαy2t − iy2c − iHcos(ωt0)y1c − iGy0c

∂t0y2c + ∂t1y1c + ∂t2y0c = −iαy2t + iα2y2c + iα2Hcos(ωt0)y1t − iαβHcos(ωt0)y1t + iα2GY0t − iβGy0c

The term ∂t2Y0 participates in the evolution at longer times and therefore is not kept here. The
equations are time-averaged in t0 to isolate the wave interaction with the forcing, so that all linear terms
in cos(ωt0), sin(ωt0) vanish. The value of Y1 found above is substituted in the remaining expressions.
This yields the slow-time variation of the contour, due to the interaction of neutral waves with the
forcing

∂2y0t

∂t21
− α2 (1 − χ) [G− α2H2

ω2
(1 − χ/2)] y0t = 0

where χ = β/α. The same equation holds for y0c.

This equation is now physically interpreted :
For a supercritical steady flow (G > 0, H = 0, χ = 0), adding an unsteady mean flow (H 6= 0 or χ 6= 0)
can have several effects :
- either χ < 1 and the unsteady component of the flow can stabilize the vortex flow when α2H2/ω2 >
G/(1 − χ/2) (the case χ = 0 is the case described in [4]),
- or χ = 1, and there is linear growth of y0t with the slow time t1,
- or χ > 1 and stabilization will occur if (1 − χ/2)α2H2/ω2 < G. Note that if χ > 2, this condition is
automatically satisfied.
For a subcritical steady flow (G < 0, H = 0, χ = 0), adding an unsteady mean flow (H 6= 0 or χ 6= 0)
can have several effects :
- either χ < 1, and the flow remains stable in the presence of an oscillatory component of the baroclinic
velocity (this includes the equal layer thickness case ξ = 0 for which χ = 0; a specific study of this
case is given below),
- or χ = 1, and there is linear growth of y0t with the slow time t1,
- or 1 < χ ≤ 2 and then the flow becomes unconditionally unstable on long times,
- or finally 2 < χ, and the flow will be unstable on long times if 2|G| > (χ− 2)α2H2/ω2.

To relate χ to the vortex parameters, we write χ = β/α = 2d1/(d0 − a0) = 2/(1 + φ), where

φ =
Vt(1)(1

l
− 2Il(γ)Kl(γ)

V 0
c ξ(1 − Il(γ)Kl(γ)

I1(γ)K1(γ) )
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Fig. 1 Contours of φ (in red) in the (γ, V0) plane, superimposed on the marginal curve for baroclinic instability
(in black).

This formulation excludes the equal layer case ξ = 0. We can now state that the condition χ = 1 is
φ = 1, and the condition χ = 2 is φ = 0. For l = 2, δ = 0.2 (ξ ∼ 1.8), the values of φ are plotted in
the (γ, V0) plane (where V0 = Vt(1)/V 0

c , see figure 1). The marginal curve of baroclinic instability is
superimposed. Since the isolines φ = 0 and φ = 1 cross the marginal curve, stabilization of supercritical
flows and destabilization of subcritical flows can occur.

In the case of equal layer thicknesses, ξ = 0 (and thus χ = 0); then, destabilization of a subcritical
flow cannot occur with the forcing used above. But Pedlosky and Thomson ([4]) showed that a weak,
low frequency forcing of the type h(t) = ε2(G +Hcos(ωt1)) can lead to such a destabilization. Note
that ωt1 = εωt0, hence the low frequency forcing. We adapt their calculation to the present case. At
zeroth order in ε, the equations are unchanged from the previous case. At first order in ε, they are

∂t0y1t + ∂t1y0t = iαy1t − iy1c

∂t0y1c + ∂t1y0c = −iαy1t + iα2y1c.

The same calculation as for zeroth order shows that ∂t0Y1 = 0.
Finally, at second order, the equations are

∂t0y2t + ∂t1y1t + ∂t2y0t = iαy2t − iy2c − iHcos(ωt1)y0c − iGy0c

∂t0y2c + ∂t1y1c + ∂t2y0c = −iαy2t + iα2y2t + iα2Hcos(ωt1)y0t + iα2Gy0t

Again, we exclude the term ∂t2Y0 which participates in the evolution at longer times, we time-average
the equations in t0, we differentiate the first order equations in t1 and we substitute ∂t1Y1 from the
second order equations. This leads to

∂2y0t

∂t21
− 2α2 [G+Hcos(ωt1)] y0t = 0

This equation is a Mathieu equation which is integrated numerically. The resonant pulsation ω =
2
√
−2α2G is chosen. The results are shown on figure 2 for H = 0 (non amplified oscillation) and for

H = 0.1 (parametrically amplified oscillation). Thus, contour perturbations on a baroclinically stable
vortex can be amplified via resonance with a low frequency forcing.
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Fig. 2 Parametric amplification of the contour perturbation for γ = 2.0, G = −0.1, H = 0.1, y0t(t1 = 0) =
0.01, dy0t/dt1(t1 = 0) = 0.0 and at marginality of baroclinic instability (red curve). The steady case H = 0
(blue curve) is shown as reference.

4 Conclusions

For a baroclinic vortex in a two-layer quasi-geostrophic flow, the interaction of neutral Rossby waves,
associated with the vorticity jump at the vortex periphery, with the oscillatory component of the mean
baroclinic velocity, can lead to parametric resonance, near marginality of baroclinic instability. Under
given conditions on the steady and oscillatory mean velocities, parametric effects can stabilize vortex
flows, which would otherwise be baroclinically unstable. Conversely, parametric resonance can desta-
bilize subcritical baroclinic flows, if layer thicknesses are different. If layer thicknesses are equal, it was
shown that a low frequency oscillation of the baroclinic mean flow can destabilize a subcritical vortex
flow.
For application to the ocean, the present study should be extended to more complex flows.
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