ICES Journal of Marine Science May 2010, Volume 67, Issue 4, Pp. 745-768 <u>http://dx.doi.org/10.1093/icesjms/fsp283</u> Copyright © 2010 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved.

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in ICES Journal of Marine Science following peer review. The definitive publisher-authenticated version is available online at: <u>http://icesjms.oxfordjournals.org/content/67/4/745</u>.

The good(ish), the bad, and the ugly: a tripartite classification of ecosystem trends

Alida Bundy^{1, *}, Lynne J. Shannon², Marie-Joëlle Rochet³, Sergio Neira⁴, Yunne-Jai Shin⁵, Louize Hill⁶ and Kerim Aydin⁷

¹ Bedford Institute of Oceanography, Fisheries and Oceans Canada, 1 Challenger Drive, Dartmouth, NS, Canada B2Y 4A2

² Marine Research Institute and Zoology Department, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa

³ Ifremer, Département Ecologie et Modèles pour l'Halieutique, BP 21105, 44311 Nantes cedex 03, France
 ⁴ Centro de Investigación en Ecosistemas de la Patagonia, Francisco Bilbao 449, Coyhaique, and Departamento

de Oceanografía, Universidad de Concepción, Casilla 160-C Concepción, Chile

⁵ Institut de Recherche pour le Développement, UMR 212 EME, avenue Jean Monnet, BP 171, 34203 Sète cedex, France

⁶ IPIMAR, Avenida de Brasília, 1449-006 Lisbon, Portugal

⁷ Alaska Fisheries Science Center (AFSC), 7600 Sand Point Way NE, Seattle, WA 98115, USA

*: Corresponding author : A. Bundy: tel: +1 902 426 8353; fax: +1 902 426 1506; email address : alida.bundy@dfo-mpo.gc.ca

Abstract:

Marine ecosystems have been exploited for a long time, growing increasingly vulnerable to collapse and irreversible change. How do we know when an ecosystem may be in danger? A measure of the status of individual stocks is only a partial gauge of its status, and does not include changes at the broader ecosystem level, to non-commercial species or to its structure or functioning. Six ecosystem indicators measuring trends over time were collated for 19 ecosystems, corresponding to four ecological attributes: resource potential, ecosystem structure and functioning, conservation of functional biodiversity, and ecosystem stability and resistance to perturbations. We explored the use of a decision-tree approach, a definition of initial ecosystem state (impacted or non-impacted), and the trends in the ecosystem indicators to classify the ecosystems into improving, stationary, and deteriorating. Ecosystem experts classified all ecosystems as impacted at the time of their initial state. Of these, 15 were diagnosed as "ugly", because they had deteriorated from an already impacted state. Several also exhibited specific combinations of trends indicating "fishing down the foodweb", reduction in size structure, reduction in diversity and stability, and changed productivity. The classification provides an initial evaluation for scientists, resource managers, stakeholders, and the general public of the concerning status of ecosystems globally.

Keywords: comparative approach, decision tree, ecosystem classification, ecosystem indicator, exploited marine ecosystems

47 Introduction

49	Marine ecosystems have been subjected to anthropogenic forcing since humans first
50	learned how to fish many thousands of years ago (Jackson et al., 2001; Lotze and
51	Milewski, 2004; Lotze et al., 2006.). That pressure has grown to the extent where serious
52	concern is being expressed about the health of the world's ecosystems (Hollingworth, 2000;
53	Jackson et al., 2001; Pauly et al., 2005; Coll et al., 2008). Indeed a recent study has shown
54	that there is now barely any part of the world's oceans that has not been impacted at some
55	level through anthropogenic activity, be it fishing, pollution, shipping or eutrophication
56	(Halpern et al., 2008). In addition, we are living through a period of environmental change,
57	the effects of which we are only beginning to explore (Hays et al., 2005; Bender, 2007;
58	ICES, 2008; Cheung et al., 2009) and which are difficult to predict.
59	
57	
60	From a fisheries perspective, the old world of single species stock assessment and
60 61	From a fisheries perspective, the old world of single species stock assessment and management is being replaced by a more holistic "ecosystem approach to fisheries" (or
60 61 62	From a fisheries perspective, the old world of single species stock assessment and management is being replaced by a more holistic "ecosystem approach to fisheries" (or variations on the theme, FAO, 2003; Garcia <i>et al.</i> , 2003; Daan <i>et al.</i> , 2005; Pitcher <i>et al.</i> ,
 60 61 62 63 	From a fisheries perspective, the old world of single species stock assessment and management is being replaced by a more holistic "ecosystem approach to fisheries" (or variations on the theme, FAO, 2003; Garcia <i>et al.</i> , 2003; Daan <i>et al.</i> , 2005; Pitcher <i>et al.</i> , 2008). EAF still includes single species stock assessment but is expanded to minimally
 60 61 62 63 64 	From a fisheries perspective, the old world of single species stock assessment and management is being replaced by a more holistic "ecosystem approach to fisheries" (or variations on the theme, FAO, 2003; Garcia <i>et al.</i> , 2003; Daan <i>et al.</i> , 2005; Pitcher <i>et al.</i> , 2008). EAF still includes single species stock assessment but is expanded to minimally include the wider impacts of fishing on the ecosystem, the role of the environment on
 60 61 62 63 64 65 	From a fisheries perspective, the old world of single species stock assessment and management is being replaced by a more holistic "ecosystem approach to fisheries" (or variations on the theme, FAO, 2003; Garcia <i>et al.</i> , 2003; Daan <i>et al.</i> , 2005; Pitcher <i>et al.</i> , 2008). EAF still includes single species stock assessment but is expanded to minimally include the wider impacts of fishing on the ecosystem, the role of the environment on species dynamics, the impacts of other activities and the engagement of stakeholders in the
 60 61 62 63 64 65 66 	From a fisheries perspective, the old world of single species stock assessment and management is being replaced by a more holistic "ecosystem approach to fisheries" (or variations on the theme, FAO, 2003; Garcia <i>et al.</i> , 2003; Daan <i>et al.</i> , 2005; Pitcher <i>et al.</i> , 2008). EAF still includes single species stock assessment but is expanded to minimally include the wider impacts of fishing on the ecosystem, the role of the environment on species dynamics, the impacts of other activities and the engagement of stakeholders in the processes leading to decision making (Rice, 2008). The response of the fisheries scientific
 60 61 62 63 64 65 66 67 	From a fisheries perspective, the old world of single species stock assessment and management is being replaced by a more holistic "ecosystem approach to fisheries" (or variations on the theme, FAO, 2003; Garcia <i>et al.</i> , 2003; Daan <i>et al.</i> , 2005; Pitcher <i>et al.</i> , 2008). EAF still includes single species stock assessment but is expanded to minimally include the wider impacts of fishing on the ecosystem, the role of the environment on species dynamics, the impacts of other activities and the engagement of stakeholders in the processes leading to decision making (Rice, 2008). The response of the fisheries scientific community has been to develop tools to enable an ecosystem approach to fisheries, a
 60 61 62 63 64 65 66 67 68 	From a fisheries perspective, the old world of single species stock assessment and management is being replaced by a more holistic "ecosystem approach to fisheries" (or variations on the theme, FAO, 2003; Garcia <i>et al.</i> , 2003; Daan <i>et al.</i> , 2005; Pitcher <i>et al.</i> , 2008). EAF still includes single species stock assessment but is expanded to minimally include the wider impacts of fishing on the ecosystem, the role of the environment on species dynamics, the impacts of other activities and the engagement of stakeholders in the processes leading to decision making (Rice, 2008). The response of the fisheries scientific community has been to develop tools to enable an ecosystem approach to fisheries, a fundamental component of which is the development of ecosystem indicators (Daan <i>et al.</i> ,

2
3
4
5
с С
ю
7
8
à
10
10
11
12
13
11
14
15
16
17
18
10
19
20
21
22
~~
23
24
25
26
20
21
28
29
30
24
31
32
33
34
25
30
36
37
38
20
39
40
41
42
12
44
45
46
17
47
48
49
50
51
51
52
53
54
55
55
56
57
58
50
29
60

70

71	One way to use ecosystem indicators in management is to link them to i) clear objectives
72	(i.e., what is to be achieved), ii) reference points or reference trends (measures of
73	management performance) and ii) control rules (actions required when management does
74	not meet objectives) (FAO, 2003; Cury et al., 2005a). Ecosystem-based objectives,
75	reference points and control rules are difficult to set because of lack of theory or because of
76	limitations in the understanding of ecological complexity, uncertainties in data quality and
77	model behaviour, and difficulties in balancing multiple and conflicting stakeholders'
78	interests (Cury et al., 2005b). However, methods are being developed to overcome these
79	difficulties, such as using historical or theoretical patterns to define references points for
80	indicators (e.g. Jennings and Blanchard, 2004). Jennings and Dulvy (2005) and Trenkel et
81	al. (2007) argue that knowledge of the direction of trends in ecological indicators
82	(specifically in size-based indicators) can be sufficient to support the management decision-
83	making process. This means that there may be no need to identify absolute reference points
84	for the same indicators (Jennings and Dulvy, 2005): the more essential action is to stop the
85	trend and reverse it.

86

There is no single indicator that can provide management with the information required for an EAF. Rather a suite of indicators that captures a range of impacts on the ecosystem, and its response is required, with the results synthesised or integrated through means such as traffic light analysis (Koeller *et al.*, 2000; Halliday *et al.*, 2001; Caddy, 2002), multivariate methods (Link *et al.*, 2002; DFO 2003; Coll *et al.*, this volume; Link *et al.*, this volume) or a decision tree approach (Rochet *et al.*, 2005; Trenkel *et al.*, 2007).

Multi-criteria decision analysis has a wide and varied application in fisheries and resource management (Keeney and Raiffa, 1976; McDaniels, 1995; Mardle and Pascoe, 1999; Paterson et al., 2007; Jarre et al., 2008). It is particularly useful for integrating different types of information and reconciling different objectives among stakeholders with diverse interests (Keeney and Raiffa, 1976). Generally it is used as an aid to decision makers, to visualise the components of a problem and to compare the choices that can be made. The basis of a decision theoretic approach is a decision tree, essentially a conceptual image (FAO, 2003) that portrays the problem as a tree, with the overall problem or objective at the top, and its various sub-components on the branches of the tree. In a classic application of the decision tree, each branch would terminate in a measurable objective (Keeney and Raiffa, 1976; FAO, 2003). Rochet et al. (2005) developed a "Decision Tree" approach to classify marine ecosystems into "improving", "stationary" or "deteriorating" based on the trends of key population and community indicators. That approach is adapted here to diagnose a broad range of ecosystems with respect to their initial condition (un-impacted or impacted).

The suite of ecosystem indicators estimated for the nineteen ecosystems included in this
analysis were selected and calculated by the IndiSeas working group, which was
established under the auspices of the EUROCEANS European Network of Excellence, to
look at "EAF Indicators: a comparative approach across ecosystems". This paper is one of
a suite of papers that uses a comparative approach to evaluate the effects of fishing on
marine ecosystem (see other papers in this volume). A comparative approach is particularly

3
4
5
5
0
1
8
9
10
11
10
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
24
34
35
36
37
38
39
10
- 1 0 //1
41
42
43
44
45
46
47
48
40
49
50
51
52
53
54
55
55
50
5/
58
59
60

116 useful in an ecosystem context since they can be treated as pseudo-replicates. It thus

117 provides more confidence about the observed patterns of response to fishing seen across

118 multiple ecosystems, rather than observations in one ecosystem alone.

119

1 2

120 Methods

The ingredients for the Decision Tree in this analysis is a definition of the initial state of the ecosystem(s), the selection of a suite of ecosystem indicators for one or more ecosystems, an analysis of the trends of the ecosystem indicators and the building of a decision tree with

124 decision rules.

125

126 The Ecosystems

127 The nineteen ecosystems examined in this study cover a broad geographical range,

128 including the eastern Pacific (north, central and south); the north west Atlantic; the eastern

129 Atlantic (north, central and south) and the Mediterranean Sea (Table 1). They include high

130 latitude, temperate, tropical and upwelling systems and are associated with both developing

131 and developed nations, and have varied fishing histories. Thus, they offer a varied group of

132 ecosystems and span a range of exploitation levels for classification purposes. A

133 description of each ecosystem is provided in Shin *et al.* (this volume).

135	Definition of Initial State
-----	-----------------------------

In order to interpret the results of the decision tree, it was necessary to first describe the state of the ecosystem at the beginning of the time period under consideration. Initial ecosystem state was simplified to a binary state: un-impacted or impacted. This was determined by asking the experts representing each of the 19 ecosystems to complete a survey where 3 criteria were used to assess the state of the ecosystem. An ecosystem was defined as un-impacted if all of the following criteria applied at the beginning of the time-series: (i) the proportion of under/moderately exploited stocks = 1 (i.e.., no overexploited stocks at the beginning of the time series), (ii) there were no industrialized or destructive fishing practices (e.g. trawling over hard bottoms; dredging; dynamite; discarding; cyanide fishing; blast fishing;) and (iii) there were no documented community or ecosystem impacts caused by fishing, such as: habitat loss, impact on by-catch species, disruption of the food web. loss of top predators. Respondents were asked to provide references to support their assessment (Appendix 1).

150 The Suite of Ecosystem Indicators

Rochet *et al.* (2005) used a combination of 2 population and 6 community indicators for their diagnostic analysis, although they only explicitly used community indicators for their decision tree. In contrast, only ecosystem indicators are used here. While a combination of population and community indicators may add robustness to the approach, the exclusion of population indicators enables a much broader comparison of ecosystems: a comparative

15	approach requires that data for the indicators are available and operationally equivalent for
15	all systems compared. This constrains the choice of indicators, and in some cases, the
15	8 length of the time series. The suite of six indicators used here and the rationale associated
15	9 with their choice are fully described in Shin <i>et al.</i> (this volume). Note that the IndiSeas WG
16	uses the term "ecosystem" indicator while others such as Rochet <i>et al.</i> (2005) used the term
16	1 "community" indicator. We use the wider term since the objective of IndiSeas is to apply a
16	2 <i>suite</i> of indicators to assess the status of the ecosystem. Although the suite of ecosystem
16	3 indicators presented here measures mostly the community sampled by demersal trawl
16	4 surveys, and thus mostly fish, the longer term objective of IndiSeas is to expand this
16	5 encompass the ecosystem, within the constraints noted above.
16	6
16	Each indicator is associated with a management goal (Table 2) and previous analyses show
16	8 that the 6 indicators provide complementary information on the status of marine ecosystems
16	9 (Blanchard <i>et al.</i> , this volume). The length of the time series of indicators for each
17	0 ecosystem varies from a low of 8 years (Sahara Coastal Morocco) to a high of 43 years
17	1 (Northeast US), with a mean of 24 years (Table 1). One indicator was missing from the
17	2 suite of four ecosystems: Sahara Coastal Morocco, West Coast Canada and northern
17	3 Humboldt lacked fish size and Bay of Biscay lacked mean life span.
17	4
17	5 Determination of indicator trends
17	6 The information used in the decision tree is the trend of the indicators over the time period
17	7 under consideration. For each indicator, we assume that a negative trend indicates
17	8 increasing impacts of fishing (Table 2), whereas a positive trend indicates an improving

situation. No trend indicates that there are either stationary impacts, meaning that the system remained in an unchanged impacted state, thus the indicator did not change, or no detectable impacts of fishing. The initial state of the ecosystem determines the interpretation of trends. An "impacted" state can improve or deteriorate further whereas an "un-impacted" ecosystem cannot be classified as improving since, by definition, there is no impacted state to improve on (in relation to fisheries impacts). Thus the basis of the classification is asymmetrical. Trends in the indicators were examined following the method described in Coll et al.

188 (2008) and used in Blanchard *et al.* (this volume) using a two-stage estimation procedure, 189 correcting for autocorrelation if present. To do this, a linear model was fitted to each of the 190 predicted time series using a generalized least-squares regression framework that models 191 the temporal correlations in the error. The significance of the trend was assessed by testing 192 the null hypothesis that the slope of the fitted line equals zero (H0: = 0) using a two-tailed 193 test of significance.

195 The Decision Tree

The indicators in the decision tree are assessed sequentially and decision rules developed to integrate this information to classify the ecosystem. For their community indices, Rochet *et al.* (2005) used a conservative, precautionary decision rule where as soon as one indicator had a significant negative trend, the decision tree was stopped and the ecosystem classified as "deteriorating". For an ecosystem to be classified as improving, two indicators had to show a significant increase. The first rule took precedence over the second rule. Thus in the

3	
4	
5	
6	
7	
פ	
0 0	
3	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว≀	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
27	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
<u>41</u>	
40 7	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
50	
54	
50	
56	
57	
58	
59	
60	

202 decision tree, the trend of each indicator is sequentially assessed until either a negative 203 trend is encountered or the end of the decision tree is reached (see Rochet *et al.*, 2005, 204 Figure 2). This is a precautionary approach which insists that one negative trend in an 205 ecosystem indicator indicates that the ecosystem is deteriorating, and this should invoke 206 some sort of remedial management response. The requirement that two indicators must 207 increase in order to be classified as improving is again conservative. Both are somewhat ad 208 *hoc* and would require agreement between decision makers and stakeholders. This decision 209 rule was adopted as Decision Rule 1.

210

1 2

> The "one strike and you are out" rule of Rochet *et al.* (2005) was adopted here, but other decision rules were also explored in this analysis. A second, less precautionary but more conservative rule "two strikes and you are out" was developed where a "deteriorating" state was reached when two indicators had a negative trend, and improving when there were no negative trends and three indicators had a positive trend. As in the previous analysis, this still meant that classification of an ecosystem as "improving" was conservatively undertaken.

218

The probability associated with each possible end point of the decision tree, under a null
hypothesis of a stable community structure, was estimated as the product of the
probabilities associated with each branch of the decision tree (assuming that the six
ecosystem indicators are independent, see below). In a stable community, the probability of
the null hypothesis being correct is 0.95 (assuming an error risk of 0.05 and using a twotailed test of significance). Thus the probability of an increase, or decrease, is 0.025, and

the probability of no change in indicator "a" followed by a decrease in indicator "b" is 0.024 (0.95*0.025). Missing indicators were assumed not to change and were thus attributed a probability of 0.95. The number of branches included in the probability estimation is determined by the point at which the tree is terminated by the decision rule: after the first significant negative trend, after the second significant positive trend providing there are no significant negative trends, or, at the end of the tree if no decision rule is invoked. Indicator Order The initial order of the indicators was determined following Rochet et al. (2005) who indicated that the ecosystem indicators estimated with the best precision and which were most clearly associated with interpreting a trend entered the decision tree first. A third criterion was added to this logic: each of the management goals outlined in Table 2 had to be represented in the first four indicators. To this end the order depicted in Table 2 was used. To check for sensitivity to starting order, five other variants that also satisfied all the criteria were explored. In each variant, each indicator was sequentially placed at the top of the decision tree, and the indicator that was at the top, placed at the bottom.

Interpreting trends

A key component of decision tree methodology is the interpretation of the trends of the ecosystem indicators. In all cases, the expected effect of fishing is a decrease in the indicator representing a negative condition. However, fishing does not occur in isolation,

http://mc.manuscriptcentral.com/icesjms

and other factors such as change in environmental conditions, increased productivity or
increased recruitment may also affect a change in indicator trend. A list of factors that
affect the direction of the six ecosystem indicators are proposed in Table 3. Furthermore,
certain combinations of indicators may be indicative of specific effects of fishing or
environmental forcing. Four effects were explored here: (i) fishing down the food web
(FDFW), (ii) loss of diversity and stability (iii) loss of size structure and (iv) changes in
productivity or recruitment (Table 4).

FDFW occurs when the average trophic level of the catch declines over time with a concurrent decrease in the total catch (Pauly et al., 1998, 2001). Considering only the trophic level of catch can in some instances be misleading because it can reflect the high variability of the availability of small pelagic fish. Total catch is not included as an indicator here (see Shin *et al.*, this volume), but it is suggested that a combination of a significant negative trend in trophic level of the landings plus a significant negative trend in biomass would indicate FDFW and represents a departure from two of the management goals "Ecosystem structure and Functioning" and "Resource Potential" (Table 2). A decrease or no change in the other ecosystem indicators would also be consistent with FDFW.

Loss of diversity and stability is indicated by a decrease in % predators, indicating a loss in
functional diversity (Hooper *et al.*, 2005) and mean life span, indicating a loss in stability.
Stability is reduced since longer lived fish are more resistant to perturbation and change as,
being larger, they are generally more fecund and have more viable eggs (Longhurst, 2002).

2	
3	
4	
5	
5	
ю	
7	
8	
ġ	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
52	
33	
34	
35	
36	
27	
31	
38	
39	
40	
11	
41	
42	
43	
44	
45	
10	
40	
47	
48	
49	
50	
50	
51	
52	
53	
54	
5-7	
00	
56	
57	
58	
50	
03	
n()	

270 Loss of diversity and stability represents a departure from the management goals 271 "Conservation of Biodiversity" and "Ecosystem Stability and Resistance to Perturbations" 272 (Table 2). A decrease in predators represents a loss in functional diversity. A decrease or no 273 change in trophic level of the landings, fish size or inverse exploitation would be consistent 274 with this effect; no specific trend is expected for biomass. 275 276 Loss of size structure is the first potential indicator of size selective effects of fishing where 277 large fish were targeted (Stokes et al., 1993; Sinclair et al., 2002). If coupled with a 278 negative trend in mean life span and/or trophic level of the landings and/or % predators, 279 this would be strong evidence of size selective fishing indicating a departure from the 280 management goal "Ecosystem structure and Functioning". If fishing selectively targeted 281 small fish, a significant positive trend would be expected in fish sizes. There is no expected 282 trend in biomass, or inverse exploitation. 283 Increased productivity and increased recruitment are difficult to separate with this set of 284 285 indicators: a combination of a decrease in fish size (increased productivity at lower trophic 286 levels, increased recruitment, or both) with an increase in biomass could be symptomatic of

288 or recruitment would be propagated up the food web through bottom-up processes, leading

either increased productivity or recruitment. It is suggested that an increase in productivity

to increased productivity at all trophic levels or size groups. Thus it would have a transient

290 impact on mean life span, % predators, trophic level of the landings and inverse

291 exploitation. Therefore no change in these indicators is expected.

292

In addition to the classification function of the decision tree, the combinations of trends in the 19 ecosystems were examined to determine whether these processes could be detected by means of particular trend combinations and to determine whether there were other known factors that may contribute to the results. Exploring changes in ecosystem status over time The time window through which data are explored can affect the results that are seen. In order to explore whether the results observed for these ecosystems are consistent over time, the date were further explored in three time blocks: (i) 1960s/70s to end of the time series for those ecosystems with data (seven ecosystems, Table 1), (ii) 1980-end of time series (sixteen ecosystems, Table 1, also see Coll et al., this volume) and (iii) 1996-2005 (nineteen ecosystems, Table 1, also see Blanchard *et al.*, this volume). Initial state in time periods (ii) and (iii) was determined by the results of the decision tree for time periods (i) and (ii) respectively for ecosystems whose original initial state was defined in earlier years (Table 1). Only Order 1 and Decision Rule 1 were used in the decision tree. Independence of indicators One assumption of the decision tree method is that the six indicators are independent. Blanchard et al. (this volume) conducted two sets of tests to explore redundancy in the indicators using a pair-wise correlation analysis and mutual information analysis which

compares the rhythms of two time series to quantify their degree of dynamic cohesion

2		
3 4	314	(Cazelles, 2004). Results indicated that there was no consistent redundancy between
5 6	315	indicators across all 19 ecosystems and classification of ecosystems into groups according
7 8 9	316	to pair-wise correlations of indicators resulted in fairly weak associations across
10 11	317	ecosystems. Given these results, the assumption of independence between indicators holds
12 13	318	for the time periods under consideration when all 19 ecosystems are considered.
14 15		
16 17 18	319	
19 20		
21 22	320	Results
23 24	321	
25 26 27	322	Initial State
28 29 20	323	The initial state of one ecosystem began in the 1960s, six in the 1970s, nine in the 1980s
30 31 32	324	and three in the 1990s. No ecosystem met criterion 1, that is, the proportion of under or
33 34 25	325	moderately exploited stocks = 1, and for at least 50% of the ecosystems, the proportion was
36 37	326	less than 0.5. No ecosystem had no industrialized or destructive fishing practices but four
38 39	327	had no documented community or ecosystem impacts caused by fishing (Guinea,
40 41 42	328	Mauritania, Portugal and Senegal, Table 5). Thus all nineteen ecosystems were classified as
43 44	329	impacted since they failed to meet at least one of the three criteria outlined above.
45 46	220	
47 48 49	330	
50 51	331	Determination of indicator trends
52 53 54	332	The analysis of trends in the ecosystem indicators over the entire length of their time series
55 56	333	illustrates that most of these systems are undergoing change (Table 6). The Bay of Biscay
57 58 59		
60		15

2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
11	
41	
42	
43	
44	
45	
46	
47	
48	
10	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
57	
58	
59	
60	

3

342

334	had no ecosystem indicators with a significant trend for the time periods under
335	consideration. West Coast Canada had two positive trends (biomass and trophic level of the
336	landings), the Barents Sea and Bering Sea each had one positive trend (inverse fishing
337	pressure and fish size respectively). In five cases, Baltic Sea, Mauritania, Portugal,
338	Senegalese EEZ and Southern Humboldt, all significant trends were negative at the 5%
339	level (note that there were positive trends in life span and fish size at the 10% level for
340	Mauritania and the Baltic respectively). A mixture of positive and negative significant
341	trends in the ecosystem indicators occurred in the other ten ecosystems.

Decision Tree Analysis 343

344 Using Decision Rule 1, one ecosystem was diagnosed as improving (West Coast Canada, 345 Figure 1a), three as not improving (Barents Sea, Bay of Biscay and Bering Sea and Figure 346 1b) and the rest had deteriorated from their initial state (Figure 1c and d). West Coast 347 Canada improved from its initial state because two indicators, biomass and trophic level of 348 landings, had positive trends and no indicator had negative trends. Of the three "non-349 improving" ecosystems, one had no significant trends (Bay of Biscay) and Barents Sea and Bering Sea each had one positive trend (inverse exploitation and mean size respectively). 350 351 The ecosystems that deteriorated from their initial state fell into four main groups: eight 352 ecosystems were immediately classified as deteriorating because the first indicator at the 353 top of the decision tree, mean length significantly decreased (Figure 1c); three ecosystems 354 (Portugal, Senegal and Southern Humboldt), passed the first two levels of the decision tree, 355 but had significant decreases in their biomass (Figure 1c); Mauritania, Southern Benguela 356 and Sahara Coastal Morocco had significant decreases in mean trophic level of landings

1

(although biomass increased in Southern Benguela and Sahara Coastal Morocco, Figure 1c)

2	
3	
4	
5	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
30	
36	
37	
38	
39	
40	
11	
40	
42	
43	
44	
45	
46	
47	
/10	
40	
49	
50	
51	
52	
53	
50	
54	
55	
56	
57	
58	
59	

358 and in Guinea EEZ (Figure 1d), three indicators increased, but the last, inverse fishing 359 pressure, decreased, eventually placing Guinea in the deteriorating class. 360 361 The probabilities associated with the end points of the decision tree in Figure 1 indicate 362 that, under the null hypothesis of a stable community, the probability of observing these 363 combined trends in indicators is extremely low. 364 365 Decision Rule 2 yielded very similar results, with the main difference that no ecosystem 366 was classified as improving since there were no ecosystems with 3 significant increases and 367 no negative trends (Table 6) and four ecosystems were re-classified as "not improving". 368 Thus West Coast Canada, which had been improving under Decision Rule 1 was classified 369 as "not improving" since it only had two positive trends. In addition Guinea EEZ, Southern 370 Benguela, Portugal and Sahara Coastal Morocco were re-classified as not improving since 371 they had only one negative trend. However, 11 ecosystems remained in the deteriorating 372 category.

373

60

374 Effect of Indicator Order

375 Due to the precedence of negative trends in the decision rule (i.e. the decision tree stops 376 when 1 or 2 negative trends are encountered) and the conditions under which an ecosystem 377 can be classified as improving (i.e. 2 or 3 positive trends with no negative trends), the order 378 of the indicators does not affect the final classification. For example, in the case of Guinea

2
3
4
5
6
7
1
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
22
22
23 24
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
48
10
49 50
50
51
52
53
54
55
56
57
51
20 50
59
60

EEZ, Figure 2, the length and number of branches in the tree varies with the order of the
indicators, but the ecosystem is always classified as deteriorating. This is the case for all the
ecosystems: the order of the indicators does not affect the classification of the ecosystem.
However, the order of the indicators does affect the probability associated with that

outcome. In the case of Guinea EEZ for example (Figure 2), the probability of observing these trends under the null hypothesis of a stable community ranges from $p \approx 0.000$ (Order 4) to p = 0.025 (Order 6). Nevertheless, this quantitative difference does not translate into a qualitative difference: under any order of indicators (1 to 6), the probability of the trends

found in Guinea occurring is low under the stability hypothesis.

389

The probabilities associated with the end points of the decision tree were estimated for all ecosystems for each of the six alternative orders of indicators (Table 7). The range of the values was small in all cases except for those ecosystems with a mixture of positive and negative trends, such as Guinea EEZ, Irish Sea, North Sea, Northern Humboldt, Southern Benguela and the Southern Catalan Sea (Tables 6 and 7). Regardless, and as in the case of Guinea EEZ which had the most extreme range of values, these were quantitative differences and did not affect the final classification.

397

398 Interpreting trends

Fishing down the food web was evident in the Southern Humboldt which was the onlyecosystem with significant negative trends in both the trophic level of the catch and

 401 biomass (Table 8). Senegal and Portugal also showed signs of FDFW, with significant
402 negative trends in trophic level and biomass although, the negative trend in trophic level of
403 the catch was only significant at the 10% level. Senegal also had a significant negative
404 trend in inverse exploitation. Five other ecosystems had significant negative trends in the
405 trophic level of the catch, but in four cases this was coupled with an increase in biomass
406 (Irish Sea, North Sea, Sahara Coastal Morocco and Southern Benguela).

Loss of diversity and stability was not observed in any system. Four ecosystems showed evidence of loss of size structure. The combination of indicators on the eastern Scotian Shelf and south Catalan sea (significant negative trends in fish size, lifespan and trophic level of the catch (Eastern Scotian Shelf only)) and in the North Sea (significant negative trends in fish size and trophic level) suggest that large fish have been targeted and selectively removed from the ecosystem. One ecosystem, Guinea, exhibited the opposite effect, with an increase in fish size, trophic level of landings and % predators): indicating that either small fish were being targeted, or are less abundant for other reasons. This is not likely to be an indicator of system recovery since there is no increase in biomass and there is a significant decrease in inverse fishing pressure.

The Northeast US (North East US), Irish Sea and North Sea all showed evidence of
increased productivity or recruitment; a significant increase in biomass coupled with a
significant decrease in fish size. No change was expected in the other indicators, but the
Irish and North Sea also exhibited a decrease in trophic level of the catch and an increase in
inverse fishing pressure. In the North East US, while mean length decreased, mean life span

424 increased and proportion of predators and inverse fishing pressure decreased. In West Coast
425 Canada, there could be increased productivity/recruitment but the lack of an indicator for
426 mean size precludes this conclusion.

428 Management Goals

The ecosystem indicators are each associated with one of four management goals (Table 2). A significant negative trend in an indicator indicates that the management goal is not being met. Conversely, a positive trend indicates an improvement towards that goal, although it does not indicate how close the ecosystem is to achieving the goal. The negative trends in eight of the fourteen "deteriorating" ecosystems indicated that they were failing to meet more than one management goal. However, in some cases, such as north east US, the two ecosystem indicators associated with resource potential had opposite trends. Biomass increased and inverse fishing pressure decreased. Almost fifty percent of the significant negative trends of the ecosystem indicators were associated with the "Ecosystem Functioning" goal and most of the significant positive trends, as well as many of the significant negative trends, were associated with "Resource Potential" management goal (Table 6). The trend in % predators was significant in four ecosystems: it increased in Guinea, Irish Sea and Northern Humboldt, suggesting increasing Conservation of Biodiversity whereas it decreased in the North East US, indicating a loss of Conservation of Biodiversity. Trends in mean life span are associated with Ecosystem Stability and Resistance to Perturbations, which decreased in the Eastern Scotian Shelf, Northern

 445 Humboldt and Southern Catalan Sea, but increased in North Central Adriatic and North446 East US.

448 Exploring changes in ecosystem status over time

Of the seven ecosystems with time series beginning prior to the 1980s, three, the Irish Sea, Baltic Sea and North Central Adriatic were consistently diagnosed as "deteriorating" (Table 9) regardless of the time period under consideration. The eastern Scotian Shelf and the Southern Catalan Sea were both defined as "deteriorating" until the mid-1990s. In the latter time period, there was no trend in the ecosystem indicators for the eastern Scotian Shelf (Appendix 2) suggesting that this ecosystem has reached some stability. The southern Catalan Sea was diagnosed as "improving" in the latter time period with significant positive trends in % predators and trophic level of landings. The Bering Sea changed from a stationary diagnosis, to "improving" to "stationary" over the three time periods. Finally the north east US was diagnosed as 'deteriorating" over the whole time series, "improving" since the 1980s and 'stationary' since the mid-1990s. Mean life span and biomass had positive significant trends in the first two time periods, and no negative trends occurred during the second time period.

463 Of the nine ecosystems whose time series began during the 1980s, the Barents Sea
464 remained "non improving" from 1980s-2005 and 1996-2005 (Table 9). Four ecosystems,
465 Guinea, Mauritania, North Sea and Portugal were diagnosed as "deteriorating" from 1980s466 2005, but as "not improving" in the latter time period since there were no significant trends

in any indicator. Senegal, Southern Benguela and Northern Humboldt "deteriorated" during
both time periods. In the case of Senegal, biomass and inverse fishing pressure decreased
from 1980s-2005, and biomass from 1996-2005; in Southern Benguela, mean trophic level
of landings decreased from 1980s-2005, then from 1996-2005, mean life span, % predators
and mean trophic level of landings decreased; in the Northern Humboldt system mean life
span and inverse fishing pressure significantly decreased from 1980s-2005, and mean life
span decreased from 1996-2005 (Appendix 2).

The time series of three ecosystems began in the early 1990s and their diagnosis did not
change from the 1980-2005 time period to the 1996-2005 time period. Two were diagnosed
as deteriorating (Sahara Coastal Morocco and Southern Humboldt) and Bay of Biscay was
classified as "not improving" (Table 9). However, for the southern Humboldt, some
indicators did change: during 1980-2005, biomass and trophic level of landings decreased
whereas during 1996-2005 trophic level of landings decreased and fish size increased
(Appendix 2).

483 During the first time period, six of seven ecosystems were classified as "deteriorating", and 484 one as "not improving"; in the second time period, fourteen of the nineteen ecosystems 485 were "deteriorating", two were "not improving" and three were "improving". In the last 486 time period (1996-2005) eight of nineteen ecosystems were deteriorating, ten as "not 487 improving" and one as "improving".

Page 23 of 72

489 Interpreting trends through time

The four ecosystem effects identified in Table 4 were not consistently observed over the three time periods (Table 10), but all were exhibited. Most striking is the greater number of effects evident in the 1980-2005 period, compared to the seven systems for which there were data prior to 1980 and compared to all 19 ecosystems in the latest time period, 1996-2005. In the latter time period, loss of diversity and stability was the only effect identified and only in one system, Southern Benguela, due to a significant decrease in life span and % predators, supplemented by a significant decrease on TL of landings. Loss of size structure was the most common effect observed. During 1980-2005, it was evident in the Baltic Sea, Bering Sea, North Sea and Guinea. The combination of indicators suggested that size selective fishing was directed at small fish in Guinea and in the Bering Sea and at large fish in the other ecosystems. The latter effect was also seen in Southern Catalan Sea (1976-2005). The loss of diversity and stability was only observed in two ecosystems, Baltic Sea and Southern Benguela (see above) in two different time periods. FDFW was also seen only in three ecosystems, Eastern Scotian Shelf, Southern Humboldt and Portugal during 1980-2005. In the latter case, the decrease in trophic level of landings was significant at the 10% level.

507 Two ecosystems were consistent across the first two time periods: the Irish Sea showed 508 evidence of increased productivity over the whole time series and since 1980, while the 509 Eastern Scotian Shelf exhibited signs of size selective fishing of large fish over these two 510 time periods and FDFW during 1980-2005. During the 1980-2005 time period the Baltic

sea exhibited both loss of diversity and stability and size selective effects of fishing, whichwere not apparent since 1996.

515 Discussion

One of the strengths of a comparative approach is that patterns replicated across ecosystems provide more confidence that these patterns are real, than if they were observed in one ecosystem alone. Several very ugly patterns were replicated across the nineteen ecosystems analysed here using a decision tree approach: (i) all nineteen ecosystems were considered impacted at the beginning of their time series, (ii) since the initial state fifteen further deteriorated under Decision Rule 1, and eleven under Decision Rule 2, (iii) most failed on two or more management goals, (iv) fishing down the food web, loss of size structure, or loss of stability and resistance were evident in eleven ecosystems. This is not entirely unexpected since many of these ecosystems have a long history of exploitation, particularly in the North Atlantic and Mediterranean, and fishing does have impacts on the ecosystem (see contributions in Hollingworth, 2000). Indeed, the probability that any of these ecosystems is a stable, neutral community is small (with the exception of the Bay of Biscay). However, the consistency of the diagnosis provided here is worrisome. Given that all ecosystems departed from a state that was already impacted, we have relabeled our diagnoses as ugly (deteriorating), bad (not-improving, since the ecosystem is remaining in its impacted state, and good(ish), improving, since the direction is good, but the ecosystems are still likely to be highly impacted.

1
2
3
4
5
6
7
8
9
10
11
12
13
1/
15
16
10
10
10
19
20
21
22
23
24
25
26
27
28
29
30
21
20
3Z
33
34
35
36
37
38
39
40
41
42
43
44
45
40
40
41 40
40
49
50
51
52
53
54
55
56
57
58
55

535	Essentially, these results indicate that eleven to fifteen of these ecosystems are in a more
536	impacted state now than they were at the beginning of their time series, that is, they are in
537	an "ugly" state. Furthermore, eight of those ecosystems were still deteriorating when
538	examined over the last 10 years (96-05), five were stationary, having deteriorated, and thus
539	still in a "bad" state, and only one, the Southern Catalan Sea, after almost two decades of
540	deterioration, was finally classified as improving, good(ish), but see below. Therefore none
541	of these ecosystems can be considered in a good state during any time period, although the
542	Bering Sea, North East US and West Coast Canada have less negative diagnoses. By any
543	measure, the results of this analysis are very concerning.
544	
545	Geographically, the ecosystems in the north Pacific may be in better shape than the
546	ecosystems from the Atlantic and Mediterranean: both the Bering Sea and West Coast
547	Canada were diagnosed as improving during 1980-2005, and stationary since then. This
548	may be attributed to good management practices, productive regime shifts or both. Link et
549	al., (this volume) identified environmental drivers as important in both of these ecosystems.
550	In the southern Pacific, both the Southern and Northern Humboldt were diagnosed as
551	"deteriorating": these are both upwelling systems and subject to strong environmental
552	drivers (e.g., Chavez et al., 2003, 2008; Montecinos et al., 2003; Alheit and Ñiquen, 2004;
553	Shannon et al., 2008), which should be taken into consideration when interpreting the suite

- 554 of ecosystem indicators, see below. Ecosystems from the North Atlantic and
- 555 Mediterranean have a long exploitation history and were generally diagnosed as
- 556 "deteriorating", or "not improving", from a previously deteriorated state, excluding Bay of

Biscay and Barents Sea. Furthermore, fishing down the food web, loss of size structure, or loss of stability and resistance were mainly observed in north Atlantic ecosystems. The Bay of Biscay and Barents Sea were classified as "not improving" for all relevant time periods. The time series for the Bay of Biscay was short and the lack of significant trends may be a consequence of this. The Barents Sea data exhibits strong cyclical patterns and is not well suited to treatment using linear regressions. Results for this system should be interpreted with caution. The good(ish) diagnosis for the Southern Catalan Sea over the most recent time period was due to an increase in % predators and trophic level of landings. However, these increased as a result of a large decline in small pelagic fish in the 1990s, and thus the ecosystem was not in an improved state as the indicators alone may suggest.

568 Time Frames

The use of different time frames for the analysis showed that the results of the analysis were sensitive to the time frame used and, for some systems, revealed an evolutionary process. The North East US for example, was originally diagnosed as deteriorating (1963-2005) then it improved (1980-2005) and during 1996-2005 was "not improving". Overall, the shortest time frame of 10 years, 1996-2005, produced the least number of significant trends (20) whereas the longer time periods produced more than twice this number (see also Blanchard *et al.*, this volume). This result is expected since it has been suggested that at least 10-15 years of data is required to detect trends Nicholson and Jennings (2004), and Trenkel et al. (2007) suggest 20 or more years.

http://mc.manuscriptcentral.com/icesjms

1	
2	
3	
4	
5	
6	
7	
2 2	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
50	
52	
23	
54	
55	
56	
57	
58	
59	
60	

579	However, it is also suggested here that there is a second, process-oriented explanation for
580	the lack of trends in the 10 year time frame for some ecosystems. Many of these
581	ecosystems were diagnosed as deteriorating over the longer time period, and by the mid-
582	1990s had reached a new more impacted state, after which they remained relatively stable.
583	This is the case for the Eastern Scotian Shelf (Bundy, 2005) and likely the case for the
584	North East US (Link et al., 2002), North Sea, Guinea, and Mauritania.
585	
586	Of greater concern is the result that over 50% of the fourteen ecosystems diagnosed as
587	deteriorating during 1980-2005, were still diagnosed as deteriorating during 1995-2005
588	(Baltic Sea, Irish Sea, North Central Adriatic Sea, Southern Benguela, Northern Humboldt,
589	Senegal, Sahara Costal Morocco and Southern Humboldt). The first three have a long
590	history of fishing, but notably have fewer negative trends in the recent time periods than
591	during 1980-2005 (Appendix 2), suggesting a decline in the rate of deterioration. The latter
592	two time series began in the early 1990s, so the length of time over which they are
593	diagnosed as deteriorating is less than for the other ecosystems, although this should still
594	raise flags of concern. Southern Benguela and Northern Humboldt are upwelling systems,
595	in which environmental drivers have a large influence on the abundance and distribution of
596	marine organisms. Thus the ecosystem indicators must be interpreted in this context. In
597	particular, many upwelling systems are characterized by large stocks of small pelagic fish
598	(see Shannon et al., 2008, and this volume for further details) whose dynamics are
599	impacted by the environment as well as fishing. As seen below, this is the case of Northern
600	Humboldt and Southern Benguela.

Page 28 of 72

602	In the Northern Humboldt, where strong climatic, bottom-up forcing affects fish
603	productivity on a large range of scales (Chavez et al., 2008; Gutiérrez et al., 2008) the
604	environment rather than fishing pressure appears to be the main driver of ecosystem change
605	(Bertrand et al., 2004, 2008a, 2008b, 2008c; Taylor et al., 2008; Shannon et al., 2008). Of
606	the indicators explored here, mean life span and inverse fishing pressure significantly
607	decreased from 1980-2005, and mean life span decreased during 1996-2005 (note that there
608	was no mean length indicator for this system), but biomass increased. Mean life span likely
609	decreased due to factors associated with a change from warmer period in the 1980s ('El
610	Viejo' sensu Chavez et al., 2003) to a cooler, more productive conditions in the 1990s ('La
611	Vieja' sensu Chavez et al., 2003). The short-lived anchoveta increased ('full anchovy era'
612	sensu Gutiérrez et al., 2007), larger pelagic predators such as hake declined due to
613	overfishing and adverse climatic conditions (Ballón et al., 2008; Guevarra-Carrasco and
614	Lleonart, 2008), and the biomass of the jumbo squid, a short lived predator, dramatically
615	increased (Argüelles et al., 2008). For further details see Shannon et al. (this volume). Thus
616	for the recent time period, 1996-2005, the classification of the Northern Humboldt as
617	'deteriorating" should be questioned recognizing the influence of environmental change on
618	the indicators, and the increase in biomass. Except for some species, in particular the hake,
619	the impacts of fishing were less over the recent decade than they were over the longer time
620	period, as noted above for the Eastern Scotian Shelf, North East US, North Sea, Guinea,
621	Mauritania and Senegal.
622	
623	The Southern Benguela system appeared to deteriorate further over the most recent time

625	level) to 3 during 1996-2005 (mean life span, % predators and trophic level). Biomass
626	increased significantly in both periods. Generally, a result such as this may be due to a
627	recruitment process or increased productivity at lower trophic levels since biomass
628	increased while the other indicators decreased. However, if this was the case, a decrease in
629	mean size would be expected, but this did not occur, even at the 10% risk level. In fact,
630	unusually high stock sizes of small pelagic fish were observed off South Africa in the early
631	2000s, accounting for decreased life span, % predators and trophic level of the landed
632	catch. The reason mean size did not also decrease is that this particular indicator was
633	derived from a detailed demersal survey data for Southern Benguela, which was not easily
634	combined or comparable to pelagic survey data that would reflect small pelagic fish
635	abundance. This emphasizes the necessity for considering data sources and ecosystem
636	characteristics on an ecosystem by ecosystem basis when interpreting indicator trends.
637	
638	These results show some consistency with the ranking of ecosystems according to short-
639	and long-term trends by Coll et al., (this volume). Three ecosystems, Adriatic Sea,
640	Southern Catalan Sea and Baltic Sea ranked as highly impacted in the majority of cases, as
641	they did in the results presented here. Coll et al. (this volume) classified five ecosystems
642	as "becoming more impacted" in the recent decade, compared to six when the full period
643	1980-2005 was examined, whereas the decision tree analysis classified eight ecosystems in
644	the recent decade as deteriorating and fourteen ecosystems during 1980-2006. Further
645	consistencies are apparent in the details: Coll et al.(this volume) classified the Eastern
646	Scotian Shelf, Baltic Sea, Southern Catalan Sea, Senegal and Southern Humboldt as
647	"becoming more impacted" in the long time period 1980-2005, whereas they improved to

Page 30 of 72

2	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
13	
43	
44	
45	
46	
47	
18	
40	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
50	
59	
60	

1

648	"moderately impacted", or in the case of the Eastern Scotian Shelf, "becoming less		
649	impacted" according to trends for 1996-2005 only. Their results also indicated that some		
650	ecosystems had deteriorated in the last 10 years: the Adriatic, Southern Benguela,		
651	Mauritania, North Sea, and North East US ecosystems were classified as "moderately		
652	impacted" in terms of trends from 1980-2005, whereas they had deteriorated in the last		
653	decade to become classified as "becoming more impacted" for the period 1996-2005. While		
654	the results of Coll et al. (this volume) are derived from a relative ranking process in		
655	contrast to the tripartite classification used here, they largely confirm our results.		
656			
657	Detecting ecosystem effects through the combinations of trends		
658	The observed ecosystem effects supported the diagnosis of the decision tree: of the fifteen		
659	ecosystems that were diagnosed as "deteriorating" during the longer time periods		
660	considered (pre-1980s – 2005 and 1980 – 2005), six exhibited size selective effects of		
661	fishing, two experienced FDFW, two experienced loss of diversity and stability and four		
662	showed evidence of increased productivity. Only one effect (loss of diversity and stability		
663	in Southern Benguela) was noted during the 10 year time frame of 1996-2005, which is		
664	explained by the result that fewer significant trends were detected during this shorter time		
665	period. Southern Benguela was also the one ecosystem with more significant trends in this		
666	time frame. Increased productivity or recruitment was observed in the Irish Sea and North		
667	Sea. These ecosystems have been heavily exploited for over a century and are not showing		
668	any signs of improvement, other than reduced exploitation and an increase in biomass. In		
669	the case of the Irish Sea, it has continued to deteriorate.		

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
20
25
20
20
20
20
20
31
32
32
34
35
36
27
20
20
39 40
40
41
42 12
44 15
40
40 47
47 78
40 /0
50
51
52
53
54
55
56
57
58
50
60
00

671	Some ecosystems exhibited contradictory trends. Mean life span increased in the North
672	East US and North Central Adriatic for example, while fish size decreased. Using data from
673	1995-2005, Blanchard et al, (this volume) found that life span and fish size were positively
674	correlated in some ecosystems but negatively correlated in others. In the case of North East
675	US, this may be due to the fact that fisheries have been (for some time) catching larger
676	organisms and many of the organisms that are not now primarily targeted have longer life
677	spans. In the North Central Adriatic Sea and the Southern Catalan Sea, some indicators
678	responded contrary to the expected trends due to increasing fishing effort because fishing
679	was mainly targeting and depleting the small pelagic fish. In the Northern Humboldt
680	system, life span decreased, while % predators and trophic level of the catch increased (and
681	inverse exploitation decreased). Negative trends in life span and positive trends in trophic
682	level are explained by the shift to a cooler anchovy regime (short lived, not low TL species)
683	since mid 1990s as reflected in both biomass and landings whilst positive trends in %
684	predators is explained by the outburst of giant squid biomass specially after El Niño 1997-
685	1998. In the Southern Humboldt mean fish size increased, but trophic level of landings
686	decreased over the last decade. Arancibia and Neira (2005) found a significant decline in
687	the mean trophic level of landings off Southern Humboldt for the period 1978-2002, but
688	Neira (2008) consequently determined that this decline was first due to "fishing through the
689	food wed" sensu Essington et al. (2006) and real FDFW has been occurring in this system
690	only since mid 1990s.
691	

692 The decision tree approach to classifying ecosystems into three states, improving,

693 stationary (non-improving) or deteriorating is attractive for its simplicity and thus more

likely to be acceptable to stakeholders. However, there are several methodological issues
involved in this approach that are subjective including the assessment of the initial state, the
selection of ecosystem indicators, the order of the indicators and the choice of decision rule.

698 Assessment of initial state

All nineteen ecosystems were assessed as impacted in their initial year and most failed to meet all three of the criteria and could thus be considered highly impacted. The method for assessing the initial state of the ecosystems was very conservative and demanded that three criteria should be met in order for an ecosystem to be described as non-impacted. The criteria were selected to include the effects of fishing on species and the ecosystem and were intended to maximize comparability. No ecosystem met all three criteria. Assessing the initial state of ecosystems 20 plus years ago can be challenging since there was less interest in the ecosystem effects of fishing at that time and less documentation. In some ecosystems there is also simply less information available. Information for the first criteria and second criteria was available for most ecosystems, but the third criteria leaves room for error. The criterion was "there were no documented community or ecosystem impacts caused by fishing". However, lack of documentation does not equate with lack of impact, and in several cases there was no documentation for the earlier time period. This did not affect the assessment of initial state of any one ecosystem, given the binary classification used here. However, if a less conservative method was used, such as "degree of impact". criteria 3 would be more important.

Page 33 of 72

	716	Selection	of ecosystem	indicators
--	-----	-----------	--------------	------------

Link et al. (2002), Caddy (2004) and others have recommended using a broad range of indicators to assess the status of ecosystems. Link (2005), Methratta and Link (2006), and Rochet and Rice (2005) have also noted the need to select indicators using a set of criteria that are germane for the management issues at hand in a given ecosystem. However, when making comparative evaluations of marine ecosystems globally, a more limited set of indicators must be selected since the data must be available for all ecosystems. The implication of this is a compromise between an ideal set of indicators and a realistic set of indicators. While it is not proposed that the set of indicators selected here is complete, it is proposed as a minimum set. The rationale for the choice of indicators is discussed further in Shin *et al.* (this volume). Ideally, each management goal would have at least two indicators associated with it to account for different sensitivities of indicators to change, thus new indicators are required for the management goals of "Stability and Resistance to Perturbations" and "Conservation of Biodiversity". Potential indicators of the former could include a measure of the trophic structure of the ecosystem such as the mean trophic level of the community, or a measure of whether a change in exploitation reflects energy loss up the food, captured by indicators such as the FiB index (Pauly et al., 2001), or ratio of pelagic to demersal fish in the community, and for the latter, species richness or number of vulnerable or endangered species. There is no shortage of such potential indicators (Murawski, 2000; Daan et al. 2005; Link, 2005; Fulton et al., 2005); the challenge is to select those that are generally applicable and related to these management objectives. A second class of indicators that monitor that state of the environment, and thus flag potential

effects of the environment on the suite of indicators are required, especially for ecosystemswith large environmental fluctuations such as upwelling systems.

Of the six indicators used in this study, fewer significant trends occurred for mean life span and % predators, both of which were derived from fisheries survey information, suggesting that these are less sensitive to change than the other indicators that were catch-derived. Inverse fishing pressure, a catch and survey derived indicator, resulted in significant trends in over 50% of the ecosystems. However, this indicator requires careful consideration and interpretation. The estimation of both catch and biomass is fraught with difficulties, ranging from bias and misreporting of catch data (Patterson, 1998; Watson and Pauly, 2001) to inconsistent survey protocols between years or across different fisheries within an ecosystem. It was assumed here that surveys were consistent through time and that catch was accurately reported. Catch may also be affected by management measures, so while inverse fishing pressure does give an index of the proportion of biomass exploited, it is not necessarily a good measure of the amount of fishing pressure that can be sustained by a resource, since the management measures themselves become implicit in the indicator. Inverse fishing pressure can be ambiguous; an increase may represent a decrease in resource potential or it could represent a precautionary management measure to avoid this. For this reason, inverse fishing pressure was placed at the bottom of the decision tree. Auxilliary information in the form of additional indicators, such as total landings, total landings at a given trophic level, or information about management actions and policy might help elucidate the meaning of inverse fishing pressure. For the 19 ecosystems

examined here, it only determined the outcome of the decision tree once under Decision Rule 1 (Guinea) and twice under Decisions Rule 2 (Mauritania and Senegal). Thus when interpreting the effect of this indicator, context must be considered. If it were not for inverse fishing pressure, Guinea would have been classified as "improving" under Decision Rules 1 and 2 since three indicators (LG, BpBs and TLc) had positive significant trends for the long-term time series. Inverse fishing pressure decreased during the first 10 years of the data series, and then remained relatively flat. This was reflected in the diagnosis for 1996-2005 which classified Guinea as "not improving" rather then deteriorating. Changes in trophic level of landings and inverse fishing pressure suggest that since 1995, the fishery was targeting higher trophic level species at a higher fishing mortality. This reflects the fishing history of this ecosystem: it has undergone rapid escalation of fishing effort, focused on coastal demersal species, over the last two decades, accounting for the increase in trophic level of the catch and the decrease of inverse fishing pressure (Lobry *et al.*, 2003). Exploitation in the offshore area has been more intense over a longer period of time (Sidibé et al., 1999, cited in Laurans et al., 2004). Overall, the history of exploitation in Guinea is less intense that in Senegal or Mauritania (Domalain et al., 2004; Lobry et al., 2003).

778 Order of Indicators

Under the decision rules used here, the order of the indicators does not affect the final
classification, only the probability under the null hypothesis that they end up there. Thus,
the method appears to be relatively robust and consistent. This is not a trivial result. Order

1 was chosen because the indicators at the top of the tree have a clearer association with likely causes of change in the indicator, they are estimated with relatively good precision and the first four indicators represent the four management goals outlined in Table 2. The first four indicators are also a more direct assessment of the ecosystem using fisheries independent survey information, whereas the last two, trophic level of landings and inverse fishing pressure, are derivatives of the act of fishing (i.e. pressure indicators as opposed to state indicators, see Degnbol and Jarre, 2004) even though they can also reflect non-fishery-related impacts such as natural outbursts of species at low trophic levels in response to eutrophication, or environmentally-induced changes in availability of certain species to fisheries.

However, if the decision rules were changed, the order of the indicators could have a larger impact on the outcome. For example, if an "improving" state was re-defined as occurring when 2 positive trends were encountered, at which point the procedure was stopped, then Guinea would be classified as improving under Order 1. However if the order of the indicators were changed, the Irish Sea, North Sea, North East US, Northern Humboldt and Southern Benguela could all be classified as improving. Clearly, it is important to have a decision rule that is robust to the order of the indicators and to have a clear rationale for the order in which the indicators are used. In practice, there needs to be buy-in to this reasoning and ordering by scientists and other stakeholders alike, if ecosystem classifications are to be widely accepted and acted upon by fisheries managers.

Page 37 of 72

804 Decision Rules

Decision rules remove many of the confounding issues that can occur when interpreting more than one indicator to assess the status of an ecosystem. However, care has to be taken in the development of decision rules, a process which should be undertaken in an interactive manner with scientists, managers and stakeholders participating in setting the rules (FAO, 2003; Degnbol and Jarre, 2004). Explicit consideration of risk is an essential component of this process. Here, two risk adverse decision rules were explored, where a negative decrease in one or two ecosystem indicators was sufficient to classify an ecosystem as "deteriorating". These were unbalanced rules since the criteria to classify an ecosystem as "improving" were more stringent. Relaxing these rules, or making them less risk adverse would alter the classification of some of the ecosystems in Figure 1. At best, more ecosystems would be classified as "not improving". For example, if a deteriorating ecosystem was defined by three negative trends, then of the fourteen ecosystems classified as "deteriorating" under Decision Rule 1, only North Central Adriatic Sea and North East US would remain in the category. The rest would be classified as "not-improving", which overall is not informative. A conservative decision rule is in accordance with the Precautionary Approach (FAO, 1995), where the risk of error is placed on the side of caution to avoid unacceptable or undesirable situations.

The strong take home message from this precautionary decision tree analysis is that many of the ecosystems examined here have been negatively impacted by fishing, as measured by the suite of ecosystem indicators and are in the "danger" zone. They have been diagnosed to be in an ugly, "deteriorating" condition, having already been defined as "impacted" by

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
20	
20 27	
21	
20 20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5U E1	
51	
52	
53 57	
55	
56	
57	
58	
59	
60	

827	the effects of fishing at the start of the time series. Although it is likely that these
828	ecosystems are being managed with a long-term goal of sustainability, the management
829	goals defined in Table 2 are not being achieved. Here, only ecological indicators of the
830	pressure and impacts of fishing were explored, but managing for sustainability requires
831	consideration of biology, ecology, environment, economics, social aspects and governance
832	issues beyond simple stock dynamics (Bundy et al. 2008; Rice, 2008). Furthermore, the
833	potential effects of the environment, particularly in upwelling ecosystems (Shannon et al.,
834	this volume), need to be considered when interpreting these ecosystem indicators. Link et
835	al. (this volume) explored drivers of ecosystem change, and Coll et al. (this volume) used
836	biotic factors to rank ecosystems and biotic, abiotic and socioeconomic factors to explain
837	these rankings. The results of all these studies point to the same conclusion: the
838	management goals for the fisheries in these ecosystems are not being met.
839	
840	
841	Acknowledgements
842	We thank all participants of Euroceans IndiSeas Working Group (www.indiseas.org) for

843 their inputs, ideas and access to data: Pierre-François Baisnée (IRD, France), Nicolas Bez

844 (IRD, France), Julia Blanchard (CEFAS, UK), Fatima Borges (IPIMAR, Portugal), Pascal

845 Cauquil (IRD, France), John Cotter (CEFAS, UK), Philippe Cury (IRD, France), Ibrahima

- 846 Diallo (CNSHB, Guinea), Erich Diaz (IMARPE, Peru), Beth Fulton (CSIRO, Australia),
- 847 Sheila Heymans (SAMS, Scotland), Edda Johannesen (IMR, Norway), Didier Jouffre (IRD,

848 Senegal), Souad Kifani (INRH, Morocco), Pierre Labrosse (IMROP, Mauritania), Jason

849 Link (NOAA, US), Pierre Lopez (IRD, France), Steve Mackinson (CEFAS, UK), Hicham

Masski (INRH, Morocco), Kathrine Michalsen (IMR, Norway), Christian Möllmann (U
Hamburg, Germany), Henn Ojaveer (EMI, Estonia), Khairdine Ould Mohamed Abdallahi
(IMROP, Mauritania), Ian Perry (DFO, Canada), Jake Rice (DFO, Canada), Djiga Thiao
(CRODT, Senegal), Dawit Yemane (MCM, South Africa). In addition, we thank Arnaud
Bertrand (IRD) for interpretation of the indicators for Peru, and AB thanks Mike Dowd
(Dalhousie University) for statistical support, the DFO's Ecosystem Research Initiative for
funding support and two internal referees (to be completed at review stage).

857 References

- 858 Alheit, J., and Ñiquen, M. 2004. Regime shifts in the Humboldt Current ecosystem.
- 859 Progress in Oceanography, 60: 201-222.
- Arancibia, H., and Neira, S. 2005. Long-term changes in the mean trophic level of central
 Chile fishery landings. Scientia Marina, 69 (2): 295-300.
- Argüelles, J., Tafur, R., Taipe, A., Villegas, P., Keyl, F., Domingueza, N., and Salazara, M.
 2008. Size increment of jumbo flying squid *Dosidicus gigas* mature females in
 - 864 Peruvian waters, 1989–2004. Progress in Oceanography, 79: 308-312.
- 865 Ballón, M., Wosnitza-Mendo, C., Guevara-Carrasco, R., and Bertrand, A. 2008. The impact
 866 of overfishing and El Niño on the condition factor and reproductive success of
 - 867 Peruvian hake, *Merluccius gayi peruanus*. Progress in Oceanography, 79: 300-307.
 - 868 Bender, K.M. 2007. Global fish production and climate change. Proceedings of the
 - 869 National Academy of Sciences, 104(50): 19701-19714.
- Bertrand, A., Segura, M., Gutiérrez, M., and Vásquez, L. 2004. From small-scale habitat
 loopholes to decadal cycles: a habitat-based hypothesis explaining fluctuation in
 pelagic fish populations off Peru. Fish and Fisheries, 5: 296-316.
 - 873 Bertrand, A., Gerlotto, F., Bertrand, S., Gutiérrez, M., Alza, L., Chipollini, A., Diaz, E.,
 - 874 Espinoza, P., Ledesma, L., Quesquén, R., Peraltilla, S., and Chavez, F. 2008a.
 - 875 Schooling behaviour and environmental forcing in relation to anchoveta
 - 876 distribution: an analysis across multiple spatial scales. Progress in Oceanography,
 - 877 79: 264-277.

1	
2	
3 4	
5	
6	
7	
9	
10	
11	
12	
14	
15	
16	
18	
19	
20	
21 22	
23	
24	
25 26	
27	
28	
29 30	
31	
32	
33	
35	
36	
37	
39	
40	
41 42	
42 43	
44	
45	
40 47	
48	
49 50	
50 51	
52	
53	
54 55	
56	
57	
58 50	
60	

878	Bertrand, S., Dewitte, B., Tam, J., Diáz, E., and Bertrand, A. 2008b. Impacts of Kelvin
879	wave forcing in the Peru Humboldt Current system: Scenarios of spatial
880	reorganizations from physics to fishers. Progress in Oceanography, 79: 278-289.
881	Bertrand, A., Guevara, R., Soler, P., Csirke, J., and Chavez, F. (eds). 2008c. The Northern
882	Humboldt Current System: ocean dynamics, ecosystem processes, and fisheries.
883	Progress in Oceanography, 79(2-4): 95-412.
884	Blanchard, J. L., Coll, M., Trenkel, V. M., Vergnon, R., Yemane, D., Jouffre, D., Link, J.,
885	and Shin, YJ. Trend analysis of indicators: a comparison of recent changes in the
886	status of marine ecosystems around the world. This volume.
887	Borges, M. F., Santos, A. M., Crato, N., Mendes, H., and Mota, B. 2003. Sardine regime
888	shifts of Portugal: a time series analysis of catches and wind conditions. Scientia
889	Marina, 67 (Suppl. 1): 235-244.
890	Bundy, A. 2005. Structure and function of the eastern Scotian shelf Ecosystem before and
891	after the groundfish collapse in the early 1990s. Canadian Journal of Fisheries and
892	Aquatic Sciences, 62(7): 1453-1473.
893	Bundy, A., Chuenpagdee, R., Jentoft, S., and Mahon, R. 2008. If Science is Not the
894	Answer, What Is? An alternative governance model for reversing the dismal state of
895	the world's fisheries resources. Frontiers in Ecology and the Environment, 6(3):
896	152–155, doi:10.1890/060112.
897	Caddy, J. F. 2002. Limit reference points, traffic lights, and holistic approaches to fisheries
898	management with minimal stock assessment input. Fisheries Research, 56: 133-
899	137.

2		
3 4	900	Caddy, J. F. 2004. Current usage of fisheries indicators and reference points, and their
5 6	901	potential application to management of fisheries for marine invertebrates. Canadian
7 8 9	902	Journal of Fisheries and Aquatic Sciences, 61: 1307–1324.
10 11	903	Cazelles, B. 2004. Symbolic dynamics for identifying similarity between rhythms of
12 13	904	ecological time series. Ecology Letters, 7: 755-763.
14 15 16	905	Chavance P., Bâ, M., Gascuel D., Vakily J. M., and Pauly, D. (eds.). 2004. Pêcheries
17 18	906	maritimes, écosystèmes & sociétés en Afrique de l'Ouest : Un demi-siècle de
19 20 21	907	changement, [Marine Fisheries, Ecosystems and Societies in West Africa : Half a
21 22 23	908	Century of Change], actes du symposium international, Dakar (Sénégal), 24-28 juin
24 25	909	2002, Bruxelles, Office des publications officielles des Communautés européennes,
26 27 28	910	XXXVI- 532-XIV p., 6 pl. ht. coul., coll. Rapports de recherche halieutique
29 30	911	A.C.PU.E., n° 15. 532 pp.
31 32	912	Chavez, F. P., Ryan, J., Lluch-Cota, S. E., and Niquen, M. 2003. From anchovies to
33 34 35	913	sardines and back: Multidecadal change in the Pacific Ocean. Science, 299: 217-
36 37	914	221.
38 39	915	Chavez, F. P., Bertrand, A., Guevara-Carrasco, R., Soler, P., and Csirke, J. 2008. The
40 41 42	916	northern Humboldt Current System: brief history, present status and a view towards
43 44	917	the future. Progress in Oceanography, 79: 95-105.
45 46 47	918 919	Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., and Pauly,
48 49 50	920	D. 2009. Projecting global marine biodiversity impacts under climate change
51 52 53	921	scenarios. Fish and Fisheries, DOI: 10.1111/j.1467-2979.2008.00315.x:
54 55 56		
57 58 59		
60		42
		http://mc.manuscriptcentral.com/icesjms

2		
3 4	922	Coll, M., Shannon, L. J., Yemane, D., Link, J., Ojaveer, H., Neira, S., Jouffre, D., Labrosse,
5 6	923	P., Heymans, J. J., Fulton, E.A., and Shin, YJ. Ranking the ecological relative
7 8 0	924	status of exploited marine ecosystems. This volume.
9 10 11	925	Coll, M., Libralato, S., Tudela, S., Palomera, I., and Pranovi, F. 2008. Ecosystem
12 13	926	Overfishing in the Ocean. PLos ONE, 3(12): e3881.
14 15	927	Cury, P., and Christensen, V. 2005. Quantitative Ecosystem Indicators for Fisheries
16 17	928	Management ICES Journal of Marine Science, 62: 307-310
18 19	20	Wanagement. Tello Fournar of Warme Berenee, 02. 507 510.
20 21	929	Cury P. M., Shannon, L.J., Roux, JP., Daskalov, G. M., Jarre, A., Moloney, C. L., and
22 23	930	Pauly, D. 2005a. Trophodynamic indicators for an ecosystem approach to fisheries.
24 25	931	ICES Journal of Marine Science, 62(3): 430-442.
26 27 28	932	Cury P. M., Mullon, C., Garcia, S.M., and Shannon, L. 2005b. Viability theory for an
20 29 30	933	ecosystem approach to fisheries. ICES Journal of Marine Science, 62 (3): 577-584.
31 32	0.0.4	
33	934	Daan, N., Christensen, V., and Cury, P. 2005. Quantitative Ecosystem Indicators for
34 35 36	935	fisheries management. ICES Journal of Marine Science, 62 (3). 613 pp.
37 38	936	Degnbol, P., and Jarre, A. 2004. Review of indicators in fisheries management – a
39 40	937	development perspective. African Journal of Marine Science, 26: 303-326.
41 42	938	DEO 2003 State of the Eastern Scotian Shelf Ecosystem DEO Can Sci. Advic Sec
43 44	750	Di 0, 2003. State of the Eastern Scotlan Sheri Leosystem. Di 0 Can. Sei. Ravie. See
44 45 46	939	Ecosystem Status Report. 2003/004.
40 47 48	940	Domain F., 1980, Contribution à la connaissance de l'écologie des poissons démersaux du
49 50	941	plateau continental sénégalomauritanien. Les ressources démersales dans le
51 52	942	contexte général du golfe de Guinée. Thèse Doctorat d'Etat Univ. Paris VI Mus.
53 54	943	Nat. Hist. Nat.
55 56		
57 59		
58 59		

	944	Domalain, G., Jouffre, D., Thiam, D., Traoré, S., and Wang, CL. 2004. Évolution de la
	945	diversité spécifique dans les campagnes de chalutage démersales du Sénégal et de la
	946	Guinée. Pp : 299-310 – In : Chavance P., Ba M., Gascuel D., Vakily M. & Pauly D.
)	947	(éd.), Pêcheries maritimes, écosystèmes & sociétés en Afrique de l'Ouest : Un
<u>2</u> 3	948	demi-siècle de changement [Marine fisheries, ecosystems and societies in West
5	949	Africa : half a century of change], actes du symposium international, Dakar
7 3	950	(Sénégal), 24-28 juin 2002, Bruxelles, Office des publications officielles des
))	951	Communautés européennes, XXXVI-532-XIV p., 6 pl. ht. coul., I.S.B.N. 92-894-
2	952	7480-7 (coll. Rapports de recherche halieutique A.C.PU.E., n° 15).
5	953	Essington, T. E., Beaudreau, A. H., and Wiedenmann, J. 2006. Fishing through the food
) 7 2	954	webs. Proceedings of the National Academy of Sciences of the United States of
))	955	America, 103(9): 3171-3175.
2	956	FAO. 1995. Precautionary approach to fisheries. Part 1: Guidelines on the precautionary
5	957	approach to capture fisheries and species introductions. Elaborated by the Technical
) 7	958	Consultation on the Precautionary Approach to Capture Fisheries (Including
}))	959	Species Introductions). Lysekil, Sweden, 6–13 June 1995 (A scientific meeting
) <u>2</u>	960	organized by the Government of Sweden in cooperation with FAO). FAO Fisheries
3	961	Technical Paper. No. 350, Part 1. Rome, FAO. 1995. 52 p
5 5 7	962	FAO. 2003. Fisheries Management 2. The Ecosystem Approach to Fisheries. FAO
3	963	Technical Guidelines for Responsible Fisheries. Food and Agricultural Organization
)	964	of the United Nations, Rome 4 (Supplement 2): 112 pp.
<u>2</u> 3 1	965	Fulton, E. A., Smith, A. D., and Punt, A. E. 2005. Which ecological indicators can robustly
5 6	966	detect effects of fishing? ICES Jounal of Marine Science, 62: 540-551.
3		
,)		44

2		
3 4	967	Garcia, S. M., Zerbi, A., Aliaume, C., Do Chi, T., and Lasserre, G. 2003. The ecosystem
5 6 7	968	approach to fisheries: issues, terminology, principles, institutional foundations,
7 8 9	969	implementation and outlook. FAO Technical Paper 443. FAO, Rome. 71 pp.
10 11	970	Guevara-Carrasco, R., and Lleonart, J. 2008. Dynamics and Fishery of the Peruvian hake:
12 13	971	between the nature and the man. Journal of Marine Systems, 71: 249-259.
14 15	972	
16 17	973	Gutierrez, M., Swartzman, G., Bertrand, A., and Bertrand, S. 2007. Anchovy and sardine
18 19 20	974	spatial dynamics and aggregation patterns in the Humboldt Current ecosystem,
20 21 22	975	Peru, from 1983-2003. Fisheries Oceanography, 16: 155-168.
23 24	976	Gutiérrez, D., Sifeddine, A., Field, D. B., Ortlieb, L., Vargas, G., Chávez, F., Velazco, F.,
25 26 27	977	Ferreira, V., Tapia, P., Salvatteci, R., Boucher, H., Morales, M. C., Valdés, J.,
28 29	978	Reyss, JL., Campusano, A., Boussafir, M., Mandeng-Yogo, M., García, M., and
30 31	979	Baumgartner, T. 2008. Rapid reorganization in ocean biogeochemistry off Peru
32 33 34	980	towards the end of the Little Ice Age. Biogeosciences.
35 36	981	Halliday, R. G., Fanning, L. P., and Mohn, R. K. 2001. Use of the traffic light method in
37 38	982	fishery management planning. CSAS Research Document 2001/18. 41 pp.
39 40 41	983	Hays, G.C., Richardson, A. J. and Robinson, C. 2005. Climate change and marine plankton.
42 43	984	Trends in Ecology and Evolution, 20(6): 337-344.
44 45	985	Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C.,
46 47 48	986	Bruno, J.F., et al., 2008. A Global Map of Human Impact on Marine Ecosystems.
49 50	987	Science, 319: 948-952, DOI: 10.1126/science.1149345.
51 52	988	Hollingworth, C. (ed.). 2000. Ecosystem effects of fishing. Proceedings of an ICES/SCOR
53 54 55	989	Symposium held in Montpellier, France 16-19 March 1999. ICES Journal of Marine
56 57	990	Science, 57 (3): 465-792 pp.
58 59 60		45

3 1	991	Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton,
5	992	H., et al., 2005. Effects of biodiversity on ecosystem functioning: a consensus of
3	993	current knowledge, Ecological Monographs, 75: 3-35.
0 11	994	ICES, 2008. The Effect of climate change on the distribution and abundance of marine
2 3	995	species in the OSPAR Maritime Area. ICES Cooperative Research Report 293.
14 15 16	996	Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque,
7 8	997	B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P.,
19 20 21	998	Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck,
22 23	999	R. S., Tegner, M. J., and Warner, R. W., 2001. Historical overfishing and the recent
24 25	1000	collapse of coastal ecosystems. Science 293, 629-638. Jennings, S. and N.K. Dulvy.
26 27 28	1001	2005. Reference points and reference directions for size-based indicators of
29 30	1002	community structure. ICES Journal of Marine Science, 62: 397-404.
31 32 33	1003	Jennings, S., and Blanchard, J. L. 2004. Fish abundance with no fishing: predictions based
33 34 35	1004	on macroecological theory. Journal of Animal Ecology, 73: 632-642.
36 37	1005	Jennings, S., and Dulvy, N. K. 2005. Reference points and reference directions for
38 39 10	1006	sizebased indicators of community structure. ICES Journal of Marine Science, 62:
10 11 12	1007	397-404.
13 14 15	1008	Keeney, R.L., and Raiffa, H. 1976 Decisions with multiple objectives: Preferences and
+5 16 17	1009	value tradeoffs. J. Wiley, New York.
18 19	1010	Koeller, P., Savard, L., Parsons, D. G., and Fu, C. 2000. A precautionary approach to
50 51 52	1011	assessment and management of shrimp stocks in the Northwest Atlantic. Journal of
53 54	1012	Northwest Atlantic Fishery Science, 27: 235-246.
55 56		
57 58 59		
50		46

2		
3	1013	Libralato, S., Coll, M., Tudela, S., Palomera, I., and Pranovi, F. 2008. A new index to
5 6 7	1014	quantify ecosystem impacts of fisheries as the removal of secondary production.
8 9	1015	Marine Ecology Progress Series, 355: 107-129.
10 11	1016	Link, J. S., Yemane, D., Shannon, L. J., Coll, M., Shin, Y J., Hill, L., and Borges, MF.
12 13	1017	Relating Marine Ecosystem Indicators to Fishing and Environmental Drivers: An
14 15 16	1018	Elucidation of Contrasting Responses.
17 18	1019	Link, J. S. 2005. Translating ecosystem indicators into decision criteria. ICES Journal of
19 20 21	1020	Marine Science, 62: 569-576.
21 22 23	1021	Link, J. S., Brodziak, J. K. T., Edwards, S. F., Overholtz, W. J., Mountain, D., Jossi, J. W.,
24 25	1022	Smith, T. D., and Fogarty, M. J. 2002. Marine Ecosystem Assessment in a
26 27 28	1023	Fisheries Management Context. Canadian Journal of Fisheries and Aquatic
29 30	1024	Sciences, 59: 1429-1440.
31 32	1025	Lobry, J., Gascuel, D., and Domain, F. 2003. La biodiversité spécifique des ressources
33 34 35	1026	démersales du plateau continental guinéen: utilisation d'indices classiques pour le
36 37	1027	diagnostic sur l'évolution de l'écosystème. Aquatic Living Resources, 16 : 59-68.
38 39 40	1028	Longhurst, A. 2002. Murphy's law revisited: longevity as a factor in recruitment to fish
40 41 42	1029	populations. Fisheries Research, 56: 125-131.
43 44	1030	Lotze, H. K., and Milewski, I. 2004. Two Centuries of Multiple Human Impacts and
45 46 47	1031	Successive Changes in a North Atlantic Food Web. Ecological Applications, 14(5):
48 49	1032	1428-1447.
50 51	1033	Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C.,
52 53 54	1034	Kidwell, S. M., et al., 2006. Depletion, Degradation, and Recovery Potential of
55 56	1035	Estuaries and Coastal Seas. Science, 312: 1806-1809.
57 58		
59 60		47

2
2
3
4
5
6
7
8
o o
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
2/
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
15
40
40
47
48
49
50
51
52
52
53
54
55
56
57
58
59
60
00

1036	Mardle, S., and Pascoe, S. 1999. A review of applications of multiple criteria decision-
1037	making techniques to fisheries. Marine Resource Economics, 14: 41-63.
1038	McDaniels, T. L. 1995. Using judgment in resource management: a multiple objective
1039	analysis of a fisheries management decision. Operations Research, 43: 415-426.
1040	Methratta, E. T., and Link, J. S. 2006. Evaluation of Quantitative Indicators for Marine
1041	Fish Communities. Ecological Indicators, 6: 575-588.
1042	Montecinos, A., Purca, S., and Pizarro, O. 2003. Interannual to- interdecadal sea surface
1043	temperature variability along the western coast of South America. Geophysical
1044	Research Letters, 30(11): 1-4.
1045	Murawski, S.A. 2000. Definitions of overfishing from an ecosystem perspective. ICES
1046	Journal of Marine Science, 57: 649-658.
1047	Neira, S. 2008. Assessing the effects of internal (trophic structure) and external (fishing and
1048	environment) forcing factors on fisheries off Central Chile: basis for an ecosystem
1049	approach to management. PhD thesis, University of Cape Town. 254 pp. + 2
1050	appendices.
1051	Nicholson, M. D., and Jennings, S. 2004. Testing candidate indicators to support
1052	ecosystem-based management: the power of monitoring surveys to detect temporal
1053	trends in fish community metrics. ICES Journal of Marine Science, 61: 35-42.
1054	Paterson, B., Jarre, A., Moloney, C. L., Fairweather, T. P., van der Lingen, C. D., Shannon,
1055	L. J., and Field, J. G. 2007. A fuzzy-logic tool for multi-criteria decision making in
1056	fisheries: the case of the South African pelagic fishery. Marine and Freshwater
1057	Research, 58: 1056–1068.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
∠ I 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 //7	
10	
-+0 ∕\0	
49 50	
50	
51	
52 52	
ວ ວ	
54	
55	
56	
57	
58	
59	

60

Patterson, K. 1998. Assessing fish stocks when catches are misreported: model, simulation
tests, and application to cod, haddock, and whiting in the ICES area ICES Journal of
Marine Science, 55(5): 878-891.

- Pauly D., Christensen V., Dalsgaard J., Froese R., and Torres, F.J. 1998. Fishing down
 marine food webs. Science, 279: 860-863.
- Pauly, D., Palomares, M. L., Froese, R., Pascualita, S., Vakily, M., Preikshot, D., and Wallace, S.
 2001. Fishing down Canadian aquatic food webs. Canadian Journal of Fisheries and
 Aquatic Sciences, 58: 51–62.
- 1066Pauly, D., Watson, R., and Alder, J. 2005. Global trends in world fisheries: impacts on1067marine ecosystems and food security. Philosophical Transactions of the Royal1068Society B 360 (1453): 5-12. doi 10.1098/rstb.2004.1574
- 91069Pitcher T. J., Kalikoski, D., Short, K., Varkey, D., and Pramoda, G. 2008. An evaluation01070of progress in implementing ecosystem-based management of fisheries in 33
 - 1071 countries. Marine Policy (2008), doi:10.1016/j.marpol.2008.06.002
- 1072 Rice, J. 2008. Can we manage ecosystems in a sustainable way? Journal of Sea Research,
 1073 60: 8-20.
 - 1074 Rice, J. C., and Rochet, M.-J. 2005. A framework for selecting a suite of indicators for
 1075 fisheries management. ICES Journal of Marine Science, 62: 516-527.
 - 1076Rochet, M.-J., and Trenkel, V. M. 2003. Which community indicators can measure the1077impact of fishing? A review and proposals. Canadian Journal of Fisheries and
 - 1078Aquatic Sciences, 60: 86-99.
 - 1079 Rochet, M.-J., Trenkel, V. M., Bellail, R., Coppin, F., Le Pape, O., Mahe', J-C., Morin, J.
 - 1080 *et al.*, 2005. Combining indicator trends to assess ongoing changes in exploited fish

2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
11	
44	
40	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1081 communities: diagnostic of communities off the coasts of France. ICES Journal of 1082 Marine Science, 62: 1647–1664. 1083 Santos, A.M.P., Kazmin, A.S., and Peliz, A. 2005. Decadal changes in the canary 1084 upwelling system as revealed by satellite observations: their impact on productivity. 1085 Journal of Marine Research, 63: 359-379. 1086 Shannon, L. J, Coll, M., and Neira, S. in press. Understanding the behaviour of ecological 1087 indicators using food web models fitted to time series of abundance and catch data. 1088 Ecosystem Indicators, accepted for publication. 1089 Shannon, L. J., Neira, S., and Taylor, M. 2008. Comparing internal and external drivers in 1090 the southern Benguela and the southern and Northern Humboldt upwelling 1091 ecosystems. African Journal of Marine Science, 30(1): 63-84. 1092 Shannon, L. J., Coll, M., Yemane, D., Jouffre, D., Neira, A., Betrand, A., Diaz, E., and 1093 Shin, Y.-J. Comparing data-based indicators across upwelling and comparable 1094 systems for communicating ecosystem states and trends. This volume. 1095 Shin, Y.-J., Shannon, L. J., Bundy, A., Rochet, M.-J., Coll, M., Cury, M., Borges, M.-F., 1096 Link, J., et al. Using indicators for evaluating, comparing and communicating the 1097 ecological status of exploited marine ecosystems. Part 2: Setting the scene. 1098 Sidibé et al., 1999, cited in Laurans, M., Gascuel, D., Chassot, E., Thiam, D. 2004. 1099 Changes in the trophic structure of fish demersal communities in West Africa in the 1100 three last decades. Aquatic Living Resources, 17: 163–173. 1101 Sinclair, A. F., Swain, D. P., and Hanson, J. M. 2002. Measuring changes in the direction 1102 and magnitude of size-selective mortality in a commercial fish population. Canadian

1103 Journal of Fisheries and Aquatic Sciences, 59: 361-371.

05

06

07

08

09

10

1

resources. Lecture Notes in Biomathematics 99, Springer-Verlag, Berlin. 264 pp.

to indicator-based interactive advice. ICES Journal of Marine Science, 64: 768-774.

3) .4-536.

Trenkel, V.M., Rochet, M.-J., and Mesnil, B. 2007. From model-based prescriptive advice

Watson, R., and Pauly, D. 2001. Systematic distortions in world fisheries catch trends.

Nature, 414 (6863): 534-536.

Stokes, T. K., McGlade, J. M., and Law, R., eds. 1993. The exploitation of evolving

2	
2 3 4	11
5 6	11
7 8 0	11
9 10 11	11
12 13	11
14 15	11
16 17	11
18 19 20	
20 21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34 25	
35 36 27	
37 38 30	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

Table 1. List of the nineteen ecosystems considered in the decision tree classification of ecosystems. MFA= FAO Major Fishing Area, Div= FAO Division (adapted from Shin *et al.*, this volume), including the years for which data are available to estimate the ecosystem indicators.

Coastal ecosystem	Geographical area	Surrounding countries	FAO fishing zones	First	Last year
				year of	of time
				time	series
				series	
Bering Sea, Aleutian Islands	NE Pacific	Alaska, US	MFA: 67	1978	2005
West coast Canada	E Central Pacific	Canada		1980	2005
Southern Humboldt	SE Pacific	Chile	MFA: 87, Div: 2.2.	1993	2004
Northern Humboldt	SE Pacific	Peru	MFA: 87, Div: 1.1, 1.2	1983	2005
Eastern Scotian shelf	NW Atlantic	Canada	MFA: 21, Div: 4V, 4W	1970	2005
North East US	NW Atlantic	US		1963	2005
Bay of Biscay	NE Atlantic	France	MFA: 27, Div: VIIIa, b	1994	2005
North Sea	NE Atlantic	UK, Norway, Denmark,	MFA: 27, Div: IVa,b,c, Illa		
		Germany, Netherlands,		1983	2005
		Belgium			
Barents sea	NE Atlantic	Norway	MFA: 27, Div: I, IIb	1984	2005
Irish Sea	NE Atlantic	Ireland, UK	MFA: 27, Div: VIIa	1973	2005
Portuguese EEZ	NE Atlantic	Portugal	MFA: 27, Div: IXa	1981	2005
Baltic Sea	NE Atlantic	Germany, Estonia, Sweden,	MFA: 27, Div: IIId 25 to 29		
		Poland, Russia, Lithuania,		1974	2005
		Latvia, Finland			
Southern Catalan Sea	NW Mediterranean	Spain	MFA: 37, Div: 1.1	1978	2003
North Central Adriatic Sea	Central Mediterranean	Italy, Slovenia, Croatia,	MFA: 37, Div: 2.1		
		Bosnia-Herzegovina,		1976	2005
		Montenegro			
Sahara Coastal	E Central Atlantic	Morocco	MFA: 34, Div: 1.3	1998	2005
Senegalese EEZ	E Central Atlantic	Senegal	MFA: 34, Div: 3.12	1986	2005
Guinean EEZ	E Central Atlantic	Guinea	MFA: 34, Div: 3.13	1985	2005
Mauritania	E Central Atlantic	Mauritania		1982	2005
Southern Benguela	SE Atlantic	South Africa	MFA: 47, Div: 1.6, 2.1	1986	2005

Table 2. Suite of six ecosystem indicators for diagnosing ecosystem status with corresponding management objectives (L: length (cm), i: individual, s: species, N: abundance, B: biomass, Y: catch (tons), D=decline over time, RP = Resource Potential, EF = Ecosystem structure and Functioning, CB=Conservation of Biodiversity, SR = Ecosystem Stability and Resistance to Perturbations, (adapted from Shin et al., this volume).

Indicators	Headline label	Source	Calculation, notations, units	Expected Trend under fishing pressure	Conservation Goals
Mean length of fish in the community	fish size	Fisheries Independent Surveys	$\overline{L} = \frac{\sum_{i} L_{i}}{N} (\text{cm})$	D	EF
Mean life span of fish in the community	life span	Fisheries Independent Surveys	$\overline{LS} = \frac{\sum_{S} (age_{\max} B_{S})}{\sum_{S} B_{S}} (y^{-1})$	D	SR
Total biomass of species in the community	biomass	Fisheries Independent Surveys	B (tons)	D	RP
Proportion of predatory fish in the community	% predators	Fisheries Independent Surveys	prop predatory fish= B predatory fish/B surveyed	D	СВ
TL landings	trophic level	Commercial landings and estimates of trophic level (empirical and fishbase)	$\overline{TL}_{land} = \frac{\sum_{s} TL_{s} Y_{s}}{Y}$	D	EF
1/(landings /biomass)	inverse fishing pressure	Commercial landings	B/Y retained species	D	RP

Indicator	Reasons for an increase	Reasons for an decrease	References
Mean fish size This indicator is based on individual length data at the community level	 Increase in abundance of large fish in dominant populations Decrease in recruitment in dominant populations Increase in mean growth rates due to favourable environmental conditions Decrease in abundance of stocks comprised of small-sized fish Increase in abundance of stocks comprised of large-sized fish Regime shift toward condition favouring large 	 Loss of larger fish from dominant populations Strong recruitment success in dominant populations Decrease in mean growth rates due to unfavourable environmental conditions Increase in abundance of stocks comprised of small-sized fish Decrease in abundance of stocks of large-sized fish Regime shift toward condition favouring small 	Shin <i>et al.</i> , 2005; Rochet and Trenkel, 2005; Chavez <i>et al.</i> , 2003, 2008
Mean life span This indicator is not based on individual data but on life history traits weighted by species biomass: the variations are meant to capture changes in species composition	 fish species Increase in the biomass of species with high longevity Decrease in the biomass of species with short life span Regime shift toward condition favouring large fish species 	 pelagic fish Decrease in the biomass of species with high longevity Increase in the biomass of species with short life span Demographic explosions of invertebrates (e.g. Cephalopods, crustaceans) Regime shift toward condition favouring small pelagic fish 	
Biomass Biomass is the total amount of surveyed fish species in the ecosystem, expressed either as a unit per time or area or as an absolute value for the ecosystem.	 Reduced mortality due to fishing Good reproductive success leading to high recruitment due to a large spawner stock biomass, favourable climatic conditions, etc Reduced predation or increased food supply i.e. Favourable trophic interactions. 	 Increased mortality – both fishing and natural (due to predation, pollution, unfavourable environmental conditions). Fishing mortality can be of two kinds - direct and indirect. Direct mortality is the catch of target species, and includes the unintended mortality of non-target species, bycatch species and discarding. Indirect mortality includes increased predation or 	Duplisea <i>et</i> <i>al.</i> , 1997; Rice, 2005; Rochet and Trenkel, 2005; Rogers and Greenaway, 2005

T 11 0	C	C	1 /1	· ,	• 1• /	•	1
I ahle 4	Nummary C	t reacone v	why the ci	v ecocyctem	indicatore	may increase	or decrease
Table J.	Summary				multators	may morease	
			. J	J			

2		
2		
1		
5		
6		
7		
8		
a		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
30		
37		
38		
39		
40		
41		
42		
40		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		

60

surveyed species that are not planktivorous and feed on fish or invertebrates larger • than 2 cm. Variations in this indicator capture changes in the trophic structure of the ecosystem. If predatory fish merely increase in proportion to overall fish biomass, then no proportional change is seen Trophic level of Landings This indicator is a measure of the average trophic • level of the species exploited by the fishery

% predators, Predators are

defined as all

- Reduced fishing on predatory fish
- Distributional changes of predators or prey
- Increased availability of prey for predators
- Competitive release
- Regime shift toward condition favouring large fish species

- competition propagated through the food web.as a result of species changes due to fishing.
- Poor reproductive success due to unfavourable environmental conditions, leading to low recruitment.
- Increased predation, increase competition, or depleted food supply i.e. Unfavourable trophic interactions
- Increased fishing pressure on predatory fish or their prey
- Distributional changes of predators and/or prey
- Reduced availability of prey
- Competitive exclusion
- Regime shift toward condition favouring small pelagic fish

- Early stage of exploitation of fishery
- Shift in fishing effort from lower to higher trophic level species
- Decrease in productivity at lower trophic levels
- Targetting of larger individuals at higher tls within a species.
- Regime shift toward condition favouring large fish species

- Fishing effort shifted to lower trophic levels due to:
 - Decrease in biomass of higher trophic levels (Fishing down the foodweb)
 - Preferential shift to more productive lower trophic levels (fishing through the foodweb)
 - Decrease in size composition of commercial

Pauly *et al.*, 1998a,1998b; Caddy *et al.* 1998; Essington *et al.*, 2006

Rochet and

Trenkel, 2005

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32 22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

Inverse fishing pressure This indicator is a

proportion, and

change will be a

biomass or both.

result of change in landed catch,

Furthermore, if both

catch and biomass

change in the same

exploitation rate

may not change

direction,

1

	 trophic feeding level Increase in availability or market value of commercially valuable invertebrates Regime shift toward condition favouring small pelagic fish
May be due to an decrease in catch, a increase in biomass or both	May be due to an increase in catch, a decrease in biomass or both
 Decrease in landed catch due to: Decrease in catch of one or more species Change in management regulations (more restrictive) Decreased productivity One or more stocks fully or overexploited Loss of larger fish from the population(s) being exploited Species or stocks becoming less aggregated Socio-economic disincentives (e.g. Loss of market; increased fuel costs) 	 Increase in landed catch due to: Increase in catch of one or more species Change in management regulations (less restrictive) Increased productivity, few or no restrictions on catch Increase in fishing efficiency or effort Expansion of fishing into new areas Newly exploited stock(s) Species/stocks becoming more aggregated Improved fish-finding equipment Socio-economic incentives (e.g., new markets; lower fuel costs, subsidies)
Increase in Biomass See Biomass row above in same table	Decrease in Biomass See Biomass row above in same table

species and consequent decrease in

Table 4. Expected combination of trends of ecosystem indicators that specify a given effect on the ecosystem. RP = Resource Potential, EF = Ecosystem structure and Functioning, CB=Conservation of Biodiversity, SR = Ecosystem Stability and Resistance to Perturbations,

Effect on the ecosystem	fish size	life span	biomass	% predators	trophic level	Inverse fishing pressure	Conservation Goals Affected
Fishing Down the Food Web	$\downarrow \rightarrow$	$\downarrow \rightarrow$	↓	$\downarrow \rightarrow$	\downarrow	$\downarrow \rightarrow$	EF, RP (SR, CB)
Loss of diversity and	$\downarrow \rightarrow$	\downarrow	$\downarrow \rightarrow$	\downarrow	$\downarrow \rightarrow$	$\downarrow \rightarrow$	SR, CB (EF, RP)
Loss of size structure ¹ Increased Productivity or	↓ or↑ ↓	↓ or ↑	$\overline{\uparrow}$	↓ or ↑ 	↓ or ↑ 	_	EF (RP, SR) EF, RP
recruitment							

↓ = significant negative trend, \uparrow = significant negative trend, \rightarrow = no trend, — = no expected trend; a large arrow means that the indicator must be included in the trend combination; arrows in grey indicate other indicators and the direction of their slope that would be consistent with the effect on the ecosystem. For For more details, please see the text.

¹ All arrows should either point up or down.

Table 5. Results of the assessment of initial state of the nineteen ecosystems evaluated in this paper. An ecosystem was defined as un-impacted if all of the following criteria applied at the beginning of the time-series: (i) the proportion of under/moderately exploited stocks = 1 (ii) there were no industrialized or destructive fishing practices and (iii) there were no documented community or ecosystem impacts caused by fishing, see text for further details.

			no	no documented	Degree	
	Year for which initial	proportion of under or moderately	industrialized or destructive	community/ ecosystem impacts	ot impact (#	
	state is described	exploited stocks	fishing practices?	caused by fishing?	Criteria not met)	Initial State
Baltic Sea	1974	0.33			3	Impacted
Barents Sea	1984	0.17			3	Impacted
Bay Biscay	1992	0.52			3	Impacted
Bering Sea, Aleutian	4070					
Islands	1978	<1				Impacted
Eastern Scotlan shelf	1970	<1		1		Impacted
Guinean EEZ	1985	0.8		\mathcal{N}	2	Impacted
Irish Sea	1973	< 0.33		1		Impacted
Mauritania	1982	0.5			3	Impacted
North Central Adriatic Sea	1975	<1			3	Impacted
North East US	1963	0.36			3	Impacted
North Sea	1983	0.09			3	Impacted
Northern Humboldt	1983	0.75		1	3	Impacted
Portuguese EEZ Sahara Coastal -	1981	0.5		\checkmark	0	impacted
Morrocco	1993	< 1			3	Impacted
Senegalese EEZ	1981	0.4		\checkmark	2	Impacted
Southern Benguela	1980	0.57			3	Impacted
Southern Catalan Sea	1978	<1			3	Impacted
Southern Humboldt	1993	< 0.5			3	Impacted
West coast Canada	1980	0.57			3	Impacted

.

Table 6. Trends in ecosystem indicators over the entire length of their time series (to 2005) for the nineteen ecosystems evaluated in this paper using generalised least squares and autoregressive error. Significance levels are shown by bold (α =0.05) and italics (α =0.1) font.

	Ecosystem Indicator	Fish	Life	Biomass	%	Trophic	lnv.	Length
		size	span		predators	level	fishing	of time
							pressure	series
			00		0.0			(years)
	Conservation Goal	EF	SR	RP	CB	EF	RP	
	Ecosystem							
1	Baltic Sea	-0.084	-0.057	-0.078	-0.043	-0.047	-0.047	32
2	Barents Sea	0.072	0.053	0.087	-0.020	0.081	0.070	22
3	Bay of Biscay	0.063	-	-0.129	0.052	0.018	-0.027	12
4	Bering Sea, Aleutian	0.089	0.001	0.022	0.023	0.038	-0.024	1
_	Islands							28'
5	Eastern Scotian	-0.071	-0.050	-0.041	-0.021	-0.045	0.078	00
6		0.400	0 0 2 0	0.010	0 4 0 4	0 002	0 4 2 4	30
0		0.100	0.039	-0.010	0.101	0.093	-0.124	21
1	Insh Sea	-0.118	0.110	0.043	0.046	-0.091	0.079	33-
8	Mauritania	0.075	0.044	0.045	0.010	-0.144	-0.157	24°
9	North Central	-0.111	0.090	-0.069	0.061	-0.033	-0.070	20 ⁴
10	Aurialic Sea	0.044	0.059	0.056	0.050	0.012	0.051	30
10	North See	-0.044	0.050	0.050	-0.050	0.012	-0.051	43
11	North are Llumbaldt	-0.130	0.010	0.002	0.036	-0.005	0.145	23
12		-	-0.119	0.075	0.085	0.133	-0.079	23
13	Portuguese ZEE	0.000	0.033	-0.068	0.032	0.065	0.040	25
14	Sahara Coastal -		0.003	0.366	-0.230	-0.310	0.321	0
15	NIOFFOCCO	0.054	0 020	0 122	0.041	0 082	0 1 4 1	8
10		-0.004	0.039	-0.132	0.041	-0.002	-0.141	20
10	Southern Catalan	0.020	-0.070	0.107	-0.043	-0.000	0.150	20
17	Southern Catalan	-0.122	-0.009	0.051	-0.046	0.025	0.059	26
18	Sea Southern Humboldt	-0.055	0.066	-0 193	0.058	-0 196	0.063	20 10
10	West Coast Canada	-0.000	0.000	0.155	0.000	0.100	0.000	12
10	Number of	7	0.024 3	5	1	7	6	20
	significant negative	'	5	5	1	1	0	
	trends							
	Number of	2	2	7	3	3	7	
	significant positive	_	-	•	-	-	·	
	trends							

¹ Time series for fish size was 24 years long.

² Time series for fish size and lifespan was 16 years long.

³ Time series for fish size was 20 years long and trophic level and Inverse fishing pressure was 16 years long.

⁴ Time series for fish size, life span and % predators was 24 years long.

Table 7. The probabilities of ending up at the end points of the decision tree under the null hypothesis of a stable neutral community, under six alternative orders of ecosystem indicators and using Decision Rule 1 (see below for orders).

	Order 1	Order 2	Order 3	Order 4	Order 5	Order 6	Average	Range
Baltic Sea	0.025	0.024	0.025	0.021	0.023	0.024	0.024	0.004
Barents Sea	0.019	0.020	0.020	0.020	0.020	0.020	0.020	0.001
Bay of Biscay	0.735	0.735	0.735	0.735	0.735	0.735	0.735	0.000
Bering Sea	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.000
Eastern Scotian shelf	0.025	0.025	0.023	0.024	0.025	0.001	0.020	0.024
Guinea ZEE	0.000	0.000	0.000	0.000	0.001	0.025	0.004	0.025
Irish Sea	0.025	0.000	0.000	0.001	0.025	0.001	0.009	0.025
Mauritania	0.020	0.021	0.023	0.024	0.025	0.025	0.023	0.005
North Central Adriatic Sea	0.025	0.001	0.025	0.023	0.024	0.025	0.020	0.024
North East US	0.025	0.000	0.001	0.025	0.024	0.025	0.017	0.025
North Sea	0.025	0.001	0.001	0.024	0.025	0.001	0.013	0.024
Northern Humboldt	0.024	0.025	0.000	0.000	0.001	0.025	0.012	0.025
Portuguese ZEE	0.023	0.024	0.025	0.019	0.020	0.021	0.022	0
Sahara Coastal - Morrocco	0.001	0.001	0.001	0.024	0.025	0.001	0.008	0.024
Senegalese ZEE	0.023	0.024	0.025	0.023	0.024	0.025	0.024	0.002
Southern Benguela	0.001	0.001	0.001	0.024	0.025	0.000	0.008	0.025
Southern Catalan Sea	0.025	0.025	0.000	0.001	0.001	0.001	0.009	0.025
Southern Humboldt	0.023	0.024	0.025	0.024	0.025	0.021	0.024	0.004
West Coast Canada	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0

Order 1 = fish size, life span, biomass, % predators, trophic level, inverse fishing pressure Order 2 = life span, biomass, % predators, trophic level, inverse fishing pressure, fish size Order 3 = biomass, % predators, trophic level, inverse fishing pressure, fish size, life span Order 4 = % predators, trophic level, inverse fishing pressure, fish size, life span, biomass Order 5 = trophic level, inverse fishing pressure, fish size, life span, biomass, % predators Order 6 = inverse fishing pressure, fish size, life span, biomass, % predators, trophic level

1 Table 8. Potential effects on the ecosystem during the entire time series (to 2005), under

2 Decision Rule 1. FDFW = Fishing down the food web, DS = loss of diversity and stability,

3 SS = size selective effects of fishing, PR = increased productivity or recruitment. Only

- 4 ecosystems with observed effects are shown. Shaded cells indicate an effect; stippled cells
- 5 indicate an effect where one or more of the significant trends were significant at the 10%
- 6 level.

	FDFW	SR	SS	PR
Baltic Sea				
Barents Sea				
Bay of Biscay				
Bering Sea				
Eastern Scotian shelf				
Guinea ZEE				
Irish Sea				
Mauritania				
North Central Adriatic Sea				
North East US				
North Sea				
Northern Humboldt				
Portuguese ZEE				
Sahara Coastal -				
Morrocco				
Senegalese ZEE				
Southern Benguela		•		
Southern Catalan Sea				
Southern Humboldt				
West Coast Canada				

- Table 9. Comparison of decision tree diagnoses for three time windows, pre-1980s-2005,
- 1980-2005 and 1996-2005, under Decision Rule 1. Shaded cells indicated diagnosis. I
- =improving, Not I = not improving, D = deteriorating.

11											
			Pr	e-1980 2005)s-	19	980-20	05	19	996-200)5
	Start of time series	Ecosystem Diagnosis	I	Not I	D	1	Not I	D	I	Not I	D
	pre-1980s	Baltic Sea									
		Bering Sea, Aleutian Islands Eastern Scotian shelf Irish Sea									
		North Central Adriatic Sea									
		North East US Southern Catalan Sea									
	1980s	Barents Sea Guinea ZEE Mauritania North Sea Northern Humboldt Portuguese ZEE Senegalese ZEE Southern Benguela									1
	1990s	Bay of Biscay Sahara Coastal - Morocco Southern Humboldt		7							
12							2				

 Table 10. Comparison of potential effects on the ecosystem during three time windows, pre-1980s-2005, 1980-2005 and 1996-2005, under Decision Rule 1. FDFW = Fishing down the food web, DS = loss of diversity and stability, SS = loss of size structure, PR= increased productivity or recruitment. Only ecosystems with observed effects are shown. Shaded cells indicate an effect; stippled cells indicate an effect where one or more of the significant trends were significant at the 10% level.

Otent of times		Pro	e-1980:	s-2005		1980-2005 1996-20						005	
start of time	Ecosystem	FDFW	DS	SS	PR	FDFW	DS	SS	PR	FDFW	DS	SS	PR
pre-1980s	Baltic Sea												
	Bering Sea, Aleutian Islands												
	Eastern Scotian shelf												
	Irish Sea												
	North East US												
	Southern Catalan Sea												
1980s	Southern Benguela												
	North Sea												
	Guinea ZEE												
	Portuguese ZEE												
1990s	Southern Humboldt												

19 Figure Captions

1

2 3 4

5 6	20	
7 8 9	21]
10 11	22	
12 13	23	
14 15 16	24	
17 18	25	
19 20	26	
21 22 23	27	
24 25	28	
26 27	29	
28 29 30	30	
31 32	31	
33 34 25	32	
35 36 37	33	
38 39	34	
40 41 42	35	
42 43 44	36	
45 46	37]
47 48 40	38	
49 50 51	39	
52 53	40	
54 55 56		
50 57 58		
59 60		

21	Figure 1. Decision Tree Diagnoses for the nineteen ecosystems (a) Improving, (b) Not-
22	Improving and (c) and (d) Deteriorating. The first node of the decision tree is Fish
23	size. If this is decreasing, Decision Rule 1 is invoked and the decision tree is
24	terminated (1c): if it is increasing or there is no trend, then the decision tree moves
25	down to the next node (indicator), and same process is followed until either
26	Decision Rule 1 terminates the decision tree, or the last node, inverse fishing
27	pressure is reached. The 3 arrows at each node indicate the 3 possible directions of
28	the indicator trend, decreasing (red), increasing (green) or no trend (striped); the
29	thick black arrow indicates the observed trend. Thickness of branches connecting
30	nodes represent the probability under the null hypothesis of a stable neutral
31	community associated with that path: thick solid line (no change), p=0.95, thin
32	dashed line (significant trend), p=0.025. The overall probability of the end-point of
33	the decision tree for each ecosystem is the product of the probabilities associated
34	with each node until the decision tree is terminated. NB. Note in 1(a) white nodes
35	indicates missing data, where it is assumed p=0.95. See text for further details.
36	
37	Figure 2. Decision Tree results for Guinea EEZ using Decision Rule 1, but under different

Figure 2. Decision free results for Guinea EEZ using Decision Rule 1, but under different
 indicator orders (see Table 3). In each case, Guinea EEZ is diagnosed as
 deteriorating, but the end probabilities associated with each result differ. For
 "Order 1" see Figure 1(d). See text and Figure 1 for more details.

- 49 Appendix 1. Detailed Results for Initial State.
- 50 I have not been able to assemble this yet to be added if editor and reviewers agree.

51	Appendix 2.	Comparison	of trends in ec	cosystem indicators	for three time	e windows, pre-
	rr · · ·	F ·· · · ·				- ··· ··· · ··· · · · · · · · · · · · ·

1980s-2005, 1980-2005 and 1996-2005, under Decision Rule 1, with decision tree

diagnosis and the probabilities associated with each result. Green cell = significant

positive trend, orange cell = significant negative trend, no shading = no trend, grey cells

indicate no data. Note it was assumed that missing indicators did not to change and were

assigned d a probability of 0.95. Overall probability is the product of the probabilities for

each indicator until the decision tree is terminated by Decision Rule 1.

Ecosystem	EF mLG	SR mLS	RP Bs	CB BpBs	EF TLc	RP 1/LtBs	Diagnosis	Probability
Pre 1980s-2005								
Baltic Sea	0.025	0.95	0.025	0.95	0.95	0.95	D	0.025
Bering Sea, Aleutian								
Islands	0.025	0.95	0.95	0.95	0.95	0.95	Not I	0.019
Eastern Scotian shelf	0.025	0.025	0.95	0.95	0.025	0.025	D	0.025
Irish Sea	0.025	0.95	0.025	0.025	0.025	0.025	D	0.025
North Central Adriatic Sea	0.025	0.025	0.025	0.95	0.95	0.025	D	0.025
North East US	0.025	0.025	0.025	0.025	0.95	0.025	D	0.025
Southern Catalan Sea	0.025	0.025	0.95	0.95	0.95	0.025	D	0.025
1980-2005 Baltic Sea	0.025	0.025	0.05	0.025	0.025	0.05	П	0.025
Ballic Sea Bay Riscay	0.025	0.025	0.95	0.023	0.025	0.95	Not	0.025
Barents Sea	0.95	0.95	0.95	0.95	0.95	0.95	Not	0.733
Bering Sea Aleutian	0.95	0.95	0.95	0.95	0.95	0.025	NULT	0.019
Islands	0.025	0.025	0.95	0.95	0.95	0.95	I	0.001
Fastern Scotian shelf	0.025	0.95	0.025	0.95	0.025	0.025	D	0.025
Guinea ZEE	0.025	0.95	0.95	0.025	0.025	0.025	D	0.025
rish Sea	0.025	0.95	0.025	0.95	0.025	0.025	D	0.025
Mauritania	0.95	0.95	0.95	0.95	0.025	0.025	D	0.950
North Central Adriatic Sea	0.025	0.025	0.025	0.95	0.95	0.025	D	0.025
North East US	0.95	0.025	0.025	0.95	0.95	0.95	1	0.001
North Sea	0.025	0.95	0.025	0.95	0.025	0.025	D	0.025
Northern Humboldt	0.95	0.025	0.95	0.025	0.025	0.025	D	0.024
Portuguese ZEE	0.95	0.95	0.025	0.95	0.95	0.95	D	0.735
Sahara Coastal -	0.00	0.00	0.020	0.00	0.00	0.00	2	011 00
Morrocco	0.95	0.95	0.025	0.95	0.025	0.025	D	0.950
Senegalese ZEE	0.95	0.95	0.025	0.95	0.95	0.025	D	0.950
Southern Benguela	0.95	0.95	0.025	0.95	0.025	0.025	D	0.950
Southern Catalan Sea	0.025	0.95	0.95	0.95	0.95	0.95	D	0.025
Southern Humboldt	0.95	0.95	0.025	0.95	0.025	0.95	D	0.950
West Coast Canada	0.95	0.95	0.025	0.95	0.025	0.95	Ι	0.001
1996-2005								
Baltic Sea	0.95	0.95	0.025	0.95	0.95	0.95	D	0.023
Barents Sea	0.95	0.95	0.95	0.95	0.95	0.95	Not I	0.774
Bay Biscay	0.95	0.95	0.95	0.95	0.95	0.95	Not I	0.774
Bering Sea	0.95	0.95	0.95	0.95	0.95	0.95	Not I	0.774

	Eastern Scotian Shelf Guinea EEZ Irish Sea Mauritania North Central Adriatic Sea North East US North Sea Northern Humboldt Portuguese ZEE	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.95 0.025 0.95 0.95 0.95 0.95 0.95 0.025	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.25 0.95	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.95 0.95 0.95 0.025 0.025 0.95 0.95	Not I Not I D Not I D Not I D Not I	0.774 0.019 0.001 0.774 0.774 0.774 0.774 0.024 0.020
	Sanara Coastal - Morrocco	0.95	0.95	0.025	0.95	0.025	0.025	D	0.001
	Senegalese ZEE	0.95	0.95	0.25	0.95	0.95	0.95	D	0.774
	Southern Benguela	0.95	0.025	0.025	0.025	0.025	0.95	D	0.950
	Southern Catalan Sea	0.95	0.95	0.95	0.025	0.025	0.95	I	0.001
	Southern Humboldt	0.025	0.95	0.95	0.95	0.025	0.95	D	0.001
	West Coast Canada	0.95	0.95	0.025	0.95	0.95	0.95	Not I	0.020
59									
60									
61									

http://mc.manuscriptcentral.com/icesjms