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Abstract:  
 
Investigations of the diversity of culturable yeasts at deep-sea hydrothermal sites have suggested 
possible interactions with endemic fauna. Samples were collected during various oceanographic 
cruises at the Mid-Atlantic Ridge, South Pacific Basins and East Pacific Rise. Cultures of 32 isolates, 
mostly associated with animals, were collected. Phylogenetic analyses of 26S rRNA gene sequences 
revealed that the yeasts belonged to Ascomycota and Basidiomycota phyla, with the identification of 
several genera: Rhodotorula, Rhodosporidium, Candida, Debaryomyces and Cryptococcus. Those 
genera are usually isolated from deep-sea environments. To our knowledge, this is the first report of 
yeasts associated with deep-sea hydrothermal animals. 
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Introduction 
 
 
Yeasts are ubiquitous microorganisms that represent a part of the microbiota in all 

natural ecosystems, such as soils, freshwaters and marine waters from the ocean 

surface to the deep sea. Marine yeasts are divided into obligate and facultative 

groups. Obligate marine yeasts are yeasts that have never been isolated from 

anywhere other than the marine environment, whereas facultative marine yeasts are 

also known from terrestrial habitats (Kohlmeyer & Kohlmeyer, 1979). Based on these 

definitions, Kohlmeyer & Kohlmeyer (1979) examined yeasts occurring in marine 

environments and gathered a list of 176 species isolated from diverse marine 

habitats. Of those, only 25 were obligate marine yeasts, widely represented by the 

genera Metschnikowia, Rhodosporidium, Candida and Torulopsis. 

 

Hawksworth (2002) hypothesized the existence of 1.5 million fungal species; this 

estimate is now a commonly used and accepted figure. If this is correct, <5% of the 

fungi have been described up to now and these almost exclusively from terrestrial 

environments. In that ecosystem, fungi are known to utilize a wide spectrum of simple 

and more complex organic compounds. The decomposition activities of fungi are 

clearly important in relation to the redistribution of elements among organisms and 

environmental compartments (Gadd, 2007). Bearing in mind these parameters, our 

hypothesis is that deep sea and especially hydrothermal vents, which remain 

underexplored habitats for fungi, could be ecological niches hosting specific fungal 

communities. 

 

Deep-sea hydrothermal vents are localized at seafloor spreading centers called rifts, 

where seawater seeps into cracked regions caused by the presence of hot basalt 

and magma. 
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Seawater carrying dissolved minerals is then emitted from springs. Two major types of 57 

emissions have been found. Warm fluids diffuse at temperatures ranging from 6 to 23°C into 58 

seawater at 2-4°C when hot vents called black smockers emit hydrothermal fluid at 270-59 

380°C (Munn, 2003). Thermal gradients in hydrothermal vents are so important that just a 60 

few centimeters away, the temperature can fall to 2-4°C allowing mesophilic or psychrophilic 61 

organisms as well as thermophilic and hyperthermophilic prokaryotes to grow and interact 62 

with all biotic or abiotic components of these ecosystems. Dense animal communities cluster 63 

around those hot springs. These communities are supported by the chemolithoautothrophic 64 

activities of prokaryotes (Jorgensen and Boetius, 2007).  65 

The occurrence of fungi (filamentous fungi and yeasts) at deep-sea hydrothermal vents 66 

remains an underexplored topic. Over the last years, the interest for the diversity of microbial 67 

eukaryotes in these ecosystems emerged using PCR amplification of SSU ribosomal RNA 68 

genes and sequence analysis (Edgcomb et al. 2002; Lopez-Garcia et al., 2003; 2007). These 69 

papers revealed a scarce fungal diversity but some sequences were novel. Only two papers 70 

have specifically dealt with fungal diversity at deep-sea hydrothermal vents based on culture-71 

dependent methods (Gadanho & Sampaio, 2005; Burgaud et al, 2009). Culturable yeasts 72 

affiliated to Ascomycota and Basidiomycota phyla were reported from hydrothermal waters. 73 

Some papers assessing fungal diversity at deep-sea vents were also published. Bass et al. 74 

(2007) reported the presence of sequences affiliated to Debaryomyces hansenii and novel 75 

sequences closed to Malassezia furfur in hydrothermal sediments. Le Calvez et al. (2009) 76 

reported that fungal diversity from deep-sea vent animals was widely constituted of sequences 77 

affiliated to Chytridiomycota and Basidiomycota phyla. The latter phylum was mostly 78 

represented by yeasts with, for example, the Cryptococcus and Filobasidium genera that form 79 

dense clusters. 80 

 81 

The occurrence of yeasts in other deep-sea environments has been much more studied. 82 

Nagahama et al. (2001b) reported that culturable fungal diversity was dominated by 83 

ascomycetous yeasts in surface sediments in water depths exceeding 2000 meters (Candida, 84 

Debaryomyces, Kluyveromyces, Saccharomyces and Williopsis). Inversely, diversity was 85 

dominated by basidiomycetous yeasts on the subsurface of sediments in water depths 86 

exceeding 2000 meters and from deep-sea clams, tubeworms and mussels (Rhodotorula, 87 

Sporobolomyces, Cryptococcus and Pseudozyma). Recent studies have clearly demonstrated 88 

that Cryptococcus was the dominant genus sequenced from sediments collected at deep 89 

methane cold seeps (Takishita et al., 2006; 2007). Those observations are in agreement with 90 
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Bass et al. (2007) who suggest that yeast forms dominate fungal diversity in deep oceans. 91 

Several yeasts mostly isolated from deep-sea sediments represented new species in the 92 

Ascomycota or Basidiomycota phyla (Nagahama et al., 1999; 2001a; 2003a; 2003b; 2006a; 93 

2008). 94 

 95 

In this study, we decided to assess the presence of yeasts at deep-sea hydrothermal vents 96 

based on a culture-based approach with an emphasis on yeasts in interactions with the 97 

endemic animal fauna thriving in these extreme ecosystems. A recent paper (Gadanho and 98 

Sampaio, 2005) has dealt with the diversity of yeasts in deep-sea vent waters but, to our best 99 

knowledge, this is the first report of the culturable yeasts isolated from deep-sea animals. 100 

Those interactions with the fauna are discussed based on the cultures obtained from the 101 

samples collected during different oceanographic the cruises at Mid-Atlantic Ridge, South-102 

West Pacific Lau Basin and East Pacific Rise. 103 

Materials and methods 104 

Environmental sampling 105 

210 hydrothermal samples were collected during 6 oceanographic cruises at several dates and 106 

locations (For hydrothermal vents locations, see Tivey, 2007): (i) BIOLAU in the Lau Basin, 107 

South-west Pacific (12/05/1989–27/05/1989; 20°3.0′S, 176°7.8′W; -2620 m); (ii) 108 

DIVANAUT2 (19/06/ 1994–01/07/1994) on the MAR at Menez Gwen (37°51′N, 31°31′W; -109 

900 m) and Lucky Strike (37°17′N, 32°16′W; -1650 m) hydrothermal sites; (iii) HERO on the 110 

EPR at Elsa site (30/09/1991–04/11/1991; 12°48′N, 103°57′W; -2630 m); (iv) MARVEL 111 

(29/08/1997–13/09/1997) on the MAR at Menez Gwen and Lucky Strike sites; (v) EXOMAR 112 

(25/07/2005–28/08/2005) on the MAR at Rainbow (36°08′N, 34°00′W, -2300 m), TAG 113 

(26°02′N, 44°54′W, -3630 m) and Lost City (30°04′N, 42°12′W, -900 m) sites; (vi) 114 

MoMARDREAM-Naut (08/07/2007–19/07/2007) on the MAR at Rainbow site. Depending 115 

on cruises, deep-sea sampling was performed using the Deep Submergence Vehicle “Nautile” 116 

or the Remote Operated Vehicle (ROV)  “Victor 6000” and the N/O “Atalante” and 117 

“Pourquoi Pas?” research vessel. 118 

The deep-sea samples were processed as described by Burgaud et al (2009) taking care to 119 

avoid contamination in applying strict sterile sampling conditions. 120 

 121 

Enrichment conditions and isolation 122 
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The samples were processed directly after the Nautile or ROV recovery. The ollected samples 123 

mainly composed of deep-sea hydrothermal vent animals (Rimicaris exoculata and 124 

Chorocaris chacei shrimps and Bathymodiolus azoricus mussels) were used to inoculate the 125 

GYPS culture medium that led to the best isolation rate during a previous study (Burgaud et 126 

al., 2009). This medium contained per liter: glucose (Sigma) 1 g, yeast extract (AES) 1 g, 127 

peptone (AES) 1 g, starch (Fisher) 1 g, sea salts (Sigma) 30 g. This medium was 128 

supplemented per litre with agar 15 g and chloramphenicol (Sigma) 500 mg, pH was also 129 

adjusted to 7.5. Cultures were done aerobically at 4°C, 15°C, 25°C (ambient temperature), 35 130 

and 45°C (only during EXOMAR) at atmospheric pressure until fungal strains were 131 

visualized. During the MoMARDREAM-Naut cruise, some dissections were realized on 132 

board on animal samples in order to investigate the yeast location. 133 

Each purified strain from our collection (Table 1) has been integrated to the ‘Souchothèque de 134 

Bretagne’ culture collection 135 

(http://www.ifremer.fr/souchotheque/internet/htdocs/generique.php?pagebody=catalogue.php136 

) and are available with an accession number associated to their GenBank number. 137 

 138 

Physiological characterization and statistical analysis 139 

All experiments were done in triplicate. The yeasts were grown in liquid GYPS broth media. 140 

The effect of temperature on growth was determined at 5°C, 15°C, 25°C and 35°C at 30 g.L-1 141 

sea salts. The effect of salinity was analyzed modifying sea salts concentrations in media from 142 

0 to 60 g.L-1 with steps of 15 g.L-1 at optimal temperature for each strain. Optical densities 143 

(OD) were measured at 600 nm with Nanocolor 100D (Macherey-Nagel, Hoerdt, France) at 144 

17, 22, 25 and 28 hours of growth under each condition of salinity and temperature. 145 

 146 

DNA extraction and 26S rDNA sequencing 147 

DNA of each strain was extracted using FastDNA Spin Kit (MP Biomedicals, Illkirch, 148 

France) specific for fungi and yeasts. Amplifications of the D1/D2 region of 26S rDNA were 149 

carried out with rDNA primers ITS5 (5’-GGA AGT AAA AGT CGT AAC AAG-3’), LR6 150 

(5’-CGC CAG TTC TGC TTA CC-3’), NL1 (5’-GCA TAT CAA TAA GCG GAG GAA 151 

AAG-3’) and NL4 (5’-GGT CCG TGT TTC AAG ACG G-3’) as described by Gadanho & 152 

Sampaio (2005). All PCR reactions were performed in 20 µL reaction volumes containing 19 153 

µL of 1X PCR Buffer (Promega), 2 mM of MgCl2, 0.2 mM of each dNTPs (Promega), 0.6 154 
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µM of primers (forward and reverse), 1.25 U of Taq DNA Polymerase (Promega) and 1µL of 155 

DNA. The polymerase chain reactions were performed on PTC-200 (Biorad, France). The 156 

amplification consisted in an initial denaturation step at 94°C for 2 min, followed by 30 157 

iterations of 15 sec at 94°C, 30 sec at 54°C, 1 min at 72°C and a final extension step of 2 min 158 

at 72°C. A negative control with sterile distilled water replacing DNA was added.  Two kinds 159 

of amplification were generated using ITS5-NL4 and NL1-LR6 primers. The amplified DNA 160 

fragments were separated by electrophoresis in 0.8% agarose (w/v) gel (Promega) in 0.5X 161 

Tris-Borate-EDTA (TBE) Buffer at 90 V for 1h and stained with ethidium bromide. A 162 

molecular size marker was used for reference (Lambda DNA/EcoR1+Hind III Markers, 163 

Promega). The DNA banding patterns were visualized under UV transillumination and 164 

picture files were generated using Gel-Doc 2000 (Biorad, France). 165 

The sequencing of the D1/D2 region of the 26S rDNA was then realized using NL1 on the 166 

ITS5-NL4 fragments and NL4 on the NL1-LR6 fragments. The sequences were obtained by 167 

“Big Dye Terminator” technology (Applied Biosystems). This work was done at 168 

“Biogenouest” sequencing facility in the “Station Biologique de Roscoff” (www.sb-169 

roscoff.fr). 170 

Phylogenetic analyses 171 

Sequences were edited and cleaned using Sequencher v 4.8 (Gene Codes). Sequences were 172 

then imported to MEGA 4.0 software (Tamura et al., 2007). Each sequence was analyzed in 173 

order to find GenBank sequences with close BLAST-N hits (Altschul et al., 1990). 174 

Similarities between sequences were assessed using pairwise distance calculation with 175 

MEGA 4.0. The sequences were trimmed to ensure that all sequences had the same start and 176 

end-point. All the D1/D2 regions of the 26S rDNA sequences were aligned using ClustalW 177 

v.1.83 (Thompson et al., 1994). After visual checking and manual curation, an alignment 178 

composed of 62 taxa and 579 characters was analysed for the Bayesian estimation of 179 

phylogeny using MrBayes v.3.1.2 software (Ronquist and Huelsenbeck, 2003). A two-million 180 

generation option has been set to run the Metropolis-coupled Monte Carlo Markov Chain 181 

method (mcmc). After generation 2 000 000, the standard deviation of split frequencies was P 182 

= 0.005997 indicating that a convergence had occurred (P-value of < 0.05). The alignment 183 

was analysed using MODELTEST v.3.7 (Posada and Crandall, 1998), in order to obtain the 184 

more realistic evolutionary model used for phylogenetic analyses (GTR + G model; gamma-185 

distribution shape parameter = 0.3978). Phylogeny was then evaluated using two different 186 
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methods: (i) Bayesian inference with MrBayes v.3.1.2 analysis using 2 000 000 generations 187 

and the mcmc method. The tree search included two mcmc searches with four chains (setting 188 

default temperature for heating the chains) and a sampling frequency of 100 generations. A 189 

‘burnin’ of 5000 (25% of the 2 000 000 generations/100 sample frequency) was set in order to 190 

exclude the first 5000 trees generated. (ii) Maximum likelihood with 100 bootstrap iterations 191 

using PHYML (Guindon et al., 2005) and the parameters obtained with MODELTEST v.3.7. 192 

The final phylogenetic tree topology was realized using MrBayes v.3.1.2 analysis results. 193 

Nodes in the tree show Bayesian posterior probabilities and ML bootstraps respectively. 194 

Fluorescent probe design and evaluation 195 

 196 

For the detection of yeasts isolated from deep-sea vent animals by FISH, we designed 197 

oligonucleotide probes using the Primrose software (http://www.bioinformatics-198 

toolkit.org/Primrose/index.html) as described by Ashelford et al. (2002) using a set of high-199 

quality, full-length rRNA sequences of probe target organisms. The PrimRose design tool 200 

permitted to produce oligonucleotide probes for the three principal clusters of our collection 201 

(Table 3). These probes exhibited no mismatches with the target organisms but exhibited 202 

mismatches with the next most similar sequences in the GenBank database proving that the 203 

designed probes were in silico highly specific. The target sites of newly designed probes were 204 

checked for accessibility using the prediction maps based on the 26S rRNA of Saccharomyces 205 

cerevisiae (Inacio et al., 2003). Each probe was in a relative accessible area of the 26S rRNA 206 

secondary structure (Fig S1). As it was not possible to test the probes with culture isolates that 207 

exhibited zero or one mismatch with the probes, we used an alternative method and tested the 208 

probes against all strains from our collection displaying two or more mismatches with the 209 

oligonuceotides. All newly designed probes were labelled at the 5’ terminus with the 210 

fluorescent marker Cy3. All probes were synthesized by (Proligo, France) and stored in sterile 211 

distilled water at -20°C. The newly designed probes were checked under in situ conditions 212 

with target and non-target species. The universal probe Euk516-Fluorescein (5’-213 

ACCAGACTTGCCCTCC-3’; Amann et al., 1995) and the non-Euk516-Cy3 (5’-214 

CCTCCCGTTCAGACCA-3’) probes were used as positive and negative control respectively. 215 

The average cell brightness was measured using different formamide concentrations from 0 to 216 

80% with steps of 10%. Systematic evaluation of the signal intensities was done by recording 217 

images of independent visual fields (encompassing at least 100 cells), followed by digital 218 

image analysis using the daime software (Daims et al., 2006). During this step, the intensities 219 

Page 7 of 37

ScholarOne Support 1-434/817-2040 ext 167

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

of the image pixels analyzed enable determination of single cell fluorescence in relative units 220 

(RU).  221 

Fluorescence In Situ Hybridization 222 

On environmental samples. Interior branchiostegites of Rimicaris exoculata shrimps and 223 

byssus of Bathymodiolus azoricus mussels were processed for FISH analyses. Following 224 

harvest and dissections, animal subsamples were fixed with 4% paraformaldehyde solution in 225 

phosphate-buffered saline (PBS) for 3 hours at 4°C in a dark room. After fixation, tissues 226 

were washed three times with PBS and stored at -20°C in a storage buffer containing PBS and 227 

96% ethanol (1:1). 228 

On membrane filters. The seawater surrounding shrimps (MoMAR08, Rainbow) was sampled 229 

in 5 L sterile sampling bags using a peristaltic pump. Immediately after dives, seawater 230 

samples for in situ hybridizations were mixed with 3 % formaldehyde (final concentration) 2 231 

hours at 4°C. Fixed seawater was then filtered on polycarbonate membranes 0.22 µm 232 

(Nuclepore®, 47 mm diameter; Whatman, Maidstone, Kent, UK) and rinsed with a PBS 2X - 233 

sterile seawater (v:v) buffer. Then filters were dehydrated using ethanol series (50 %, 80 % 234 

and absolute, 3 min each). Dried filters were stored at -20°C until hybridization treatments. 235 

Three membranes were treated in this study. The filtered volume was 0.8 L for membrane A, 236 

1 L for membrane B and 1.5 L for membrane C. The filtered seawater on membranes A and B 237 

was from the same sample. 238 

The samples (environmental samples and membrane filters) were cut in squares and paste 239 

with one drop of 0.2% low-gelling point agarose (35-40°C) on slides (Menzel-Glaser, 240 

Germany). All slides were then dipped in 0.2% agarose and air dried. Samples were then 241 

subjected to dehydratation with increasing concentrations of ethanol (50, 80, and 96%, for 3 242 

min each). Working solutions of probes had a concentration of 30 ng of DNA per liter. The 243 

hybridization buffer, containing 0.9 M NaCl, 20 mM Tris-HCl (pH 7.2), 0.03% SDS, and 0, 244 

10, 20, 30, 40, 50, 60, 70 and 80% formamide, and the fluorescent probe were gently mixed 245 

in a ratio of 10:1 (vol/vol) to get a final oligonucleotide concentration of 3 ng per liter. For 246 

hybridization, slides were placed in sampling tubes and incubated at 46°C in the dark for 247 

exactly 3 hours. Following hybridization, the slides were washed with prewarmed washing 248 

buffer (20 mM Tris/HCl, 5 mM EDTA (pH 8.0) and 900, 450, 215, 102, 46, 18, 5, 0,6 and 0 249 

mM NaCl corresponding respectively to 0, 10, 20, 30, 40, 50, 60, 70 and 80% formamide 250 

stringencies) for 20 min at 48°C. Slides were rinsed with double-distilled water, air dried, 251 
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DAPI stained (final concentration 1 µg/ml) and mounted with the antifading reagent Citifluor 252 

AF 2 (Citifluor, France) before observations under fluorescent microscope. 253 

Results 254 

Yeast isolation 255 

Yeasts were not found in all the studied sites as shown in Table 1. No yeast was isolated from 256 

samples collected during HERO (on the East Pacific Rise at Elsa site), DIVANAUT2 and 257 

MARVEL (Menez-Gwenn and Lucky Strike) cruises or at TAG site during the EXOMAR 258 

oceanographic cruise. The hydrothermal site that yielded the highest number of isolates was 259 

clearly Rainbow (29 isolates out of 32 strains). Rainbow is also the site where the highest 260 

number of samples was processed (97/210). The yeast collection obtained from deep-sea 261 

samples raised thirty-two isolates that could be divided in pigmented yeasts (18) and non-262 

pigmented yeasts (14). Pigmented yeasts consisted widely of red-pigmented yeasts (16), 263 

black-pigmented yeast (1) and brown-pigmented yeast (1). 264 

Regarding yeast isolation versus type of substrate, strains were obtained mostly from 265 

hydrothermal shrimps Rimicaris exoculata (11), Chorocaris chacei (3), Mirocaris fortunata 266 

(1) and from hydrothermal mussels Bathymodiolus azoricus (7). Carbonate colonization 267 

modules deployed for 1 year near Rainbow vent yielded a few yeasts (4); sponges led to the 268 

isolation of three yeasts. Finally, seawater, gastropods and coral samples permitted to obtain 269 

one strain each (Table 1). Those results indicate that yeasts were much more associated with 270 

animals rather than mineral substrates. Statistical distribution tests have been performed in 271 

order to find out the distribution type of yeasts in hydrothermal sites. The variance to mean 272 

ratio (s2/m) was calculated for each site (Cancela da Fonseca, 1966). Values of s2/m 273 

significantly different of 1 corresponds with (s2/m) - 1 > 2(2n/(n - 1)2)1/2 and were obtained 274 

only for Rainbow site. For this hydrothermal site, an aggregate distribution was observed 275 

(s2/m=1.32) indicating that the culturable yeasts isolated were located in specific niches in 276 

this hydrothermal site (mainly shrimps and mussels). 277 

 278 

During the MoMARDREAM-Naut cruise, dissections of body components were processed 279 

for all shrimps (branchiostegites, scaphognathites, exopodites, gills, stomach and digestive 280 

tract) and mussels (interior and external faces of shells) to investigate the localization of 281 

yeasts in deep-sea animals. For shrimps, a large majority of strains were grown from the inner 282 

side of the branchiostegites that can be divided in 3 different compartments: (a) an antero-283 
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ventral area, which was relatively clear; (b) a posterior area, which always remained light 284 

beige; (c) an antero-dorsal area with an intensely rusty coloration (for schematic views, see 285 

Zbinden et al., 2004; Corbari et al, 2008). Yeast isolates resulted from this study were all 286 

cultivated from the antero-dorsal area characterized by high amounts of minerals and a dense 287 

bacterial mat.  288 

 289 

The yeasts were also isolated from Bathymodiolus azoricus (7) during the MoMADREAM-290 

Naut oceanographic cruise (Table 1). Most of them (6) were cultivated from external face of 291 

the mussel shells and more precisely from the byssus that is a network of filaments allowing 292 

attachment to rocks. This tangle gathers a lot of particles and organic matter in decomposition 293 

(personal observation). Only one yeast was isolated from the interior of a mussel (Mo32). 294 

 295 

Physiological analysis 296 

 297 

Three categories of strains were identified (Table 2) based on the definition of halotolerant 298 

and halophilic microorganisms (Margesin & Schinner, 2001; Kushner, 1978). Non halophiles 299 

are strains with maximal growth without sea salts and a decreasing growth rate with increased 300 

sea salts concentration in media. Halotolerant yeasts are strains able to grow in the absence as 301 

well as in the presence of salt. Halophiles required salt for an optimal growth. Regarding 302 

halophily, optimal salinities, optimal temperatures and OD measurement, 9 physiological 303 

groups were defined. Most of the isolated strains were non halophiles (23 strains) and 304 

halotolerant (2 strains, maximal OD at 30 g/l sea salts) growing efficiently at an optimal 305 

temperature of 25°C. Four strains had poor maximal growth at 25°C including 1 non 306 

halophile, 2 halotolerant (maximal OD at 30 and 60 g/l sea salts) and 1 halophile (maximal 307 

OD at 30 g/l sea salts). Three strains had maximal and efficient growth at 35°C, including 1  308 

non halophile, 1 halotolerant (maximal OD at 45 g/l sea salts) and 1 halophile (maximal OD 309 

at 30 g/l sea salts). 310 

 311 

Identification 312 

 313 

For species identification, a sequence analysis of the D1/D2 domain of the 26S rRNA gene 314 

was done (Fig 1). A total of 12 phylotypes was found among the collection of yeasts isolated 315 

from deep-sea hydrothermal vents. Eleven phylotypes could be assigned to a known yeast 316 

species and one represents a new yeast species. 317 
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 318 

Within Basidiomycota, the Sporidiobolales order was the dominant cluster composed of 16 319 

strains. A majority of strains (Ex2, Ex3, Ex4, Ex5, Ex6, Ex7, Ex9, Ex11, Ex12, Mo32, Mo35 320 

and Mo37) was identified as Rhodotorula mucilaginosa (100% similarity). A large majority 321 

of R. mucilaginosa was isolated from deep-sea shrimps (14) and the others from deep-sea 322 

mussels (2). As member of the Sporidiobolales order, isolates affiliated to Rhodosporidium 323 

diobovatum were also isolated (Mo24, Mo33 and Mo38) with 100% similarity. These 3 324 

strains were isolated respectively from Rimicaris exoculata exuviae in decomposition on 325 

smocker rocks, Bathymodiolus azoricus and a sponge. One strain isolated from R. exoculata 326 

was identified as Sporobolomyces roseus based on 26S rRNA genes (Mo22) with 100% 327 

similarity with the reference strain. Four strains (Mo26, Mo27, Mo28 and Mo29) were 328 

affiliated to the Filobasidiales order and identified as Cryptococcus uzbekistanensis (100% 329 

similarity). These four strains were all isolated from a carbonate colonization module. Finally, 330 

one isolate (Mo36) from B. azoricus mussel was identified as Leucosporidium scottii in the 331 

Leucosporidiales order. 332 

The Ascomycota phylum gathered 9 strains belonging to the Saccharomycetales order. Within 333 

this order, 4 strains (Mo20, Mo21, Mo40 and Bio2) isolated respectively from R. exoculata, 334 

Mirocaris fortunata, a deep-sea coral and the gills of the gastropod Ifremeria nautilei were 335 

identified as Debaryomyces hansenii (100% similarity). Candida atlantica isolates were 336 

found in R. exoculata exuviae in decomposition (Mo25) and B. azoricus (Mo31). One strain 337 

isolated from a deep-sea sponge (Ex15) was identified as Pichia guilliermondii (100% 338 

similarity). Finally, among the Saccharomycetales order, one strain was identified as Candida 339 

viswanathii (Bio1) with 100% similarity. One halophilic strain (Mo39) isolated from a deep-340 

sea coral represents a new species in the Candida genus and thus was identified as Candida 341 

sp. This strain has 95% similarity with the reference sequence of Candida atmosphaerica (23 342 

mismatches on 505 bp). Mo30 isolated from Bathymodiolus azoricus was identified as 343 

Phaeotheca triangularis (mitosporic Ascomycota) with 100% similarity. In the Dothideales 344 

order, one strain (Mo34) isolated from Bathymodiolus azoricus was identified as Hortaea 345 

werneckii with 99.98% similarity (one mismatch on 560bp). 346 

Sequencing of the 26S rRNA genes indicated the presence of Ascomycota and Basidiomycota 347 

in our culture collection. In term of quantity, the phylum Basidiomycota (21) was two times 348 

higher than the Ascomycota (11). In term of species richness, ascomycetous yeasts belonged 349 

to 7 different clusters while basidiomycetous yeasts belonged to 5 clusters. 350 

 351 
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Fluorescence in situ hybridizations 352 

We processed numerous assays to detect fungi on deep-sea hydrothermal vent animal samples 353 

using different existing fluorescent probes from different databases. The Euk516-Cy3 probe 354 

gave positive results on pure cultures but strong background fluorescence on hydrothermal 355 

samples led to the renouncement of its use. The probe MY1574 targeting Eumycota 356 

organisms (Baschien et al., 2008) showed very weak fluorescence on pure cultures. Thus, we 357 

decided to design our own probes (Table 3) based on our culture collection that was divided 358 

in 3 main clusters: MitoFilo (Cryptococcus / Mitosporic Filobasidiales order), MitoSporidio 359 

(Rhodotorula, Rhodosporidium / Mitosporic Sporidiobolales order) and Sacch 360 

(Debaryomyces, Pichia / Saccharomycetales order). The probes designed revealed a strong 361 

specificity for the target organisms. The optimal conditions for the in situ hybridization 362 

protocol use stringent conditions of 20% formamide (Fig S1). 363 

Our aim was to check the applicability of the FISH method to the in situ detection of yeasts in 364 

deep-sea hydrothermal fauna samples. Hydrothermal body components of endemic shrimps 365 

(Rimicaris exoculata) and mussels (Bathymodiolus azoricus) were fixed for FISH 366 

experiments directly after dissection. The pieces of shrimps and mussels that gave the higher 367 

number of fungi isolation (interior branchiostegites of shrimps and byssus of mussels) were 368 

analyzed for yeast cell fluorescence. Although shrimp and mussel samples from Rainbow site 369 

led to the highest rate of isolation, no FISH signal was ever observed. The FISH detection 370 

limit of 103-104 target cells per ml is relatively high (Daims et al., 2005) and thus, the absence 371 

of FISH signals does not necessarily mean that the target organisms were not present in the 372 

samples. 373 

To test this hypothesis, several volumes of water were concentrated on polycarbonate 374 

membrane filters to yield sufficient cells for FISH experiments with these new probes. 375 

Membrane filters were embedded in low gelling-point agarose to minimize cell loss. Yeast 376 

cells could be visualized in a low quantity on these membrane filters (Fig 2). Such results are 377 

another evidence of the yeast cells presence in hydrothermal vents but at low concentration. 378 

Using FISH on membrane filters, yeast cells detected were affiliated to 3 genera: 379 

Rhodosporidium, Rhodotorula and Cryptococcus. 380 

 381 

Discussion 382 

 383 
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Occurrence of yeasts in deep-sea hydrothermal vents 384 

In this study, the main aim was to isolate yeast strains from deep-sea hydrothermal endemic 385 

fauna knowing that yeasts can be isolated from seawater surrounding hydrothermal fauna 386 

(Gadanho and Sampaio, 2005). Yeast isolation was successful even if the retrieved species 387 

richness was relatively low. Thirty-two strains were isolated mostly from Rimicaris exoculata 388 

shrimps. The association with shrimps is probably favorable for yeasts that could benefit from 389 

nutrients due to the water circulation in the gill chamber. Most of our strains were isolated 390 

from the Rainbow hydrothermal site which confirms previous results (Gadanho and Sampaio, 391 

2005). The Rainbow hydrothermal field hosted in ultramafic rocks is a unique vent enriched 392 

in CH4, H2, CO, Fe and depleted in H2S (Charlou et al., 2002). The high yeast isolation ratio 393 

may indicate that yeasts thrive in hydrothermal sites depleted in H2S. The isolation rate of 394 

non-pigmented yeasts on sulfur-free media significantly higher than those on sulfur-based 395 

media in a previous study (Gadanho & Sampaio, 2005) support such hypothesis. 396 

 397 

Several yeasts were also isolated from mussels and more precisely from the byssus 398 

constituted of filaments with a high concentration of minerals and organic matter. These 399 

yeasts may have a role in the decomposition of organic material entrapped in mussel byssi in 400 

deep-sea vents. These results seem promising as they confirm the data obtained in previous 401 

studies and suggest that yeasts may interact with deep-sea hydrothermal vent fauna. 402 

 403 

Pattern of the culturable yeast communities 404 

New species.  405 

The yeast that was firstly isolated from stomach of a marine fish was described as D. hansenii 406 

and deposited in the Centraalbureau voor Schimmelcultures (CBS 5307) database. In a recent 407 

paper, based on the intergenic spacer (IGS) region of the rRNA gene, this strain was re-408 

evaluated as Candida sp. (Nguyen et al., 2009). This strain is identical to another one isolated 409 

from deep-sea hydrothermal vent waters and annotated MARY089 (Gadanho and Sampaio, 410 

2005). These two strains isolated from different marine environments were finally reported as 411 

a single new undescribed species within the Candida genus. In our collection, strain Mo39, 412 

isolated from deep-sea coral near Rainbow hydrothermal vents (Table 1), has the same 26S 413 

rRNA gene sequence as CBS 5307 and MARY089. Mo39 is halophilic and thus supposed to 414 

be an autochtonous marine yeast species. This new ecotype can be characterized as an 415 

obligate marine yeast and its complete description is currently under progress. 416 
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 417 

Known species 418 

Two strains (Mo25 and Mo31) isolated from Rimicaris exoculata and Bathymodiolus azoricus 419 

samples were identified as Candida atlantica. This result seems in keeping with previous 420 

published reports that have isolated this species from coastal seawater in the South of 421 

Portugal (Gadanho et al., 2003) and in deep-sea hydrothermal vent waters (Gadanho and 422 

Sampaio, 2005). The very fisrt C. atlantica strain was isolated from shrimp eggs in the North 423 

Atlantic Ocean (Siepmann and Höhnk, 1962). C. atlantica seemed to be a marine obligate 424 

yeast and some interactions with shrimps seemed to occur. Our physiological analysis has 425 

revealed that Mo25 and Mo31 were non-halophiles, which does not mean that they are unable 426 

to grow in marine environments. They may have a role in deep-sea environments in 427 

interaction with endemic crustaceans even if they are not in optimal growth conditions. One 428 

isolate (Bio1) isolated from seawater surrounding mussels at Lau Basin in the South-West 429 

Pacific was clearly identified as Candida viswanathii. Kohlmeyer & Kohlmeyer (1979) 430 

characterized this yeast as marine facultative. More recently, C. viswanathii was isolated from 431 

a shrimp (Peneaus braziliensis) in the Gulf of Mexico. Its synonym, Candida lodderae was 432 

recently reported in deep-sea hydrothermal vent waters at Rainbow site (Gadanho and 433 

Sampaio, 2005) and characterized as the most abundant yeast. 434 

 435 

Leucosporidium scottii isolates (Mo36) were retrieved only in the oceanic regions close to 436 

Antarctica and are known to be psychrophilic and probably autochthonous marine species 437 

(Lachance and Starmer, 1998). Such strains known for their presence in cold polar marine 438 

environments could be another evidence that confirms the hypothesis of global exchanges 439 

from polar environments to deep-sea vents based on results from bacteria (Maruyama et al., 440 

2000) and filamentous fungi (Burgaud et al., 2009). Hortaea werneckii (Mo34) was 441 

characterized as halophilic in our physiological study. This is not surprising as this black 442 

yeast-like fungus was characterized as halophilic or extremely halotolerant in different studies 443 

(Gunde-Cimerman et al., 2000; Kogej et al, 2005) where it was frequently isolated from 444 

hypersaline waters of solar salterns. In a molecular survey, H. werneckii was identified (based 445 

on internal transcribed spacers and 5.8 S rRNA gene) in deep-sea methane seep sediments at a 446 

depth of 2965 meters (Lai et al., 2007). Phaeotheca triangularis (Mo30) was also frequently 447 

isolated from salted environments (Gunde-Cimerman et al., 2000) and characterized as 448 

halophile. This confirmed previous results on P. triangularis showing a better growth with 449 

5% additional salts (Zalar et al., 1999). In our study, Mo30 was characterized as halotolerant 450 
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with 4.5% sea salts optimal concentration and thus hypothesized as marine adapted yeast. 451 

This is the first report about the presence of Phaeotheca triangularis at deep-sea vents. 452 

Mo22 is described as Sporobolomyces roseus. The genus Sporobolomyces is composed of 453 

strains mainly isolated from the pyllophane (Bai et al., 2002). However, a previous study has 454 

proved that strains of the genus Sporobolomyces are frequently isolated from marine 455 

ecosystems and the frequency of isolation increases when distance from the coastline and 456 

depth increase (Hernandez-Saavedra et al, 1992). Moreover, yeasts from this genus were 457 

found in benthic invertebrates collected from deep-sea floor in the Pacific Ocean (Nagahama 458 

et al, 2001b). Our strain was isolated from a deep-sea hydrothermal shrimp in the Atlantic 459 

Ocean and characterized as halotolerant with an optimal salinity of 6% sea salts. This may 460 

indicate that yeasts of this genus are also able to live in deep-sea vents and interact with 461 

endemic crustaceans. 462 

 463 

A previous study of yeasts in oceanic environments (Fell, 1976) reported that yeast 464 

communities appeared to be constituted of ubiquitous and endemic species. Typical 465 

ubiquitous strains were the ascomycetous yeast Debaryomyces hansenii and the 466 

basidiomycetous ones Cryptococcus and Rhodotorula. Kohlmeyer and Kohlmeyer (1979) 467 

confirmed this statement and characterized these genera mainly as facultative marine yeasts. 468 

Some of these results, especially for Rhodotorula yeasts showing a strong ubiquity, were 469 

confirmed based on their presence in several habitats such as deep-sea vents (Gadanho and 470 

Sampaio, 2005), deep-sea sediments (Nagahama et al., 2001b), coastal waters (Gadanho et 471 

al., 2003; 2004) and oligotrophic lakes (Libkind et al., 2003). Our results confirm their 472 

ubiquity and indicate that these strains seem to be allochtonous. Strain Ex15 identified as 473 

Pichia guilliermondii has also been characterized as non halophile and may be another 474 

allochtonous yeast strain as reported by Kohlmeyer and Kohlmeyer (1979). 475 

 476 

The members of the genus Rhodosporidum have been characterized as non halophiles (Mo24 477 

and Mo33) and halotolerant (Mo38). Based on previous reports, this genus seemed to be 478 

restricted to marine environments (Gadanho and Sampaio, 2005). R. diobovatum in deep-sea 479 

vents seemed to be able to colonize different substrates (shrimps, mussels and sponges). The 480 

isolation of a strain from shrimp exuviae in decomposition may indicate a role as a recycler of 481 

organic material and so a probable implication in carbon cycle in deep-sea environments. 482 

 483 

Adaptation to marine conditions 484 
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The isolation of culturable yeasts led to an old question about marine yeasts “Are there any 485 

indigenous marine yeasts ?” (Kohlmeyer & Kohlmeyer, 1979) and to the resulting question 486 

“Which are the indigenous species ?”. Based on our results, one can suggest that halophilic 487 

strains are marine indigenous yeasts and that others, halotolerant and non-halophiles, are 488 

ubiquitous terrestrial strains present in deep-sea waters due to sedimentation or other natural 489 

or anthropogenic phenomena. But almost all yeast species can grow well in media with NaCl 490 

concentrations exceeding those normally present in the sea (Kohlmeyer & Kohlmeyer, 1979). 491 

Few yeast species with a physiological dependence on NaCl or other seawater components 492 

have been reported (Nagahama, 2006b). Thus, our results appeared in good agreement with 493 

such statements. Only 2 strains described as halophiles (Mo34 and Mo39) in our study can be 494 

described as obligate marine yeasts. 495 

FISH observations   496 

 497 

FISH using labeled oligonucleotide probes targeting rRNA has been used as a powerful 498 

technique for assessing both microbial identity and spatial distributions in situ in complex 499 

environmental contexts (Yang et al., 2008). Our results indicate a very low-level of yeasts at 500 

deep-sea vents. As a first conclusion, regarding diversity and quantification (added to 501 

previous results of Gadanho and Sampaio, 2005), it seems that yeasts at deep-sea vents 502 

represent a minor community that might not be major actors in biogeochemical cycles. 503 

However, fluorescent signals are correlated to the cellular content of ribosomes and 504 

consequently to the microbial growth rates. Recently, the detection limits of conventional 505 

FISH with Cy3-labeled probe EUB338 were found to be approximately 370 16S rRNA 506 

molecules per cell for Escherichia coli hybridized on glass microscope slides and 1,400 16S 507 

rRNA copies per E. coli cell in environmental samples (Hoshino et al., 2008). So, in addition 508 

to a low concentration of yeast cells, low detection of yeasts may be caused by low ribosome 509 

content of most yeasts in the deep-sea environment due to low-level metabolic activities of 510 

yeasts living under extreme environmental abiotic factors (high hydrostatic pressure, low 511 

temperatures,…). Our attempts to cultivate the yeast strains resulted from this study under 512 

elevated hydrostatic pressure have been successful, but ribosomal activities were lower under 513 

high hydrostatic pressure than at atmospheric pressure. Such results may account for the low 514 

fungal detection using FISH (unpublished data). Consequently, care must be taken when 515 

dealing with diversity and biomass estimations when using FISH alone. 516 
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The quantification of yeasts using FISH has been impossible due to a non homogeneous 517 

repartition of microorganisms on filters. Moreover, bacterial and yeast cells were only visible 518 

in some regions of the filters without minerals due to strong autofluorescence. However we 519 

can say that yeast concentrations are really low, as shown by the only few cells visualized 520 

after filtration of seawater surrounding shrimps. This result is in keeping with the relatively 521 

low diversity revealed by Gadanho and Sampaio (2005) ranging from 0 to 10 cfu/L for pink 522 

yeasts and from 0 to 6000 cfu/L for non-pigmented yeasts. To better analyze the fungal 523 

presence in deep-sea animals, one could work with phylum-specific probes on histological 524 

sections of animals and use the CARD-FISH (Amann & Fuchs, 2008) or the DOPE-FISH 525 

(Stoecker et al., 2010) methods to amplify probe signals. 526 

These data raise emerging questions regarding the ecological role of such microorganisms in 527 

deep-sea vents and about the old question of the ubiquity or endemism of those strains. Yeasts 528 

at deep-sea vents may be facultative parasites or opportunistic pathogens of endemic deep-sea 529 

animals as it has already been hypothesized in previous works (Van Dover et al., 2007; 530 

Burgaud et al, 2009). However, a role in th edecomposition of abundant organic material may 531 

occur. 532 

Considering all the results obtained, we can say that yeasts may seem to interact with deep-533 

sea hydrothermal endemic fauna even if the density is low. These yeasts are mainly composed 534 

of ubiquitous species but obligate marine yeasts have also been harvested. However, the 535 

results obtained using in situ hybridization have allowed us to visualize these ubiquist species 536 

showing that they are able to live and grow in deep-sea hydrothermal vents. Yeasts associated 537 

with endemic animals in deep-sea vents may be exposed to favorable conditions and could 538 

benefit from a stable source of nutrients (Nagahama et al., 2001b). Yeasts were reported from 539 

dead and healthy individuals which may also indicate their facultative saprophytism and so 540 

emphasize the wide role of fungi in the decomposition of organic matter from terrestrial 541 

environments to deep-sea hydrothermal vents. Even if yeasts were isolated from animal body 542 

components, they were not visualized using FISH. To better understand the interaction with 543 

animals and fungi in deep-sea vents, we need to work on tissues as in Van Dover et al. (2007) 544 

and also with probes specific to fungal phyla (Ascomycota, Basidiomycota and 545 

Chytridiomycota). In conclusion, several questions regarding the role of yeasts in deep-sea 546 

hydrothermal vents and the endemism or ubiquity of the isolated yeasts remain a difficult task 547 

without clear answers. Their culture under high hydrostatic pressures would be an interesting 548 

study to better characterize their lifestyle and role at deep-sea vents. 549 
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Tables and Figures 756 

 757 

Table 1. Culture collection of yeasts from deep-sea hydrothermal vents. 758 

 759 
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 761 
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 763 
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Location (Depth) Sample processed (type)    Strain 764 
South Pacific West; B2E07: Seawater surrounding mussels   Bio1 765 
(Lau Basin; -2620m) B9E07: Gastropod (Ifremeria nautilei) gills  Bio2 766 
Mid-Atlantic Ridge EX6E01 to EX6E04: Rimicaris exoculata  Ex2 to Ex7  767 
(Rainbow; -2300m) EX6E05: Chorocaris chacei    Ex9, Ex11 and Ex12 768 
   MoPR1: Rimicaris exoculata    Mo20   769 
   MoPR1: Mirocaris fortunata    Mo21 770 
   MoPR2: Rimicaris exoculata    Mo22 771 
   MoPR3: Sloughs of shrimp on smocker rocks  Mo24 and Mo25 772 
   MoPR5: Colonization module TRAC (Carbonates) Mo26 to Mo29 773 
   MoPR6: Bathymodiolus azoricus   Mo30 to Mo36  774 
   MoPR8: Rimicaris exoculata    Mo37  775 
   MoPR9: Sponge     Mo38 and Mo39  776 
   MoPR9: Coral     Mo40  777 
Mid-Atlantic Ridge EX18E02: Siliceous sponge    Ex15  778 
(Lost-City; -700m) 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 
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Table 2. Physiological analysis of the yeast collection. This table shows distribution of 792 

halotolerant and halophilic strains of the collection depending on their optimal salinities (g/l 793 

sea salts), optimal temperatures (°C) and maximal optical densities of cultures on GYPS broth 794 

medium (120 rpm on a rotary shaker) measured at 600nm at 4 different incubation times (17h, 795 

22h, 25h and 28h).  796 

 797 
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 798 

  Low OD (<1.1) High OD (>2.0) 

 Optimum 25°C 25°C 35°C 

Non 

halophile 

0-15 g/l 

Mo25 

Bio1, Bio2, Ex2, Ex3, Ex4, 

Ex5, Ex6, Ex7, Ex9, Ex11, 

Ex12, Mo20, Mo21, 

Mo24, Mo26, Mo27, 

Mo28, Mo29, Mo31, 

Mo32, Mo33, Mo35, 

Mo40 

Ex15 

30 g/l Mo36 Mo37, Mo38  

45 g/l   Mo30 Halotolerant 

60 g/l Mo22   

Halophile 30 g/l Mo34  Mo39 

 799 
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Table 3. Yeast oligonucleotide probes and their sequences, target organisms and binding 800 

positions on the 26S rRNA. 801 

 802 

 803 

 804 

 805 
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Probe  Hybridization stringency rRNA subunit, binding position 
(a)

 Probe sequence  Target organisms 

  (% formamide)   and relative probe accessibility 
(b)

 (5’-3’)   (Genus/Species) 

Sacch   20   26S; 162-177 ; 44 to 66%  GGCATCTCATCGCACG Debaryomyces 
              Pichia 

MitoFilo  10   26S; 397-412 ; 60%  ACACCGCAGAACGGCT Members of the genus Cryptococcus 
(c) 

MitoSporidio  20   26S; 164-179 ; 44 to 66%  TGGGCGTCCGCACCAT Members of the genera Rhodotorula 

              and Rhodosporidium (d) 

(a) Nucleotide position according to Saccharomyces cerevisiae 26Sr RNA between NL1 and NL4 primers.  

(b) According to Inacio et al., 2003. 

(c) Cryptococcus saitoi, C. randhawii, C. uzbekistanensis, C. adeliensis, C. vishniacii, C. socialis, C. friedmannii and C. uniguttulatus. 

(d) Rhodotorula mucilaginosa, R. glutinis, R. graminis, R. dairenensis, Rhodosporidium babjevae and R. diobovatum. 
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Figure 1: Phylogenetic tree of deep-sea yeast isolates (coloured terminals) and close relatives 
obtained by analysis of the D1/D2 domain of the 26S rRNA gene. Topology was built using 
MrBayes v.3.1.2 from a ClustalW 1.83 alignment. Node support values are given in the 
following order: MrBayes posterior probabilities/PHYML 100 bootstraps. Black squares 
represent nodes supported by an excess of 0.95 posterior probabilities and 95% bootstraps. 
Mucor flavus (EU071390) belonging to the Zygomycota phylum was used as outgroup. All 
sequences are listed with their GenBank accession numbers. 
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Figure 2: Fluorescence in situ hybridization with specific oligonucleotide probes on 
membrane filters. (a, b and c) Membrane filter labelled with DAPI and hybridized using 
MitoSporidio probe indicating the presence of bacteria and yeast cells (blue). Yeasts 
belonging to Rhodotorula and Rhodosporidium genera are vizualized in pink (composite of 
blue and red). (d) Membrane filter labelled with DAPI and hybridized with MitoFilo 
indicating the presence of yeasts belonging to Cryptococcus genera. White arrows indicate the 
yeast cells. 
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Figure S1 : Target sites of the fluorescent oligonucleotide probes designed on a model of the 
Saccharomyces cerevisiae 26S rRNA secondary structure in which the D1 and D2 domains 
(delimited by NL1 and NL4) are enlarged (Inacio et al., 2003). Each probe was evaluated 
without formamide in order to check wether the probe binds to the ribosomes of the target 
cells. The optimal hybridization conditions were determined in a serie of FISH experiments 
with increasing formamide concentrations for a probe target and a non-target organism :  (i) 
Sacch probe, Debaryomyces hansenii (Target) and Candida atlantica (Non-Target) with two 
mismatches ; (ii) MitoSporidio probe, Rhodosporidium diobovatum (Target) and 
Cryptococcus uzbekistanensis (Non-Target) with five mismatches and (iii) MitoFilo probe, 
Cryptococcus uzbekistanensis (Target) and Rhodosporidium diobovatum (Non-Target) with 
seven mismatches. Relative probe accessibility was determined for each probe : MitoFilo, 
about 60%; MitoSporidio and Sacch, 44 to 66%. 
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Phylogenetic tree of deep-sea yeast isolates (coloured terminals) and close relatives obtained by 
analysis of the D1/D2 domain of the 26S rRNA gene. Topology was built using MrBayes v.3.1.2 from 
a ClustalW 1.83 alignment. Node support values are given in the following order: MrBayes posterior 
probabilities/PHYML 100 bootstraps. Black squares represent nodes supported by an excess of 0.95 
posterior probabilities and 95% bootstraps. Mucor flavus (EU071390) belonging to the Zygomycota 

phylum was used as outgroup. All sequences are listed with their GenBank accession numbers.  
392x327mm (450 x 450 DPI)  
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Fluorescence in situ hybridization with specific oligonucleotide probes on membrane filters. (a, b and 
c) Membrane filter labelled with DAPI and hybridized using MitoSporidio probe indicating the 

presence of bacteria and yeast cells (blue). Yeasts belonging to Rhodotorula and Rhodosporidium 
genera are vizualized in pink (composite of blue and red). (d) Membrane filter labelled with DAPI 
and hybridized with MitoFilo indicating the presence of yeasts belonging to Cryptococcus genera. 

White arrows indicate the yeast cells.  
255x231mm (600 x 600 DPI)  
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Figure S1 : Target sites of the fluorescent oligonucleotide probes designed on a model of the 
Saccharomyces cerevisiae 26S rRNA secondary structure in which the D1 and D2 domains 

(delimited by NL1 and NL4) are enlarged (Inacio et al., 2003). Each probe was evaluated without 
formamide in order to check wether the probe binds to the ribosomes of the target cells. The 

optimal hybridization conditions were determined in a serie of FISH experiments with increasing 
formamide concentrations for a probe target and a non-target organism :  (i) Sacch probe, 

Debaryomyces hansenii (Target) and Candida atlantica (Non-Target) with two mismatches ; (ii) 
MitoSporidio probe, Rhodosporidium diobovatum (Target) and Cryptococcus uzbekistanensis (Non-
Target) with five mismatches and (iii) MitoFilo probe, Cryptococcus uzbekistanensis (Target) and 
Rhodosporidium diobovatum (Non-Target) with seven mismatches. Relative probe accessibility was 

determined for each probe : MitoFilo, about 60%; MitoSporidio and Sacch, 44 to 66%.  
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