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Abstract:  
 

1. Metrics have become a standard way for summarising environmental monitoring results. 
Different metrics react differently to natural variations and human induced stressors. We suggest that 
combined analysis of time trends in selected biological metrics allows identification of biological 
processes (e.g. individual growth, mortality or recruitment) that have changed (increased or 
decreased) persistently. Alternatively, time trends in the abundance of sensitive species could indicate 
changes in environmental stressors.    

2. We calculate the joint likelihood of time trends in three metrics and use it to evaluate the 
evidence in the data for different combinations of metric time trends. A simulation study provides 
guidelines for interpreting log-likelihood differences.  

3. We illustrate the approach for identifying biological process changes for three North Sea fish 
stocks (cod Gadus morhua, lesser-spotted dogfish Scyliorhinus canicula, and whiting Merlangius 
merlangius) using metrics derived from international bottom-trawl survey data for the period 1997-
2008. Over the period, a decrease in recruitment and several simultaneous process changes were 
most likely for cod, while a recruitment increase, mortality decrease and several process changes 
were most likely for lesser-spotted dogfish. No significant persistent process changes were found for 
whiting.     

4. Synthesis and applications. The likelihood approach offers a way of combining monotonic time 
trends in multiple metrics for identifying persistent changes in exploited populations or environmental 
stressors, given suitable metric time series and tables for interpreting joint time trends. For data rich 
fish populations, the proposed method can supplement analytical stock assessments. For many other 
populations with no fisheries-dependent data, it offers a way to identify population changes, which will 
be crucial for implementing the ecosystem approach to fisheries management and the European 
marine strategy framework directive.   
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1. Introduction 

 
Monitoring of the biotic conditions of ecosystems under human and environmental pressures 
has a long history both in aquatic and terrestrial systems. Biotic metrics and indices have 
become the standard approach for summarising monitoring results on different organisational 
levels, e.g. de Heer, Kapos & ten Brink (2005), Loh et al. (2005). Temporal changes in these 
metrics point towards underlying driving stressors, such as productivity decreases leading to 
recruitment failure or the effects of contaminants and fishing (Sandström et al. 2005). It is 
important to be able to distinguish between natural environmental variations and human-
induced stressors (e.g. chemical pollution, over-harvesting or habitat destruction). This 
requires using a combination of metrics expected to react differentially to various stressors.      
 
Theoretical and empirical studies have been used for determining the sign and possibly shape 
of the relationship between biotic metrics and human or environmental stressors. Lenihan et 
al. (2003) derived the expected direction of change in the abundance of benthic fauna subject 
to organic enrichment (increased organic carbon) and/or toxic (copper) contamination using 
designed experiments. These authors found that arthropods and echinoderms decrease when 
toxic contamination or both stressors increase while annelids increase under organic 
enrichment on its own or in combination with toxic contamination. Other examples using a 
correlative empirical approach include studies of the relationships between freshwater fish 
functional metrics and a human pressure index (Hughes et al. 1998; Pont et al. 2006), benthic 
meiofauna diversity and heavy metal contamination (Moreno et al. 2008), and fish community 
indicators and measures of human impact, including fishing effort (Piet & Jennings 2005; Pont 
et al. 2006).  
 
We reverse the reasoning applied to determine relationships to identify the changes in 
environmental stressors or biological processes based on time trends in multiple metrics, i.e. a 
certain observed combination of trends points towards a change in a particular stressor or 
process. For the benthic fauna example cited above (Lenihan et al. 2003), this means that an 
increase in organic enrichment over time would be inferred if annelids increased and 
arthropods and echinoderms showed no trend in a monitoring time series. This approach is 
referred to as the effects-based approach in contrast to the stressor-based approach, where 
all potential stressors would be monitored, e.g. total organic carbon and copper concentration 
in the benthic fauna example. The question is then how to determine and combine trends for 
multiple metrics. A common approach is to test for significant linear (or log-linear) trends in 
each metric separately (e.g. Rochet et al. 2005) or use correlation analysis for two metrics 
(Frank, Petriea & Shackell 2007; Reid et al. 2005). Both approaches raise statistical and 
conceptual concerns: multiple tests, no measure of uncertainty for the selected process 
changes, and the assumption of linear trends for the linear regression approach. Many 
solutions for each issue exist. Here we propose an approach for resolving them coherently in 
the context of the use of metrics for monitoring.   
 
Our approach for jointly assessing time trends in multiple metrics and comparing the evidence 
in the data for different trend combinations (models) is based on the likelihood principle (see 
overview in Pawitan 2001). We demonstrate the approach by determining whether the 
available bottom-trawl survey derived population metrics for cod Gadus morhua (Linnaeus), 
lesser-spotted dogfish Scyliorhinus canicula (Linnaeus) and whiting Merlangius merlangius 
(Linnaeus) in the North Sea indicate any persistent changes in population processes 
(individual growth, mortality or recruitment). We compare the results to the information on 
changes in population processes provided by the standard stock assessments for these 
stocks.  
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2. Material and Methods 

 

Fish populations, data and metrics 

Data for cod, lesser-spotted dogfish and whiting from the International Bottom Trawl Survey 
(IBTS) covering the whole North Sea in the first quarter of each year were extracted from the 
ICES Datras data base (http://datras.ices.dk/) for the period 1997-2008. The survey design is 
stratified random (Anonymous 2004) and the same Grande Ouverture Verticale trawl is used 
by all nations who participate in the survey. We selected a 12-year period to be able to assess 
whether there are persistent single or multiple process changes. The assumption of persistent 
changes, i.e. either an increase, decrease or no change of given processes, would not be 
reasonable for a longer period. The data were used to calculate three metrics: log-transformed 
abundance (lnN), mean length in the population (Lbar) and the 95th percentile of the length 
distribution (L0.95). Two length metrics are used because only one of the two metrics might be 
sensitive to a change in fishing mortality or recruitment. For example, Lbar is expected to track 
recruitment for a population dominated by recruits, while changes in fishing mortality might 
measurably affect only L0.95. For this study, we set the precision of all metric estimates equal 
to a coefficient of variation of 3%. 
 
Using basic population ecology, we first derived the expected directions of change in each of 
these metrics in response to changes in total mortality (Z), individual growth (g), and 
recruitment strength (R). We then reversed the interpretation and created a table in which a 
given process change is identified by unique combinations of the time trends of the three 
metrics (Table 1). This table will be used for interpreting joint metric trends in terms of 
underlying process changes. Note that certain time trend combinations cannot be linked to 
single process changes. In such cases multiple process changes, or other process changes, 
are assumed to have occurred.  
 

Method for calculating likelihood values 

The most likely process change is taken to be the one with the highest support from the 
available data. The likelihood of a process change is the sum of the likelihood for all trend 
combinations indicating that process change in Table 1.  For example, the top left hand cell in 
Table 1, which corresponds to an increase in all three metrics, lnN, Lbar and L0.95, is interpreted 
as providing evidence for a reduction in total mortality (Zd). The likelihood for this cell is  the 
joint likelihood that each metric increased over the study period. Two additional cells also 
indicate a decrease in total mortality. Hence, the overall likelihood for a decrease in total 
mortality is the sum of the likelihood of the three cells containing Zd (cells M1, M2 and M10 in 
Table 1).   
 
Four steps are required to calculate the likelihoods: i) standardisation of the metrics; ii) time 
trend fitting; iii) likelihood calculation for each time trend combination; and iv) summation 
across combinations for overall evidence regarding persistent changes in processes.  
 
Standardisation of metrics - each time series of estimates, I=(I1, ...., IT) is standardised 
(normalised) by removing the mean and dividing by the empirical standard deviation of 
interannual variation to facilitate the contribution of the different metrics to the joint likelihood; 
metrics standard deviations s=(s1, ..., sT) are standardised by dividing by the same interannual 
standard deviation.  
 
Time trend fitting - Three types of time trends need to be fitted to each of the standardised 

metrics: an increasing trend , a decreasing trend and no time trend . A horizontal line incÎ decÎ ncÎ
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is taken to represent no time trend. As the metrics are standardised, this line has intercept and 

slope zero ( =0). Increasing and decreasing trends can have different shapes. As we are not 
interested in any particular shape, a monotonically increasing (decreasing) smooth function is 
fitted following the methods described in Wood (1994) and using the mgcv package in R (R 
Development Core Team 2008). In practice, we first fit an unconstrained generalised additive 
model (GAM), modelling I as a function of time t  

nc
tÎ

)t( 


t



      eqn 1 βX t
i

iit )t(bÎ  

where bi() are cubic regression splines, β are model parameters and Xt is the design matrix. 
The model is fitted using penalised quadratic least squares, minimising  

   2

t

2
t dt)t('')t(I       eqn 2 

The second term is the penalty for ensuring smoothness. Estimation of the optimal 
smoothness parameter λ is carried out by restricted maximum likelihood. In a second step 
constrained re-estimation of β is carried out, keeping the value for the smoothness parameter 
λ as estimated before. Two linear equality constraints are introduced   
Monotonicity: 0)t('    (increasing) or 0)t('   (decreasing) 
Significant time change: a)1()T(   where a = 4 median(s*), 

with s* the standardised standard deviations of metric estimates. The second constraint forces 
the fitted values for the final and first years of the time series to be significantly different if 
approximate 95% confidence intervals were constructed for each point estimate as 

. Quadratic programming is then used to minimize   *)median2ÎT s(

      C'ˆ)t(I
t

2
t   Cβ≥0     eqn 3 

with respect to β and subject to the constraints C. The time trend models are fitted assuming 
iid residuals; a Durbin-Watson test is used to check this assumption. 
 
Likelihood calculation for time trend combinations - The joint likelihood for each of the 27 
combinations of metric time trends (denoted M1 to M27 in Table 1) needs to be calculated. 
For each metric time series, the likelihood of an increasing, decreasing and no time trend 
(using the three models fitted in the previous section) is calculated. For example, assuming a 
Gaussian distribution, the likelihood of a monotonically increasing time trend in the indicator 
times series I is calculated by  

L(βinc, γinc) = f(I;βinc, γinc) 
 


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1exp
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        eqn 4 

 where  βinc and γinc are the parameters for a monotonically increasing time trend and̂ is the 
residual sum of squares of this fit divided by T. The joint likelihood is obtained as the product 
of the likelihoods for the three metrics assuming that they are independent, e.g.  
 

),;L(f),;L(f),;N(lnf),,,,(L)1M(L inc
Nln
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95.0L95.0inc

Lbar
inc
Lbarbarinc

Nln
inc

Nln
inc
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inc
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inc
Nln

inc
95.0L

inc
Lbar,inc

Nln     eqn 5 
Independence of residuals across metrics is checked using Pearson's product moment 
correlation coefficient.    
 
Evidence for persistent process changes  - The likelihood of a particular process change for a 
given population is calculated as the sum of the likelihood values for the appropriate time 
trend combinations. For example, a persistent decrease in total mortality (Zd) is indicated by  
M1, M2 or M10 (Table 1). Thus, the likelihood for Zd is estimated as   
L(Zd)= L(M1 or M2 or M10) = L(M1) + L(M2) + L(M10)                                   eqn 6 
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Comparing model fits   

The largest log-likelihood value (lmax = max(log(L(M))) indicates the best model fit (Pawitan 
2001) and the corresponding process change is considered the most likely. However, owing to 
uncertainty in metric estimates, models with log-likelihood values within a certain distance of 
the largest value, ΔM=  lmax - l(M), provide basically the same evidence as the “best” model. A 
simple simulation study was carried out to obtain guidelines for interpreting ΔM values, similar 
to what is available for interpreting differences in Akaike's Information Criterion (e.g. p. 70 in 
Burnham & Anderson 2003). Three 12-year time series were simulated by drawing values 
from standard normal distributions, linear regressions were fitted to each simulated series and 
the likelihood of each linear time trend was calculated. Multiplying these likelihood values 
across the three metrics provided the likelihood equivalent to an entry in Table 1. As generally 
three cells in the table indicate the same process change, their likelihood values were 
multiplied, taking into account that each pair of cells has two metrics trends in common. We 
repeated the process 10,000 times leading to the simulated distribution of likelihood values. A 
second similar simulation study was carried out to obtain the distribution of likelihood values in 
the case where only two metrics are used.    
 

Sensitivity to methodological choices 

Several decisions are made when applying the method. The impact of two of these: (a) the 
selection of pertinent metrics, and (b) the type of monotonic function used for fitting time 
trends are investigated.  The time trend interpretation table (Table 1) contains two length-
based metrics for describing population demography, Lbar and L0.95. Whether these two metrics 
indeed carry independent information was explored by repeating the analysis for two metric 
couples (Lbar -logN and L0.95-logN) using for interpretation the subsets of Table 1 
corresponding to no change for the omitted metric. Smoothness was imposed when fitting 
time trend models using GAMs using the parameter λ (eq  2) but otherwise no constraint was 
placed on the degree of non-linearity (number of degrees of freedom df) of the relationship. 
The analysis was repeated constraining time trends to be at most cubic (df 3; a linear model 
has df  1) in addition to being monotonic and having a significant time change (constraints 1. & 
2. above) to explore the impact of this. 
 
 
3. Results 

 

Interpreting log-likelihood values 

The distribution of simulated log-likelihood values using three independent stationary metric 
time series was rather skewed (Figure 1). The range between the 5th and the 95th percentiles 
was 4.8. Thus, it is considered that the data do not provide evidence in favour of a process 
change in addition to that with lmax unless ΔM <5. In the case of only two metrics, the threshold 
is ΔM <4.   
 

Identification of changes in population processes in fish populations  

The standardised time series of the three population metrics for North Sea fish populations 
with fitted time trend models are shown in Figure 2. No significant first-order autocorrelations 
were detected in the residuals for cod and lesser-spotted dogfish using Durbin-Watson tests 
with test level 0.01/9 (with Bonferroni correction) in accordance with model assumptions. In 
contrast, residuals for whiting from the decreasing and no time trend model fitted to lnN were 
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significantly autocorrelated. Thus, overall autocorrelation in residuals was not an important 
problem. Only one significant correlation among metrics was found for cod and none for the 
other two species, supporting the validity of the results.  
 

The largest log-likelihood values for cod indicated decreased recruitment and multiple 
changes, and these values differed by less than 1 (bold entries in Table 2). The log-likelihood 
values for lesser-spotted dogfish pointed towards a persistent increase in recruitment, a 
decrease in mortality and multiple changes; the processes had the largest log-likelihood 
values, which were about equal in size. The log-likelihood values for most process changes 
were similar for whiting, providing no evidence for any particular process change. 
 

Sensitivity to methodological choices 

The analysis was repeated using only one length metric at a time to investigate the impact of 
the choice of metric (Table 3). For cod, using only Lbar led to conclusions identical to the 3-
metric results. In contrast, when L0.95 was used, multiple changes were unlikely for cod. The 
results for lesser-spotted dogfish and whiting were insensitive to which and how many length 
metrics were used.  
 
The relative contributions of lnN and the length metrics to the total log-likelihood (Figure 3) 
provides information on which metric was most important. The identified decrease in 
recruitment for cod was due to a large log-likelihood for a decrease in lnN . Similarly, the large 
log-likelihood for an increase in lnN for lesser-spotted dogfish led to the identification of an 
increase in recruitment and decrease in total mortality. Thus lnN was the most important 
metric because its time trend signal was less noisy compared to the length metrics. 
 
When the model fitting procedure was repeated constraining the non-linear monotonic 
functions to be at most cubic, the resulting log-likelihood differences were similar to those 
obtained with a more flexible smooth (values in brackets in Table 2). This indicates that results 
were robust to the shape of the monotonic functions.  
 

Comparison with stock assessment results 

The assessed cod stock covers the Eastern English Channel and the Skagerrak in addition to 
the North Sea sampled by the IBTS survey (ICES 2009a). Consistent with the results of this 
study, estimates of recruitment from the stock assessment for cod showed a decrease at the 
beginning of the period (Figure 4). In contrast, estimates of fishing mortality (averaged over 
ages 2-4, Fbar) and SSB from the stock assessment decreased steadily with a slight increase 
at the end, while the metric trend analysis provided no evidence for a decrease in total 
mortality.    
 
No formal assessment of lesser-spotted dogfish in the North Sea exists owing to lack of data, 
and a common TAC is set for skates and rays (ICES 2009b). The ICES (2009b) assessment 
is therefore simply that "abundance and area occupied [of lesser-spotted dogfish] are 
increasing". In line with this, the metric trend analysis indicated that increased recruitment and 
decreased total mortality were likely to have occurred in recent years.  
 
The assessed whiting stock covers the North Sea and the neighbouring Eastern English 
Channel (ICES 2009a). Stock assessment estimates of SSB decreased, while the estimates 
of recruitment and fishing mortality returned to their values at the start of the period by its end 
after having been first higher and then lower (Figure 4). Concordant with the stock 
assessment results, the metric trend analysis did not identify any persistent process changes.  
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4. Discussion 

 
Different process changes were identified for the three North Sea fish species for the period 
1997-2008. The most likely changes for cod were a decrease in recruitment and multiple 
changes. The metric trends pointed at an increase in recruitment and a decrease in mortality 
for lesser-spotted dogfish. For both species, the results were rather robust to methodological 
choices and time trends in lnN with little noise had the greatest influence on the final 
conclusions. No significant process changes were identified for whiting. Formal stock 
assessments only exist for cod and whiting. However, survey data were available for lesser-
spotted dogfish so that the method could be applied and process changes were identified.  
  
All methods, including traditional stock assessments and the indicator trends based approach 
of this paper depend on data availability and quality and validity of model assumptions. In 
particular, discarding and misreporting can compromise the quality of fisheries-dependent 
data and consequently stock assessment results. Scientific surveys used for calculating 
population metrics suffer less from lack of data quality as they adhere to strict survey 
protocols. However, any changes in survey catchability over time or space can compromise 
the reliability of survey derived metrics, as does partial coverage of the area inhabited by any 
population of interest (Trenkel & Cotter 2009). Subject to these conditions, the method of this 
paper can provide insights into population dynamics in cases where reliable fisheries 
dependent data do not exist, which is the case for the majority of fish species in the North Sea 
and elsewhere. Overall it can provide an overview of potential process changes for a wide 
range of species. A potential application is to use the method as a first screening step, and to 
seek additional information to confirm the diagnosis and consider management actions only 
for those species where process changes are flagged up by the analysis, instead of having to 
consider a large number of species. This gain in efficiency will be essential for ecosystem 
based management and for example for implementing the European Marine Strategy 
Framework Directive (directive 2008/56/EC). Though lack of evidence for change is not proof 
for a lack of change, in particular if metric time series are noisy. 
 
A major characteristic of the method is its process orientated multivariate nature. The 
interpretation of joint time trends as process changes relies on the validity of the indirect 
inference, in particular the table used for interpretation. The table created here for identifying 
process changes (Table 1) did not explicitly incorporate well known effects such as density-
dependent growth or correlations among biological processes. However, all joint and non-
listed effects are part of the multiple processes column (Table 2). It might be possible to refine 
the interpretation of joint time trends and separate out some of these joint and other effects in 
future research.              
 
The method provides likelihood values for different joint metric trends which are interpreted as 
process changes, and not only a single best explanation. The meaningfulness of time trends 
in the context of the measurement uncertainty of each metric is ensured by the second 
constraint used in the estimation procedure. This overcomes the shortcomings of 
normalisation which standardises the variance of all metrics series to 1 and thus removes 
relative differences in the precision of metrics estimates.  
 
The threshold value used for interpreting the log-likelihood differences was derived from a 
simulation study. It was found that the threshold was somewhat sensitive to the number of 
metrics used and in particular to the length of the time series (results not shown). This is not 
surprising given that the time series are short so sample sizes are small. Further, all metrics 
were considered independent in the simulations, which would provide conservative results if 
not true, although in the case study there was little evidence of violation of the independence 
assumption (few residual correlations across metrics). 
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A crucial part of the method is the assumption of monotonic trends which expresses a 
persistent change in underlying processes and determines the relevant time window for the 
analysis. Metric trends with a single peak or trough, caused for example by an episodic event 
such as an exceptionally good recruitment, would indicate that the system returned to its point 
of departure at the end of the study period and thus no persistent changes occurred. In 
practice however, an exceptional recruitment might take several years to work its way through 
the population, thus blurring the limits between persistent changes and episodic events in 
survey-based metrics. While time trends have to be monotonic, application of the method 
does not require them to be fitted using GAMs. In this study similar results were obtained 
when constraining the functions to be at most cubic. Thus the actual choice of smoothing 
function is not crucial. However, it is connected to the time window used for the analysis. The 
shorter the period, the more reasonable it seems to assume linear trends. 
 
In conclusion, the likelihood method offers a way of combining trends in multiple metrics. The 
method was demonstrated for identifying changes in population processes but it can just as 
well be applied to functional groups or communities or any other environmental process, such 
as the benthic example cited in the Introduction, as long as an agreed table for interpreting 
joint time trends and suitable metrics can be defined.  
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Tables 

 
Table 1. Combination of time trends in three population metrics corresponding to 
distinct models (Mx) suggesting changes in individual growth g, recruitment R, adult 
total mortality Z or multiple processes mu.  significant strictly monotonic time trend 
in direction of arrow,  no trend. i  increase;  d decrease.   Metrics: L0.95 95% length 
percentile, lnN log-transformed population abundance and Lbar mean length. 
 

  Lbar    Lbar    Lbar   

 lnN  lnN  lnN  lnN  lnN  lnN  lnN  lnN  lnN  

L0.95  Zd (M1) gi (M4) Rd (M7) Zd (M10) gi (M13) Rd (M16) mu (M19) mu 

(M22) 

mu (M25) 

L0.95  Zd (M2) gi (M5) Rd (M8) mu 

(M11) 

nc (M14) mu 

(M17) 

Ri (M20) gd (M23) Zi (M26) 

L0.95  mu (M3) mu (M6) mu (M9) Ri (M12) gd (M15) Zi (M18) Ri (M21) gd (M24) Zi (M27) 
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Table 2. Model fit comparison using log-likelihood differences ΔM =lmax- l(M) for various 
process changes over the period 1997-2008. Values in brackets are for time trends which are 
at most quadratic. Processes: g growth, R recruitment, Z total mortaliy; increase (i) or 
decrease (d). Values <5 are in bold as they provide equal evidence for process changes. 
 
Species gd gi Rd Ri Zd Zi multiple no change
cod 21.55 12.48 0 28.56 19.49 9.07 4.2 20.57 
 (21.02) (12.07) (0) (28.81) (19.85) (8.96) (4.2) (19.94) 
lesser-spotted  9.58 10.16 15.02 0 0.58 14.44 1.02 10.7 
dogfish (9.5) (10.63) (16.06) (0) (1.13) (14.93) (0.81) (10.36) 
whiting 1.16 1.19 0.83 6.12 6.15 0.79 0 3.55 
 (0.84) (0) (0.81) (8.21) (7.37) (1.65) (0.29) (1.66) 
 
 
Table 3. Model fit comparison using log-likelihood differences ΔM =lmax- l(M) for various 
process changes over the period 1997-2008. Processes: g growth, R recruitment, Z total 
mortaliy; increase (i) or decrease (d). Values <4 are in bold as they provide equal evidence for 
process changes. 
 
Species Metrics gd gi Rd Ri Zd Zi multiple no 

change
cod lnN, L0.95 22.36 12.74 0 -29.28 -19.65 9.63 8.32 21.06 
 lnN, Lbar 16.91 12.74 0 -23.82 -19.65 4.17 2.35 15.09 
lesser-spotted 
dogfish 

lnN, L0.95 14.51 15.63 19.59 1.06 2.18 18.47 0 13.45 

 lnN, Lbar 13.45 13.96 17.92 0 0.5 17.41 1.11 14.56 
whiting lnN, L0.95 0.41 1.24 0.83 -5.37 -6.2 0 1.67 2.09 
 lnN, Lbar 1.27 0.41 0 -6.23 -5.37 -0.86 1.23 1.65 
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Figure 1 
 
Figure 1. Histogram of log-likelihood values for linear regression models fitted to simulated 
data. Log-likelihood values are centred. Solid vertical lines indicate 10th and 90th percentiles; 
dotted lines 5th and 95th percentiles. 
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Figure 2 
 
Figure 2. Monotonic time trend models fitted to standardised fish population metrics derived 
from International Bottom Trawl Survey data for the North Sea. Increasing (solid), decreasing 
(dashed) and no change (dotted). Vertical lines are 95% confidence intervals for metric 
estimates (3% CV). 
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Figure 3 
 
Figure 3. Contribution of the metric lnN to the total log-likelihood for each process change 
when two metrics are used. Process changes: g growth, R recruitment, Z total mortaliy; i 
increase, d decrease. 
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Figure 4 
 
Figure 4. Stock estimates for cod (North Sea, English Channel and Skagerrak) and whiting 
(North Sea and Eastern Channel) redrawn from ICES (2009a): spawning stock biomass SSB, 
recruits (age 1) and fishing mortality F (mean ages 2-6). 
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