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Abstract:  
 

This study assessed the effects of an artificial bloom of the toxin-producing dinoflagellate, Alexandrium 
minutum, upon nutrition related processes and reproductive output of the Pacific oyster, Crassostrea 
gigas. Oysters were exposed to A. minutum, Paralytic Shellfish Toxins (PST) producer and compared 
to a control batch of oysters fed Isochrysis galbana clone Tahitian (T.Iso). The experiment was 
performed in June 2008, when oysters were found ripe. Several physiological variables of oysters, 
such as PSTs accumulation, digestive gland and histological observations as well as spermatozoa 
quality, were measured at the end of the exposure. Results indicate that the digestive gland was 
greatly impacted upon A. minutum exposure. Monoacylglycerol and diacylglycerol contents as well as 
phospholipids (mainly phosphatidylcholine) drastically decreased in the digestive gland of oysters 
exposed to A. minutum compared to control oysters. At the same time, many oysters exposed to the 
harmful microalga presented a strong inflammatory response in different tissues of the digestive gland: 
in intestine as well as in digestive ducts and tubules. Spermatozoa in oysters exposed to A. minutum 
were morphologically and functionally modified compared to spermatozoa of control oysters. Indeed, 
spermatozoa were less motile and had lower ATP content in oysters exposed to A. minutum. 
Meanwhile, spermatozoa produced by control oysters showed higher percentage of mortality and 
relative DNA content than those produced by A. minutum exposed oysters. Finally, the characteristics 
of the mitochondria of spermatozoa also appeared to be modified upon A. minutum exposure. The 
results of this study suggests that an exposure of oysters to A. minutum, reducing energy status and 
motility of spermatozoa associated to morphological changes at the cellular and sub-cellular levels, 
can have consequences on spermatozoa fertility and reproduction success. 
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Introduction 

 
Among harmful algae, Alexandrium species have worldwide distribution, and some 

species have caused many PST-related events (Kim et al., 2005). The dinoflagellate 

A. minutum was observed in several countries in the world (North America, Australia, 

Taiwan, New Zealand and Jamaica for example) and in Europe, such as Spain, 

Ireland, Italy, Greece and France (Lilly et al., 2005; Ignatides et al., 2007; Ranston et 

al., 2007). Moreover, this species was known to produce Paralytic Shellfish Toxins 

(PSTs). Several commercial bivalve species,  such as oysters, are known to 

accumulate PSTs by feeding on PST-producing microalgae(Oshima et al., 1990; 

Bricelj and Shumway, 1998). Mode of action of PSTs involved a reversible and highly 

specific block of ion transport by the sodium channel and thus of the action potential 

in excitable membranes (nerve and muscle fibers) (Narahashi, 1988; Bricelj and 

Shumway, 1998). Aductor-muscle paralysis of oysters, Crassostrea virginica (Gmelin, 

1791), exposed to cultured Alexandrium fundyense (Balech, 1985) was observed by 

Hégaret et al. (2007). Alexandrium exposure is also known to have a negative impact 

on filtration and ingestion in bivalves (Bardouil et al., 1993; Wildish et al., 1998; 

Lassus et al., 1999; Li et al., 2001; Navarro et al., 2008). Inhibition of clearance was 

observed as the initial feeding response of Crassostrea gigas (Thunberg, 1793) 

exposed to A. tamarense (Lebour, 1925) and A. fundyense (Wildish et al., 1998). 

Similarly, Lassus et al. (1999) observed that exposing oysters, C. gigas, to cultured 

A. minutum (Halim, 1960) induced significant inhibition of shell-valve activity and 

clearance, filtration, and biodeposition rates. Exposure of bivalves to harmful 

microalgae can also affect digestion and energy allocation. Li et al. (2002) assessed 

the effects of A. tamarense on the energy budget, quantified as scope for 
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growth (SFG), of the mussel, Perna viridis (Linnaeus, 1758), and the manila clam, Ruditapes 

philippinarum (Adams and Reeve, 1850). This study demonstrated that increase in PST 

burden was associated with significant reduction of SFG in both clams and mussels, primarily 

because of decreases in absorption efficiency (Li et al., 2002). This reduction in SFG can 

hypothetically be linked to modification of digestive metabolism (Fernandez-Reiriz, 2008). 

Also, a recent study (Haberkorn et al., in press) demonstrated that reserve lipids in digestive 

glands of C. gigas are modified upon exposure to A. minutum. Free fatty acid, 

monoacylglycerol, and diacylglycerol contents, as well as the ratio of reserve lipids 

(triacylglycerol, ether glycerides and sterol esters) to structural lipids (sterols), decreased 

significantly in digestive glands of oysters exposed to A. minutum compared to oysters fed a 

nutritious, control diet of Isochrysis sp. (Haberkorn et al., in press). 

Some recent studies have described inflammatory responses (aggregation/infiltration of 

hemocytes in organs and/or hemocytes in diapedesis through epithelia) in different tissues of 

bivalve species exposed to several harmful microalgae (Galimany et al., 2008 a, b and c; 

Hégaret et al., 2009). Mussels (Mytilus edulis - Linnaeus, 1758) exposed to A. fundyense 

showed an inflammatory response consisting of diapedesis of hemocytes into the alimentary 

canal and hemocyte migration into the connective tissue between the gonadal follicles 

(Galimany et al., 2008a). These findings suggest that harmful-algal exposure can elicit 

activation of defense or repair mechanisms in response to resulting tissue lesions in bivalves. 

 

Also, according to Galimany et al. (2008a, b and c) and Hégaret et al. (2009), the digestive 

gland is generally the organ most-affected by HAB exposure. Thus, as the structure of the 

digestive gland is often observed to be drastically modified, it appears pertinent to study the 

structural components of cell membranes in the digestive gland. Phospholipids and sterols are 

essential structural components of all cell membranes and may be used as markers of 

membrane modifications. Phospholipid alterations may occur through the oxidation of these 

labile molecules. Moreover, inflammatory responses are known to be induced by lipid 

oxidation in vertebrate models (reviewed in Fantone and Ward, 1982). In mussels (M. edulis) 

exposed to A. fundyense, increased ceroidosis in tissues was probably attributable to lipid 

peroxidation generated by ingestion of the harmful alga (Galimany et al., 2008a). 

Concurrently, an inflammatory response was observed in the mussel alimentary canal 

(Galimany et al., 2008a). These findings suggested a possible link between changes in 

digestive-gland lipids and inflammatory response in the same organ. 
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Beyond the direct effects of HABs described above, it is unknown how HAB exposure affects 

other physiological functions, such as reproduction. Relationships between food quality and 

quantity, energy storage, and reproduction are now well established in C. gigas (Soudant et 

al., 1999; Berthelin et al., 2000; Royer et al., 2008; Rico-Villa et al., 2009). These 

observations suggest that HAB exposure, by affecting nutrition-related functions, may impact 

reproduction processes and gamete output. Indeed, it is well-established that reserve lipids 

play an important role in gamete production and larval development (Soudant et al., 1996, 

1998). Consequently, the effects of harmful algae on digestive-gland lipids, as demonstrated 

by Haberkorn et al. (in press), may further affect gametogenic processes, reproduction output 

and larval development. 

 

Most studies concerning the effects of harmful algae on reproductive cycles of bivalves are 

focusing on embryonic and larval development (Yan et al., 2001 and 2003; Springer et al., 

2002; Leverone et al., 2006; Padilla et al., 2006; Shumway et al., 2006). Some studies have 

observed alterations induced by noxious compounds on quality of gametes produced by 

oysters (Nice, 2005; Ringwood et al., 2004; Yurchenko et al., 2009), but there are no studies 

addressing the effects of harmful algae on gametes produced by HAB-exposed bivalve 

broodstock. Spermatozoa quality, and especially spermatozoa motility, influence successful 

fertilization in free-spawning invertebrates (Nice, 2005). A positive relationship between ATP 

content and spermatozoan motility has been reported in carp Cyprinus carpio (Perchec et al., 

1995). Other sperm characteristics (viability, acrosomal integrity, mitochondrial membrane 

potential, and DNA integrity) in relation to fertilizing capacity can be accurately and rapidly 

measured using flow cytometry coupled with fluorescent markers (Gillan et al., 2005; 

Cordelli et al., 2005). For example, mitochondrial membrane potential measured with JC-1 

was shown to be reasonably predictive of in vitro fertilisation rates (higher in a group with 

high mitochondrial membrane potential) (Kasai et al., 2002). 

 

The purpose of the present study was to determine the effects of an artificial bloom of the 

toxin-producing dinoflagellate, A. minutum (strain AM89BM) on nutrition-related processes 

and reproduction of C. gigas; to do so, the digestive gland was assessed for histopathological 

condition, toxin accumulation, lipid composition, and amylase activity. Further, spermatozoa 

quality was measured in oysters (C. gigas) after 4 days of exposure to A. minutum or 

Isochrysis sp. (clone Tahitian T. Iso) as a nutritious, non-toxic control. 
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Materials and Methods 

 

2.1 Biological material 

 

2.1.1 Oysters  

 

Diploid Pacific oysters, Crassostrea gigas, used in the experiment were obtained from an 

oyster producer at île de Kerner (Morbihan, France). Mean total oyster fresh weight was 11.9 

± 1.2 g and mean shell length was 62.6 ± 2.7 mm.  

 

2.1.2 Algal culture 

 

Alexandrium minutum (strain AM89BM – isolated in Bay of Morlaix France, in 1995) was 

grown in 10-liter batch culture using autoclaved seawater filtered through a 1-µm filter and 

supplemented with L1 nutrient enrichment (Guillard and Hargraves, 1993). Cultures were 

incubated at 16 ± 1°C and 100 µmol photon.m-2.s-1, with a dark:light cycle of 12:12h. A. 

minutum was harvested after 12 days, still in exponential growth phase under our conditions. 

At this stage, this strain produced 1.3 ± 0.1 pg saxitoxin equivalent (STX eq.) per cell 

(measured by the method of Oshima, 1995). 

 

Isochrysis galbana, clone Tahitian (T.Iso), cultures were obtained from the Argenton hatchery 

(Ifremer, France). Cultures were produced in 300-liter cylinders containing 1-µm filtered 

seawater enriched with Conway medium at 24 ± 1°C, air-CO2 (3%) mix aerated, and with 

continuous light. T.Iso was harvested in the exponential growth phase (4-5 days) for the 

feeding experiments. 

 

2.2 Experimental design of A. minutum exposures 

 

This experiment was performed on mid-June 2008. To proceed, 120 oysters were placed 

randomly in six 15-liter tanks (20 oysters per tank). Oysters were acclimated for 10 days with 

a continuous flow of 14 ml.min-1 of seawater (filtered through a 0.5-µm filter) with T.Iso at 
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5.105 cells.ml-1 at 16 ± 1°C. After acclimation, oysters were fed continuously for 4 days at 14 

ml.min-1 with 5.105 cells.ml-1 of T.Iso (3 control tanks) or with 5.103 cells.ml-1 of A. minutum 

(3 treatment tanks). These two different cell densities were used to provide the same bio-

volume of microalgae to oysters because the cellular volume of A. minutum is about 100x 

higher than that of T.Iso. 

2.3 Oyster sampling 

 

At the end of the algal exposure, all oysters were sampled and distributed as follows. For each 

tank (20 oysters), five oysters were used for histological diagnosis, and five oysters were used 

for individual plasma and hemocyte variable measurements (data not shown) and condition 

index. Pooled digestive glands from another ten oysters from each tank were used to measure 

toxins, neutral and polar lipid contents, and amylase activity. Prior to dissection of digestive 

glands, male oysters (8 from the control treatment and 8 from the A. minutum treatment) were 

selected to assess spermatozoa quality. 

 

2.4 Histology 

 

A 4-mm cross-section of each of the five oysters sampled for histology, including digestive 

gland, gills, mantle, and gonad, was taken. Adductor muscles were dissected separately. 

Dissected tissues were fixed in Davidson’s fixative (Shaw and Battle, 1957) for 48 h. Cross-

sections and muscles were dehydrated in ascending ethanol solutions, cleared with xylene, 

and embedded in paraffin wax. Five-micrometer thick sections were cut, mounted on glass 

slides, and stained with Harris’ Hematoxylin-Eosin (Martoja and Martoja-Pierson, 1967). 

Slides were examined under a light microscope.  

 

Gametogenic stage 

 

Gametogenic stage was determinated according to the reproductive scale established by Mann 

(1979). 

 

Pathological conditions: intensity of pathologies 
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Gills, gonads, style sac, intestinal groove, intestine, digestive ducts, and digestive tubules 

were present in all cross-sections and compared between treatments. 

 

After a preliminary diagnosis of all slides (A. minutum exposed and T.Iso-exposed oysters), a 

list of the most common pathological conditions per organ was established as follows: 

- digestive gland (intestinal groove, intestine, digestive ducts and digestive 

tubules) : i) surrounding hemocytes and ii) hemocytes in diapedesis in the 

epithelium 

- gills: presence of mucus 

- muscle: i) myoathrophy, ii) wavy-pattern degeneration and iii) hyaline 

degeneration 

 

A semi-quantitative scale was defined to classify the intensity of each pathological condition. 

Each pathological condition was graded as i) absence or very light (stage 0), ii) light-moderate 

(stage 1), and iii) heavy (stage 2). Based upon this scale, a mean intensity of each pathology 

was calculated for each specific tissue as follows: 

 

∑ (Stage individual 1+ Stage individual 2 + …+ Stage individual n)/ n, (where n is the number of 

diagnosed animals per treatment) 

 

Pathological conditions: general status 

 

To estimate the total pathological status of the digestive gland and the muscle for each 

microalgal-exposure treatment, mean number of pathologies (simply defined here as presence 

or absence) was calculated as follow:  

 

Mean number pathologies in digestive gland or in muscle = ∑ (number of pathologies individual 

1 + number of pathologies individual 2 + number of pathologies individual n) / n, (where n is the 

number of diagnosed animals per treatment) 

 

2.5 Condition index 
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To assess oyster-meat dry weight, soft tissues were removed from shells and placed in a pre-

weighed aluminum cup. Shell and meat were dried for 48h at 70°C and then weighed. 

Condition index of each, individual oyster was then calculated as described previously (Lucas 

and Beninger, 1985), following the formula: (g dry meat weight / g dry shell weight) x 100. 

 

2.6 Digestive-gland variables 

 

Just after dissection, digestive glands were frozen immediately in liquid nitrogen, weighed, 

pooled (1 pool of 10 digestive glands per tank), and stored at -80°C until analysis. Later, 

pools were ground with a Dangoumeau apparatus in liquid nitrogen and divided for three 

different analyses. 

 

2.6.1 Toxin content  

 

One gram of ground digestive gland (DG) was extracted in 2 ml of 0.1 N HCl (2 v/w) at 4°C. 

After centrifugation (3,000 × g, 15 min, 4°C), the pH of each extract was adjusted. If above 

3.0, pH was adjusted to 3.0 with 12 N HCl. After half-dilution, supernatants were ultra-

filtered (20 kDa, Sartorius Centrisart) and stored at 4°C until analysis. PSTs were analyzed by 

ion-pairing, high-performance liquid chromatography (IPHPLC) according to the method of 

Oshima (1995). The molar concentration (µmol.l-1) was converted into μg STX eq. 100 g-1 of 

digestive gland using the conversion factors of Oshima (1995). Results were expressed as μg 

STX eq. 100 g-1 of digestive gland wet weight. 

 

2.6.2 Lipid-class contents  

 

Two-hundred and fifty mg of ground DG was extracted in 6 ml of Folch solution 

(chloroform:methanol 2:1). Lipid classes were analyzed by high-performance, thin-layer 

chromatography (HPTLC) on HPTLC glass plates (1,010 mm) pre-coated with silica gel 60 

from Merck (Darmstadt, Germany).  
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For neutral lipids, a preliminary run was carried out to remove possible impurities using 

hexane:diethyl ether (1:1), and the plate was activated for 30 min at 110°C. Lipid samples (4 

µl) were spotted on the plates by the CAMAG automatic sampler (CAMAG, Switzerland). 

The neutral lipids were separated with a solvent system containing hexane:diethyl ether:acetic 

acid (20:5:0.5). 

 

For polar lipids, a preliminary run was carried out to remove possible impurities using 

methyl-acetate:iso-propanol:chloroform:methanol:KCl 0.25% (10:10:10:4:3.6), and the plate 

was activated for 30 min at 110°C. Lipid samples (6 µl) were spotted on the plates by the 

CAMAG automatic sampler. The polar lipids were separated with the above solvent system. 

 

Lipid classes appeared as black spots after dipping plates in a cupric-sulfate, phosphoric-acid 

solution and heating for 20 min at 160°C (charring). Seven neutral-lipid classes (free fatty 

acids, sterol esters, glycerid ethers, monoacylglycerol, diacylglycerol, triacylglycerol, sterols) 

and six polar lipid classes (cardiolipin = bisphosphatidylglycerol, lysophosphatidylcholine, 

phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol + 

ceramide aminoethylphosphonate, that migrate together) were identified based upon authentic 

standards (Sigma–Aldrich, France) and coloring techniques. 

 

The charred plates were read by scanning at 370 nm, and black spots were quantified using 

Wincats software (CAMAG, Switzerland). Results were expressed as mg of each identified 

lipid class per g of digestive gland wet weight. 

 

2.6.3 Amylase activity 

 

Two hundred mg of DG was homogenized in 1 ml of distilled water. Two hundred µl of this 

solution were added to 10 µl of a 0.5 M CaCl2 solution before analysis to assess amylase 

activity. Amylase activity was then assayed by determination of starch hydrolysis according 

to the iodine reaction (Samain et al., 1977) modified by Le Moine et al. (1997). One unit of 

alpha-amylase was defined as the amount of enzyme that degrades 1 mg.min-1 starch at 45°C. 

 

To assess specific activity of amylase, total proteins were determined using the BCA Protein 

Assay (Biorad). For protein extraction, 200 µl of the above solution was added to 200 µl of a 
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2 N NaOH solution. Protein analysis was carried out on 10 μl of 1/10 diluted samples 

according to the manufacturer’s description. Briefly, 200 μl of dye reagent was added to 10 μl 

of sample and incubated at 37°C for 1 hour, and the absorbance was measured at 595 nm. 

Sample ODs were compared to a standard curve of Bovine Serum Albumin (BSA), and 

results were expressed as mg protein.ml-1. Results are expressed as amylase activity (in IU) 

per mg of total protein. 

 

2.7 Spermatozoa quality 

 

Oyster gonads were incised, and a sample of gametes was checked under the light microscope 

to determine the sex of each individual. When identified as male, spermatozoa were sampled, 

counted (under dark field microscope), and adjusted to 1.107 cells per ml in filtered sterile 

seawater (FSSW). 

 

Flow cytometric analysis 

 

Analysis of spermatozoa viability, DNA content, and mitochondrial membrane potential were 

performed using a FACScalibur flow cytometer (BD Biosciences, San Jose, CA USA) 

equipped with standard optics and a 488 nm argon laser.  

 

Assessment of viability 

An aliquot of 100 µl of spermatozoa suspension from each selected, individual, male oyster 

was transferred into a tube containing 900 µl FSSW. Spermatozoa DNA was stained with two 

fluorescent DNA/RNA specific dyes (1% final concentration for both), SYBR Green I 

(Molecular probes, Eugene, Oregon, USA, 1/1000 of the DMSO commercial solution), and 

propidium iodide (PI, Sigma, St Quentin Fallavier, France, final concentration of 10 µg.ml-1) 

in the dark at 18°C for 10 minutes before flow-cytometric analysis. PI permeates only 

spermatozoa that lose membrane integrity and are considered to be dead (necrotic); whereas, 

SYBR Green I permeates both dead and live cells. SYBR Green and PI fluorescences were 

measured at 500-530 nm (green) and at 550-600 nm (orange), respectively, by flow 

cytometry. This method distinguished viable, “dying” (PI partially incorporated) and dead 

cells. Thus, by counting the cells stained by SYBR Green and cells stained by PI, it was 

possible to estimate the percentage of dead cells in each sample.  
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Estimation of relative DNA content 

On the above stained samples, relative DNA content of spermatozoa was estimated using 

fluorescence intensity of SYBR Green I in spermatozoa and expressed as arbitrary units (A.U) 

of green fluorescence. 

 

Assessment of mitochondrial membrane potential  

The mitochondrial membrane potential of oyster spermatozoa was measured using the 

potential-dependent J-aggregate-forming delocalized lipophilic cation, 5,5',6,6'-tetrachloro-

l,l',3,3'-tetra-ethylbenzimidazol carbocyanine iodide (JC-1, Molecular probes, Eugene, 

Oregon, USA). This probe enters selectively into mitochondria and exists as two forms, 

monomeric or aggregate, depending upon membrane potential (Reers et al. 1991). The JC-1 

monomer form predominates in mitochondria with low membrane potential and emits in the 

green wavelength (525-530 nm). The JC-1 aggregate form accumulates in mitochondria with 

high membrane potential and emits in the high orange wavelength (590 nm). JC-1 forms can 

change reversibly.  

Eight hundred microliters of the spermatozoa suspension (previously adjusted to 1.107) was 

transferred into a tube previously load with 190 µl FSSW and 10 µl JC-1 (0.5 mM). Samples 

were incubated for 10 min at room temperature. After incubation, 100µl of JC-1-stained 

sample was diluted in 900 µl FSSW and stored on ice prior to flow-cytometric analysis. 

Fluorescence intensities of JC-1 monomers and aggregates were quantified, respectively, by 

FL1 and FL2 detectors of the flow cytometer. The JC-1 aggregate/monomer ratio is assumed 

to be proportional to mitochondrial membrane potential (Reers et al., 1991; Cossarizza et al., 

1996). FL1 and FL2 fluorescence intensities are volume-dependent when their ratio is 

constant at a given membrane potential (Reers et al., 1991).  

 

Motility 

 

The percentage of motile spermatozoa was assessed using a two-step dilution in a salt sperm-

activating solution “Moti-gigas” (Brizard et al, 2001) and observed through a dark-field 

microscope. Percentage of motile spermatozoa was estimated by observations of three optical 

fields. Results were expressed as mean ± CI percentage of motile spermatozoa. 

 

ATP content 



 12 

 

For intracellular ATP content, sperm samples (15µl) were frozen in liquid nitrogen after 

dilution in “Store-gigas” (135 µl, Brizard et al, 2001) according to manufacturer procedures. 

ATP content was determined by bioluminescence (ATPlite Luminescence Assay System, 

Perkin – Synergy HT Multi-Mode Microplate Reader, BioTek). Results were expressed as 

nmol of ATP per 109 spermatozoa. 

 

2.8 Statistical analysis 

 

Differences between microalgal treatments were analyzed statistically using Student's T-test 

(after Kolmogorov-Smirnov test to check normal distribution of data) to assess differences 

linked to treatment for physiological and spermatozoa variables. 

Variables expressed as ratio or percentage were transformed as arcsin(squareroot) before 

statistical analysis, but presented as non transformed data in figures. 

Intensity of each pathological condition observed by histology was compared statistically 

using the Mann-Whitney U-test to assess differences attributable to microalgal exposure. For 

the sum of binary pathological data (presence/absence), the T-test was used to assess 

differences attributable to microalgal exposure. 

Statistical analyses were performed using Statgraphics Plus statistical software (Manugistics, 

Inc, Rockville, MD, USA). Results were considered significant when p-value was < 0.05. 
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Results 

3.1 Histology 

 

Gametogenic stage 

 

There were 33% males and 67% females in the cohort of oysters fed T.Iso, and 53% males 

and 47% females in oysters exposed to A. minutum. There was no significant difference 

(p=0.27; Chi-squared; contingency table) in sex ratio between the A. minutum and T.Iso 

conditions. All analyzed oysters were ripe (stage 3). 

 

Pathological conditions: intensity of pathologies 

 

Digestive tubules of all oysters (both microalgal treatments) showed a star-shape in the lumen 

formed by digestive cells, indicating that the oysters were actively feeding and absorbing. 

Some intact cells of A. minutum were observed in the intestinal groove and intestine of oysters 

exposed to this microalgae (cross-sections did not demonstrate the stomach, but did show 

style sac and intestinal groove). No intact cells of T.Iso were observed in any part of the 

digestive gland, and no A. minutum cells were observed in digestive ducts and tubules. 

 

Most intense pathological conditions described hereafter were observed in oysters exposed to 

A. minutum. Presence of pathological conditions in control oysters was occasionally observed 

but can be considered as pre-existing, background pathologies attributable to unknown 

environmental irritants in the field.  

 

Pathological conditions observed in the digestive gland consisted most frequently of 

inflammatory responses characterized by hemocyte aggregations around the intestinal groove 

and intestine, and to a lesser extent around digestive ducts and tubules (Fig. 1 and 2). 

Intensities of hemocyte aggregations in the intestinal groove and intestine were significantly 

higher in oysters exposed to A. minutum than in the controls (Table 1).  

Hemocytes in diapedesis (migration of hemocytes through the epithelia) were also observed 

in the digestive gland (Fig. 1 and 2). Intensities of hemocytes in diapedesis in intestinal 

groove, intestine, and digestive ducts were significantly higher in oysters exposed to A. 
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minutum than in control oysters (Table 1). Only one control oyster (of fifteen) had hemocytes 

in diapedesis in the digestive tubules. 

 

Adductor muscles of some oysters were affected by three types of myopathy as opposed to the 

normal pattern (Fig. 3 A): myoatrophy (Fig. 3 B), wavy-pattern degeneration (Fig. 3 C) and 

hyaline degeneration (Fig. 3 D). Myoatrophy was characterized by round muscle fibers 

surrounded by halos. Wavy-pattern degeneration was characterized by wavy and disorganized 

muscle fibers. Hyaline degeneration was characterized by a homogenous pink color, hyaline 

(no organelles are visible) and abnormal round forms of the muscle fibers. Intensities of 

myoatrophy and hyaline degeneration were significantly higher in oysters exposed to A. 

minutum, as compared to those fed T.Iso (Table 1). Wavy-pattern and hyaline degeneration 

were not observed in any control oysters. 

 

Although gill tissue structures were not altered, histological observations revealed higher 

mucus production in A. minutum-exposed oysters (Fig. 4) in relation to controls. Mucus 

production in gills of A. minutum-exposed oysters was significantly more intense than in the 

control oysters (Table 1). 

 

Pathological conditions: general status 

 

The total number of pathological conditions observed in the digestive gland was significantly 

higher (p<0.001; n=15; T-test) in the oysters exposed to A. minutum (6.2 ± 0.8) in comparison 

to oysters fed T.Iso (3.1 ± 0.7).  There were also significantly more pathological abnormalities 

in the muscle (p<0.01; n=15; T-test) in oysters exposed to A. minutum (1.6 ± 0.6) than in 

oysters fed T.Iso (0.4 ± 0.3). 

3.2 Wet weight of digestive gland and condition index 

 

Condition index did not significantly vary (p>0.05, n=12, T-test) between oysters exposed to 

A. minutum or T.Iso, being 6.1 ± 0.9 and 5.8 ± 1.4, respectively. Body dry weight did not 

significantly vary (p>0.05, n=12, T-test) between oysters exposed to A. minutum or T.Iso, 

being 0.6 ± 0.1g and 0.5 ± 0.1g, respectively. 
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3.3 Toxin content 

 

PST content in digestive glands of exposed oysters (A. minutum) was 145.5 ± 3.3 μg STX eq. 

100 g-1 of digestive gland wet weight. No PSTs were detected in any pool of digestive glands 

from control oysters (fed T.Iso). 

 

3.4 Digestive-gland variables 

 

There was no variation of total neutral lipid contents in digestive glands of oysters regardless 

of experimental treatment (Fig. 5). Phospholipid contents decreased significantly in digestive 

glands of oysters exposed to A. minutum in comparison to those fed T.Iso (Fig. 5). 

3.4.1 Neutral lipid contents 

 

Neutral lipid classes detected in digestive glands were free fatty acids, sterol esters, ether 

glycerides, sterols, monoacylglycerols, diacylglycerols and triacylglycerols (Fig. 6).  

 

Monoacylglycerol and diacylglycerol contents were significantly lower (p=0.009 and 

p=0.0005, respectively; T-test) in oysters exposed to A. minutum as compared to those fed 

T.Iso (Fig. 6). 

Contents of sterols and sterol esters were significantly higher (p=0.0016 and p=0.0307, 

respectively; T-test) in oysters exposed to A. minutum as compared to those fed T.Iso (Fig. 6). 

 

3.4.2 Polar lipid contents 

 

 

Polar lipid classes detected in digestive glands were lysophosphatidylcholine (LPC), 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol + ceramide 

aminoethylphosphonate (PI+CAEP), phosphatidylserine (PS) and cardiolipin (CL) (Fig. 7). 

CL and PS were significantly higher (p=0.003 and p=0.0002, respectively; T-test) in oysters 

exposed to A. minutum as compared to those fed T.Iso (Fig. 7). Exposure to A. minutum 

resulted in significant decreases in PC, LPC, PE and PI+CAEP (p=0.0002, p=0.014, p=0.0426 

and p=0.0344, respectively; T-test) in relation to controls (Fig. 7). 
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3.4.3 Amylase-specific activity 

 

There was no significant variation in digestive-gland wet weight, protein content and 

amylase-specific activity in digestive gland between different microalgal exposures (Table 2). 

 

3.5 Spermatozoa variables 

 
Motility and ATP content of spermatozoa extracted from A. minutum-exposed oysters were 

significantly lower (p=0.0161 and p=0.0253, respectively; T-test) in relation to controls (Fig. 

8A and 8B). Three control oysters produced spermatozoa characterized by high motility and 

high ATP content. No A. minutum-exposed oysters produced spermatozoa with such high 

motility and ATP. 

 

Sybr green I fluorescence intensity (related to DNA content and/or conformation) of stained, 

viable spermatozoa was significantly lower and much more variable in oysters exposed to A. 

minutum than in those fed T.Iso (p=0.031 and p=0.048, U-test and Kolmogorov-Smirnov test, 

respectively, Fig. 8C). Side Scatter of viable spermatozoa (data not shown) of A. minutum-

exposed oysters was significantly higher in relation to controls (p=0.014, T-test). The mean 

percentage of dead spermatozoa was significantly lower (p=0.0039, T-test, Fig. 8D) in oysters 

exposed to A. minutum in relation to those fed T.Iso. 

 

The mitochondrial membrane potential of spermatozoa was measured using the lipophilic 

cation JC-1. Fluorescence intensities of JC-1 monomers and aggregates were quantified 

respectively by FL1 and FL2 detectors of the flow cytometer. The JC-1 aggregate/monomer 

ratio (an estimation of mitochondrial membrane potential) was not significantly different 

between experimental treatments (Fig. 8E). JC-1 monomer fluorescence intensity (an 

estimation of total JC-1 incorporation), however, was significantly higher in spermatozoa of 

oysters exposed to A. minutum than to those of oysters fed T.Iso (p=0.0007, T-test, Fig. 8F). 

Similarly, JC-1 aggregate fluorescence intensity (data not shown) was significantly higher in 

spermatozoa of oysters exposed to A. minutum compared to controls.  
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Discussion 
 

Comparison of A. minutum-exposed oysters with controls feeding on a microalga known to be 

nutritious, T.Iso, was contingent upon confirmation that oysters were actively feeding on and 

ingesting both microalgae. All oysters (of both diets) observed by histology were actively 

digesting microalgae ingested, based upon the star-shape of lumena in digestive tubules (this 

reveals that tubules are actively absorbing). This indicates that the oysters can at least partially 

digest A. minutum cells, despite potential toxicity. Nevertheless, presence of both intact cells 

and temporary cysts in the digestive system (intestine groove and intestine) and feces (data 

not shown) of oysters exposed to A. minutum suggests that the oysters were unable to 

completely digest all ingested cells of this species. Presence of intact, harmful-algal cells in 

the digestive system of exposed bivalves has already been observed by Galimany et al. (2008a 

and c). Hégaret et al. (2007, 2008a) reported presence of intact Alexandrium cells and 

temporary cysts in bivalve feces. Persson et al. (2006) also observed temporary cysts of A. 

fundyense in feces of oysters feeding on vegetative cells. A. minutum may prevent digestion 

by forming cysts. 

 

In a previous study, paralysis of adductor muscles of Crassostrea virginica was one visible 

effect observed upon Alexandrium fundyense exposure (Hégaret et al., 2007). Recently, Tran 

et al. (2010) reported behavior changes in C. gigas upon exposure to A. minutum, e.g., 

increases in valve-opening duration and number of abnormal micro-closures. The latter is 

possibly related to dysfunction of adductor muscle. Moreover, although mechanisms 

remained unclear, adductor muscles of Ruditapes philippinarum were shown to be altered 

after exposure to Prorocentrum minimum (Hégaret et al., 2009). In accordance with the 

above-cited studies, adductor muscles of A. minutum-exposed oysters in the present study 

were intensely affected by myopathy: myoatrophy, hyaline degeneration and wavy-pattern 

degeneration. Such changes of muscle tissue structure may be associated with the muscle 

paralysis observed during Alexandrium exposure in C. virginica and Mytilus edulis (Hégaret 

et al., 2007; Galimany et al., 2008a). Observed myodegeneration may partially explain the 

modifications in valve activity of oysters exposed to A. minutum (Tran et al., 2010). Such 

modifications of muscle structure and activity can possibly affect oyster respiration and 

nutrition processes, as adductor muscle contraction contributes to maintenance of optimal 

amplitude of valve opening (Frank et al., 2007). The gill, however, remains the most 

important organ regarding respiration and feeding, and thus, this organ is expected to be the 
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first in contact with toxic or non-toxic phytoplankton cells. Histological observations revealed 

that gills were affected by A. minutum exposure. Significantly-increased mucus production 

was observed in A. minutum-exposed oysters in relation to controls. Shumway and Cucci 

(1987) showed that some bivalves (Mytilus edulis, Placopecten magellanicus, and Geukensia 

demissa) increased mucus production after exposure to Protogonyaulax tamarensis (= 

Alexandrium tamarense), probably to avoid consumption of toxic cells. Mucus associated 

with gills also contains powerful lytic enzymes that act against a variety of stressors and play 

an important role in defense (Fisher, 1992; Brun et al., 2000). 

 

This reaction to harmful and/or toxic microalgal exposure was also noted in finfish. Excess 

mucus production in gills of brown trout (Salmo trutta) exposed to a cyanobacterial (blue-

green algal) bloom was suggested to be related to acute irritation (high pH, physical irritation 

caused by high bloom density, a direct, toxic effect of toxins, or a combination of all of these 

factors) (Rodger et al., 1994). Exposure to Cochlodinium polykrikoides also resulted in 

increases of mucus production by gills in several fish species (Kim et al., 2000). It is thought 

that increased mucus production by oyster gills probably reflects tissue irritation and/or 

defense reaction to A. minutum cells and/or extra-cellular, bioactive compounds. 

 

In the present study, inflammatory responses, in the form of aggregations of hemocytes and 

massive migration of hemocytes through the epithelia by diapedesis, were observed in the 

digestive gland and were especially prominent in oysters exposed to A. minutum. The 

digestive gland, intestinal groove, and intestine were the tissues most-affected by these 

inflammatory responses. Galimany et al. (2008a, b, c) described similar, inflammatory 

responses (infiltration and diapedesis of hemocytes) in blue mussels (Mytilus edulis) exposed 

to Alexandrium fundyense, Prorocentrum minimum or Karlodinium veneficum. Hégaret et al. 

(2009) also observed infiltration of hemocytes into the intestine and gonad follicles of 

Ruditapes philippinarum exposed to P. minimum. Estrada et al. (2007) observed aggregation 

of hemocytes in the digestive gland, mantle, and gills of the scallop, Nodipecten subnodosus, 

exposed to the toxigenic dinoflagellate Gymnodinium catenatum. Smolowitz and Shumway 

(1997) described inflammatory responses in different organs of several bivalve species (such 

as Argopecten irradians, Crassostrea virginica and Ostrea edulis) exposed to Gyrodinium 

aureolum (Karenia mikimotoï). 
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Three hypotheses can be formulated to explain such a response. The first involves a reaction 

directly against toxic microalgal presence within the lumina of the alimentary canal. 

Galimany and co-workers (2008b) suggested that massive migration of hemocytes into the 

stomach and intestine was a defense response of mussels to protect tissues from exposure to 

P. minimum. Encapsulation of P. minimum cells by Ruditapes philippinarum hemocytes has 

been also suggested by Hégaret et al. (2009). Similarly, aggregates of Mercenaria mercenaria 

hemocytes surrounding P. minimum cells when exposed in vitro have been observed by 

Hégaret (2007) and Hégaret et al. (2008b). Results of the present and previous studies support 

the hypothesis that hemocytes migrate into the lumina of digestive organs to remove A. 

minutum cells and/or to protect tissues from toxicity. This reaction is clearly a non-specific 

immune response as it has been reported in different harmful algae/bivalve interactions. 

 

In a second hypothesis, presence of bacteria in the lumina of the digestive system can also 

explain such inflammatory responses; hemocytes may possibly be responding to neutralize 

opportunistic bacterial infections advanced by exposure to toxic algae. Hégaret et al. (2009) 

suggested that presence of large amounts of bacteria and hemocytes in the intestinal lumena 

of R. philippinarum reflected a failed attempt of the immune system to suppress opportunistic 

bacterial pathogens. Furthermore, Galimany et al. (2008b) observed that hemocytes engulfed 

bacteria by phagocytosis in the alimentary canal lumina of mussels exposed to P. minimum. 

 

As a third hypothesis, hemocyte migration by diapedesis across intestine epithelia can be 

considered as a detoxification pathway (Galimany et al., 2008a). Indeed, hemocytes are 

suspected to carry toxins bound to lipofuchsin granules (in lysosomes), toward the alimentary 

canal for elimination in feces. 

 

There was no apparent link between histological observations (massive presence of 

hemocytes in digestive tissues) and cell density of hemocytes circulating in the open vascular 

system (data not shown). Indeed, there was no significant variation of hemocyte and plasma 

variables according to microalgal exposure (data not shown). As hemocytes are thought to 

migrate from the circulatory system (hemolymph) to tissues, it is expected that the 

concentration of circulating hemocytes in hemolymph would decrease upon A. minutum 

exposure. Absence of such a decrease in circulating hemocytes can be interpreted as an 

increase in hemocyte production in response to A. minutum exposure compensating hemocyte 

migration from hemolymph toward tissues. The low percentage of dead hemocytes in 
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hemolymph for both microalgal treatments was confirmed by the absence of necrotic and 

apoptotic hemocytes observed by histology. 

 

From the histological observations in the digestive gland, it can be expected that digestion and 

assimilation of nutrients are likely impaired upon A. minutum exposure. This histological 

approach was further combined with a biochemical approach to determine if changes in 

energy-reserve contents, enzymatic activities, or structural compounds are concomitantly 

observed with the tissue alterations described above. 

 

Both structural and reserve lipids were affected upon A. minutum exposure. Phospholipids 

(structural lipids), however, were the most drastically impacted by A. minutum exposure; the 

total polar lipid content decreased by 24% in digestive glands. No obvious relationship 

between inflammatory responses and phospholipid (PL) changes in digestive glands can be 

established so far. Abundance of hemocytes (mainly containing of PLs, Delaporte et al., 2003) 

in the digestive gland was expected to increase phospholipid content. But, the contrary was 

observed.  Decrease of total polar lipids was mainly attributable to a two-fold decrease in PC. 

PC is generally considered as the “hub” in PL synthesis/remodeling and has the highest turn-

over. PE, PI+CAEP and LPC also contributed to the PL decrease, but at a lesser extent. On 

the contrary, CL and PS, two minor PLs, increased drastically upon A. minutum exposure, up 

38% and 134%, respectively.  Such drastic changes in PL composition in the digestive gland 

are surprising, as PL composition is described as very stable even following marked dietary 

modifications (Soudant et al., 1999). Similarly, PLs showed only small variations in the 

digestive gland of Pecten maximus during an annual field survey, independently of food 

availability (Pazos et al., 2003). 

 

Decrease in PL contents was unlikely to have resulted from cell lysis, as free fatty acid (FFA) 

content was not affected by A. minutum exposure. Presence of high FFA content can generally 

be interpreted as representing the products of cell degradation (Chu et al., 2003). Moreover, 

histological observations do not reveal any necrosis in digestive glands. 

 

Coincident with the PL decrease, MAG and DAG also significantly decreased upon A. 

minutum exposure. These compounds are generally absent in gonad and muscle, and only 

transiently observed in digestive glands of oysters (Soudant et al., 1999). MAG and DAG are 

thought to be intermediate products in lipid synthesis (Larsson et al., 2006).  Decrease in PC, 
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the most drastically affected PL by A. minutum exposure, may thus reflect a decrease in PL 

synthesis as it is coincident with DAG and MAG decreases in neutral lipids. MAG and DAG 

are precursors in the synthesis of several lipids, including reserve (triacylglycerol) and 

structural lipids (PC, PE, PI and PS) (Larsson et al., 2006). The turn-over of PLs is likely a 

relatively-rapid phenomenon in bivalves, in light of rapid adaptation of cell membranes 

during temperature changes (Farrias et al., 2003). Moreover, PLs show considerably less 

seasonal variation than neutral lipids (Pazos et al., 1996), suggesting that they are constantly 

synthesized and renewed. Such inhibition was observed previously in C. virginica exposed to 

PCB. Authors suggested that the observed decrease of PLs was a result of synthesis inhibition 

(Chu et al., 2003). Absence of decrease in TAG and EGLY contents (these lipids can be 

metabolized to produce MAG and DAG) suggest that oysters do not use reserve lipids to 

compensate for reductions in MAG and DAG, synthesis, precursors of PLs including PC, PE, 

PI and PS. Increases in PS and CL, when other PLs decreased, may reflect synthesis by an 

alternative pathway involving phosphatidic acid that does not require DAG as a precursor.  To 

summarize, decrease in the main PL classes appeared to be related to a reduction of MAG and 

DAG synthesis. This reduction is possibly attributable to shortage of precursors resulting from 

digestion and assimilation dysfunctions, as histological observations showed major changes in 

tissue structure of the digestive gland upon A. minutum exposure. 

 

Changes in PL composition may also reflect some changes in cell types or in organelles 

within cells. Indeed, PL class composition is generally found to be specific to organ tissue, 

cell type, or subcellular compartment (Soudant et al., 1999). Change in cell-type composition 

is a general phenomenon that can take place in the digestive gland epithelia of stressed 

mollusks as underscored by Zaldibar et al. (2008). A recent study (Zaldibar et al., 2007) 

demonstrated that exposure of winkles (Littorina littorea) to cadmium resulted in changes in 

the composition of the epithelia of the digestive gland (digestive ducts and tubules). These 

changes were characterized by a loss of digestive cells (minus 13.2%) and an increase of 

volume of both digestive and basophilic cells (plus 13.5% and 200%, respectively). In this 

study (Zaldibar et al,. 2007), cell changes were relatively fast, as 20 days of cadmium 

exposure provoked changes, but cells returned to normal values after a 10-day depuration. 

Such changes in digestive and basophilic cells were not detected in our study, possibly 

because of the relatively short time of exposure to A. minutum. Although visible changes in 

the cells were not detectable by histology, some intra-cellular changes may have occurred 

causing the observed modification in PL-class composition. 



 22 

 

Finally, lipid peroxidation could also be responsible for the PL decrease, as lipid peroxidation 

resulted in degradation of polyunsaturated fatty-acid composed molecules. Unfortunately, 

measurement of peroxidation processes could not be conducted in this experiment. 

 

Decrease in PLs was concomitant with increase in sterol in the digestive gland. The synthesis 

of sterols takes a different pathway than PLs. This confirms that A. minutum exposure may 

specifically affect PL synthesis through the MAG and DAG pathway. The observed increase 

in sterols may somehow correspond with a compensatory response to the decrease of PLs in 

the digestive gland. 

No variations were observed in the digestive gland wet weight, protein content, and amylase 

activity, suggesting that digestive-gland functions were only partially affected by A. minutum 

exposure. 

 

Unlike the study by Hégaret et al. (2009) wherein ova degeneration was observed in 

Ruditapes philippinarum exposed to Prorocentrum minimum, the present study did not reveal 

such pathology in female gonads. Despite the fact that no pathological conditions or tissue 

alterations were observed in male and female oyster gonads, spermatozoa (obtained by 

stripping) were affected by A. minutum exposure. 

 

Spermatozoa of A. minutum-exposed oysters showed low motility and low ATP content as 

compared to controls. None of the sampled oysters exposed to A. minutum produced 

spermatozoa with high motility and ATP content as seen in the control oysters, where three 

oysters of eight contained more than 100 nmol of ATP per 109 spermatozoa. Reduced motility 

resulted likely in the absence of increased ATP content, as ATP has been demonstrated to be 

essential for sperm motility, and decreased ATP equates with decreased sperm movement 

(Rurangwa et al., 2002).  

 

Energy released by electron flow of the respiratory chain is used to pump protons across the 

mitochondrial inner-membrane into the inter-membrane space and generates an 

electrochemical gradient to drive the synthesis of ATP. The mitochondrial membrane 

potential resulting from this gradient is, therefore, a sensitive indicator of the energy status of 

the mitochondria of the cell.  In the present study, this was measured using the JC-1 probe. 

The ratio JC-1 aggregate/monomer fluorescences (proportional to mitochondrial membrane 
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potential) was similar in spermatozoa of control and A. minutum-exposed oysters. This 

suggests that the measured reduction in ATP content within spermatozoa did not result from 

an impairment of the respiratory chain function and/or of oxidative phosphorylation. Thus, the 

mechanisms by which A. minutum exposure affected ATP production by mitochondria remain 

yet to be elucidated.  

 

Moreover, JC-1 monomer fluorescence intensity increased drastically in spermatozoa of A. 

minutum exposed oysters. Reers et al. (1991) stated that fluorescence of the JC-1 monomer 

can increase upon volume increase of mitochondrial at a constant membrane potential. 

Mancini et al (1997) used this variable to monitor change in mitochondrial mass. Thus, 

increase in incorporated JC-1 may reflect an increase in mitochondria volume, but unlikely an 

increase in mass, as oyster spermatozoa are believed to contain four mitochondria (Dong et 

al., 2005). This interpretation is supported by increases of FSC and SCC, assumed to be 

proportional to size and complexity respectively, in spermatozoa of A. minutum-exposed 

oysters.  

 

Relative DNA content of spermatozoa was also estimated using fluorescence of SYBR Green 

I, a permeant DNA dye. SYBR Green I fluorescence (expressed in A.U.) was significantly 

reduced and more variable (as estimated by higher CI) in spermatozoa of A. minutum-exposed 

oysters than in control oysters. It is speculated that these changes may reflect a reduction in 

DNA content related to chromosome anomalies in the form of missing chromosomes or 

deletions.  

 

Mortality measured in oyster spermatozoa of the present experiment was in the range found 

for spermatozoa of other biological models, including vertebrates (Collodel and Moretti, 

2008). More surprising was the lower percentage of dead spermatozoa observed in A. 

minutum-exposed oysters in relation to controls. Although apoptosis was not formally 

measured here, we consider measured cell death/necrosis as the end point of apoptosis. 

Apoptosis is a well known way to eliminate unwanted genetic material (Singh et al., 2003). 

ATP synthesized by F0-F1-ATPase is crucial for the primary pathways of testicular-cell 

apoptosis (Erkkila et al. 2006). These authors demonstrated that inhibitors of the 

mitochondrial respiratory chain and oxidative phosphorylation, exposure to anoxia, and 

inhibition of F0-F1-ATPase, reduced ATP concentration and resulted thus in anti-apoptotic 

effect on human germ cells (Erkkila et al. 2006).  
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As mentioned above, we observed a reduced concentration of ATP within spermatozoa of A. 

minutum-exposed oysters. As mitochondrial membrane potential (JC-1 aggregate/monomer 

ratio) remained stable between treatments, the reduction in ATP content can not result from 

the inhibition of the mitochondrial respiratory chain or oxidative phosphorylation. We thus 

speculate that the observed ATP depletion resulted from a specific inhibition of F0-F1-ATPase 

by A. minutum exposure that prevented apoptosis and cell death in oyster spermatozoa as 

reported for human germ cells (Erkkila et al. 2006). 

 

Alterations in gamete quality in oysters exposed to chemical pollutants were also 

characterized by the absence of spermatozoa motility (Nice, 2005), decrease in fertilization 

rate, and damage during embryonic development (Ringwood et al., 2004). 

 

Reduced energy status and motility of spermatozoa associated to morphological changes at 

cellular and sub-cellular levels upon A. minutum exposure can be expected to have 

consequences to spermatozoa fertility and reproduction success. In future studies, it would be 

interesting to further explore subsequent impacts on larval development and spat recruitment. 

Direct impact on bivalve recruitment has already been observed in Argopecten irradians 

concentricus during Ptychodiscus brevis (Karenia brevis) bloom in North Carolina 

(Summerson and Peterson, 1990). 

 

Conclusion  

Exposure to A. minutum impacted several organs and functions in C. gigas: gills, muscle, 

digestive gland, and gametes (spermatozoa). This is the first study showing that HAB 

exposure can affect mollusc lipid composition and metabolism. Changes in phospholipid 

classes in the oysters digestive gland upon A. minutum exposure are likely to reflect a 

perturbation of PL synthesis. Observed modifications of lipids, especially PLs, are more likely 

to result from A. minutum toxicity (possibly because of PSTs but not only), rather than from  

poor nutritional quality of this alga. For example, Fernandez-Reiriz et al (2008) demonstrated 

that mussels, M. chilensis, feeding on A. catenella were able to develop mechanisms which 

allowed exploitation of the toxic microalgae as a food source (proteins, carbohydrates and 

lipids). To further confirm such toxic effects upon digestive-gland lipid composition, 

comparison of effect of PST and non-PST producing Alexandrium species are needed. 
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Exposure of oysters to A. minutum also resulted in activation of defense mechanisms, as 

shown by excess mucus production in gills and acute inflammatory responses in the digestive 

gland. As a link between inflammatory response and lipid peroxidation is well known in 

vertebrates, it appears important to further study this relationship in invertebrate models. 

Despite the expectation that spermatozoa never experience direct contact with A. minutum 

cells, these cells also were affected by A. minutum exposure of the adult oyster. We can 

hypothesize that spermatozoa were mostly affected by the release of toxins upon A. minutum 

digestion. 

 

The effects of harmful microalgae on bivalve reproduction can be a considerable impediment 

for aquaculture and natural populations. The present study is the first to demonstrate that toxic 

microalgae can affect “quality” of gametes issued from HAB exposed broodstock. It appears 

important to further evaluate the consequences, in terms of fertility, embryo and larvae output 

upon HAB exposure of oyster broodstock. 
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Figure captions: 
 
Table 1: Effects of microalgal exposure on the intensity of pathological changes in oyster 
digestive gland, gills and muscle. Results are expressed as mean of stage intensity ± CI 
(n=15), with stage 0 = absence or very light, stage 1 = moderate and stage 2 = heavy. 
 
Table 2: Effects of microalgal exposure on the wet weight of digestive glands, protein content 
and amylase specific activity. Results are expressed as Mean ± CI (n=3). 
 
Fig. 1: An inflammatory response in the intestine of an A. minutum-exposed oyster, with 
aggregations of hemocytes in the connective tissue surrounding the intestine and hemocytes in 
diapedesis through the intestine epithelium. Hematoxylin-eosin stained paraffin sections. 
Intestine (In), gonads (Gn) and digestive tubules (Dt) of C. gigas. A. minutum cells (Am), 
surrounding hemocytes (He-s) and hemocytes in diapedesis (He-d). 
 
Fig. 2: Light inflammatory condition of the intestinal groove presented as aggregation of 
hemocytes in the connective tissue and diapedesis through intestine epithelium. Hematoxylin-
eosin stained paraffin sections. Style sac (Ss), intestine groove (Ig) and digestive tubules (Dt) 
of C. gigas. A. minutum cells (Am), surrounding hemocytes (He-s) and hemocytes in 
diapedesis (He-d). 
 
Fig 3: Different levels/types of myopathy (myodegeneration) observed in muscle of C. gigas 
exposed to A. minutum. Hematoxylin-eosin stained paraffin sections (scale bar = 20 µm). A. 
healthy muscle fibers in a control oyster; B. myoatrophy with atrophic muscle fibers (arrows); 
C. wavy pattern degeneration; D. myoatrophy with hyaline degeneration.  
 
Fig. 4: Gills (G) of A. minutum exposed oyster. Mucus (arrows) produced by gills. 
Hematoxylin-eosin stained paraffin sections (scale bar = 100 µm). 
 
Fig. 5: Neutral lipid and phospholipid contents (mean of 3 pools of 10 oysters each, expressed 
as mg.g-1 of tissue wet weight, ± CI) in oyster digestive gland according to microalgal 
exposure. * indicates statistically significant difference between experimental treatments; NS 
indicates statistically non-significant difference (T-test). 
 
Fig. 6: Monoacylglycerol, diacylglycerol, sterol, free fatty acid, triacylglycerol, ether glycerid 
and sterol ester contents (mean of 3 pools of 10 oysters each, expressed as mg.g-1 of tissue wet 
weight, ± CI) in oyster digestive glands according to microalgal exposure. * indicates 
statistically significant difference between experimental treatments; NS indicates statistically 
non-significant difference (T-test). 
 
Fig. 7: Lysophosphatidylcholine (LPC), phosphatidylcholine (PC), phosphatidylethanolamine 
(PE), phosphatidylinositol + ceramide aminoethylphosphonate (PI+CAEP), 
phosphatidylserine (PS) and cardiolipin (CL) contents (mean of 3 pools of 10 oysters each, 
expressed as mg.g-1 of tissue wet weight, ± CI) in oyster digestive glands according to 
microalgal exposure. * indicates statistically significant difference between experimental 
treatments (T-test). 
 
Fig.8: Percentage of motile spermatozoa (A), ATP content (B), fluorescence intensity of 
SYBR Green I stained spermatozoa (C), percentage of dead spermatozoa (D), JC-1 monomer 
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fluorescence intensity (E) and JC-1 aggregate/monomer ratio (F) of oyster spermatozoa 
according to microalgal exposures. 
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Figure 8 



Table 1 
 

  mean ± CI  
organ variable A. minutum T.Iso   

U-test 

      
hemocytes surrounding     

intestinal groove 1.07 ± 0.3 0.3 ± 0.2  ** 
intestine  1.4 ± 0.3 0.6 ± 0.3  ** 

digestive ducts 0.9 ± 0.3 0.6 ± 0.3  NS 
digestive tubules 0.5 ± 0.3 0.4 ± 0.3  NS 

     
hemocytes in diapedesis     

intestinal groove 1.2 ± 0.2 0.3 ± 0.3  *** 
intestine  1.4 ± 0.3 0.5 ± 0.3  *** 

digestive ducts 0.7 ± 0.2 0.3 ± 0.3  * 

digestive gland 

digestive tubules 0.3 ± 0.3 0.06 ± 0.1  NS 
      

      
gills presence of mucus 0.9 ± 0.4 0.1 ± 0.2  ** 

      
      

myoatrophy 1.1 ± 0.4 0.3 ± 0.3  ** 
hyaline degeneration 0.6 ± 0.3 0  ** 

adductor muscle 

wavy pattern degeneration 0.3 ± 0.2 0   NS 
Significant differences are indicated by * when p<0.05, ** when p<0.01, *** when p<0.001; NS non-significant 

 



Table 2 
 

 mean ± CI  
variables A. minutum T.Iso   

T-test 

digestive gland wet weight (g) 0.24 ± 0.03 0.24 ± 0.03  NS 
protein content (mg.g-1 DG WW) 42.4 ± 6.4 41.5 ± 3.3  NS 

amylase specific activity 0.6 ± 0.03 0.6 ± 0.1   NS 
NS : Non-significant differences 
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