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Abstract:  
 

Environmental variables affect many processes of fish biology and their fluctuations are thought to be 
one of the main factors in variability of fish stocks. Recent work has shown that the variability of the 
environment in the frequency domain (i.e., the environmental noise) can interact with endogenous 
processes (e.g., density dependence) and affect fluctuations of animal populations. In this study, we 
investigate whether fluctuations of large pelagics’ time series are affected by environmental noise and 
whether life-history traits of species modulate this response. By analysing several environmental 
variables and a large dataset of tuna and billfish catch per unit effort (CPUE) time series from the 
Atlantic, we show that in environments dominated by long-term fluctuations (i.e., red noise) CPUE time 
series were less variable and displayed smoother fluctuations. Furthermore, larger, slower-growing 
and later-maturing species were found to be more sensitive to changes of environmental noise than 
species with a shorter turnover rate. Our results suggest that environmental noise interacts with fish 
biology; understanding how it is integrated into biological processes might provide important insights to 
understand the responses of fish stocks dynamics to exploitation and environmental changes. 
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1. Introduction

Many environmental variables, particularly in marine environments, exhibit highly 

autocorrelated fluctuations that are well described by power law models; these variables are said 

to display 1/fβ noise (Steele, 1985; Vasseur and Yodzis, 2004). In this formulation, the scaling 

exponent (β) describes the relative importance of the different frequencies in the variance of the 

signal and it is usually estimated as the slope of the power spectrum in log-coordinates (Halley, 

1996; Royer and Fromentin, 2007). Consequently, when the spectral densities of low frequencies 

are greater than the spectral densities of high frequencies, the scaling exponent becomes 

negative; the more negative the scaling exponent, the more important the low frequencies. 

Unlike for white noise in which the low and high frequencies have the same importance (β= 0), 

the variance of marine environmental variables (e.g. sea surface temperature) is rather dominated 

by low frequencies. Such signals are said to display “reddened spectra” with reference to visible 

light (Steele, 1985). Such reddened spectra are not restricted to environmental variables. Using 

long-term ecological time series, including fisheries data, other studies exhibited an increase of 

population variability with census time, the so-called ''more time more variation'' effect, which 

also describes reddened spectra (Pimm and Redfearn, 1988; Cyr, 1997; Inchausti and Halley, 

2002; Halley and Stergiou, 2005).

Importantly, red noise could enhance the probability of extinction of populations because 

of higher probability of consecutive adverse conditions (Lawton, 1988; Miramontes and Rohani, 

1998; Lundberg et al., 2000; Akçakaya et al., 2003). However, this issue turned into a more 

complex question as results on population extinction proved to depend upon complex 

interactions between environmental noise and endogenous processes, such as the strength of 

density dependence (Ripa and Lundberg, 1996, 2000; Morales, 1999; Jonzén et al., 2002; 
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Lundberg and Ripa, 2002). Because marine environments generally display more reddened noise 

than terrestrial ones, and because exploitation reduces the population size, modifies its 

demographic structure and can further alter trophic interactions (e.g. Jennings and Kaiser, 1998; 

Vasseur and Yodzis, 2004), exploited fish stocks can be particularly prone to environmental 

noise. Given its potential implications for management, conservation, as well as for conceptual 

reasons, understanding if environmental noise can affect fluctuations of fish stocks is of 

particular interest.

To address this issue, we investigated whether fluctuations in long time series of large 

pelagic fish displayed different properties among marine environments characterized by 

contrasting environmental noises. In addition, since environmental noise interacts with 

endogenous processes and since the biological characteristics of species can affect the response 

to environmental noise (e.g. Petchey, 2000), we further aimed at investigating how life-history 

traits can modulate the response of species to environmental noise. In concrete terms, we 

confronted the statistical properties of 75 catch per unit effort (CPUE) time series of nine species 

of tuna and billfish, with four oceanographic variables in 11 Atlantic areas. Tuna and billfish are 

highly migratory species displaying a broad range of life histories and a large geographic 

repartition thus, constituting a well-suited case study to investigate the effects of environmental 

noise on fish stock fluctuations.
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2. Materials and Methods

2.1. Atlantic tuna and billfish time series

We obtained the dataset using long-term catch and effort spatially disaggregated data 

from the International Commission for the Conservation of Atlantic Tunas (ICCAT) and from the 

Institut pour la Recherche et le Développement (IRD). In order to be able to compare 

environments and species, the time series of annual catch per unit effort (CPUE) for each species 

were produced in a common and neutral spatial grid. To do so, we chose the Longhurst provinces 

that are based on the classification of the world oceans into biomes displaying homogeneous and 

specific environmental properties (Longhurst, 2001), as in Rouyer et al. (2008). We then 

obtained suitable time series to compare among areas and species, but with the shortcoming of 

not accounting for interannual migration (e.g. bluefin tuna Thunnus thynnus). Note, however, 

that the analyses are based on annual (and not monthly) CPUE that allows us to cope with 

seasonal migrations between areas. To minimise potential bias due to interannual migrations, we 

used the Longhurst provinces, which are large and homogeneous from a biochemical and 

oceanographic perspective. Finally, we removed time series that were either too short, plagued 

with missing values or poorly informative (i.e. flat pattern) using the advice from experts on 

these fisheries.

The final dataset was validated with 75 time series from nine tuna and billfish species in 

11 Longhurst provinces (Fig. 1). The most important source of catch data (i.e. 70% of the time 

series) came from Japanese longline fisheries because they were amongst the oldest ones 

operating in the Atlantic and because their catches concern all the species throughout the whole 

Atlantic. These data were available from 1956 to 2004. Other time series mostly came from 

European baitboat and purse-seiner fleets and were mainly available over the 1969–2004 period. 
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The length of the time series in the final dataset ranged between 22 and 49 years and displayed a 

mean length of 42 years (see Rouyer et al., 2008 for a more complete description of the dataset). 

Skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) 

tunas constitute the bulk of the catches of tropical tuna (Fonteneau, 1997) whereas the billfishes, 

i.e., white marlin (Tetrapterus albidus), blue marlin (Makaira nigricans) and sailfish 

(Istiophorus platypterus) are generally bycatch of these tropical fisheries and are, thus, of interest 

since they are affected differently by changes in fishing strategy and techniques (Serafy et al., 

2004). Albacore tuna (Thunnus alalunga) and swordfish (Xyphias gladius) are considered 

subtropical species, but they are also common in temperate waters whereas bluefin tuna  are the 

only strict temperate tuna (Fromentin and Fonteneau, 2001).

2.2. Environmental variables

Various environmental factors are known to affect key biological and ecological 

processes of tuna and billfish populations (e.g., Lehodey, 1997; Royer et al., 2004; Prince and 

Goodyear, 2006). Many environmental variables might thus be relevant. The spatio-temporal 

range and resolution as well as the occurrence of missing values, while taking into account 

redundancy and correlation between variables, directed our final choice.

The most studied geophysical variable, sea-surface temperature (SST) was retained as it 

influences numerous key parameters of fish biology, such as growth and distribution. We also 

retained the longitudinal (U) and latitudinal (V) wind stress components because of their impacts 

on local and regional oceanographic processes that may affect biological processes, especially 

recruitment success and distribution (e.g. Bakun, 1996). Finally, sea-surface salinity (SAL) was 

also retained, as gradients of this hydrological variable are often associated with the distribution 
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range, abundance of larvae and displacements of tuna species (e.g. Lang et al., 1993; Lehodey et 

al., 1998; Maury et al., 2001).

Since models can be limited in their ability to represent the entire range of frequencies at 

any given spatial scale, we used in priority in-situ measurements being re-analysed and validated 

from various institutional datasets (Fromentin et al., 2005). SST was extracted from the NOAA 

Extended Reconstructed Sea Surface Temperature, which is reconstructed on the basis of in-situ 

measurements from the ICOADS dataset coupled with improved statistical methods (Available at 

http://www.cdc.noaa.gov/cdc/data.noaa.ersst.html). This variable consists of a monthly time 

series defined on a 2.0° × 2.0° global grid and whose temporal extent ranges from 1800 to 2005. 

The U and V wind velocity components came from the 40-year re-analysis (ERA40) provided by 

the European Centre for Medium-Range Weather Forecasts (ECMWF, Available at 

http://data.ecmwf.int/data/d/era40_mnth/). This dataset consists of a monthly time series defined 

in a 2.5° × 2.5° global grid and whose temporal extent ranges from 09/1957 to 08/2002. Finally, 

the SAL data were extracted from the Simple Ocean Data Assimilation (SODA, University of 

Maryland) global analysis dataset (Available at 

http://ingrid.cwb.gov.tw/SOURCES/.UMD/.Carton/.goa/.beta7/); available on a 1° ×1° global 

grid from 01/1950 to 12/2001 on a monthly basis. For each environmental variable, time series 

were extracted from each available pixel in each province.

2.3. Life-history traits

To investigate how different life histories may modulate species responses to 

environmental noise, we retained three traits for each species. We used size-based rather than 

age-based traits because the former are more reliable and more easily available across species. 
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We retained the maximum length (Lm) as larger fishes have generally a longer life span and 

more numerous age classes, which can affect population fluctuations due to generation 

overlapping (Petchey, 2000; Fromentin and Fonteneau, 2001; Bjørnstad et  al., 2004). To depict 

the size at maturity and rate of growth, we retained the length at maturity (L50), defined as the 

length at which 50% of individuals are mature, as well as the growth parameter from the von 

Bertalanffy curve (K). Lm is known to be correlated with L50 (here c = 0.77) and K (here c = 

-0.81), but if Lm allows for an efficient discrimination of traits for species with large size 

differences (e.g. skipjack and bluefin tunas), species with similar Lm can display substantial 

differences in both K and L50 (e.g. blue-marlin and swordfish; Table 1). We consequently 

conserved the three parameters to reflect these differences. A Principal Component Analysis 

(PCA) was also carried out to obtain an index that combines all life-history traits (see Fromentin 

and Fonteneau 2001), but the effects of individual traits were also considered. The parameter 

estimates were mainly extracted from Fromentin and Fonteneau (2001) and from the ICCAT 

manual (2008), although other references were extracted from the literature to complement the 

dataset (Table 1).
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2.4. Colour of the environmental noise

The “colour of noise” displayed by the environmental time series was commonly 

estimated as the spectral exponent of a 1/f model fitted to the power spectrum and in log-

coordinates (Halley, 1996; Vasseur and Yodzis, 2004). As the spectral estimates display a high 

variance we used the multitaper method to obtain robust estimates; this method has already been 

widely applied on the analysis of geophysical signals such as atmospheric and oceanic data 

(Thomson, 1982; Ghil and Vautard, 1991; Percival and Walden, 1993).  This method attempts to 

reduce the variance of spectral estimates by using a small set of orthogonal tapers that allows one 

to compute a set of independent estimates of the power spectrum. Averaging over these 

independent estimates yields a better and more stable estimate than do single taper methods 

(Thomson, 1990).

For each variable, we first extracted the time series and computed its power spectrum. 

Because the estimation of the power spectrum is sensitive to the length of the time series and 

since we aimed at characterizing a general property of the environment, the power spectra were 

computed over the maximum time period available for each variable. This allowed us to analyze 

the maximum range of frequencies available, and it also prevented biases due to potential 

changes in the frequency content through time. We then applied a robust regression on the power 

spectrum in log-coordinates to estimate the scaling exponent. The robust regression ensured that 

the estimates were not affected by peaks in the power spectrum, such as the peak due to 

seasonality. We obtained an estimate of the scaling exponent for each pixel of each 

environmental variable. Doing so, we produced four Atlantic maps (one for each variables; 

Fig.2). A PCA was then applied on a table of scaling exponents (pixels * environmental 
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variables) using a correlation matrix to combine the four environmental variables into one 

environmental signal (Fig. 2). Multivariate approaches, such as a PCA, are largely used for 

studying the spatial variability and the combined effect of geophysical variables (e.g. McFarlane 

et al., 2000; Pedraza and Ochoa, 2006). PCA finds an orthogonal set of axes and the first axis, 

uncorrelated to the others, is a linear combination of the different variables that maximizes the 

variance of the dataset. Investigating the correlation circle allowed us to check for the 

nonredundancy of variables, while the projection of the dataset onto the first axis produced an 

overall measure of environmental noise as a linear combination of the four environmental 

variables. This enabled us to integrate the information from four environmental variables to 

extract the principal mode of variability for environmental noise over the Atlantic. The 

significance of the first axis was assessed using the broken-stick model (MacArthur, 1957). The 

broken-stick model was originally proposed to describe the relative abundance of bird species in 

an environment, such that the relative abundance of n species are proportional to the size of the 

segments of a unit-length stick broken at n – 1 random locations. By analogy, Frontier (1976) 

applied it to the variance decomposition performed by the PCA by assuming that the total 

variance was randomly divided among different axes and that the percentage of variation 

explained by the PCA axes would be similar to the expected length of the pieces of a stick 

randomly broken. The test was performed by comparing the percentage of variance explained by 

the first axis to the prediction made by the broken stick model (see Frontier, 1976 and Legendre 

and Legendre, 1998 for technical details). As the fisheries time series were available at lower 

spatial resolution, the province, we randomly picked 1000 values into the distribution of the 

scaling exponents for each variable and each province. Those 1000 values were then averaged to 

obtain a robust estimate of the mean scaling exponent for the province.
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2.5. Statistical properties of the CPUE time series

We selected the following three properties to describe different relevant aspects of the 

CPUE fluctuations and to study the effects of environmental noise.

2.5.1.Variance in the time domain: the population variability

The variance of population abundance in the time domain depicts the average magnitude 

of the fluctuations and is usually quantified through the coefficient of variation (CV). However, 

the CV is unit-free and independent of the mean, and thus can be biased by rare events and non-

Gaussian distributions. As fisheries time series are often plagued with zero counts and often 

display non-Gaussian distributions, we instead used the population variability (PV) metric 

proposed by Heath (2006). This approach quantifies the variability as the percent difference 

between all combinations of the observed variable (here, CPUE) and is less sensitive to rare 

events and tailed variables compared to the CV (Heath, 2006).

For a time series of size n, the PV is defined as:

PV=

2∑ 1− min zi ,z j 
max  zi ,z j  

n n−1 

, (1)

where z represents the list of all the possible pairwise combinations (i,j) of values in the time 

series, with i≠j.

2.5.2.  Detection of density dependence: the Partial Rate Correlation Function

The strength of density-dependent processes has been shown to interact with 

environmental noise (e.g. Petchey et al., 1997; Cuddington and Yodzis, 1999). Following 

Berryman and Turchin (2001), we thus computed the Partial Rate Correlation Function (PRCF) 

at lag one to quantify the strength of direct density dependence in fisheries time series.
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The PRCF at lag one of the time series x(t) is estimated as the correlation between the 

series of per capita rate of change R(t) = l(t) – l(t-1) and the lagged density l(t-1), with l(t) = 

log(x(t)+1):

PRCF=
∑ l  t −l   R  t −R 

∑ l t −l 
2
∑  R  t −R 

2 . (2)

2.5.3.  Variance in the frequency domain: the scaling exponent

The colour of noise or the scaling exponent (BETA) of each fisheries time series was also 

estimated to quantify its variance in the frequency domain. However, estimating the scaling 

exponent of fisheries time series can hardly be applied using a simple spectral analysis because 

these time series are often too short to get a reliable estimate of the power spectrum. Therefore, 

we used the more robust multiple segmenting method proposed by Miramontes and Rohani 

(2002). This method splits the time series into small segments and computes the spectral 

exponent on each of these pseudoreplicates. An accurate estimate for the spectral exponent of the 

whole time series can then be obtained from the relationship between segment length and 

spectral exponent estimates.

The CPUE statistics were then plotted against environmental noise after removing the 

potential effect of gear (Rouyer et al. 2008). This was achieved by taking the residuals of a linear 

model explaining each statistic as a function of a factorial effect of gears.

2.6. Effects of life-history traits

We investigated whether the relationships between each of the statistics and 

environmental noise were related to life-history traits of species. To do so, we first estimated for 

each species the slope of the linear regression between the three statistics (PRCF, BETA and PV) 
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and the environmental noise of each environmental variable, using jackknife and bootstrap 

resampling techniques. This allowed us to dampen the effects of outliers and to compensate for 

the different number of time series available for each species. We then plotted the slopes for each 

species against their life-history parameters to investigate potential interactions between life-

history traits and environmental noise.

All computations were performed using R (ver. 2.6.1, R Development Core Team, 2007; 

Available at http://www.R-project.org).
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3. Results

3.1. Environmental noise over the Atlantic

Mapping the estimated scaling exponent for each environmental variable as well as the 

first axis of the PCA on the environmental variables allowed us to investigate the spatial 

variability of environmental noise over the whole Atlantic in a synoptic way (Fig. 3).

These five maps displayed large homogeneous areas of lower/greater values, indicating 

that environmental noise was not randomly distributed over the Atlantic, and thus enabled us to 

identify areas with different stochastic properties. For instance, the tropical and subtropical areas 

(below 20°N) were dominated by low-frequency fluctuations for both the SST and wind stress, 

while the temperate areas displayed more balanced (more white) environmental signals (Fig. 3a–

c). The salinity exhibited a different spatial pattern, as areas dominated by low frequencies were 

mostly located in the northeast and west equatorial Atlantic (Fig. 3d). The first component of the 

PCA that explained 55% of the total variance among the four environmental variables was 

significant according to the broken-stick model (Frontier, 1976; Legendre and Legendre, 1998). 

Therefore, we used it as a measure of environmental noise that integrates the different variables, 

and we refer to it as the Environmental Noise Index (ENI). SST, UST and VST contributed 

similarly and significantly to the ENI while SAL had little influence (the loadings were 0.54, 

0.61, 0.58 and -0.04, respectively). The ENI was positive for the more reddened areas (i.e. more 

negative exponents) while it was negative for the less reddened areas (i.e. less negative 

exponents). So, the more positive the ENI, the more the area is dominated by low frequencies in 

SST, UST and VST. In general, the southeastern areas were clearly dominated by low 

frequencies than the northeastern ones (Fig. 3e). As the Longhurst provinces were fairly 

homogeneous, we averaged the estimated scaling exponents and the ENI over each province 
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(Table 2) to enable comparisons with the statistical properties of the CPUE time series.

3.2. Relationships between environmental noise and CPUE statistics

To investigate the relationship between environmental noise and the three statistics 

computed for the CPUE time series (PRCF, BETA and PV), we plotted them against the ENI for 

each species.

First, the relationships displayed clear differences between species. Inspecting the PV 

against the ENI, showed clear decreasing trends for blue-marlin (r2 = 0.52, p = 0.07), swordfish 

(r2 = 0.38, p = 0.05), sailfish (r2 = 0.67, p = 0.09) and white-marlin (r2 = 0.44, p = 0.22) CPUE 

time series, whereas the trends were weaker and nonsignificant for bigeye (r2 = 0.07, p = 0.33), 

skipjack (r2 = 0.1, p = 0.54) and yellowfin (r2 = 0.0, p = 0.98) tunas (Fig. 4). Note, that results for 

the bluefin tuna were not suitable for interpretation because of its geographic repartition. The 

bluefin tuna time series all issued from provinces that displayed similar environmental 

characteristics for both the scaling exponent and the ENI. This did not allow for comparisons 

with time series for other species that were available over a broader area and thus a larger range 

of scaling exponents. The BETA results were consistent with those obtained for the PV (Fig. 4). 

While blue marlin (r2 = 0.06, p = 0.6), swordfish (r2 =0.29, p = 0.09) and white marlin (r2 = 0.93, 

p = 0.01) displayed a decrease of the BETA with the ENI (albeit not always significant), 

yellowfin tuna (r2 = 0.01, p = 0.40) and skipjack tuna (r2 = 0.15, p = 0.45) displayed weaker or 

no relationships with the ENI. The results for the PRCF generally displayed a decrease in the 

negative feedback for environments dominated by long-term fluctuations (positive ENI; Fig. 4). 

Finally, some areas exhibited CPUE with a lower PV and PRCF as well as a more negative 

BETA, indicating a domination of smoother, reddened and less variable fluctuations than in other 
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areas (in contrast to more variable areas but with a more balanced spectrum between high and 

low frequencies). Note, that the sample size differs substantially among species and is also often 

small (e.g., sailfish: n = 5, bigeye tuna: n = 15), thus influencing p-values and impairing their 

comparison among species.

3.3. Effect of life-history traits

The first principal component from the correlation matrix between life-history traits 

explained 79% of the variance and was significant according to the broken-stick model. The first 

component scored negative for the larger, slower-growing and later-maturing species (bluefin 

tuna, blue marlin, sailfish, swordfish and white marlin) and scored positive for the smaller, 

faster-growing and earlier-maturing species (albacore, bigeye, skipjack and yellowfin tunas). 

Since this measure combines all the life-history traits across species, we refer to it as the 

combined traits index (CTI). 

The slopes of the linear regressions between environmental noise and the different 

statistics were plotted against life-history parameters to investigate how life-history traits 

modulate the response of species to environmental noise. First, we considered the more general 

picture by plotting the slopes obtained from the CPUE statistics and the ENI, versus the CTI for 

each species. These results showed an increase of the slopes with the CTI for the relationships 

obtained with PV (r2 = 0.47, p = 0.059) and the BETA (r2 = 0.27, p = 0.186) whereas no clear 

relationship was found when considering the PRCF (r2 = 0.0, p = 0.93). In other words, species 

with a negative CTI were characterized by a steeper decline of PV with ENI, whereas the slopes 

were almost flat for species with a positive CTI (Fig. 5a); so that the larger, the slower growing 

and the later maturing that a species is, the more important the decrease of CPUE variability with 
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environmental noise. The slopes obtained between the PRCF and the ENI did not appear to be 

related to life-history traits as depicted by the CTI (Fig. 5b), whereas for the BETA (Fig. 5c), the 

results showed that larger, slower-growing and later-maturing species displayed more 

pronounced slopes. As for the PV, these species appeared more sensitive to changes of 

environmental noise and their CPUE displayed more reddened fluctuations in more reddened 

environments.

We then investigated the respective effect of different environmental variables by plotting 

the slopes obtained for each of the four environmental variables and CPUE statistics versus the 

CTI. The slopes of SST and PV for each species revealed a high and significant correlation with 

life-history traits (r² = 0.81, p = 0.002; Fig. 5d) and furthermore, the values of these slopes were 

large enough to denote biologically relevant changes. Again, larger, slower-growing and later-

maturing species displayed a more important increase of variability with environmental noise 

than smaller, faster-growing and earlier-maturing ones. Unlike slopes obtained with the PRCF 

(Fig. 5e), the slopes obtained with the BETA were more affected by wind stress environmental 

variables (UST and VST) and species time series with a negative CTI becoming more reddened 

in more reddened areas (Fig. 5f). No clear pattern, however, emerged when considering SST and 

SAL. Finally, we investigated each individual life-history trait. The growth parameter (K) was 

found to correlate with the slopes obtained for each of the three statistics and environmental 

noise. In particular, the best correlations were found between K and the slopes obtained for PV 

versus SST (r² = 0.66, p = 0.014; Fig. 5g), PRCF versus UST (r² = 0.39, p = 0.096; Fig. 5h) and 

BETA versus UST (r² = 0.66, p = 0.014; Fig. 5i). The faster growing a species, the less the PV, 

the BETA and the PRCF of the CPUE were found to vary with environmental noise. In other 

words, the CPUE time series for faster-growing species did not show any change of property 
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with environmental noise as the variability, frequency content and negative feedback remained 

stable across environments.

4. Discussion

In this study, we performed an extensive description of environmental noise to investigate 

how much CPUE fluctuations could be related to the colour of environmental noise. As 

ecological processes might not be equally sensitive to the same environmental cues, we 

considered several variables that were further integrated into one index (the ENI). Environmental 

noise was spatially structured withsome homogeneous and rather large areas displaying different 

stochastic profiles. Particularly, the southern areas (below 20°N) were found to display more 

reddened fluctuations than northern areas meaning that the variability of the environmental cues 

in southern areas are characterized by low-frequency signals (i.e. more long-term fluctuations).

Our results suggested that environmental noise might be related to changes in the 

fluctuations of fisheries time series, as three biological parameters were significantly correlated 

with environmental noise. Reddened areas were generally associated with a lower PV, a more 

negative BETA and a smaller PRCF, indicating that CPUE time series were less variable, 

smoother and with a less important negative feedback at lag one. However, a straight 

interpretation of these results remains difficult for several reasons. First, the BETA and the PRCF 

were significantly negatively correlated (r² = 0.50, p < 0.0001), which was partly expected on 

relatively short time series as the PRCF is related to the importance of the high-frequencies in the 

signal and is thus affected by the smoothness of the time series.. Therefore, a lower PRCF does 

not necessarily imply that the negative feedback is weaker, but that reddened fluctuations (i.e., a 

more negative BETA) can make difficult to detect it. This could partly explain the weak 
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relationship between life-history traits and the PRCF. Furthermore, our dataset was constituted 

with CPUE data that are known to be far from reliable indicators of fish dynamics; they are 

affected by many other processes, such as environmental fluctuations and fisheries dynamics that 

may also interact with each other (Rouyer et al., 2008). In addition, some species display large 

migrations between provinces (e.g. bluefin tuna). These factors cannot be accounted for in this 

analysis and may partially bias the results (Hilborn and Walters, 2003; Serafy et al., 2004). 

However, migrations are clearly expected to blur the results or reduce differences among regions, 

and it is not possible to neglect the effects of fisheries dynamics on CPUE time series  and to 

conclude that relationships with environmental noise only relate to changes in underlying 

biological processes.

The biological integration of environmental noise remains a key issue: biological 

processes are sensitive to different time scales in the environment and species with contrasting 

life histories can “perceive” the environmental colour differently (Bjørnstad et al., 1999, 2004; 

Petchey, 2000; Fromentin and Fonteneau, 2001; Greenman and Benton, 2005). For instance, 

marine biological processes such as larval survival and growth are sensitive to the physical 

habitat and may act as filters for environmental noise (Petchey, 2000; Laakso et al., 2001, 2003). 

Our results showed that the noise displayed by different environmental variables was differently 

associated with the CPUE statistics. If the ENI summarized most of the variance in the different 

variables, SST was found more relevant for the PV while the two wind stress variables (UST and 

VST) were more relevant for the PRCF and the BETA (i.e., for the frequency content of CPUE).

The relationships obtained between the CPUE statistics and environmental noise varied 

between species. This suggests that, in addition to fisheries dynamics (see Rouyer et al., 2008), 

variations in CPUE time series may also reflect interactions between environmental properties 
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and endogenous processes (Luckinbill and Fenton, 1978; Lundberg et al., 2000; Petchey, 2000; 

Jonzén et al., 2002; Inchausti and Halley, 2003). Here, the different results were associated with 

different life-history traits. The CPUE statistics for the larger, slower-growing and later-maturing 

species (negative CTI: white-marlin, blue-marlin, sailfish, swordfish and bluefin tuna) showed 

variation with environmental noise, while no clear association was found for the smaller, faster-

growing and earlier-maturing species (positive CTI: skipjack, yellowfin, albacore and bigeye 

tunas). Species with a negative CTI have multiple reproductive age classes and slower growth, 

allowing for the buffering of short-term environmental fluctuations that can ultimately lead to a 

reddening of the CPUE time-series (Fromentin and Fonteneau, 2001). In addition, the 

combination of multiple age classes and stochastic environmental variations can induce low-

frequency variability in the spawning stock biomass of these species, which has been called 

‘cohort resonance’ (Bjørnstad et al., 2004). On the contrary, species with a positive CTI are less 

prone to smooth out short-term environmental disturbances and to display a reddening of the 

dynamics due to cohort resonant effect. Recruitment dynamics might be central here, as these 

dynamics act as the integrative process through which environmental noise translates into 

biological processes. Understanding the recruitment dynamics of species with contrasting life-

history traits (e.g. Goodwin et al. 2006) and subjected to coloured environments would probably 

constitute a key step for further mechanistic insights.

Our results show that fluctuations displayed by the CPUE are affected by environmental 

noise, but species that are more migratory, which are also larger, later maturing and slower 

growing, are more sensitive to red noise. It is important to note that the effect of environmental 

noise is more difficult to assess for resident tropical species since they experience less diverse 

environmental noise due to a more confined spatial distribution, mainly located in more reddened 
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areas. This result is in agreement with Rouyer et al. (2008) who also showed that the patterns of 

variations for 169 time series of large pelagics fish were also strongly spatially structured at the 

scale of the entire Atlantic. The time series that originated from the northern areas were found to 

display a less important spatial homogeneity but were more affected by the NAO than CPUE 

from southern areas. However, this spatial structure reflected an important interaction with 

species distribution; the more migratory species inhabiting northern provinces and experiencing 

more different habitats displayed less homogeneity than species with a smaller distribution 

inhabiting the more reddened southern areas. 

In addition, Royer and Fromentin (2007) hypothesised that the Mediterranean SST that 

are characterised by more short-term fluctuations, would have been more favourable on the long 

term for bluefin tuna recruitment success than the open ocean that is characterised by reddened 

noise. Combining these findings with those discussed above leads us to put forward that the 

spatial distribution as well as the life histories of tuna and billfish may be partly related to the 

environmental properties of their habitat. On the one hand, fishing is known to affect the 

variability of fish stocks through changes in demographic structure that affect the resilience and 

resistance of fish populations to environmental variation (Hsieh et al., 2006; Ottersen et al., 

2006; Anderson et al. 2008, Stenseth and Rouyer, 2008). On the other hand, exploitation is also 

known to directly affect life-history traits through phenotypic plasticity (Rochet, 1998; Law, 

2000; Ernande et al., 2004; Olsen et al., 2004). Different responses to environmental noise can 

then be expected between exploited and non-exploited species. Investigating how fishing affects 

the response of stocks to environmental noise through their life-history traits would then provide 

further insights to understand the consequences of exploitation in a changing environment.
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FIGURE CAPTIONS

Fig. 1. Geographical provinces used in this study (Longhurst Provinces) and some illustrative 

time series for the species studied. The dataset is constituted by 75 CPUE time series from nine 

different species over 11 different areas in the Atlantic (see Section 2.1).
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Fig. 2: Methodological procedure used to construct the Environmental Noise Index (ENI). First 

the power spectrum was computed on the time series extracted for each available pixel of each 

environmental variable. The scaling exponent is then estimated and consigned in a large pixel * 

variable table. A PCA is then performed on this table and the first component is mapped and used 

as the ENI, which represents an index of environmental noise combining the four environmental 

variables. 
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Fig. 3. Maps a, b, c and d present the scaling exponent computed for each available pixel of the 

four different variables (SST, UST, VST and SAL, respectively). Map e presents the ENI, 

obtained as the first component of a PCA performed on the scaling exponent estimated for the 

four environmental variables (see Section 2.4.). For all maps, and as indicated by the histogram 

of the scaling exponents in the top left of each map, the darker the pixel the more important the 

low frequencies in the time series.
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Fig. 4. The graphs present the PV of the CPUE time series plotted against the ENI for each 

species from the provinces they were extracted from.
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Fig. 5. Relationships between life-history traits and the effect of environmental noise on CPUE 

statistics for each species. The slopes of the regression between environmental noise and PV, 

PRCF and BETA (as in Fig. 4) for each species are plotted against their life-history traits. Panels 

a, b and c present the slopes obtained between ENI and PV, PRCF and BETA, respectively for 

the different species plotted against the CTI. Panels b, c and d present the slopes between SST 

and PV, UST and PRCF, UST and BETA, respectively for the different species plotted against 

the CTI. Finally, panels g, h and i present the slopes between SST and PV, UST and PRCF, UST 

and BETA for the different species plotted against the growth parameter (K).
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Table 1.  Growth parameters for the von Bertalanffy curve (K), size max (Lm) and size at 

maturity (L50) for the nine tuna and billfish species. The number in brackets indicates the 

reference from the literature: (1) Fromentin and Fonteneau (2001), (2) ICCAT manual (2008), (3) 

Freire et al. (1999), (4) Porch (2003), (5) Lessa and Duarte-Neto (2004), (6) Goodyear and 

Arocha (2001), and (7) Arocha and Marcano (2006).

K Lm (cm) L50 (cm)

Albacore 0.22 (2) 120 (1) 90 (1)

Bigeye tuna 0.18 (2) 180 (1) 115 (1)

Bluefin tuna 0.09 (2) 295 (1) 115 (1)

Blue-marlin 0.15 (2) 300 (6) 256 (7)

Sailfish 0.15 (3) 255 (1) 130 (1)

Skipjack 0.32 (2) 75 (1) 45 (1)

Swordfish 0.19 (2) 290 (1) 175 (1)

White-marlin 0.08 (4) 260 (1) 130 (1)

Yellowfin tuna 0.27 (5) 170 (1) 105 (1)
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Table 2. Acronyms for the Longhurst Provinces and average scaling exponent for the 

different environmental variables and the ENI.

Province Acronym SST UST VST SAL ENI

Carribean CARB -1.17 -0.21 -0.05 -1.36 0.39

Canary Coastal Province CNRY -1.22 -0.19 -0.07 -1.11  0.28

Eastern Tropical ETRA -1.68 -0.49 -0.54 -1.22 2.39

Gulf Stream GFST -1.07 -0.15 -0.03 -1.16 -1.09

Guinean current GUIN -1.30 -0.63 -0.62 -1.20 2.30

North Atlantic Drift NADR -1.22 -0.08 -0.01 -1.30 -1.65

North Atlantic Sub-Tropical Eastern NASTE -1.26 0.02 0.11 -1.34 -1.54

North Atlantic Sub-Tropical Western NASTW -1.07 0.02 0.12 -1.10 -1.31

North Atlantic Tropical NATR -1.53 -0.35 -0.52 -1.30 0.69

North West Coastal NWCS -1.13 -0.29 0.01 -1.24 -1.31

Western Tropical WTRA -1.54 -0.46 -0.52 -1.43 1.61
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