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Abstract − This study aims to propose a tool to describe the long-term (10 years) variability of phytoplanktonic
assemblages monitored by Rephy (French monitoring programme for phytoplankon and phycotoxins) in the English
Channel, the Bay of Biscay and the Mediterranean French coastal waters. According to the sampling strategy (systematic
survey, with a time-step of 1 or 2 weeks, and a between-sampling station distance ranging from less than one to several
kilometres), the information content of the data is mainly relevant to the characterization of seasonal variability of
populations at the mesoscale. For any given area, and for each of the 56 taxinomic units considered here, the data are
thus processed in order to recognize the temporal succession of ‘phytoplankton events’: an event is defined by retaining
qualitative information only. It encompasses the phases of sudden growth, high level of abundance and decline of a
population. Times at which an event begins or ends are detected by using a time-series segmentation method, which
allows to summarize the whole data set as a multivariate set of event occurrences. Categorizing observations in such a
way also provides an efficient tool for the identification of different patterns of variability over long-term time scales, for
instance: ‘recurrent events’ (e.g. populations generating events in a periodic-like manner), or ‘anomalies’ (e.g. of climatic
origin). On an univariate basis, an ‘average’ event can be defined for each taxum, characterized by its within-year
position, its duration, its magnitude and the associated deviations. On a multivariate basis, graphical representation of
event successions could also allow between-year comparisons. A simple multivariate analysis was also used to describe
the seasonal pattern of some taxa. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

Résumé − Événements phytoplanctoniques dans les eaux côtières françaises de 1987 à 1997.L’objectif de cette
étude est de proposer un outil pour la description de la variabilité à long-terme (10 ans) de communautés
phytoplanctoniques observées par le Rephy (Réseau de surveillance du phytoplancton et des phycotoxines) dans la
Manche, dans le golfe de Gascogne et dans les eaux côtières méditerranéennes françaises. Du fait de la stratégie
d’échantillonnage (surveillance systématique avec un pas d’échantillonnage temporel de 1 à 2semaines et une distance
inter-stations allant d’environ un à plusieurs kilomètres), l’information contenue dans les données est principalement
pertinente pour la caractérisation des variations saisonnières des populations à méso-échelle. Pour chaque site
d’échantillonnage et pour chacune des 56 unités taxonomiques (genres) considérées ici, les données sont traitées afin de
permettre l’identification d’une succession d’« événements phytoplanctoniques » : un événement est défini en conservant
uniquement une information qualitative. Ainsi, l’événement comprend la phase de croissance subite, de niveaux élevés
d’abondance, puis de déclin de la population. Les instants auxquels un événement débute ou finit (changements brusques
d’abondance dans la population au cours du temps) sont détectés en utilisant une méthode de segmentation des séries
chronologiques, qui permet de résumer les séries de données en un ensemble multivarié d’événements. Ce moyen de
catégoriser les observations fournit un outil efficace pour l’identification des différents schémas de variabilité, par
exemple des « événements récurrents » (c-a-d, des populations générant des événements de manière quasi-périodique),
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ou des « anomalies » (par exemple d’origine climatique). En mode univarié, un événement « moyen » peut être
défini pour chaque taxon, caractérisé par son apparition dans l’ année, sa durée, son amplitude et éventuellement les
incertitudes attachées à ses estimations. En mode multivarié, la représentation graphique de successions
d’événements autorise la comparaison visuelle entre années pour un site donné. Une application très simple d’analyse
multivariée a finalement été utilisée pour décrire la variabilité saisonnière d’un groupe de taxons.
© 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS
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1. INTRODUCTION

The large variability of phytoplankton abundance in
coastal waters has been pointed out by several authors
(e.g. Platt, 1972). This is true at every spatial and
temporal scales and collecting representative samples in a
given area and for a given period of time should take into
account variability sources such as the influence of tidal
and wind-induced currents, possible daily migrations in
the water column, and the intrinsic dynamics of phy-
toplanktonic communities. These factors generate both
temporal and spatial variability, and these two dimensions
cannot be distinguished unless a fine spatial 3-D grid is
sampled along time. Up to now we did not find any report
of such sampling effort. This is especially the case for
monitoring programmes basically constrained by their
budget, as with the French programme for phytoplankton
and phycotoxins monitoring (Rephy) managed by Ifre-
mer. Although raw data generated by this programme
exhibit a very large variability at small scales, the
quantity of information of the whole data set should allow
detection of large scale spatio-temporal patterns.

In this context, this paper aims to propose a way of
processing data in order to better describe and character-
ize phytoplankton populations at large spatial and tem-
poral scales. The key point here is to consider that a
succession of phytoplankon observations at a given
sampling station in the context of our monitoring pro-
gramme could be seen as a single ‘event’ , encompassing
the phases of sudden growth, high level of abundance and
decline of the observed taxum. This way a set of often
erratic observations can be converted into a single event.

We used a time-series segmentation method to obtain
phytoplankton events on an univariate basis. Statistics
can then be computed on the event data base generated.

Eventually multivariate methods can then be applied to
the multi-dimensional tables. A simple application using
correspondence analysis on a genus × month contin-
gency table of event occurrences is given.

2. MATERIALS AND METHODS

2.1. Rephy data processing

Data, stored in the Ifremer Quadrige database, are
concentrations of phytoplanktonic taxa in the water
column measured since 1987 at sampling points scat-
tered all over the French coastline, and grouped into
56 higher-scale areas called basins. Due to taxonomic
identification difficulty, some species cannot be identi-
fied. In this case only the genus is reported in the
database. Therefore, the taxonomic level chosen for this
study is the genus. This gives a total number of 56 gen-
era. For a given genus, the observed concentration
provides an estimate of the number of cells per volume
unit summed over all species identified within that genus
(e.g. Dinophysis aggregates D. acuminata, D. caudata,
D. sacculus, etc.).

In order to smooth the spatio-temporal variability at the
sampling point scale, data are combined at a higher
spatial scale, the basin scale, which corresponds some-
how to an homogeneous spatial unit in terms of water-
shed and hydrodynamical characteristics. As a
precautionary-type rule, in case of several observations
in a basin for a given date, the maximum concentration
value was retained.
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2.2. Time-series segmentation

The method used for the time-series segmentation and
thus for the event identification is the so-called Page-
Hinkley Cusum (Page, 1954; Basseville et al., 1991), a
method usually used in signal processing. This method
detects a change of mean level on-line, the magnitude of
which is unknown, in a piecewise stationary signal to
which a white noise is added. Two detectors are activated
in parallel to detect sudden increases in mean level (resp.
decreases). The concept of a minimum jump νm to be
detected is introduced in the detector definition. The
mean level is estimated on-line before the jump. A more
formal description of the method is given below.

2.2.1. Model

For each taxinomic unit (i.e. genus), let us define the
random variable Xt as Xt = log10[Q cells·(10 mL–1) + 1, at
t] with Q as the genus abundance. For a given sampling
point we assume that {Xt+k∆t}k=0,1,... ≡ X0, X1, ..., Xk, ... is
a purely random process. Thus X0, X1, ..., Xk, ... are
mutually independent and identically distributed, with the
following moments (for more theoretical details see, e.g.
Chatfield, 1989):

�E� Xk � = µr when r ≤ k < r′
E� Xk � = µr + m when r′ ≤ k < r″ , and Var� Xk � = r2,

where r, r′, r″ are temporal indices and ν either a positive
(ν > 0) or a negative jump (ν < 0).

In this context a ‘phytoplankton event’ will be defined as
a set of Xk values bounded by two jumps, a positive jump
(ν > 0) followed by a negative jump (ν < 0). The follow-
ing Page-Hinkley Cusum algorithm allows to identify
such jumps in the {Xt+k∆t}k=0,1,... time series.

2.2.2. Algorithm

We first define µ̂k,h as the signal ‘ short-term’ memory, i.e.
the average over the duration h∆t before a jump occur-
ring at time k. We thus choose µ̂k,h as:

µ̂k,h = 1
h �

j=k−h−1

k−1

� Xj � .

As for the sampling frequency, here ∆t ranges from 1 to
2 weeks, by far the most frequent temporal lag between
two consecutive observations.

Let dk = Xk − µ̂k,h, to be used in the following computa-
tions, and λ be a fixed threshold. A drop in mean level
will be detected when gn = Mn – Tn ≥ λ, with

T0 = 0, Tn = �
k=1

n �dk +
mm

2� and Mn = max
0≤k≤n

Tk .

Conversely, an increase in mean level will be detected
when gn = Un – mn ≥ λ, with

U0 = 0, Un = �
k=1

n �dk −
mm

2�, and Mn = min
0≤k≤n

Uk .

An alarm is triggered when one of the two detectors
exceeds λ. Theoretically, the jump instant estimator
corresponds to the last time the current maximum (Mn),
and respectively minimum (Un), was reached. Due to a
massive number of zeroes in phytoplankton time series
we defined starting and ending dates of a given event as
respectively the first and the last non-zero values bound-
ing the theoretical event period.

2.3. Multivariate analysis

Factorial analysis is used as a description tool in order to
identify hidden structures in multi-dimensional tables.
These techniques have been widely used in ecology, and
more specifically in marine phytoplankton studies. In
particular, correspondence analysis (for theoretical de-
tails, see e.g. Escofier and Pagès, 1990) proved to be an
adequate method for describing spatio-temporal patterns
of phytoplankton community (e.g. Matthews et al., 1991).
In correspondence analysis, the chi-square distance be-
tween points is appropriate to analyse either a species
presence/absence or abundance table (e.g. Ryckaert et al.,
1983), or a contingency table comparing two qualitative
(categorical) variables. We used the latter approach,
where our points are number of event occurrences for a
given value of the first categorical variable (e.g. genus)
crossed with the value of the second categorical variable
(e.g. month of event beginning). Other categorical vari-
ables could also be used such as the geographical location
or the year.
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3. RESULTS

3.1. Event database

After several attempts, λ = 0.5 and νm = 2.5 were the
chosen values for the algorithm tuning parameters. Those
values were calibrated by examining the generated
events: they proved to be satisfying whichever taxa was
considered thanks to the logarithmic transformation.
Namely, it was successful for bloom-forming taxa s.a.
Alexandrium, reaching 108 cells·L–1, as well as for Dino-
physis, maxima of which are in the order of 104 cells·L–1.
Single non-zero values were identified and in this case the
minimum value to be detected was 2.103 cells·L–1.

Using only observations within identified events, figure 1
illustrates the whole pattern of seasonal variations of the
genus Asterionella in the Bay of Biscay for the
1987–1997 period. Maxima, close to 106 cells·L–1, are
reached in April-May. Consecutive fall blooms show
lower maxima in September and are seemingly less
frequent. Figure 2 shows the spatial distribution of the
corresponding 1994 Asterionella time series. For this
particular year, Asterionella seasonal pattern looks re-
markably stable with a spring bloom except for two
sampling sites, where mid-summer and start-of-fall
events were identified. Eventually, high between-year
variability, presumably due to changes in meteorological
conditions, can be visualized in figure 3, where Asteri-
onella was not observed in years 1987, 1988, 1990, 1991

and 1997 and where winter blooms were observed in
1993 and 1995 and fall blooms in 1992 and 1996.

The Cusum method allowed us to generate a new
database, which reduces the original database from
around 80 000 raw data records to 4 882 event records.
In this new base, each event is identified by its geo-
graphical location (basin), its starting and ending dates as
estimated by the algorithm, its duration in days and the
number of observations. Empirical distributions for these
parameters can be drawn from this database. For ex-
ample various event duration frequency histograms can
be obtained (figure 4). More than 60 % of 42 Phaeocystis
events correspond to unique values pointing out the
narrow temporal window where blooms for this genus
can be captured by the sampling process. Two-thirds of
432 Pseudonitzschia events correspond to a duration of
less than 3 weeks whereas Dinophysis, with 68 events,
shows a more symmetric distribution with a month-long
event mode. The following statistics are given in table I
by genus: number of events, median number of obser-
vations per event, median event duration in days, median
month of event start, median maximum concentration
and maximum maximorum concentrations. Early genera
s.a. Scenedesnus can be opposed to late genera s.a.
Odontella, omnipresent diatom Pseudonitzschia to rare

Figure 1. Global pattern of seasonal variation of Asterionella in the
Bay of Biscay for the 1987–1997 period.

Figure 2. Spatial distribution of 1994 Asterionella events in the Bay
of Biscay.
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Protoperidinium, ever-lasting Navicula to fleeting Bacil-
laria or Phaeocystis in terms of duration or number of
observations, a ‘ red-tide’ forming Chaetoceros to a toxic
but ‘ invisible’ dinoflagellate Dinophysis with a four-
logarithmic unit difference in maxima concentrations.

3.2. Multivariate analysis

A correspondence analysis was performed on a
genus × month (event start) contingency table, the cells of
which contain event occurrences for the period
1988–1997 in the Bay of Biscay. In this area, for
example, there were 19 Chaetoceros events starting in
April over the whole period. The year 1987 was not used
as it was the starting year of the Rephy monitoring
programme and taxonomic identification problems were
encountered a posteriori. Moreover not all taxa but thirty

among them (table II) were considered to give more
clarity in the analysis graphical results. The first two

Figure 3. Asterionella event between-year variation (1987–1997) in
the Bay of Vilaine.

Figure 4. Frequency distributions of event duration (in days) for the
genera Phaeocystis, Pseudonitzschia and Dinophysis.
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Table I. Event statistics for the 1987–1997 period; for explanation see text. Genus Quadrige codes are given in parentheses.

Genus Number
of events

Median event
start month

Median number
of observations

Median
duration

Median maximum
concentration

Maximum concentration
maximum

(d) (cells·L–1) (cells·L–1)

Achnanthes (achn) 11 3 1 0 4 300 4.32E+04

Alexandrium (alex) 68 7 3 13 12 150 1.80E+08

Asterionella (aste) 161 4 3 32 21 000 7.77E+07

Bacillaria (baci) 35 5 1 0 4 000 4.00E+04

Bacteriastrum (bact) 38 7 1 0 5 700 3.96E+05

Biddulphia (bidd) 35 8 3 28 6 500 1.34E+05

Cerataulina (cera) 127 5 2 14 13 600 7.04E+05

Ceratium (ceri) 35 6 5 40 7 100 8.62E+04

Chaetoceros (chae) 391 5 6 64 165 000 4.59E+08

Chrysochromulina (chru) 14 5 3 14 88 500 1.10E+07

Cocconeis (cocc) 24 7 4 32 8 500 3.15E+05

Coscinodiscus (cosc) 37 7 5 57 11 000 4.52E+05

Cylindrotheca (cyli) 26 6 3 25 9 850 1.50E+07

Detonula (deto) 33 6 1 0 8 400 6.74E+05

Dicthyoca (dict) 30 6 4 38 7 300 1.62E+05

Dinophysis (dino) 68 7 6 28 6 750 1.58E+05

Diplopsalis (dipo) 21 7 2 7 3 000 1.95E+04

Ditylum (dity) 62 3 4 36 6 600 7.30E+04

Ebria (ebra) 14 8 2 18 4 100 4.96E+04

Eucampia (eucp) 95 7 2 12 7 500 3.05E+05

Fragilaria (frag) 25 4 2 16 6 000 3.03E+07

Gonyaulax (gony) 27 6 3 27 9 000 7.30E+06

Grammatophora (gram) 33 7 3 29 6 800 1.76E+05

Guinardia (guin) 64 5 3 27 10 400 1.10E+05

Gymnodinium (gymn) 193 6 6 56 75 800 6.00E+07

Gyrodinium (gyro) 82 6 5 41 7 700 4.20E+06

Hemiaulus (hemi) 17 8 3 27 5 200 1.57E+05

Heterocapsa (hete) 57 5 3 27 8 300 1.00E+07

Heterosigma (hetg) 11 9 3 15 15 600 1.33E+08

Katodinium (kato) 52 5 2 13 10 100 7.64E+05

Kryptoperidinium (kryp) 19 7 2 5 205 000 4.14E+06

Lauderia (laud) 175 5 2 13 10 800 1.07E+06

Leptocylindricus (lept) 332 6 5 48 77 850 8.00E+06

Licmophora (licm) 60 6 4 32 8 250 1.92E+05

Lithodesmium (lith) 19 8 4 29 6 000 1.27E+05

Melosira (melo) 92 5 3 31 12 500 1.86E+06

Navicula (navi) 68 5 8 85 23 350 5.43E+06

Nitzschia (nitz) 162 4 7 84 58 100 3.10E+07

Odontella (odon) 25 9 3 14 7 200 1.45E+05

Oxyrrhis (oxyr) 11 4 1 0 29 600 1.95E+05

Paralia (para) 92 5 3 28 7 900 4.00E+05

Phaeocystis (phae) 42 4 1 0 216 500 2.00E+08

Plagiogramma (plag) 57 3 3 21 10 000 2.88E+08

Pleurosigma (ples) 30 7 6 52 7 900 6.92E+04

Polykrikos (poly) 19 7 2 16 5 200 6.00E+04

Proboscia (prob) 15 7 3 25 9 400 2.10E+05

Protoperidinium (proi) 99 5 7 76 15 800 1.97E+06

Protoceratium (prot) 4 4 1 0 6 000 5.24E+05

Pseudonitzschia (psnz) 432 6 3 14 32 150 1.00E+07

Pyramimonas (pyra) 30 7 3 14 7 100 2.15E+05

Rhizosolenia (rhiz) 278 4 8 91 93 800 3.14E+06

Scenedesmus (scen) 31 2 2 14 6 800 6.58E+06

Scripsiella (scri) 121 5 7 63 19 000 2.53E+06

Skeletonema (skel) 349 6 4 32 40 600 8.30E+07

Thalassionema (thaa) 178 7 5 56 18 200 4.26E+06

Thalassiosira (thal) 256 4 5 56 31 850 1.39E+07
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components accounted for ca. 60 % of the total variabil-
ity. The plot of the first factorial plan (figure 5) shows a
remarkable temporal connectivity between consecutive
months, and the genera are located along this temporal
path presumably according to their within-year ecological
preferenda. For example, Rhizosolenia appears to be an
end-of-winter/spring blooming species, Pseudonitzschia
comes later around June, Dinophysis more of a summer
genus and Paralia a cold-water taxum, as was also found
in the Channel by Ryckaert et al. (1983).

4. DISCUSSION AND CONCLUSION

What is a phytoplankton event? This seems an embar-
rassing question to address to scientists working in this

Figure 5. Graphical results of correspondence analysis on the
genus × month contingency table: simultaneous representation of gen-
era and months in the first factorial plan.

Table II. Genus × month (event start) contingency table; number in cells are event occurrences.

Genus Month

1 2 3 4 5 6 7 8 9 10 11 12

aste 1 5 14 15 5 5 2 2 6 3 1 2
baci 0 1 0 3 5 2 6 2 1 0 1 1
bidd 0 1 0 1 2 2 1 2 5 3 3 0
cera 0 0 1 18 13 6 3 2 7 3 3 0
ceri 0 0 0 0 7 7 6 0 4 1 0 0
chae 8 14 23 19 21 31 13 11 12 6 2 1
cosc 0 0 0 1 0 1 4 1 1 6 0 1
dict 0 0 1 2 0 2 4 3 3 1 0 0
dino 0 0 0 1 7 12 3 5 1 3 1 0
dity 0 7 17 3 0 1 0 0 2 5 2 0
eucp 1 0 1 5 4 5 9 4 10 7 2 0
guin 0 0 0 2 16 18 5 1 0 0 1 0
gymn 1 2 7 3 13 28 26 9 16 5 0 0
gyro 0 1 1 1 10 6 7 10 1 3 1 0
hete 0 1 9 5 6 1 1 3 1 1 0 0
laud 1 0 6 21 6 12 6 5 9 6 4 2
lept 1 6 16 21 21 23 19 15 12 8 2 0
melo 1 1 3 3 3 7 1 3 3 11 11 4
navi 1 1 2 0 5 6 5 4 2 5 1 1
nitz 4 6 14 3 5 5 6 1 11 1 1 0
para 7 4 1 4 2 2 2 3 3 7 7 5
proi 1 4 6 7 13 10 4 4 1 1 0 0
psnz 1 1 8 36 36 35 21 15 15 11 3 0
pyra 0 0 0 0 0 5 6 1 2 4 3 0
rhiz 0 6 33 28 16 6 3 3 6 4 0 0
scen 0 2 5 2 0 3 1 0 0 3 1 3
scri 0 1 10 5 18 14 5 3 4 5 1 0
skel 10 13 29 6 2 7 8 3 17 15 5 5
thaa 0 2 3 3 4 4 4 7 13 9 4 0
thal 7 16 19 8 5 8 4 10 17 12 4 4
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field of study. Some concentration value thresholds are
sometimes given in the literature for particular events
such as blooms or ‘ red tides’ . In our case, in a crude way,
we define an event as what will be given by our
algorithm, eventually. Of course, a validity check was
made consisting of observing that what we wanted to be
detected as an event was retained in the event database
and what seemed to us as insignificant noise was not. The
results showed that the way the Cusum algorithm was
tuned led to the identification of events with as few as one
non-zero observation with concentration as low as
1 900 cells·L–1. The underlying reasoning which could
justify such skinny events is that single non-zero values
are the only testimonies of some broader dynamics in
time and space, from which our sampling strategy could
only catch one isolated non-zero observation. As deter-
mined by the algorithm tuning, 2 103 is arbitrary but
seems to correspond to some ‘ rule of thumb’ critical value
from which people involved in the monitoring have the
feeling that ‘ something happened’ . Justification of con-
sidering events instead of a suite of abundance measure-
ments also comes from the hypothesis that what is finally
important is that a taxum appeared at a given location and
at a given time. Thus we considered that what triggered
this occurrence, a punctual concept, is at least as
information-rich, if not more, as the suite of observations
constituting the event. Once started the suite is modulated
by environmental factors, and this is summarized by
statistics related to the event: magnitude, duration, etc.
Other ways of identifying events could have been be used
(e.g. Poisson process), but Cusum proved to be efficient
as soon as data were log-transformed, and as the Cusum
algorithm was adequately tuned, i.e. convenient λ and νm

values were determined.

On one hand an algorithm seems to be an objective way
of identifying events, on the other hand it contains some
arbitrariness and as mentioned the choice of λ and νm.
Other arbitrary procedures were used in the data process-
ing. First, species were aggregated at the genus level.
Belin et al. (1995) already used this level to classify
French coast ‘homogeneous areas’ based on dominant
phytoplankton assemblages. This seems to be the best
compromise between a higher level with a too important
loss by reduction of taxonomic resolution and species
identification subject to significant within- and between-
laboratory biases. The higher the taxonomic level and the
less sensible the aggregation in terms of ecological
significance. Such procedure might namely cluster spe-

cies from, e.g., the same genus with different physiologi-
cal and ecological characteristics. This would lead to a
non-realistic description of spatio-temporal patterns for
the so-built groups. Ecological preferenda of the consid-
ered species should be carefully checked before aggre-
gating them in view of an exhaustive study on the
subject, which this paper does not intend to be. Another
arbitrary choice was to retain the concentration maxi-
mum value at the basin scale at a given date. The
underlying idea is to approach more closely the actual
maximum concentration value in a given geographical
area, broader than a sampling station in order to reduce
part of the spatial variability. Moreover, as there are
often several sampling points within each basin, consid-
ering a lower spatial scale would lead to more events, in
the same body of water with roughly the same environ-
mental conditions prevailing at the day of sampling, and
would thus bias the large scale analysis.

The exploitation of the event database provides a better
way of characterizing spatio-temporal structures on an
univariate basis, and allows to define a typological
partition of the counted taxa. Figure 1 might be seen as
an estimate of Asterionella seasonal fingerprint in the
Bay of Biscay over the years of observation. However,
splitting figure 1 in time and space, leads to the conclu-
sion that it is obviously not easy to distinguish site-
specific seasonal variations (figure 2) from high
between-year variations (figure 3). Fall blooms in figure
2 cannot be directly related to some specific spatial
conditions unless some more thorough studies can be
conducted on this matter. Although univariate analysis
can provide a deep insight in the description of the
‘average’ event of a particular taxum (figure 4), it does
not take into account the inter-specific relations in the
interpretation, contrary to multivariate analysis. In most
previous studies applying correspondence analysis to
plankton, the used multi-dimensional tables contain
abundance, or phytoplankton count, per unit volume of
each taxum (e.g. Ryckaert et al., 1983). Here thanks to
the massive Rephy information contained in the Quad-
rige database, we could build contingency tables and in
light of a very simple application show that event
occurrences could provide a sensible description of the
seasonal pattern of the phytoplankton communities for
the 1988–1997 period in the Bay of Biscay. Monitoring
programmes, and the Rephy in particular, are not de-
signed to provide sensible quantitative information to
correlate to some other factors at small scales, but their
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extension in time and space allowed to catch large scale
variability patterns, which we aim to confront to some
other patterns, such as those contained in hydrodynamical
and weather information.

Finally a set of poor quantitative information at small
scales can be converted into an informative set of event
occurrences, providing a concept and a tool possibly
allowing us to reach the Rephy main objective, i.e. to
adequately describe large scale spatio-temporal patterns.
In view of achieving an exhaustive description, perspec-
tives of work are (i) to fully validate the phytoplankton
Rephy data in the Quadrige database, (ii) to find out with
the help of experts the most sensible taxonomic aggrega-
tion based on ecological and/or physiological criteria and
(iii) to refine the multivariate analysis, using multi-table
techniques and/or making use of environmental – mainly
hydro-climatic – factors, in view of finding causative
agents. Beside factorial analyses, another innovative way
of dealing with phytoplankton should be explored: it
consists in using hydrodynamic modelling to recreate and
summarize physical conditions which are well known to
be the main explicative factors for phytoplankton dynam-
ics (Legendre, 1981; Nômmann and Kaasik, 1992). The
model exists for the Bay of Biscay (Lazure and Jégou,
1998). The main difficulty here will be to express model
results in a suitable way and at scales relevant to the
observed biological phenomena.
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