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Abstract:  
 
A family of unified models in scattering from rough surfaces is based on local corrections of the 
tangent plane approximation through higher-order derivatives of the surface. We revisit these methods 
in a common framework when the correction is limited to the curvature, that is essentially the second-
order derivative. The resulting expression is formally identical to the weighted curvature 
approximation, with several admissible kernels, however. For sea surfaces under the Gaussian 
assumption, we show that the weighted curvature approximation reduces to a universal and simple 
expression for the off-specular normalized radar cross-section (NRCS), regardless of the chosen 
kernel. The formula involves merely the sum of the NRCS in the classical Kirchhoff approximation and 
the NRCS in the small perturbation method, except that the Bragg kernel in the latter has to be 
replaced by the difference of a Bragg and a Kirchhoff kernel. This result is consistently compared with 
the resonant curvature approximation. Some numerical comparisons with the method of moments and 
other classical approximate methods are performed at various bands and sea states. For the 
copolarized components, the weighted curvature approximation is found numerically very close to the 
cut-off invariant two-scale model, while bringing substantial improvement to both the Kirchhoff and 
small-slope approximation. However, the model is unable to predict cross-polarization in the plane of 
incidence. The simplicity of the formulation opens new perspectives in sea state inversion from remote 
sensing data. 
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1 Introduction

Despite the ever increasing computer facilities, the exact computation of the
field scattered from the sea surface is still a challenging problem, especially
in the microwave regime where the required number sampling point becomes
prohibitive. Thus, the simulation of sea radar return strongly relies on approx-
imate methods, whose efficiency and accuracy has been constantly improving
over recent years (e.g. [1]). To cope with both fundamental limits, namely
Geometrical Optics (GO) and the Small Perturbation Method (SPM), various
unified models have been proposed on the basis of local curvature corrections to
the Kirchhoff Approximation (KA). Among the wealth of existing models, there
is a family of methods which proceed to find directly the scattering amplitude
from some general physical constraints the latter should satisfy. These methods
are essentially due to the impulse of Tanos Elfouhaily, inspired by earlier works
of Dashen and Wurmser. They are:

1. the Local Weight Approximation (LWA) [2, 3, 4]

2. the Resonant Curvature Approximation (RCA) [5, 6, 7]

3. the Weighted Curvature Approximation (WCA) [8, 9, 10]

The first method is based on tilt invariance properties of the scattering
amplitude and is shown to be of the accuracy of the square of the curvature.
Its main limitation, however, is its restriction to the perfectly conducting case.
The last two methods are purely heuristic as they postulate the form of the
desired kernel, but satisfy the correct asymptotic limits and the tilt invariance
at first-order in slope. The formalism is common to the dielectric and perfectly
conducting case. The purpose of this paper is to revisit the last method in the
framework of random rough surfaces with slow fall-off of the power spectrum.
This typically applies to wind waves surfaces, which exhibit power-law spectra
over several decades. In the microwave regime, such surfaces are truly multi-
scale since the electromagnetic wavelength lies between the large gravity waves
and the small capillary ripples. This scattering problem is therefore out of
the scope of both the classical KA (which is known to operate well on the
large-scale components only) and SPM (which describes Bragg scattering by
the small ripples) and is classically addressed by the Two-Scale Model (TSM).
As it performs a dynamical transition between the two limiting cases (KA and
SPM), the WCA can, in principle, cope with both small and large scales, and
is expected to be close to the TSM. However, in its original formulation, WCA
has been found quite complex from both a theoretical and numerical point of
view.

We will show how the WCA can be more satisfactorily justified by a sys-
tematic treatment of curvature corrections and, at the same time, considerably
simplified. By curvature correction it is essentially meant a term involving
second-order derivatives of the surface, which should account for the deviation
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of the latter from its tangent plane over a distance comparable to the illumi-
nating wavelength. As we will see, a curvature correction for the statistical nor-
malized radar cross-section (NRCS) under the Gaussian assumption typically
brings in a Laplacian of the correlation function under a Kirchhoff integral. By
“Kirchhoff integral” we denote the classical integral which is ubiquitous in ap-
proximated NRCS from rough surfaces, starting with the Kirchhoff or tangent
plane approximation.

The key point is that a Kirchhoff integral operates as a filter around the
Bragg frequency (QH in the following). For sea-spectra we demonstrate what
we will call the “Kirchhoff filtering formula”:

1

(2π)2

∫
dr e−iQH ·re−Q2

z
(ρ0−ρ)∆ρ ≃ −Q2

HΓ(QH), (1.1)

where Γ is the power spectrum of the surface, ρ its correlation function, and QH

and Qz the horizontal and vertical components of the Ewald vector, respectively.
The dependence on the space variable r = (x, y) in the correlation function is
implicitly assumed and the same holds for its Laplacian ∆ρ = ∂xxρ+∂yyρ. The
naught subscript for a function indicates its value at the origin (ρ0 = ρ(0)).

We will show this formula to hold away from a specular region controlled by
the mean square slope (mss) of the surface: QH >>

√
mssQz. Strange as it may

seem, the curvature-corrected Kirchhoff integral (1.1) takes the same limiting
form in the high-frequency limit (Q2

zρ0 → +∞) as in the small-perturbation
limit (Q2

zρ0 → 0). In virtue of this mathematical property, Kirchhoff integrals
and power spectra at the Bragg frequency can constitute the elementary building
blocks of many unified approximate scattering models. Hence, the integral (1.1)
can be seen as a filtered curvature around the resonant frequency, to fulfill our
expectation of a deviation from the tangent plane at the scale of the wavelength.

In the present work we propose a simple way to establish local curvature cor-
rections to the KA. We show that they can be realized though a kernel which is
quadratic in slope, in which case they become formally identical to the Weighted
Curvature Approximation. We then use the fundamental property of the Kirch-
hoff filter to derive an universal and simple formula for the incoherent NRCS,
common to all curvature kernels (formula (4.32)). The formula involves merely
the sum of the NRCS in the classical Kirchhoff approximation and the NRCS in
the Small Perturbation Method, except that the Bragg kernel in the latter has
to be replaced by the difference of a Bragg and a Kirchhoff kernel. This expres-
sion is valid for large-scale, ripple-like as well as broadband surfaces, although
it is non-trivial in the latter case only. As a byproduct, the hidden link with
the Resonant Curvature Approximation is unveiled. Some numerical compar-
isons with the Method of Moments and other classical approximate methods are
performed. In spite of its simplicity, the Weighted Curvature Approximation is
found to bring substantial improvement over the classical methods of the same
level of complexity, namely KA and the first-order Small-Slope Approximation
(SSA1). Numerical comparisons also show a good agreement with the cut-
off invariant Two-Scale Model [11], even though there is no explicit separation
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of scales in the technique . We conclude with some general considerations on
potential applications of this result to sea spectra inversion procedures.

2 A simple approach to the Weighted Curvature

Approximation

Consider a rough surface z = η(r) with mean horizontal plane r = (x, y) and
upward directed vertical axis, separating the vacuum (upper medium) from a
dielectric or conducting homogeneous medium (lower medium). An incoming,
downward propagating, harmonic plane wave with wave vector K0 illuminates
the surface. The scattering amplitude S expresses the scattered electric field
along the upwards wave vector K (we refer to [1] for the exact definition). It
is convenient to introduce the Ewald vector Q = K − K0, together with its
horizontal and vertical projections QH and Qz, respectively. The Kirchhoff or
tangent plane solution,

S =
K

Qz

∫
dr

(2π)2
e−iQH ·re−iQzη, (2.2)

is known to be exact for tilted planes, that is for surfaces with vanishing higher-
order (≥ 2) derivatives. The Kirchhoff dyad K depends solely on the scattering
vectors (K,K0) and the permittivity of the lower medium. It can be found
explicitely in the appendix of [1] for different boundary conditions at the in-
terface. We recall that the dyads can be represented by four matrix elements
after projection on a polarization basis. For smooth but non planar surfaces,
a correction to the Kirchhoff approximation can be sought in the form:

S =
1

Qz

∫
dr

(2π)2

(
K+

i

Qz
T(∇)[η]

)
e−iQH ·re−iQzη, (2.3)

where the notation T(∇)[η] indicates a tensor-valued differential operator of
the surface η. Although this operator also depends on the scattering vectors
(K,K0) we will omit this obvious dependence to keep reasonably simple no-
tations. We will search for a local correction to the tangent plane, that is a
functional T which involves only the shape of the surface at the point under
consideration. Such a functional can be built by a general expansion in order of
derivatives:

T(∇)[η] =
∑

1≤n+m≤N

Tnm∂n
x∂

m
y η (2.4)

where the dyads Tnm are roughness independent. Such a series is in principle
infinite but a systematic treatment of derivatives of arbitrary order in a Kirch-
hoff integral seems out of reach. Therefore, we chosed to limit ourselves to
the lowest-order correction to the tangent plane approximation, namely second-
order derivatives. This amounts to make a parabolic rather than facet approx-
imation to the surface. While first-order derivatives of the surface are clearly
identified with slopes, the meaning of second-order derivatives is less obvious.
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However, recalling that the curvature γ of a one-dimensional surface η is ex-
pressed by:

γ =
η′′

(1 + (η′)2)3/2
, (2.5)

we can interpret second-order derivatives as surface curvature as long as the
slopes remain small, which is the case for the sea surface. Now, any first-order
derivative present in the operator T would contaminate the constant kernel K
in view of the integration by part formula:

∫
dr e−iQH ·re−iQzη∇η = −QH

Qz

∫
dr e−iQH ·re−iQzη, (2.6)

Hence a parabolic correction to the tangent plane approximation can only in-
volve second-order derivatives of the surface. This is why it is legitimate to call
this additional term a “curvature correction” to the surface. Now, curvature
components in a Kirchhoff integral bring in quadratic corrections in slope, as
can be seen from the integration by part formula:
∫
(∇η)2e−iQH ·re−iQzηdr =

Q2
H

Q2
z

∫
e−iQH ·re−iQzηdr − i

Qz

∫
∆η e−iQH ·re−iQzηdr

(2.7)
or more generally

∫
T(∇η)e−iQH ·re−iQzηdr = T

(
−QH

Qz

)∫
e−iQH ·re−iQzηdr

− i

Qz

∫
T(∇)[η] e−iQH ·re−iQzηdr (2.8)

for any second-order differential operator T. Here the tensor T(∇η) is the poly-
nomial of slopes obtained by formal replacement of order of derivatives by order

in slopes in the defining equation (2.4) (∂n
x∂

m
y η → (∂xη)

n(∂yη)
m) and T

(
−Q

H

Qz

)

is the same polynomial evaluated at the stationary slope ∇η = −QH/Qz. The
operator T(∇) will be referred to as the “curvature kernel”. A generalization
of the integration by part formula (2.6) to higher-order derivatives would show
that any derivative of order N in a Kirchhoff integral can be transformed into a
polynomial function of slope of degree N . This elucidates the role of the higher-
order derivatives in the functional (2.4) and shows that their omission results
in an cubic error in slope.

The curvature correction (2.3) can therefore be rewritten in the form:

S =
1

Qz

∫
dr

(2π)2

(
K+ T

(
−QH

Qz

)
− T(∇η)

)
e−iQH ·re−iQzη, (2.9)

By construction, the above scattering amplitude is consistent with the KA.
Now, a unified model should also be consistent with the SPM scattering ampli-
tude in the limit of small elevations:

S = −i B η̂(QH), (2.10)
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where η̂ is the Fourier transform of the surface:

η̂(QH) =

∫
dr

(2π)2
e−iQH ·rη(r), (2.11)

and B is the so-called Bragg tensor, which can also be found in the appendix of
[1]. Assuming Qzη << 1 in the integral (2.9) and linearizing the exponential,
we see that the consistency with the SPM limit sets the constraint:

T

(
−QH

Qz

)
= (B−K) (2.12)

The identification of the right hand side with a curvature kernel is possible
because the difference of the kernels B and K is quadratic in QH , as was shown in
[8]. Actually, this difference is quadratic in its lowest-order terms only, as higher-
order terms enter in the expression. Only in the particular case of conducting
surfaces in backscattering configuration is it exactly quadratic. The curvature
correction (2.9) is now structurally identical to the WCA, where the scattering
amplitude was postulated in the form:

S =
1

Qz

∫
dr

(2π)2
(B− T(∇η)) e−iQH ·re−iQzη, (2.13)

with a nonlinear kernel of at least quadratic order in slope, satisfying the re-
quirement (2.12). We will therefore refer to any scattering amplitude of the
form (2.13) as a “Weighted Curvature Approximation”, as long as the involved
kernel is approximatively or exactly quadratic in slope.

For the two-dimensional problem where the surface depends on one single
space variable, say η(x), the identity (2.12) suffices to obtain the quadratic
kernel T (η′) (a scalar in that case):

T (η′) = (B −K)
Q2

z

Q2
H

η′
2

(2.14)

For the full three dimensional problem, equation (2.12) is not enough to com-
pletely determine the quadratic kernel, due to the multiplicity of admissible
kernels. For example,

T(∇η) = (B−K)
Q2

z

Q2
H

(∇η)2 ⇔ T(∇)[η] = (B−K)
Q2

z

Q2
H

∆η, (2.15)

or

T(∇η) = (B−K)
Q4

z

Q4
H

(
QH

Qz
·∇η

)2

⇔ T(∇)[η] = (B−K)
Q4

z

Q4
H

(
QH

Qz
·∇∇η · QH

Qz

)

(2.16)
are two admissible instances of T in view of equation (2.12). However, we will
see that this ambiguity can be removed for sea surfaces (section 4).
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3 The link with the original Weighted Curva-

ture Approximation

In the original WCA [8, 9], the kernel was designed heuristically in order to
satisfy the required limiting properties, namely the SPM and KA limits, together
with the tilt invariance at first-order in slope. It was similar to the previous
form (2.15) and (2.16) inasmuch as it involved the difference of a Bragg and
Kirchhoff kernel, but the quadratic dependence in the slope variable was reached
by substituting the latter to the QH variable in the expressions of the dyads:

TWCA(∇η) = (B−K)Q
H
→−Qz∇η (3.17)

The advantage of this technique is to relax the constraint that the kernel be
exactly quadratic, thus allowing the occurrence of high-order terms in slope.
However, the resulting expression is more complex and less practical when it
comes to statistical averaging. To ease the comparison with the quadratic ker-
nels (2.15) or (2.16), let us focus on the conducting case. The Bragg dyad in
the perfectly conducting case is given by ([3, 1]:

B =
1

2
(W +Q) · ẑẑ ·(W −Q)1̂1̂+ ẑẑ ·(QQ−WW )+(QQ−WW ) · ẑẑ−Q2ẑẑ

(3.18)
where W = K +K0 and Q = K −K0. The Kirchhoff dyad in the perfectly
conducting case is given by:

K = −1

2
Q21̂1̂+QQ (3.19)

The Kirchhoff dyad is obtained from the Bragg dyad by operating the formal
replacement ẑ → Q̂. Considering for simplicity the backscattering direction
only (W = 0)n, we obtain the following expression for the difference of the
Bragg and Kirchhoff dyad:

B−K =
1

2
Q2

H 1̂1̂−QHQH −Q2
H ẑẑ (3.20)

Now operating the replacement

(QH , Qz,Q) → (−Qz∇η,
√

Q2 − (Qz∇η)2,−Qz∇η +
√
Q2 − (Qz∇η)2ẑ),

(3.21)
we obtain a kernel which is actually quadratic:

TWCA(∇η) =

(
1

2
(∇η)21̂1̂−∇η∇η − (∇η)2ẑẑ

)
Q2

z, (3.22)

but not as simple as the Laplacian kernel (2.15). Note that

TWCA

(
−QH

Qz

)
=

1

2
Q2

H 1̂1̂−QHQH −Q2
H ẑẑ = B−K, (3.23)
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so that the usual requirement (2.12) is satisfied. In the dielectric case, the
dyadic Kirchhoff and Bragg kernels involve the Fresnel reflection coefficients
at the local angles, which are fully nonlinear function of the slope. Hence,
the WCA kernel in that case is only approximatively quadratic and must be
computed numerically.

4 The universal Weighted Curvature Approxi-

mation for sea spectra

The previous study has shown that the kernel of the WCA for the full three-
dimensional problem is only ambiguously defined and cannot be determined by
the sole constraint on the asymptotic low- and high-frequency regime. However,
under the assumption of Gaussian statistics, we will now show that all admissible
kernels lead to the same expression for the off-specular incoherent NRCS in the
case of a sea surface. Consider a scattering amplitude satisfying the requirement
(2.3) of a weighted curvature approximation, with a quadratic kernel T satisfying
eq. (2.12). Consider a Gaussian stationary surface with correlation function ρ
and power spectrum:

Γ(k) =
1

(2π)2

∫
dr e−ik·rρ(r). (4.24)

From the statistical formulas in Appendix 8.1 the incoherent field is found to
be:

σ = σ(11) + σ(12) + σ(22) (4.25)

where the first term is the KA NRCS,

σ(11) =
1

Q2
z

|K|2
∫

dr

π
e−iQH ·r

[
e−Q2

z
(ρ0−ρ) − e−Q2

z
ρ0

]
(4.26)

and the remaining term are the contribution of the curvature correction:

σ(12) =
1

Q2
z

2ℜ
[
K

∗

∫
dr

π
e−iQH ·r

[
e−Q2

z
(ρ0−ρ) {T(∇)[ρ]− (T(∇)[ρ])0}

− e−Q2
z
ρ0T(∇)[ρ])0

]]
(4.27)

σ(22) =
1

Q2
z

∫
dr

π
e−iQH ·r

[
e−Q2

z
(ρ0−ρ)

{
T
2(∇))[ρ]−Q2

z |T(∇)[ρ]− (T(∇)[ρ])0|2
}

+ Q2
ze

−Q2
z
ρ0(T2(∇)[ρ])0

]
(4.28)

In the last equation, the term T
2(∇) indicates two successive applications of

the differential operator (for example T
2(∇)ρ = T

2
0 ∆∆ρ whenever T(∇)ρ =

T0 ∆ρ). Here and everywhere, the product or ratio of two dyads is to be
understood in the sense of the corresponding matrix-element operation.
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It is interesting to note that the corrective terms σ(12) and σ(22) vanish
in the case of a quadratic correlation function (ρ(r) = ρ0 + r · Ar), making
the present NRCS a parabolic rather than tangent plane approximation. For
mono-scale surfaces where the correlation function is well approximated by a
parabolic behavior at small lags, the corrective terms are thus expected to be
small. Hence, the supplementary terms in the NRCS can be seen as diffraction
correction linked to the multi-scale nature of the surface.

In a good approximation, these integrals do not depend on the specific form
of the kernel, as long as (2.12) is satisfied, due to the filtering effect of the inte-
grand around the Bragg frequency. This approximation, termed the “Kirchhoff
filtering formula”, is proved in the Appendix 8.2 and allows for considerable
simplification at off-specular angles :

1

(2π)2

∫
dr e−iQH ·re−Q2

z
(ρ0−ρ)

T
n(∇)[ρ] ≃ T

n

(
−QH

Qz

)
Γ(QH), (4.29)

where n = 1, 2. In σ(22) the contribution Q2
z[T(∇)[ρ]− (T(∇)[ρ])0]

2 is of fourth
order in slope and can be neglected. This leads to the following formula for the
off-specular incoherent NRCS:

σ =
|K|2
Q2

z

(
1 + 2ℜ

[
(T(∇)[ρ])0

K
∗

])∫
dr

π
e−iQH ·r

[
e−Q2

z
(ρ0−ρ) − e−Q2

z
ρ0

]
(4.30)

− |K|2
Q2

z

2ℜ
(∫

dr e−iQH ·re−Q2
z
ρ0

[
(T(∇)[ρ])

K
∗

])
+

[
2ℜ [(B−K)K∗] + |B−K|2

]
4πΓ(QH)

Now ∣∣∣∣
T(∇)[ρ]

K
∗

∣∣∣∣ ≃
∣∣∣∣
B−K

K

∣∣∣∣×m.s.s, (4.31)

where both the ratio of the kernels and the mean square slope (m.s.s) are small,
so that the two terms in the integrand involving this ratio can also be neglected.
This makes it possible to recast the last expression in a form which highlights
the difference with the Bragg limit:

σ =

∣∣∣∣
K

Qz

∣∣∣∣
2 (∫

dr

π
e−iQH ·re−Q2

z
(ρ0−ρ) − 4πQ2

zΓ(QH)

)
+ |B|2 4πΓ(QH) (4.32)

We will refer to this surprisingly simple formula, which is the central result of
this paper, merely as the Weighted Curvature Approximation for sea spectra,
as no ambiguity remains. This expression of the incoherent NRCS is a priori

devoted to broad band spectra. However, the consistency with the fundamental
Bragg and Kirchhoff regime can easily be inspected. The SPM incoherent NRCS
(|B|2 4πΓ(QH)) is clearly recovered in the small-scale limit Q2

zρ0 → 0. The KA
limit is also obtained by setting the Bragg component to zero (Γ(QH) = 0),
which amounts to kill the small-scale components. Note that the formula (4.32)
does not predict any cross-polarization in the incidence plane, as neither does
the Kirchhoff nor the Bragg kernel.
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5 The link with the Resonant Curvature Ap-

proximation

The Resonant Curvature Approximation is a specific instance of a more gen-
eral method, called the Local Curvature Approximation [8]. The scattering
amplitude is taken in the same functional form as the second-order small-slope
approximation of Voronovich [12], but is written as a correction of the Kirchhoff
scattering amplitude:

S =
K

Qz

∫
dr

(2π)2
e−iQH ·re−iQzη−i

∫
dr dξ M(ξ)η̂(ξ)e−iQzηe−i(QH−ξ)·r (5.33)

whereM(ξ) is a kernel which varies from one method to the other. Interestingly,
the second term on the right-hand side of (5.33) reduces to the form (2.3)
whenever M(ξ) is a polynomial function of ξ, in which case the Fourier integral
over this variable becomes a local differential operator. However, the form given
in (5.33) is more general than (2.3) as it permits nonlocal corrections for other
types of tensors M (see for instance the discussion in paragraph 6.1 of [1]).
Standard manipulations on stationary Gaussian processes lead to the following
expression for the cross-term in the incoherent NRCS (the leading term σ(11) is
unchanged):

σ(12) ≃ 2ℜ
[
K

∫
dr

π
e−iQH ·r

[
e−Q2

z
(ρ0−ρ) − e−Q2

z
ρ0

] ∫
dξ M

∗(ξ)Γ(ξ)(eiξ·r − 1)

]

(5.34)
The term σ(22) is neglected for simplicity. This is justified whenever the relative
correction to the KA is small in the scattering amplitude, a condition which is
in general not granted and must be verified a posteriori.

In the RCA, the kernel M(ξ) is taken as:

M(ξ) = (B−K)φ(ξ), (5.35)

where is φ a tight real filter around the Bragg frequency (actually a Dirac
function in its original formulation, which we here extend to nonsingular filters
for mathematical properness and numerical purposes). The NRCS correction
can therefore be simplified to:

σ(12) ≃ 2ℜ
[
K(B∗ −K

∗)

Q2
H

∫
dr

π
e−iQH ·re−Q2

z
(ρ0−ρ) [(∆ρf )0 −∆ρf (r)]

]
,

(5.36)
where ρf and Γf are filtered correlation function and spectrum, respectively:

ρf (r) =

∫
dξ Γf (ξ)e

iξ·r, Γf (ξ) =
Q2

H

ξ2
φ(ξ)Γ(ξ). (5.37)

Note that φmust enjoy the same properties as a true power spectrum, and there-
fore be positive and centro-symmetric. The RCA term can thus be rewritten in
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the form of a curvature correction:

σ(12) ≃ 2

Q2
z

ℜ
[
K

∫
dr

π
e−iQH ·re−Q2

z
(ρ0−ρ)(T (∇)[ρf ]− (T (∇)[ρf ])0)

]
(5.38)

with the following choice for the kernel T:

T(∇)[ρ] =
Q2

z

Q2
H

(B−K)∆ρf (5.39)

Now the Kirchhoff filtering formula also applies in this case,

1

(2π)2

∫
dr e−iQH ·re−Q2

z
(ρ0−ρ)

T(∇)[ρf ] ≃ T

(
−QH

Qz

)
Γf (QH) (5.40)

leading to
σ(12) ≃ 2ℜ [K∗(B−K)]φ(QH)4πΓ(QH), (5.41)

which is the cross-term of the universal WCA (4.32) if the filter meets the
condition φ(QH) = 1.

In the original RCA papers [5, 6], the calculation of the total cross-section
σ(11) + σ(12) was realized by considering the corrective term σ(12) as a phase
perturbation of the leading Kirchhoff NRCS σ(11). This astute manipulation was
first introduced in [13] for the numerical evaluation of the second-order Small-
Slope Approximation and is often invoked to simplify the otherwise difficult
computations. With this phase approximation, the calculation of the RCA
cross-section is equivalent to a Kirchhoff NRCS for an effective surface with
modified, polarization dependent, power spectrum:

Γ̃(ξ) =

∣∣∣∣1 +
(B−K)

K
φ(ξ −QH)

∣∣∣∣
2

Γ(ξ) (5.42)

In the numerical routines the filter φ is usually realized through a tight Gaussian
around the Bragg vector, together with its centrosymmetric version:

φ(ξ) = exp
(
−α ‖ξ −QH‖2

)
+ exp

(
−α ‖ξ +QH‖2

)
(5.43)

This necessitates the introduction of a somewhat arbitrary parameter α which
controls the width of the filter and can be used to give more or less weight
to the Bragg frequency. Note that extreme variations of α brings the modi-
fied spectrum Γ̃ either close to the actual spectrum Γ or to its dilated version∣∣∣1 + (B−K)

K

∣∣∣
2

Γ. Efficient values of the filter are those which modifies the spec-

trum over a few electromagnetic wavenumbers around the Bragg frequency.
Figure 1 shows an example of RCA computation in C band for an isotropic
Elfouhaily spectrum at 10 m/s wind speed, for different values of the filter pa-
rameter (α = 4 10−4 and α = 16 10−2). As can be seen on the plot, the resulting
NRCS is drastically dependent upon the choice of this parameter, especially in
HH polarization. This is the main limitation of the method.
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Figure 1: C-Band backscattering NRCS for an isotropic Elfouhaily spectrum at
10 m/s wind speed. The RCA co-polarizations are shown for different values of
the filter α = 4.10−4 and α = 16.10−4. KA, WCA and SSA1 results are given
for comparison.

6 Some numerical results

To evaluate the WCA in its universal form (4.32), we will perform some nu-
merical comparisons with the Method of Moments (MoM) in some test cases
where this is possible. Today, MoM computations in the microwave regime for
fully two-dimensional and dielectric sea surfaces by even moderate wind is still
a challenging issue, unless large scales are truncated. We have therefore devised
some simplified configurations which make it possible to deal with a complete
spectrum:

1. 1D perfectly conducting surfaces with Elfouhaily omnidirectional spec-
trum, by a 10 m/s wind speed in L band, in the monostatic case.

2. 2D perfectly conducting surfaces with Elfouhaily directional spectrum, by
a 7 m/s wind speed in L band. Only the bistatic configuration in the plane
of incidence has been considered, since it is numerically less demanding.

12



In addition we have performed some comparison with the cut-off invariant Two-
Scale Model (GO-SSA) [11] at different wind speed and frequency bands.

6.1 Comparison with 1D MoM

We consider the scattering problem at 25 cm (L-band) electromagnetic wave-
length in vacuum, for a 1D perfectly conducting rough surface with Elfouhaily
omnidirectional spectrum at 10 m/s wind speed . The incident field is a Gaus-
sian beam with 100m standard deviation, which is of the order of the ocean
peak wave length. The discretization step is one eighth of the wavelength and
length of the samples profiles is taken to 5 standard deviations. The central
incidence of beam runs from nadir to 75◦ with a 5◦ step. 1D perfectly con-
ducting integral equations for both polarization cases are discretized with pulse
expansion functions and delta testing functions. The resulting linear system is
solved iteratively with the GMRES algorithm, for each incidence. The matrix-
vector product is performed via the Sparse Matrix Canonical Grid scheme [14].
Strong interaction length is set to 30 wavelengths, and farther interactions are
interpolated over a 2D grid with 32 vertical levels. A Monte Carlo average is
performed over 100 samples.

Figure 2 display the monostatic NRCS versus the incidence angle for MoM,
KA and WCA from the simplified formula (4.32). A comparison is also given
with the first-order Small-Slope Approximation (SSA1) of Voronovich [12], which
is one of the other most frequently used methods in scattering from sea surface.
We recall that SSA1 is obtained through the KA NRCS (4.26) with the re-
placement of the Kirchhoff kernel K by the Bragg kernel B. As expected, all
methods coincide around nadir, where backscattering shows no difference be-
tween polarizations. At higher incidence angles, KA becomes less accurate,
being polarization insensitive. On the contrary, SSA1 overestimates the polar-
ization effect: it strongly underestimate the horizontal polarization and slightly
underestimate the vertical polarization. WCA remains extremely accurate over
the whole scattering diagram.

At large angles, the MoM backscattering cross-section does not decrease as
expected but reaches a plateau. Careful sampling convergence tests and an
estimation of the error through the extinction theorem and an energy balance
have been realized. An explanation for the small differences of the MOM and
analytical theories in this region is still being sought.

6.2 Comparison with 2D MoM

For two-dimensional surfaces, the Small Slope Integral Equation [15] is applied.
The strong interaction distance is one half wavelength, and height differences are
neglected in the distance computations for farther interactions. At L-band by a
7m/s wind speed and a 44 m peak wavelength, the beam width is set to 34 m.
The sampling rate of the surface is one eighth of the EM wavelength in the air.
The incoherent NRCS is obtained through a Monte Carlo average. The surface

13
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Figure 2: 1D perfectly conducting surfaces, Omnidirectional Elfouhaily spec-
trum, 10 m/s, L band. Comparison of KA, SSA1 and WCA with MoM. Mono-
static NRCS.

is assumed Gaussian with a fully developed directional Elfouhaily spectrum.
The incidence angle is taken to 40 degrees, with an upwind illumination.

Figure 3 displays the bistatic NRCS for KA, SSA WCA and MoM in the
plane of incidence. A blow-up at moderate angles is shown on Figure 4. The
still visible oscillations of the MoM are due to an insufficient number of sample
surfaces, a drastic restriction imposed by the large size of the latter and the
consequently prohibitive computational time. The MoM values at very large
angles (above 80 degrees incidence, not represented here) are not reliable since
they reach the limit of the numerical dynamics. The same conclusions can
be drawn as in the 1D monostatic case for the off-specular region. Note the
unphysical behavior of the WCA NRCS around the specular region, due to
the low-frequency divergence of the involved spectrum at Bragg frequency, and
recall that the approximation (4.32) of WCA holds only away from the specular
region.
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Figure 3: 2D perfectly conducting surfaces, directional Elfouhaily spectrum,
7 m/s,upwind, L band. Comparison of KA, SSA1 and WCA with the MoM.
Bistatic NRCS in the plane of incidence at 40 degrees incidence

6.3 Comparison with the Two-Scale Model

In the configurations which are not available for the MoM, it is interesting
to compare WCA with the classically employed model in sea surface scattering,
namely the Two-Scale Model. We will use the cut-off invariant Two-Scale Model
developed recently in [11], which is based on a combination of GO and SSA1
(GO-SSA) and can be symbolically written as:

GO-SSA=(Large scales GO) ×(Small scales coherent field)+ SSA1∗(facet slopes )
(6.44)

Figures 5 and 6 show the monostatic NRCS as a function of the incidence
angle at L and Ku band by a 7 m/s wind speed. WCA and GO-SSA turn
out to be extremely close in both polarization over the whole diagram, save
for large angles (beyond 60 degrees) in HH polarization. This fact has been
verified for other winds and bands which are not reproduced here. Hence, it
appears that the simple combination of KA and Bragg NRCS which is involved
in the simplified WCA formulation (4.32) is capable to reproduce a Two-Scale
Model, at least numerically. We do not have a complete formal argument to
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Figure 4: Blow-up of figure 3 at moderate angles

explain the agreement between WCA and GOSSA. An analytical identification
is improbable since no tilting effect is introduced in WCA. However, an implicit
separation of scales is operated in the first term of (4.32) through the difference
of the Kirchhoff integral and the Bragg spectrum. The occurrence of large scales
(with respect to the incident wavelength) separates more and more the Kirchhoff
integral from its small-scale limiting form. This large scale correction modulates
the additional SPM term. Since this correction is polarization independent, it
has a relatively higher impact on the HH Bragg component, which is smaller in
magnitude than its VV counterpart. This is clearly visible on the plots, where
the HH NRCS is enhanced by one or two dB with respect to SSA1 (which would
be close to SPM at large incidences). These numerical results suggest that the
“tilting effect” in the GOSSA Two-Scale Model (SSA1∗ facet slopes instead of
SSA1) is far less important than the “separation of scale” effect (large scale GO).
The small divergence observed at large angles for the HH NRCS of GOSSA and
WCA might be due precisely to this missing tilting effect.
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Figure 5: 2D sea surfaces, directional Elfouhaily spectrum, 7 m/s,upwind, L
band, εr = 65 + i34. Comparison of KA, SSA1 and WCA with the GO-SSA.
Monostatic NRCS

7 Conclusion and perspectives

In spite of many years of research on approximate scattering models, it seems
that the historical methods, KA and SPM, remain the unavoidable building
blocks of unified models. This is particularly stringent in the case of the sea
surface, where the Kirchhoff filtering formula turns any curvature correction into
a mere Bragg contribution away from the specular region, resulting in what we
have termed the universal WCA. This result has a strong potential in inversion
of sea spectra from remote sensing data. In the micro-wave band where the sea
conductivity is high, the Kirchhoff dyad is quasi-insensitive to polarization. It
follows from the main formula (4.32) that the surface spectrum at the Bragg
frequency can be obtained through a simple difference of the co-polarized NRCS:

4πΓ(QH) =
σV V − σHH

|BV V |2 − |BHH |2
, (7.45)

a result which is usually expected to hold in the low-frequency SPM regime
only. This formula was first proposed on heuristic grounds almost fifteen years
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ago by one of the authors [16]. A systematic validation of various sea spectrum
models could thus be undertaken on the basis of space remote sensing data.

8 Appendix

8.1 Statistical formulas

Let η be a stationary Gaussian process with correlation function ρ and define
E = e−iQzη and E0 = e−iQzη0 . Then

F = 〈EE∗
0 〉 = e−Qz(ρ0−ρ) (8.46)

Now let G(∇)[η] be an operator involving only second-order derivatives of η
such as ∆η,∇∇, etc.... Then we have:

〈G(∇)[η]EE∗
0 〉 = −iQz {(G(∇)[ρ])0 −G(∇)[ρ]}F (8.47)
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and

〈G(∇)[η]E(G∗(∇)[η])0 E∗
0 〉 =

{
G

2(∇)[ρ]−Q2
z |(G(∇)[ρ])0 −G(∇)[ρ]|2

}
F

(8.48)

Proof. Standard manipulations on Gaussian processes.

8.2 The “Kirchhoff filtering formula” and its consequences

In the case of sea spectra, one has the following approximation for a Laplacian
under a Kirchhoff integral away from the specular region:

1

(2π)2

∫
dr e−iQH ·re−Q2

z
(ρ0−ρ)∆ρ ≃ −Q2

HΓ(QH), (8.49)

as soon as QH >>
√
mss Qz, where mss is the mean square slope of the surface.

More generally, one has

1

(2π)2

∫
dr e−iQH ·re−Q2

z
(ρ0−ρ)

G(∇)[ρ] = −G(QH)Γ(QH) (8.50)

for any nonlinear kernels with polynomial dependence on slopes. This shows
that the curvature contributes to the Kirchhoff integral essentially through its
filtered version around the Bragg frequency. By “sea spectrum” we mean any
spectrum (Γ) which is approximately power-law decreasing beyond some peak
wavenumber, together with the omnidirectional slope spectrum (k2Γ).

Proof. Define F as in (8.46), so that its Fourier Transform writes

F̂ (QH) =
1

(2π)2

∫
dr e−iQH ·re−Q2

z
(ρ0−ρ) (8.51)

Then by the convolution theorem

1

(2π)2

∫
dr ∆ρ e−iQH ·rF (r) = −(F̂ ∗ (k2Γ))(QH), (8.52)

where the asterisk stands for the convolution product. To estimate this in-
tegral, we use a two-scale argument and decompose the spectrum into small
and large scales, Γ = ΓL + Γs. We call the ρL and ρs, respectively, the corre-
sponding correlation functions. For sea spectra, a separation frequency around
Bragg wavenumber ensures that Q2

zρs0 << 1, so we may treat the small scales
perturbatively in the function F :

F̂ (k) ≃ 1

(2π)2

∫
dr e−ik·re−Q2

z
(ρL0−ρL) +Q2

z

1

(2π)2

∫
dr ρse

−ik·re−Q2
z
(ρs0−ρs)

= F̂L(k) +Q2
z(Γs ∗ F̂L)(k), (8.53)
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where F̂L is the Fourier integral (8.46) associated to the large scale process ρL.
Injecting this last approximation in the convolution integral (8.52) we obtain:

(F̂ ∗ (k2Γ))(QH) ≃ (F̂L ∗ (k2Γ))(QH) +Q2
z(Γs ∗ F̂L) ∗ (k2Γ)(QH) (8.54)

In the first term, the function F̂L is the scattering diagram of a large scale process
and is thus amenable to a GO approximation, namely a centered Gaussian dis-
tibution of variance mssL Q2

z, where mssL is the large scale mean square slope.
Hence the first convolution integral involves the slope spectrum k2Γ(k) only
in a small domain around Bragg wavenumber, say ‖k −QH‖ ≤ 2

√
mssL Qz.

Since we have assumed
√
mss Qz << QH , this implies that the ratio k/QH

remains close to unity in the efficient integration domain. Since the function
k2Γ has essentially a power-law behaviour above the peak number, this means
that one can neglect its deviation from its value at the Bragg frequency in the
last integral. Hence

(F̂L ∗ (k2Γ))(QH) ≃ Q2
HΓ(QH)

∫
dk F̂L(k) = Q2

HΓ(QH), (8.55)

where we have used FL(0) = 1. It remains to show that the remaining term in
(8.54) is negligible with respect to the former. To this aim, we use the same

GO argument to approximate Γs ∗ F̂L ≃ Γs and resort again to a two-scale
decomposition:

Q2
z(Γs ∗ (k2Γ)) = Q2

z(Γs ∗ (k2Γs)) +Q2
z(Γs ∗ (k2ΓL)) (8.56)

Applying Hölder inequality to the respective convolution integrals, we have the
crude estimation:

∣∣Q2
z(Γs ∗ (k2Γ))

∣∣ ≤ Q2
zρs0 sup

k

(k2Γs(k)) +Q2
zmssL sup

k

(Γs(k)) (8.57)

For sea spectra the functions k2Γs and Γs are decreasing above the separation
frequency, so that their maximum is of the order of their value at the Bragg
frequency. This makes every term in (8.57) of the order of Q2

zρs0Q
2
HΓs(QH)

or Q2
zmssLΓs(QH), that is in any case negligible with respect to Q2

HΓ(QH).
Altogether this proves (8.49). � The same argument applies to (8.50). �

Even though we have used a two-scale argument, which implicitely assumes
that the surface has both large- and small-scale components, note that the
proof remains valid if the large scale are removed, in which case the filter F̂L

is a perfect Dirac function, or if the small-scale are removed, in which case the
demonstration is trivial. Note also that the off-specular region of validity is in
fact controlled by the large scale mss rather than the total mss. The latter is,
however, a more universal parameter. We also see that the proof not only applies
to sea spectra, but in fact to every kind of spectrum which is approximatively
power-law beyond the Bragg frequency.

The approximation (8.49) has been tested for an isotropic Elfouhaily spec-
trum at increasing wind speed (5,10 and 15 m/s) in C-band (5 GHz). Figure
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7 shows the relative error (in percent) as a function of the monostatic angle.
The error is larger than 20 % around nadir, which has no consequence since
the KA term in WCA dominates in this region (see the discussion below). For
larger angles, the quality of the approximation increases rapidly, with an error
less than 5 % above 45 degrees. We have checked that this accuracy is quite
insensitive to the incident frequency, and very similar results are obtained in L
or X band.
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Figure 7: Relative error (in percent) in the Kirchhoff filtering formula for an
omnidirectional Elfouhaily spectrum at different wind speeds

Figure 8 displays a comparison of the “true” NRCS (4.26-4.27) for the Lapla-
cian kernel (2.15) and its universal approximation (4.32) on a typical test case,
namely the C-Band (5 GHz, εr = 65+34i) backscattering NRCS for an omnidi-
rectional Elfouhaily spectrum ([17]) at 10 m/s wind speed. The two co-polarized
components are plotted on the same graph, with the vertical (resp. horizontal)
polarization in the upper (resp. lower) set of curves. The (unpolarized) KA
NRCS is given for reference. The numerical approximation (4.32) is excellent
beyond 5 degrees off the nadir direction (the Kirchhoff integral with Laplacian is
numerically difficult to evaluate around nadir, as witnessed by the small diver-
gence on the graph in this region). Even through the accuracy of the Kirchhoff
filtering formula (8.49) is poor at small angles (below 30 degrees), the overall
accuracy of the universal WCA is very good because the KA term is dominant
in the near specular region. A small difference is, however, observed at large
HH angles. We put this on the account of limited accuracy in the computation
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of the Kirchhoff integral with Laplacian kernel.
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Figure 8: Validity of the Kirchhoff filtering formula for the WCA NRCS

Acknowledgements: This work was supported by the ANR project no.
ANR-09-BLAN-0232-01 SIMODE.

References
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