

IFREMER - Centre de Brest

Département Dynamiques de l'Environnement Côtier Service Applications Géomatiques (DYNECO/AG)

Université Bordeaux 1 - Talence

Unité Mixte de Recherche - Environnement et Paléo environnements Océaniques Côtiers – CNRS (U.M.R. EPOC 5805)

Université Bordeaux 1 - Station Marine d'Arcachon

Observatoire Aquitain des Sciences de l'Univers (OASU) U.M.R. EPOC 5805

Institut Pasteur de Lille - Santé, environnent durable Atlantique (IPL Atlantique)

Mars 2010 - RST DYNECO/AG/10-03

Electricité de France Centre Nucléaire de Production d'Electricité du Blayais

SURVEILLANCE ECOLOGIQUE SITE DU BLAYAIS

RAPPORT SCIENTIFIQUE

ANNEE 2009

Commande d'exécution n°5100-CQG-4200268751 du marché n°C349C65050

FICHE DOCUMENTAIRE

		FICHE DOCUMENTAIRE		
Type de Rapport : RST (Rapports de résul	ltats de recherches sci	entifiques et/ou techniques)		
Numéro d'identification du rapport :	date de publication :			
RST DYNECO/AG/10-03	mars 2010			
Diffusion : libre ▼ restreinte □ interdite □	nombre de pages : 230 p.			
Validé par :	bibliographie : <i>Oui</i>			
Adresse électronique :	illustration(s) : <i>Oui</i>			
- chemin UNIX :		langue du rapport :		
- adresse WWW :		Français		
Titre et sous-titre du rapport :		Trançais		
Surveillance Ecologique du site du "Blayais	s" année 2000			
Titre traduit :	5 - annee 2009			
Ecological monitoring of the "Blayais" nuc	lear nower plant – 20	09		
Auteur(s) principal(aux):		on / Service, laboratoire :		
QUINTIN Jean-Yves,	IFREMER / Centre de			
CASTAING Patrice,		! / UMR EPOC / Talence		
JOUANNEAU Jean-Marie,	Chire Bordeniar I	Ty Chill 21 CCy Twichec		
OGGIAN Georges,				
MALLET Céline,	IPL Atlantique / Bord	eaux		
ROUX DUCEPT Alexandra	1			
SAUTOUR Benoît,	Université Bordeaux	l / UMR EPOC / Arcachon		
PARRA René,				
BACHELET Guy,				
LECONTE Michel.				
Oussaismas sammanditains an anadérialemné	, , , ,			
Organisme commanditaire : nom développé	e, sigle, adresse			
Electricité de France (EDF) - Production T	_	lu Blayais		
_ =	_	lu Blayais		
Electricité de France (EDF) - Production T	Fransport - C.N.P.E. a	lu Blayais o de contrat 06\1216035\M		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche :	ransport - C.N.P.E. a	° de contrat 06\1216035\M		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE	ransport - C.N.P.E. a r ppé(s), sigle(s), adres	° de contrat 06\1216035\M		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280	ransport - C.N.P.E. a r ppé(s), sigle(s), adres PLOUZANE	° de contrat 06\1216035\M		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1	ransport - C.N.P.E. a r ppé(s), sigle(s), adres PLOUZANE - CNRS	° de contrat 06\1216035\M		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280	ransport - C.N.P.E. a r ppé(s), sigle(s), adres PLOUZANE - CNRS	° de contrat 06\1216035\M		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1	ransport - C.N.P.E. a r ppé(s), sigle(s), adres PLOUZANE - CNRS edex	° de contrat 06\1216035\M		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés – 33405 TALENCE C	ransport - C.N.P.E. a ppé(s), sigle(s), adres PLOUZANE - CNRS dedex - CNRS	a° de contrat 06\1216035\M se(s)		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés – 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profe	ransport - C.N.P.E. a ppé(s), sigle(s), adres PLOUZANE - CNRS Jedex - CNRS sseur Jolyet - 33120 A	a° de contrat 06\1216035\M se(s)		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés — 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profe. Institut Pasteur de Lille - santé, environnen	ransport - C.N.P.E. a ppé(s), sigle(s), adres PLOUZANE - CNRS edex - CNRS sseur Jolyet - 33120 A t durable Atlantique	a° de contrat 06\1216035\M se(s)		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés — 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profes. Institut Pasteur de Lille - santé, environnen 1 rue du Professeur Vézès - 33300 BORDE.	ransport - C.N.P.E. a ppé(s), sigle(s), adres PLOUZANE - CNRS edex - CNRS sseur Jolyet - 33120 A t durable Atlantique AUX	a° de contrat 06\1216035\M se(s) ARCACHON		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés — 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profes Institut Pasteur de Lille - santé, environnen 1 rue du Professeur Vézès - 33300 BORDE. Responsable scientifique : Jean-Yves QUIN	ransport - C.N.P.E. a ppé(s), sigle(s), adres PLOUZANE - CNRS edex - CNRS sseur Jolyet - 33120 A t durable Atlantique AUX	a° de contrat 06\1216035\M se(s) ARCACHON EST/DYNECO/AG		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés — 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profes. Institut Pasteur de Lille - santé, environnen 1 rue du Professeur Vézès - 33300 BORDE. Responsable scientifique : Jean-Yves QUIN Cadre de la recherche : Surveillance des cer	ransport - C.N.P.E. a ppé(s), sigle(s), adres PLOUZANE - CNRS edex - CNRS sseur Jolyet - 33120 A t durable Atlantique AUX TIN - IFREMER/BRE partrales en bord de men	a° de contrat 06\1216035\M se(s) ARCACHON EST/DYNECO/AG		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés — 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profes Institut Pasteur de Lille - santé, environnen 1 rue du Professeur Vézès - 33300 BORDE. Responsable scientifique : Jean-Yves QUIN Cadre de la recherche : Surveillance des cer Programme :	ransport - C.N.P.E. a ppé(s), sigle(s), adres PLOUZANE - CNRS dedex - CNRS sseur Jolyet - 33120 A t durable Atlantique AUX TIN - IFREMER/BRE ntrales en bord de men Convention:	a° de contrat 06\1216035\M se(s) ARCACHON EST/DYNECO/AG r et en estuaire		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés — 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profes Institut Pasteur de Lille - santé, environnen 1 rue du Professeur Vézès - 33300 BORDEs Responsable scientifique : Jean-Yves QUIN Cadre de la recherche : Surveillance des cer Programme : dynamique, évaluation et surveillance	ransport - C.N.P.E. a ppé(s), sigle(s), adres PLOUZANE - CNRS edex - CNRS sseur Jolyet - 33120 A t durable Atlantique AUX TIN - IFREMER/BRI ntrales en bord de men Convention: des Marché n° C349C6	a° de contrat 06\1216035\M se(s) ARCACHON EST/DYNECO/AG r et en estuaire		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés — 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profes. Institut Pasteur de Lille - santé, environnen 1 rue du Professeur Vézès - 33300 BORDE. Responsable scientifique : Jean-Yves QUIN Cadre de la recherche : Surveillance des cer Programme : dynamique, évaluation et surveillance écosystèmes côtiers	ransport - C.N.P.E. and ppé(s), sigle(s), adress PLOUZANE - CNRS dedex - CNRS sseur Jolyet - 33120 And the durable Atlantique AUX TIN - IFREMER/BRIE atrales en bord de men Convention: Marché n° C349C6 Commandes d'exécute.	ARCACHON EST/DYNECO/AG Tet en estuaire 55050 Soution n° 5100-CQG-4200268751		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés — 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profes Institut Pasteur de Lille - santé, environnen 1 rue du Professeur Vézès - 33300 BORDEs Responsable scientifique : Jean-Yves QUIN Cadre de la recherche : Surveillance des cer Programme : dynamique, évaluation et surveillance écosystèmes côtiers Projet : surveillance des grands aménagem	ransport - C.N.P.E. and ppé(s), sigle(s), adress PLOUZANE - CNRS dedex - CNRS sseur Jolyet - 33120 And the durable Atlantique AUX TIN - IFREMER/BRIE atrales en bord de men Convention: Marché n° C349C6 Commandes d'exécute.	ARCACHON EST/DYNECO/AG Tet en estuaire 55050 Soution n° 5100-CQG-4200268751		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés — 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profe. Institut Pasteur de Lille - santé, environnen 1 rue du Professeur Vézès - 33300 BORDE. Responsable scientifique : Jean-Yves QUIN Cadre de la recherche : Surveillance des cer Programme : dynamique, évaluation et surveillance écosystèmes côtiers Projet : surveillance des grands aménagem énergétiques	ransport - C.N.P.E. a ppé(s), sigle(s), adres PLOUZANE - CNRS dedex - CNRS sseur Jolyet - 33120 A t durable Atlantique AUX TIN - IFREMER/BRI ntrales en bord de men Convention: Marché n° C349Ce Commandes d'exéc ents Autres (préciser	ARCACHON EST/DYNECO/AG Tet en estuaire 55050 cution n° 5100-CQG-4200268751 The Blayais		
Electricité de France (EDF) - Production T B.P. 27 - 33820 ST-CIERS-S/GIRONDE Titre du contrat de recherche : Organisme(s) réalisateur(s) : nom(s) dévelo IFREMER Centre de Brest, B.P. 70, 29280 UMR 5805 EPOC - Université Bordeaux 1 Avenue des Facultés — 33405 TALENCE C UMR 5805 EPOC - Université Bordeaux 1 Station Marine d'Arcachon, 2 rue du Profes Institut Pasteur de Lille - santé, environnen 1 rue du Professeur Vézès - 33300 BORDEs Responsable scientifique : Jean-Yves QUIN Cadre de la recherche : Surveillance des cer Programme : dynamique, évaluation et surveillance écosystèmes côtiers Projet : surveillance des grands aménagem	ransport - C.N.P.E. a ppé(s), sigle(s), adres PLOUZANE - CNRS dedex - CNRS sseur Jolyet - 33120 A t durable Atlantique AUX TIN - IFREMER/BRI ntrales en bord de men Convention: Marché n° C349Ce Commandes d'exéc ents Autres (préciser	ARCACHON EST/DYNECO/AG Tet en estuaire 55050 cution n° 5100-CQG-4200268751 The Blayais		

Résumé :

L'étude de surveillance n° 32 du site électronucléaire du BLAYAIS (département de la Gironde) concerne la période de avril à novembre 2009. Les domaines pélagique et benthique sont étudiés (physico-chimie, bathymétrie, hydrobiologie, bactériologie, zooplancton, macrofaune benthique). [Voir fiche résumé p. 7 - 10]

Abstract:

Monitoring n° 32 of the BLAYAIS nuclear power plant takes into account studies conducted between April and November 2009. Physicochemistry, Bathymetry, Hydrobiology, Bacteriology, Zooplankton, Benthic macrofauna, are reported.

[see summary p. 7 - 10 (in French)]

Mots-clés:

Centrale nucléaire – Estuaire de la Gironde – Surveillance - Pelagos - Physico chimie – Bathymétrie - Hydrologie - Microbiologie – Zooplancton – Macrofaune benthique.

Keywords:

Nuclear power plant – Gironde estuary – Monitoring - Pelagos - Physico chemistry – Bathymetry - Hydrology – Microbiology - Zooplankton – Benthic macrofauna.

Commentaire:

Ce document doit être cité de la manière suivante :

Référence générale

QUINTIN J.Y. (coord.) *et al.*, 2010.- Surveillance écologique du site du Blayais, année 2009. Rapp. IFREMER RST DYNECO/AG/10-03, mars 2010, 230 p.

Référence particulière

CASTAING P., JOUANNEAU J.M., OGGIAN G., 2010. – Résultats des mesures in situ. *In*: QUINTIN J.Y. (coord.) *et al.*, 2010. - Surveillance écologique du site du Blayais, année 2009. Rapp. IFREMER RST DYNECO/AG/10-03, mars 2010, pp. 37 – 104.

mars 2010 Copyright

Avant - propos

Ce rapport IFREMER pour EDF a été réalisé par J.Y. Quintin¹, coordonnateur du programme, avec la participation de :

- chapitres 1 à 3 (P. Castaing, J.M. Jouanneau, G. Oggian,)²;
- chapitre 4 (C. Mallet, A. Roux Ducept)³;
- chapitre 5 (C. Mallet, A. Roux Ducept)³;
- chapitre 6 (B. Sautour, R. Parra)⁴;
- chapitre 7 (G. Bachelet, M. Leconte) ⁴

Il a été réalisé suite à la réunion de synthèse, qui s'est tenue le 7 janvier 2010 à l'Université de Bordeaux 1, et qui a réuni les personnes suivantes : MM. Castaing P., Etcheber H., Oggian G., Sottolichio A. (Université Bordeaux 1 - Talence), MM. Bachelet G., Sautour B. (Station Marine d'Arcachon), MMe. Mallet C., Roux Ducept A. (IPL Atlantique), M. Quintin J.Y. (IFREMER).

³ Institut Pasteur de Lille - santé, environnent durable Atlantique

⁴ Université Bordeaux 1 - Station Marine d'Arcachon (U.M.R. EPOC 5805)

_

¹ IFREMER. Département Dynamiques de l'Environnement Côtier

² Université Bordeaux 1 – Talence (U.M.R. EPOC 5805)

Surveillance du Blayais 2009 - résumé & conclusion

Au même titre que 2008, l'année 2009 peut-être classée parmi les années sèches, du fait d'un débit annuel moyen qui s'établit à 782 m³.s-¹, soit un déficit de 79 m³.s-¹ par rapport à la moyenne annuelle pour la période 1982/2008. La durée de l'étiage, de début juin à la fin de l'année, lui confère ce caractère d'année sèche 2009. Une autre caractéristique importante est l'enregistrement de crues tardives printanières, mais la plus forte de l'année (6068 m³.s⁻¹) se produit fin janvier.

Après un hiver 2009 rigoureux, surtout en janvier, et des pluies printanières favorables, la plus forte température moyenne mensuelle de l'air (22,3 °C) a été atteinte en août; les maximales sont rarement inférieures à 25 °C, et ont dépassées 35 °C trois fois. Novembre a été le mois le plus doux depuis 1946, suivi d'un mois de décembre caractéristique d'un hiver océanique pluvieux, suivi de froidure avec quelques flocons.

La température moyenne des eaux de l'estuaire en 2009 (avril à novembre) est très supérieure à celle de la période 1976-2008 à partir du mois de juin. La comparaison des cinq dernières années montre qu'en 2009, les températures mensuelles moyennes des eaux se situent dans la partie haute de la moyenne quinquennale, pendant la période sensible estivale et en automne. A noter que d'après les thermographes d'EDF, le mois de janvier 2009 a été le mois le plus froid de toute la période 1993 à 2009.

Par rapport à 2008, les eaux de l'estuaire sont fortement salées en amont pendant l'été. Les concentrations en matière en suspensions (MES) sont partout très faibles, tout au long de l'année, sur toute la verticale. Comme pour 2008, les eaux sont extrêmement "claires " pendant la saison estivale. Il en résulte une excellente oxygénation des eaux. Les déficits par rapport à la saturation sont parmi les plus faibles enregistrés depuis 1979. Les taux d'oxygénation très élevés constatés depuis 2005 résultent de la faible charge détritique solide en suspension.

L'intervalle maximum de variation du pH moyen est limité, et identique à celui des années antérieures, depuis le début des mesures en 2004. De 7,67 en amont à 8,23 à

l'aval, les pH les plus faibles sont relevés aux points K et E au moment de la crue printanière.

Les vitesses maximales moyennes en 2008, équivalentes en flot et en jusant, et beaucoup plus élevées qu'en 2007, ont ainsi favorisé une bonne dispersion des eaux issues de la centrale. En 2009, les vitesses maximales moyennes de flot se maintiennent à un niveau élevées. En revanche, celles de jusant, font une chute de l'ordre de 25 cm/s⁻¹; ceci est vraisemblablement lié à des variations de la morphologie des bancs et des fonds entre les îles.

D'une manière générale, 90 % du carbone organique total contenu dans les eaux de l'estuaire a une origine particulaire. Ainsi, pour la station K, les variations saisonnières des teneurs en carbone organique total sont conditionnées par celles de la charge particulaire; en aval, l'intrusion des eaux halines agit sur la répartition du carbone organique; la station F, présente les plus fortes fluctuations des valeurs de carbone organique particulaire et de matières en suspension; la station E, de part sa localisation dans l'estuaire, représente une situation intermédiaire par rapport aux deux autres points de mesures. Globalement, la charge organique de l'estuaire est plus importante comparativement à 2008, se rapprochant des valeurs enregistrées en 2007.

Les teneurs en chlorophylle (a) sont en augmentation, comparativement à 2008, mais restent faibles pour les 3 stations de mesure. Des variations saisonnières sont toutefois observées pour les stations E et F, notamment en période d'étiage.

Pour l'ensemble des stations, le gradient de concentration est décroissant de l'amont vers l'aval pour les sels nutritifs, dont les silicates. Les teneurs en ammonium et nitrate-nitrite sont inférieures à celles de 2008 ; à la station E, les valeurs des moyennes annuelles sont légèrement plus faibles que celles des moyennes pluriannuelles 1992 - 2009. A l'inverse, les teneurs en orthophosphate sont en augmentation par rapport à celles de 2008, avec pour conséquence à la station E, un niveau supérieur à celui de la moyenne pluriannuelle 1992 - 2009.

Sur l'estuaire de la Gironde, les silicates sont apportés majoritairement par la Dordogne. Les concentrations les plus élevées sont enregistrées à la station K; au sein de l'estuaire, ces apports sont dilués par l'intrusion des eaux halines; la stratification des valeurs entre basse mer et pleine mer est nette.

Le bore (acide borique), utilisé dans le processus de conditionnement des eaux des circuits primaires de la centrale, s'avère être aussi un élément naturel de l'eau de mer. La courbe de dilution mise en évidence dans les eaux de l'estuaire, en particulier au niveau de la station E, montre l'absence d'impact du fonctionnement de la centrale sur les concentrations en bore enregistrées.

Aucune trace d'amines utilisées dans le processus de traitement des eaux industrielles de la centrale n'a été détectée dans les eaux de l'estuaire de la Gironde. En revanche, des traces d'agents de surface anioniques ont été décelées à la station F.

Pour 2009, l'occurrence et l'abondance des *Vibrio* halophiles sont parmi les plus élevées depuis 2007. Cette famille de microorganismes, particulièrement sensibles à la température, n'a été recensée qu'à partir de la campagne du mois de juin. Les espèces les plus fréquemment rencontrées sont : *Vibrio parahaemolyticus*, *Vibrio alginolyticus*, *Vibrio vulnificus*.

L'ensemble des profils des éléments mesurés à la station E est la conséquence du fonctionnement naturel de l'estuaire et est « intermédiaire » de part sa position géographique. Les températures plus élevées mesurées à la station E peuvent contribuer au potentiel de développement des espèces de *Vibrio* halophiles.

Dans le zooplancton, l'espèce dominante Eurytemora affinis représente plus de 80 % du zooplancton. En 2009, sa dominance est de l'ordre de 75 % du zooplancton total. L'étude de la variabilité interannuelle des fluctuations de densité de cette espèce montre une bonne reproductibilité globale des cycles saisonniers, marqués par un pic annuel de densité dont la valeur est influencée par la migration du bouchon vaseux dans l'estuaire. Le pic d'abondance en 2009 est tardif par rapport au schéma classique (avril-juin 2009 : 12362 ind./m³). Les faibles effectifs de 2009, avec une densité annuelle moyenne de 4456 ind./m³ au point E, sont attribuables à un déplacement de l'espèce en aval au mois de mars consécutivement à la crue observé à cette période, mais avec une répartition globalement située en amont le reste de l'année. Sur l'ensemble de l'année 2009, la structure démographique de ses populations présente un faible pourcentage de femelles ovigères sur tous les points (19 % au point E, légèrement supérieur à ce qui est observé en K et F), un sex-ratio -rapport mâle/total adulte exprimé en pourcentage- favorable aux mâles en aval (54 % en F), et un pourcentage de copépodites indiquant leur présence davantage en amont (environ 60 % de copépodites en E et K). Au point E, la fécondité moyenne annuelle (2,9 œufs/sac) et la mortalité moyenne de 0,4 % sont faibles et proches de celles des points K et F.

Les densités moyennes annuelles d'*E. affinis* (4456 ind./m³) au point E est proche de celle de l'aval ; l'espèce présente une meilleure répartition en amont (points K), ce qui est caractéristique d'une année sèche sans forte crue. Les densités des mysidacés *Neomysis integer* (22 ind./m³) et *Mesopodopsis slabberi* (191 ind./m³) et du copépode *Acartia bifilosa* (310 ind./m³) en E sont supérieures à celles des autres points, mais plus proches de celles d'aval. Le copépode *Acartia tonsa* (1032 ind./m³) présente des densités en E, semblable à 2008 avec une répartition plutôt aval. L'espèce *Acartia tonsa*, espèce polyhaline thermophile introduite dans l'estuaire, présente chaque année, depuis 2002, un décalage temporel de son pic de densité avec celui d'*Acartia bifilosa*. Les résultats de l'année 2009 confirment qu'*Acartia tonsa* est bien adaptée aux conditions estuariennes depuis 1999, et plus particulièrement en aval de l'estuaire.

Pour la sixième année de surveillance du benthos en Gironde, les deux niveaux bathymétriques, intertidal et subtidal, ont été échantillonnés. Une étude granulométrique a été réalisée aux deux niveaux bathymétriques, pour appréhender la qualité des sédiments auxquels sont inféodées les espèces benthiques. La composition granulométrique du sédiment montre en 2009, comme les années précédentes, une très grande stabilité temporelle dans les trois stations intertidales, avec 83 à 97 % de vases tout au long de l'année. En revanche, dans le domaine subtidal, la granulométrie subit d'importantes fluctuations : aux points F et E, où prédomine généralement un substrat vaseux (88 à 94% de vases), une forte composante sableuse est relevée en été (32 à 48 % de vases au point F en juillet-août, seulement 3 à 9 % de vases au point E en août-septembre) ; inversement, au point K, le sédiment, normalement sableux, s'envase graduellement (de 2 % de vases en avril à 83 % en novembre).

La richesse spécifique (nombre d'espèces) des peuplements benthiques est croissante de l'amont vers l'aval, à la fois en subtidal et en intertidal. Alors que la richesse spécifique s'avère stable sur la durée du suivi en intertidal, elle diminue significativement en subtidal depuis 2004. Plus élevée en subtidal sur la période 2004-2006, la richesse spécifique devient ainsi en 2009 plus forte en intertidal qu'en subtidal.

L'abondance des peuplements benthiques subtidaux est faible. De manière générale, la comparaison inter-annuelle met en évidence des abondances relativement élevées sur la période 2004-2005, suivies d'une chute importante en 2006 et d'une remontée des abondances de 2007 à 2009. Ce schéma s'applique pour les points F et E, avec des maxima respectifs de 634 et 1136 ind./m² en 2009. Au point K, en revanche, les abondances restent à un niveau extrêmement faible en 2009 (max. 58 ind./m²).

Dans le domaine intertidal, les abondances sont beaucoup plus élevées qu'en subtidal. En 2009, elles se situent à un niveau moyen pour les stations St-Christoly (max. 6364 ind./m²) et St-Estèphe (max. 11303 ind./m²), et atteignent un niveau jamais atteint (max. 26818 ind./m²) à la station Lamarque, où le peuplement est constitué presque exclusivement d'oligochètes. Sur une échelle pluri-annuelle, les peuplements benthiques de St-Christoly et St-Estèphe suivent un patron similaire, avec des abondances fortes de 2004 à 2006, et moyennes à faibles de 2007 à 2009. A Lamarque, l'évolution est sensiblement différente, avec des abondances fortes en 2004-2005, faibles en 2006-2007, et un retour à des valeurs élevées de 2008 à 2009.

En conclusion, la Gironde est un estuaire macrotidal caractérisé par son fort hydrodynamisme, qui induit un brassage intense des masses d'eau douce (amont) et des masses d'eau marine (aval). L'effet de dilution est important sur les rejets du Centre nucléaire de production d'électricité du Blayais, situé dans une position géographique médiane de l'estuaire.

Le programme de surveillance écologique a pour objectif la mise en évidence des modifications éventuelles apportées au milieu estuarien par la centrale par rapport à un état de référence (fin des années 70).

La stratégie de suivi actuelle permet de dégager les grandes lignes de l'évolution intraet inter- annuelle des différents compartiments étudiés en estuaire de Gironde, en liaison avec les modifications majeures apportées par l'implantation de la centrale (e.g. tache thermique). Elle ne donne en aucun cas l'assurance de la détermination d'un éventuel impact spatio-temporel localisé. En effet, le pas de temps et l'échelle spatiale ne sont pas spécifiquement adaptés à la dynamique spatiale et temporelle de chaque compartiment ou paramètre.

Dans ce contexte, les observations faites en 2009 dans les différents compartiments étudiés, notamment en relations avec les paramètres environnementaux (e.g. débits, température, ...), se situent dans la continuité de celles des années antérieures, sans mise en évidence d'un impact de la centrale à cette échelle.

Sommaire

Introduction	15
1. Présentation du site et stratégie d'étude	17
1.1. Le Centre Nucléaire de Production d'Electricité du Blayais	17
1.1.1. Situation géographique	17
1.1.2. Caractéristiques du CNPE	17
1.2. L'estuaire de la Gironde	
1.2.1. Eléments géographiques et géomorphologiques	
1.2.2. Aperçu du fonctionnement hydro sédimentaire de l'estuaire	
1.3. Les études écologiques	
1.3.1. Schéma général des études	
1.3.2. Etudes de projet	
1.3.3. Etudes de surveillance	
1.3.4. Programme des études de surveillance	
1.4.1. Déroulement des campagnes à la mer	
1.4.2. Points de prélèvements	
1.4.3. Fréquence des prélèvements	
1.4.4. Paramètres mesurés	
1.4.5. Travaux réalisés	_
1.4.6. Paramètres, méthodes, précision	
2. Conditions climatiques et hydrologiques	31
2.1. Caractères climatologiques dominants pour l'année 2008	31
2.2. Débits fluviaux	35
3. Résultats des mesures in situ	37
3.1. Température de l'eau	37
3.1.2. Variations annuelles	
3.1.3. Synthèse des variations pluriannuelles des températures	
Mode opératoire.	
Résultats.	
3.2. Salinité	
3.2.1. Variation dans le temps	
3.3. Vitesse de courant	
3.4. Concentration en matières en suspension (MES)	73
3.4.1. Variations dans le temps	
3.4.2. Variations spatiales	
3.5. Oxygène dissous	
3.5.1. Variations dans le temps	
3.5.2. Variations spatiales	
3.6. Mesure électrochimique du pH	
3.6.1. Variations annuelles	100
4. Paramètres hydrobiologiques et contaminants chimiques	105
4.1. Carbone organique	105
4.1.1. Variations saisonnières	
4.1.2. Répartition du carbone organique et relation avec les paramètres	
hydro biologiques	112
4.1.3 Evolution des movennes annuelles	114

4.2. Chlorophylle et phéopigments	
4.2.1. Variations saisonnières	
4.2.2. Evolution des moyennes annuelles	125
4.3. Sels nutritifs et bore	126
4.3.1. Variations saisonnière	126
4.3.2. Relation avec les paramètres hydro biologiques	136
4.3.3. Evolution des moyennes annuelles	
4.4. Contaminants	
4.4.1. Famille des amines	
4.4.2. Agents de surface anioniques	
4.4.2. Agents de sunace anioniques	
5. Vibrio halophiles	143
5.1. Evolution spatio-temporelle	143
5.1.1. Variations saisonnières	143
5.1.2. Relation avec la salinité et la température	
5.2. Spéciation	
5.2.1. Occurrence des espèces	
5.2.2. Densité des espèces	140
6. Zooplancton	149
6.1. Evolution temporelle des principaux contingents au point E	1/10
6.1.1. Variations des densités du Copépode <i>Eurytemora affinis</i>	
6.1.2. Variations des densités des copépodes Acartidés	
6.1.3. Variations des densités des Mysidacés	
6.2. Structure démographique d'Eurytemora affinis au point E	
6.2.1. Fécondité :	
6.2.2. Structure des populations	
6.2.3. Mortalité	
6.3. Comparaison de l'évolution des principaux contingents aux points F, E, K	163
6.3.1. Variations des densités du Copépode Eurytemora affinis	163
6.3.2. Variation des densités des Copépodes Acartidés	
6.3.3. Variation des densités de Mysidacés	
6.4. Structure démographique d'Eurytemora affinis aux points F, E, et K	
6.4.1. Paramètres de population	
6.4.2. Fécondité	
6.4.3. Mortalité	
0.4.5. Wortaine	173
7 Magnafarma hanthimus	400
7. Macrofaune benthique	103
7.1. Composition granulométrique du sédiment	183
7.1.1. Sédiments intertidaux	
7.1.2. Sédiments subtidaux	
7.2. Evolution temporelle de la richesse spécifique des peuplements macrobent	
7.3. Evolution temporelle des peuplements macrobenthiques subtidaux	
7.3.1. Point F (PK 67)	
7.3.2. Point E (PK 52)	
7.3.3. Point K (PK 30)	
7.3.4. Comparaison avec les années antérieures	
7.4. Variations de densités des principales espèces subtidales	
7.4.1. Annélides Oligochètes	
7.4.2. Annélides Polychètes	195
7.4.3. Crustacés Amphipodes et Isopodes	
7.4.4. Crustacés Mysidacés	
7.4.5. Larves d'Insectes	
7.5. Evolution temporelle des peuplements macrobenthiques intertidaux	
7.5.1. St-Christoly (PK 66)	
7.5.2. St-Estèphe (PK 55)	
7.5.3. Lamarque (PK 35)	∠∪∪

7.5.4. Comparaison avec les années antérieures	200
7.6. Variations de densités des principales espèces intertidales	
7.6.1. Annélides Oligochètes	
7.6.2. Annélides Polychètes	204
7.6.3. Mollusques	206
7.6.4. Crustacés	
8. Références bibliographiques	211
9. Annexes	213
9.1. Annexe 1 : Dénombrement des divers prélèvements et mesures	213
9.2. Annexe 2 : Tableaux des résultats de mesures	
9.3. Annexe 3 : Tableau des résultats analytiques	222
9.3.1. Résultats bruts de mesures de MES, COD et COP	
9.3.2. Résultats bruts de mesures de chlorophylle et phaeopigments	226
9.3.3. Résultats bruts de mesures de sels nutritifs et du bore	227
9.3.4. Contaminants	228
9.3.5. Résultats bruts de Vibrios halophiles - méthode milieu solide	
(filtration sur membrane)	229
9.3.6. Tableau synthétique des résultats de dénombrement des	
Vibrios halophiles - méthode milieu solide (filtration sur membrane)	230

Introduction

Les centrales thermonucléaires, à fonctionnement en circuit ouvert, utilisent pour le refroidissement de leurs condenseurs d'importants débits d'eau froide prélevée en continu dans leur environnement proche. Des unités de ce type ont été installées en bord de mer, Gravelines, Penly, Paluel, Flamanville. Un seul grand aménagement énergétique a pour l'instant été réalisé sur un estuaire : le Centre Nucléaire de Production d'Electricité (CNPE) du Blayais sur l'estuaire de Gironde.

Du fait de cette implantation originale dans un milieu soumis à la fois à l'influence de la marée et à celui des apports de la Dordogne et de la Garonne, le site a fait l'objet d'études spécifiques en ce qui concerne la conception et la réalisation des prises et rejets d'eau, avec dès l'origine l'idée de créer des ouvrages qui perturbent le moins possible l'environnement aquatique, et notamment la remontée des organismes migrateurs.

De nombreuses études ont été réalisées pour appréhender l'impact du CNPE sur le milieu estuarien. Elles ont débuté en 1975, et se déroulent depuis sans interruption (cf. : rapport final CNEXO mai 1977 ; rapports de surveillance écologique, 1979 et années suivantes) :

- Campagne de mai 1975,
- Missions légères d'octobre 1975 à décembre 1976,
- Missions lourdes de mars 1976 et septembre 1976,
- Surveillances écologiques annuelles depuis 1978.

De juin 1981, date de mise en service de la première tranche, à fin 1983, date de mise en service de la dernière tranche, les études de surveillance ont porté sur la phase intermédiaire avant établissement du régime permanent de la centrale.

Le chapitre 1 de ce rapport présente le site du Blayais dans le contexte estuarien particulier de la Gironde, et fait un rappel des diverses études réalisées. Les chapitres suivants présentent les résultats de l'étude de surveillance écologique du site du Blayais de l'année 2009, étude effectuée dans le cadre du marché EDF/IFREMER n° C349C65050. C'est une reconduction du protocole d'échantillonnage mis en place en 1992, amendé par Arrêté inter – ministériel du 18 septembre 2003 paru au Journal Officiel de la République Française du 26 septembre 2003.

Trois organismes ont participé à ce programme :

L'Université Bordeaux 1 (UMR 5805 EPOC - Talence)⁵ pour :

- organiser et réaliser les missions à la mer suivant le schéma défini dans l'annexe technique et comportant les mesures *in situ* de paramètres hydrologiques et des prélèvements hydrologiques et biologiques en liaison avec la Station Marine d'Arcachon;
- fournir à l'Institut Pasteur de Lille Atlantique (IPL-Atlantique) les échantillons destinés aux analyses chimiques et bactériologiques ;
- regrouper les mesures in situ;
- effectuer les mesures de matière en suspension et les dosages d'oxygène dissous sur les échantillons prélevés.

La Station Marine d'Arcachon (UMR 5805 EPOC - Arcachon)⁶ pour :

- étudier les peuplements zoo planctoniques ;
- étudier les peuplements zoo benthiques.

Institut Pasteur de Lille - santé, environnent durable Atlantique (IPL Atlantique) pour :

• effectuer au laboratoire les dosages de carbone organique particulaire et dissous, de chlorophylle et phaeopigments⁷. des sels nutritifs ammonium, nitrates et nitrites associés, silicates, orthophosphates, de l'élément mineur bore, la recherche de contaminants agents de surface anioniques, hydrazine, morpholine, éthanolamine, la recherche et l'identification des *Vibrio* halophiles, sur les échantillons prélevés.

⁷ Produits de l'altérations de plusieurs type de chlorophylles (dénommées « a », « b » et « c »)

_

⁵ Anciennement Institut de Géologie du Bassin d'Aquitaine (IGBA), puis Département de Géologie et Océanographie (DGO)

⁶ Anciennement Laboratoire d'Océanographie Biologique (LOB)

1. Présentation du site et stratégie d'étude

1.1. Le Centre Nucléaire de Production d'Electricité du Blayais

1.1.1. Situation géographique

Le CNPE du Blayais se trouve sur la commune de Braud et St Louis dans le Département de la Gironde, à 48 km au N-NO de Bordeaux, à 14 km au N-NO de Blaye, à 50 km au S-SE de ROYAN et à 57 km au Sud-Ouest de Saintes. Les installations sont implantées au lieu-dit "La Présidente", en bordure de la Gironde sur la rive droite, environ au pK⁸ 52, entre le canal Saint-Georges et le canal de Callonges qui drainent le marais avoisinant.

1.1.2. Caractéristiques du CNPE

Le CNPE du Blayais comporte quatre tranches, à eau ordinaire sous pression (PWR), d'une puissance unitaire de 925 MW. Les mises en service industriel ont été effectuées :

- le 1er décembre 1981 pour la tranche 1,
- le 1er février 1983 pour la tranche 2,
- le 14 novembre 1983 pour la tranche 3,
- le 1er octobre 1983 pour la tranche 4.

Le CNPE du Blayais assure plus de 5 % de la production nationale d'électricité, un coefficient de disponibilité supérieur à 80 %, et des productions annuelles pouvant atteindre plus de 25 TWh (milliards de KWh).

Chaque tranche a besoin, pour le refroidissement du condenseur, d'un débit d'eau moyen de 42 m³.s⁻¹, soit 168 m³.s⁻¹ pour 4 tranches en service. Cette eau est prélevée dans le chenal de Saintonge à environ 380 m de la rive, au niveau du pK 52 de la

⁸ point kilométrique, compté à partir du Pont de Pierre de Bordeaux (pK 0)

Gironde large de 4,5 km. L'eau échauffée est rejetée en Gironde dans le chenal médian, situé entre les bancs de St Estèphe et de St Louis, à environ 2000 m de la rive. Ces prélèvements et rejets se font par des conduites ensouillées.

L'étude de la décroissance des échauffements par la voie de modèles physiques et de modèles théoriques a permis d'aboutir à une disposition optimale des prises d'eau (1 tête de prise pour 2 tranches) et des rejets. L'implantation retenue vise en particulier à diminuer la surface des zones fortement échauffées en bordure des rives et à limiter les phénomènes de recyclage.

Des études spécifiques ont par ailleurs été réalisées pour concevoir des prises d'eau à l'écart de la zone maximale de passage des organismes migrateurs et avec des vitesses d'aspiration les plus faibles possibles en regard des impératifs techniques.

Les têtes de prise sont munies de barreaux espacés de 90 mm, au travers desquels les vitesses d'entrée de l'eau sont très proches des vitesses des eaux de la Gironde, qui sont elles-mêmes relativement élevées (jusqu'à 3 m.s⁻¹). La disposition retenue ménage entre la rive droite et les têtes de prise un couloir de passage minimum lors des plus basses eaux d'étiage de 200 m de large et de 1,50 m de profondeur environ.

Pour répondre aux dispositions réglementaires, des systèmes de récupération de poissons ont été mis en place, sur les tambours filtrants rotatifs de 3 mm de vide de maille, à l'entrée des stations de pompage. Le retour en estuaire, des poissons éventuellement captés et de l'eau qui les véhicule, se fait par un ouvrage de rejet spécifiquement implanté sur berge. Le débit maximal est de 12,5 m³.s⁻¹ sans élévation thermique et avec un apport en matières polluantes négligeable.

L'eau prélevée en Gironde pour le refroidissement des condenseurs subit un échauffement moyen de 11 °C, sans modifications notables de ses qualités chimiques avant rejet car, en l'absence de problèmes de fixation de moules, aucun traitement au chlore n'est réalisé.

1.2. L'estuaire de la Gironde⁹

1.2.1. Eléments géographiques et géomorphologiques

La Gironde est, par sa superficie d'environ 630 km², le plus grand estuaire de France et d'Europe occidentale. D'une longueur de 75 km, elle naît de la confluence au Bec d'Ambès de deux fleuves Garonne (575 km) et Dordogne (472 km), qui drainent des bassins versants à surfaces fort différentes (56 000 km² et 24 000 km² respectivement) et distincts géographiquement : la Garonne prend sa source dans le Massif de la Maladeta (Pyrénées centrales espagnoles) ; la Dordogne prend sa source dans le Puy de Dôme.

Pour faciliter le positionnement géographique le long de l'estuaire, les distances d'amont vers l'aval sont exprimées en points kilométriques, dont l'origine est le pont de pierre à

⁹ chapitre réalisé d'après les travaux d'Allen (1972) et de Castaing (1981)

Bordeaux (pK 0). L'estuaire peut être divisé en quatre zones : l'estuaire fluvial, en amont du Bec d'Ambes (pK 25) où Garonne et Dordogne se présentent comme des fleuves à méandres ; l'estuaire amont, du Bec d'Ambes à Saint Christoly (pK 66) ; l'estuaire aval, davantage soumis aux effets de la marée ; l'embouchure (pK 100), sous l'influence combinée de la houle et des courants de marée.

La zone d'étude (pK 30, pK 52, pK 67) correspond globalement à la partie amont de l'estuaire (pK 25 à 66) ; d'une largeur de 4,5 Km environ au pK 52, elle ne dépasse pas 10 m de profondeur. Ce "haut - estuaire" est d'une grande complexité morphologique ; il est composé d'îles argileuses et de barres sableuses séparant des chenaux anastomosés. La nature du fond, surtout vaseux dans les chenaux, est fortement liée à cette morphologie. La nature des sédiments composés de sable et de vase évolue dans le temps et dans l'espace sous l'influence respectivement marine et continentale.

1.2.2. Aperçu du fonctionnement hydro sédimentaire de l'estuaire

L'hydrologie fluviale présente des débits très variables (120 m³.s⁻¹ à plus de 5 500 m³.s⁻¹)¹0; lorsqu'ils sont forts, ils sont source d'apports alluvionnaires importants en provenance des fleuves et estimés globalement à 2,5 millions de tonnes par an selon Naguy (1993). Elle est contrariée par l'effet d'une onde de marée asymétrique.

Les différences de salinités, liées à la rencontre des eaux fluviales et marines, induisent des différences de densité sur la tranche d'eau : l'eau salée plus dense que l'eau douce avoisine le fond. Ainsi naît la circulation "résiduelle" estuarienne caractérisée par un écoulement vers l'amont au fond et vers l'aval en surface.

La convergence des vitesses résiduelles, par piégeage des particules en suspension au voisinage du fond, favorise la formation d'un bouchon vaseux par effet de densité (eau douce - eau de mer) et de la marée dynamique (propagation asymétrique de l'onde de marée).

Le positionnement du bouchon vaseux le long de l'estuaire dépend des variations des débits fluviaux et des coefficients de marée. Son rôle est essentiel dans le comportement d'un estuaire et de ses ressources vivantes, et plus particulièrement dans le cas de la Gironde soumise à des pressions anthropiques croissantes.

1.3. Les études écologiques

1.3.1. Schéma général des études

Le schéma général des études écologiques relatives à l'implantation des centrales nucléaires en estuaire comporte deux étapes : le projet, et la surveillance. Le projet qui a pour but de préciser l'état écologique du milieu dans la zone qui subira l'influence de la centrale. La surveillance qui correspond à l'étude des fluctuations naturelles du milieu (variations pluriannuelles notamment) avant la mise en service de la centrale, et des modifications du milieu après la mise en service de la centrale.

Projet et surveillance écologiques sont deux phases complémentaires d'une même étude, qui visent à mettre en évidence les règles évolutives d'un écosystème soumis aux

¹⁰ minimum et maximum journalier de 2003.

effluents thermiques d'une centrale nucléaire. Cette analyse des déséquilibres éventuels par "constat" implique une connaissance approfondie du milieu naturel fluctuant dans le temps : cycles et dérives sur une période de plusieurs années. Il est en effet indispensable, dans une perspective de généralisation, de pouvoir distinguer les modifications dues au fonctionnement de la centrale, de celles dues à des phénomènes naturels, d'ordre climatologique par exemple, ou à d'autres phénomènes anthropogéniques, d'aménagements du bassin versant par exemple.

1.3.2. Etudes de projet

Les résultats réunis dans les dossiers de projet, sur l'estuaire de la Gironde, comportent des observations effectuées pendant une année et demi (mai 1975 -décembre 1976) sur les paramètres relatifs aux domaines de la physique, de l'hydrobiologie, de la biologie et de la pollution. Au terme de cette étude, une synthèse faisant appel au traitement mathématique des données a été faite, permettant de dégager les principales composantes écologiques d'un "état de référence" du site, notamment les paramètres et les espèces les plus caractéristiques. De même, les résultats du projet ont permis de préciser la variabilité, dans le temps et dans l'espace, des phénomènes définissant cet état de référence (dispersion verticale et horizontale des organismes, saisons hydrobiologiques, pics d'abondance zooplanctonique, période de recrutement des organismes benthiques, etc.).

1.3.3. Etudes de surveillance

Un programme pluriannuel de surveillance écologique a été défini sur la base de la synthèse écologique de cet état de référence du site. Il a été mis en application pendant une période de 6 ans (janvier 78-Décembre 83). La mise en place par le CNEXO d'un programme d'études supplémentaires faisant appel à un échantillonnage rapide par hélicoptère sur l'ensemble du système fluvio-estuarien de la Gironde-Dordogne/Garonne, a permis de dégager quelques idées permettant d'améliorer l'approche spatio-temporelle de l'échantillonnage dans le cadre des études de surveillance.

La redondance ou le manque d'intérêt de certains résultats d'une part, les nouvelles exigences de l'arrêté concernant l'autorisation de rejet d'eau de la centrale d'autre part, nous ont conduit à modifier dès 1984 certains paramètres échantillonnés, avec un programme annuel de surveillance écologique à 3 stations d'échantillonnage et 9 campagnes annuelles. Afin d'évaluer les apports Garonne-Dordogne, deux prélèvements supplémentaires étaient effectués à la limite amont de pénétration de la marée dynamique.

1.3.4. Programme des études de surveillance

Le programme de surveillance écologique, établi en 1992, fait suite à l'arrêté préfectoral du 23 décembre 1991, modificatif de l'arrêté du 31 mars 1989 portant autorisation de rejet dans le domaine fluvial.

En complément de ce programme, une étude particulière a été effectuée d'avril 1992 à mars 1993 pour étudier les aspects méiobenthiques (animaux de taille inférieure au millimètre qui vivent au fond dans les sédiments superficiels) autour de la centrale.

Ce programme de surveillance écologique a pour objet la mise en évidence des modifications éventuelles apportées au milieu par la centrale. La modification par rapport au programme antérieur porte sur la répartition des stations le long de l'estuaire, la périodicité des prélèvements et la nature des paramètres étudiés.

Pour pallier une vision seulement partielle de la distribution de certaines variables, le point F (pK 67), à l'aval du site dans le chenal de navigation, remplace la station J (pK 52), au droit du site, et permet ainsi de couvrir en grande partie la zone géographique colonisée par l'espèce *Eurytemora affinis*, pendant la majeure partie de l'année.

Le programme annuel comporte 3 stations d'échantillonnages et 8 campagnes mensuelles. Il concerne les paramètres hydro biologiques, bactériologiques, et zoo planctoniques intégrés dans le contexte des caractéristiques d'un milieu estuarien complexe et des fluctuations climatiques auxquelles ils sont soumis, dont la température en particulier. Ce programme s'est poursuivi jusqu'en 2003, et a été complété dès 2004 par un suivi de la macrofaune dans le domaine benthique, et la mesure de polluants organiques dans le domaine pélagique pour mise en concordance avec l'arrêté du 18 septembre 2003 (NOR INDI0301878A) actuellement en application.

Le point K, le plus amont, est situé à 22 km en amont de la centrale. A la confluence de la Garonne et de la Dordogne, il est positionné pour évaluer l'impact éventuel des rejets de la centrale sur la partie fluviale de l'estuaire. C'est le point le plus sensible aux crues et il est fréquemment occupé par des eaux douces.

Le point E, à quelques centaines de mètres de la centrale est situé dans le chenal médian au débouché des canalisations de rejet des eaux de refroidissement. C'est à cette station que l'impact de la centrale, essentiellement thermique ici, est directement mesurable.

Le point F est localisé dans le chenal de navigation, rive gauche, à 15 km à l'aval de la centrale dans une zone où les eaux sont toujours salées, même en période de crue. On évalue ici les éventuels impacts des rejets de la centrale sur les eaux de l'estuaire aval.

1.4. La surveillance écologique - année 2009

1.4.1. Déroulement des campagnes à la mer

Le programme de surveillance écologique nécessite l'utilisation d'une embarcation, "Côte d'Aquitaine" armé par le C.N.R.S., pour réaliser les prélèvements d'échantillons lors des 8 campagnes mensuelles. Pour chaque campagne, 3 points (F, E, K) sont échantillonnés par l'UMR 5805 EPOC, lors de 3 stations réparties longitudinalement le long de l'estuaire entre le pK 30 et le pK 67, à raison d'une station par jour, pendant un cycle de marée complet, et dans des conditions de marée comparables (mortes-eaux). Le transport des échantillons vers le laboratoire est assuré par l'IPL Atlantique.

les prises et rejets d'eau de refroidissement étant disposés sur le fond de l'estuaire respectivement à 380 m et 2000 m de la berge.

_

Matériel utilisé : G.P.S. pour le positionnement géographique ; échosondeur pour la hauteur d'eau ; courantomètre directionnel VALEPORT MK 108, avec option : température, conductivité, salinité, capteur de pression ; pHmètre WTW mod. 315i/SET ; bouteille à prélèvement horizontal, ou vertical de type Niskin, pour les prélèvements d'eau ; filets à plancton de type WP2, à vide de maille 200 μm , pour les prélèvements de plancton ; benne Smith-McIntyre et table de pré-tri pour le benthos 12 ; glacières portables ; flacons et bidons d'échantillonnage.

1.4.2. Points de prélèvements

Le programme comporte trois points de prélèvements :

- une station à l'amont du site permettant la connaissance du milieu avant son passage devant le CNPE chenal de Blaye (point K; pK 30; coordonnées géographiques N 45°04'1/10 W 0°38'3/10),
- une station au droit du CNPE, situé dans le chenal médian (point E; pK 52; coordonnées géographiques N 45°14'8/10 W 0°43'5/10),
- une station à l'aval du site et placée dans le chenal de navigation permettant de pallier une vision seulement partielle de la distribution de certaines variables (point F; pK 67; coordonnées géographiques N 45°22'3/10 W 0°48'1/10).

Des mesures de débits des fleuves sont réalisées aux emplacements suivants : Garonne, pont de la route départementale n° 9 à La Réole ; Dordogne, pont de la route départementale n°16 à Pessac/Dordogne (Source : Port Autonome de Bordeaux).

1.4.3. Fréquence des prélèvements

Le programme comprend huit campagnes de prélèvements d'avril à novembre. Deux de ces missions étant souvent regroupées en septembre.

Les dates des missions, effectuées en 2009, sont indiquées sur la carte de positionnement des points et dates de campagnes (**Figure 1-1**). La fréquence des prélèvements, par campagne, est indiquée dans le **Tableau 1-1**.

Tableau 1-1 : Fréquence des prélèvements des paramètres mesurés

Paramètres	Niveaux	Moment de	Point
		marée	
Courant (vitesse et direction), Salinité, température, pH,	2	4	K-E-F
Matière en suspension (MES), Oxygène dissous, Carbone			
organique particulaire (COP), Carbone organique dissous			
(COD)			
Sels nutritifs (nitrate, ammonium, phosphate, silicates).	1 (Surface)	2	K-E-F
Chlorophylle, phaeopigments. Bore. Hydrazine,			
morpholine, éthanolamine, agents de surfaces			
Vibrio halophiles	1 (Surface)	2	K-E-F
Zooplancton	2	4	K-E-F
Zoobenthos	1 (Fond)	sans objet	K-E-F

Niveau (1 = surface ou fond, 2 = surface et fond).

Moment de marée (2 = basse mer et pleine mer, 4 = basse mer, mi-flot, pleine mer, mi-jusant).

¹² Ensemble des organismes qui vivent sur les fonds des mers et s'y déplacent peu.

-

1.4.4. Paramètres mesurés

Les paramètres sont relevés sur quatre séries de mesures correspondant aux heures de pleine mer, de basse mer et des mi-marées, à deux niveaux (1 m de la surface et 1 m du fond) pour l'hydrologie, à un niveau (1 m de la surface) pour la physico-chimie (sels nutritifs, chlorophylle et phaeopigments, bore), les contaminants (hydrazine, morpholine, éthanolamine, agents de surface anioniques), et la bactériologie. Jusqu'en 1991 inclus, pour la température, la salinité, les vitesses de courant, l'oxygène dissous, les moyennes sont établies à partir de 5 mesures par niveau de référence pour 9 missions mensuelles, soit 45 mesures; depuis 1992, les moyennes sont établies à partir de 4 mesures par niveau pour 8 missions, soit 32 mesures. A partir de 2004 les mesures de pH sont ajoutées.

Les prélèvements de zooplancton sont effectués toutes les deux ou trois heures en moyenne pendant un cycle de marée. Chaque traict de filet WP2 (ou prélèvement) dure environ 2 minutes, le bateau étant ancré pendant la durée des opérations. A chaque sortie et à chaque station, 8 prélèvements sont ainsi réalisés (4 en surface et 4 au fond). Depuis 2004, des prélèvements benthiques sont réalisés aux trois points de mesures

1.4.5. Travaux réalisés

Pour chacun des paramètres analytiques à étudier, la quantité prévue et réalisée est :

				Total	Total
Points	Point F	Point E	Point K	prévu	réalisé
Hydrologie Mesures – Université de Bordeaux 1	- UMR EP	OC 5805			
Hauteur d'eau	32	32	32	96	96
Températures	64	64	64	192	192
Salinités, conductivités	64	64	64	192	192
Vitesse du courant	64	64	64	192	192
Direction du courant	64	64	64	192	192
PH	64	64	64	192	192
Prélèvements – Université de Bordeaux 1 - UMR	EPOC 580)5			
Dosage oxygène dissous (250 cc)	64	64	64	192	192
Détermination des MES (1 l)	64	64	64	192	192
Pollution - Institut Européen de l'Environnement	de Bordeau	1X			
COP	64	64	64	192	192
COT	64	64	64	192	192
Chlorophylle, phaeopigments	16	16	16	48	48
Sels nutritifs	16	16	16	48	48
Morpholine, hydrazine, éthanolamine,	16	16	16	48	48
Bore	16	16	16	48	48
Agents de surface	16	16	16	48	48
Bactériologiques (Vibrions)	32	32	32	96	96
Biologie - Station Marine d'Arcachon - UMR EF	POC 5805				
Zooplancton (Filet WP2)	64	64	64	192	192
Zoobenthos subtidal (Bennes Smith-Mc Intyre)	40	40	40	120	120

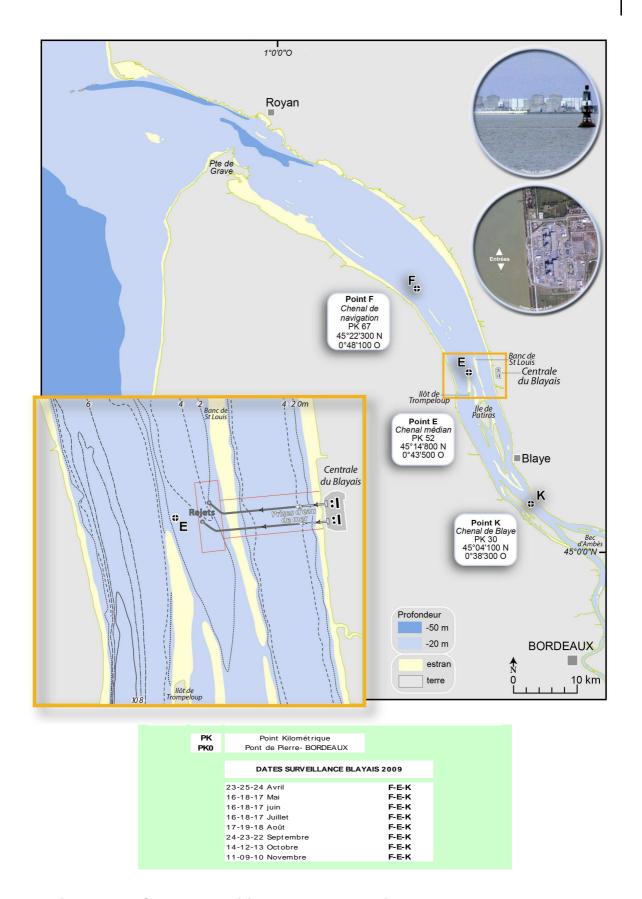


Figure 1-1 : Carte de positionnement des points et dates de campagnes

1.4.6. Paramètres, méthodes, précision

1.4.6.1. Mesures in situ

Profondeur: échosondeur.

Courant (Vitesse et direction) : courantomètre VALEPORT MK 108 directionnel ; précision ± 5 cm.s⁻¹.

Température et salinité : VALEPORT MK 108 ; précision \pm 0,1°C et \pm 0,5 de salinité. pH : pH-mètre WTW modèle 315i/SET ; précision \pm un digit

1.4.6.2. Mesures en laboratoire

Oxygène dissous : mesure de la teneur en oxygène dissous par la méthode WINKLER ; dosage par oxydoréduction, à l'hydrate manganeux. L'addition des deux réactifs dans l'eau est effectuée à bord immédiatement après la prise d'échantillons ; le dosage proprement dit est réalisé au laboratoire dans les 24 heures ; précision 1 %.

Matière en suspension : mesure de la concentration en matière en suspension totale par pesée, après filtration d'un volume de 100 à 250 cm³ d'eau (suivant turbidité) sur des filtres de 0,45 µm et séchage en étuve à 105 °C; précision 1 mg.l⁻¹.

Chlorophylle et phéopigments : la chlorophylle (*a*) est dosée selon la méthode trichromatique par spectrophotométrie sur la fraction particulaire après filtration à 0,47 µm et extraction à l'acétone 90 % (norme Afnor NF T 90-117 de décembre 1999). Les phéopigments sont calculés à partir des absorbances de l'extrait avant et après acidification à l'acide chlorhydrique 5 mol.l⁻¹, par application de la méthode de Lorenzen (Afnor NF T 90-117; Aminot & Kérouel, 2004).

La chlorophylle (a) et l'indice phaéopigment sont dosés par spectrophotométrie d'absorption moléculaire conformément à la norme NF T 90-117 (Afnor, Décembre 1999). Le seuil de quantification est de 0,1 µg/L pour un volume filtré de 1L (paramètre inscrit sur la portée spécifique du programme COFRAC 100.1 de IPL Atlantique).

Carbone organique particulaire (COP) : filtration d'eau brute sur filtre en fibre de verre type GF/F de $0.7~\mu m$ de porosité, selon la norme NF EN 14235, et dosage par titrimétrie. La performance de cette méthode est fonction du volume filtré et de la charge particulaire de l'eau.

Carbone organique dissous (COD): après filtration, dosage sur l'eau filtrée selon la norme européenne NF EN 1484; il s'agit d'une oxydation « à chaud » en milieu oxydant (peroxodisulfate de potassium). Le seuil de quantification est de 0,1 mg.1⁻¹, (paramètre inscrit sur la portée spécifique du programme COFRAC 100.1 de IPL Atlantique).

Carbone organique total (COT): obtenu par sommation du COP et COD.

Eléments nutritifs dissous : après filtration de l'échantillon d'eau brute, analyse réalisée sur l'eau filtrée d'après les méthodes Aminot & Kérouel (2004 et 2007). Ces paramètres sont inscrits sur la portée spécifique du programme COFRAC 100.1 de l'IPL Atlantique.

Nitrites et nitrates (NO₂₋ et NO₃₋) : réduction des nitrates en nitrites par passage sur une colonne de cadmium traité par CuSO₄ (Wood et al,1967) ; dosage spectrophotométrique des ions nitreux par coloration de Griess (Bendschneider & Robinson, 1952 ; Aminot &

Kerouel 2004) reprise dans la norme NF EN 26777. La limite de quantification est de 0,01 mg.l⁻¹ pour le nitrite et de 0,1 mg/L pour les nitrates.

Ammonium (NH₄₊): Application de la réaction de Berthelot à l'eau de mer, méthode spectrophotométrique de Koroleff (1969) également présentée dans la norme NF T 90-015; Aminot & Kerouel 2004. La limite de quantification est de 0,005 mg.l⁻¹.

Orthophosphates (PO_4^{3-}): Méthode spectrophotométrique (Murphy & Riley 1962; Aminot & Kerouel 2004), décrite également dans la norme NF EN 1189. La limite de quantification est de 0,010 mg/L.

Silicates: Méthode spectrophotométrique après formation et réduction de l'acide silicomolybdique par le métol-sulfite, selon une adaptation de la norme NF T 90-007. La limite de quantification est de 0,02 mg/L.

Elément mineur de l'eau de mer :

Bore : Le bore est dosé par ICP / AES¹³ (plasma optique, NF EN ISO 11885) à partir d'une dilution au $1/10^{\text{ème}}$ de l'échantillon filtré afin de minimiser l'effet de matrice (chlorures). Le seuil de quantification est de 6 µg.l⁻¹.

Contaminants organiques:

Hydrazine: dosage par HPLC¹⁴ après dérivatization pré colonne à l'aldéhyde salicylique, détection par spectrométrie UV. Le seuil de quantification est de 0,1 mg.l⁻¹. *Morpholine*: dosage par HPLC après dérivatization pré colonne (FMOC¹⁵), détection par fluorimétrie. Le seuil de quantification est de 0,1 mg.l⁻¹.

Ethanolamine : dosage par HPLC après dérivatization pré colonne (FMOC), détection par fluorimétrie. Le seuil de quantification est de 0,1 mg.l⁻¹.

Agents de surface anioniques : selon NF EN 903 ; seuil de quantification 20 ug.l⁻¹.

1.4.6.3. Bactériologie

En 2004 et 2005, les *Vibrio halophiles* ont été recherchés dans les eaux de l'estuaire selon 2 méthodes différentes : *Méthode en milieu liquide* et *Méthode par filtration*. En 2006, la méthode en milieu liquide a été abandonnée au profit de la méthode par filtration. Depuis 2006, les *Vibrio* halophiles ont été recherchés dans les eaux de l'estuaire en utilisant la méthode par filtration, conforme à la procédure technique DRD/P77/Vib¹⁶.

Méthode par filtration: la méthode par filtration (Khalanski & Delesmont, 2002) comporte la filtration d'un volume connu d'échantillon sur membrane et mise en culture sur TCBS¹⁷ – agar et incubation à 37 °C pendant 20 heures ; repiquage sur milieu de Kligler salé à 3 % ; suivi de l'identification biochimique sur galerie API 20^E.

Les fortes charges particulaires des eaux de l'estuaire de la Gironde imposent des dilutions importantes pour pouvoir mener à bien la méthode en milieu solide. Ainsi, la sensibilité de cette méthode est diminuée ; pour une filtration de 1mL, le seuil de quantification est de 1000 UFC/L. Cette diminution d'acuité est accentuée par la nature

¹³ ICP-AES (Inductively coupled plasma optical emission spectroscopy « ICP-OES or ICP-AES ») = Spectrométrie d'Emission Atomique

¹⁴ HPLC (High Performance Liquid Chromatography) = Chromatographie liquide à haute performance

¹⁵ FMOC (9-fluorenylmethoxycarbonyl chloride) = 9-fluorénylméthyl chloroformate

¹⁶ KHALANSKI Michel (EDF/D&D) et DELESMONT Régis (IPL), Juin 2002

¹⁷ TCBS = Thiosulfate Citrate Bile Sucrose

muqueuse des colonies de Vibrio qui ont tendance à s'étaler sur la membrane de filtration.

1.4.6.4. Zooplanctonologie

Prélèvements (traicts) de plancton au filet à plancton WP2 (200 µm de vide de maille) équipé d'un volucompteur ; pour le filet à plancton, le coefficient moyen de filtration est compris entre 70 et 81 %, ce qui correspond aux normes admises pour le milieu estuarien.

Les méthodes d'identification et de comptage d'organismes zooplanctoniques dominants dans les eaux de l'estuaire ont été mises au point progressivement (Castel & Courties, 1977) car les méthodes classiques en Océanographie n'étaient pas utilisables sans y apporter quelques modifications liées à l'extrême densité des débris organiques et des particules minérales dans les eaux de l'estuaire.

Estimation de la mortalité du zooplancton (Eurytemora affinis) : à bord, une partie aliquote d'un prélèvement de fond ou de surface, en alternance, est transvasée dans un pot en verre rempli avec de l'eau de la station étudiée. L'influence de la densité des individus sur la mortalité en milieu confiné (Castel, Courties & Poli, 1979) recommande de ne pas dépasser une certaine concentration d'individus dans le pot. Cela permet d'éviter une mortalité due à un appauvrissement en oxygène de l'eau ou à une sur concentration en produits excrétés par les Copépodes. Pour calculer le taux de mortalité, les organismes vivants sont colorés au rouge neutre (1 ml de rouge neutre pour une concentration finale de 1/100.000e environ). Le pot est placé dans un incubateur immergé pour maintenir la température de l'eau pendant une heure et demi d'imprégnation.

Le surplus de colorant est éliminé par un second tamisage (maille 200 µm). Le contenu du second tamisage est transféré dans le pot en verre ayant servi à l'incubation et fixé (1 ml de formol à 30 %). L'échantillon est ensuite placé au froid dans un réfrigérateur jusqu'à l'analyse au laboratoire, de manière à conserver la coloration des zooplanctontes pendant plus d'une semaine.

La coloration au rouge neutre disparaît rapidement (quelques jours) et d'autant plus vite que la température de conservation est élevée. C'est pourquoi les échantillons sont maintenus en permanence à 4 °C et sont analysés dès le retour au laboratoire après un délai minimum de 72 heures.

Les individus colorés sont tamisés (maille 200 µm) puis rincés à l'eau douce. Au moins 100 individus sont placés dans une cuvette de Dolffus ; la cuvette est placée sous la binoculaire, 8-10 gouttes d'acide acétique sont ajoutées (ou quelques goutte d'une solution à 1N en volumes égaux d'acide acétique et d'acétate de sodium). L'acidification est nécessaire pour maintenir la coloration rouge caractéristique des individus vivants. Cette méthode de coloration vitale est décrite en détail par Dressel *et al.* (1972). Les individus non colorés sont comptés comme morts. Le contenu de la cuvette est ensuite transvasé dans le pot de prélèvement correspondant.

Pré-traitement des échantillons : les prélèvements contiennent très souvent une grande proportion de particules non vivantes : organiques (débris de lignine), ou inorganiques (mica, sable) qui gènent le comptage du zooplancton.

La séparation entre zooplancton et tripton s'effectue par élimination des particules les plus fines (lavage) et les plus lourdes (élutriation). Avant comptage, chaque échantillon,

est lavé sur un tamis de 200 µm d'ouverture de maille. Cette manipulation a pour but d'éliminer les particules les plus fines (vase en particulier) adhérant toujours plus ou moins aux autres particules. Enfin, les plus grosses particules, qu'elles soient vivantes (macrofaune vagile : Décapodes, larves de Poissons) ou non vivantes (feuilles, algues, morceaux de bois) sont enlevées à la main.

En définitive dans cette étude, on considère la partie du plancton correspondant au mesoplancton (organismes dont la taille est supérieure à 200 µm et inférieure à 2000 µm) et au macroplancton (organismes dont la taille est comprise entre 20 et 1000 mm), les Mysidacés.

Comptage des organismes : l'échantillon éventuellement fractionné à la boite de Motoda, et coloré avec une solution diluée de rose bengale¹⁸, est ramené à un volume de 500 ml, pour pouvoir quantifier les organismes par unité de volume. Un ou plusieurs sous-échantillons d'un volume de 5 ml (ou 10 ml depuis 1992) sont prélevés avec une pipette dont l'embout fait 4 mm de diamètre. En opérant toujours de la même façon, cette méthode ne laisse qu'un faible pourcentage d'erreur (Edmonson 1971). Le sous-échantillon est ensuite placé dans une cuvette de Dolfuss pour examen à la loupe binoculaire (Grossissement 5 x 45). Pour chaque échantillon, 1 à 4 sous-échantillons sont comptés en totalité.

Le dénombrement s'arrête lorsqu'une classe de tri (*Eurytemora* : mâle, femelle, femelle ovigère, copépodites¹⁹, *Acartia*, ...) atteint un minimum de 100 individus. D'après Frontier (1972) l'erreur relative sur l'estimation du nombre total d'individus est comprise entre -26 et +31%. Le comptage des espèces du genre *Acartia* s'effectue après identification de 20 individus sous microscope. Le nombre d'individus comptés est ensuite ramené au volume total de l'échantillon.

Traitement statistiques des données: Le traitement des données repose en grande partie sur la comparaison de moyennes entre stations ou entre mois. Les tests statistiques paramétriques exigent que les données soient distribuées selon la loi normale et que les variances soient homogènes. Un test d'homogénéité de la variance (Fmax) précède donc la comparaison des moyennes de densités à l'aide du test t de Student ou du test U de Mann-Whitney si les moyennes ne sont pas normalement distribuées.

Outre les 8 dates mensuelles d'échantillonnage fixées contractuellement d'avril à novembre, certaines données acquises par le Service d'Observation de l'UMR EPOC en janvier et mars aux points E et K ont été ajoutées.

1.4.6.5. Domaine zoobenthique

Le benthos de la Gironde est abondant sur toutes les vasières intertidales, mais sa répartition est très hétérogène dans le domaine subtidal.

Les *stations subtidales*²⁰ sont situées à des profondeurs respectives de 7 à 9 m à marée basse. En chaque station, les échantillons de sédiment sont prélevés à point fixe lors de l'étale de basse mer au moyen d'une benne Smith-McIntyre (5 réplicats de 0,1 m² de

²⁰ situé sous la zone d'oscillation de la marée.

-

¹⁸ rose bengale : sel de potassium dérivé de la fluoresceine. Surcolorer dans une solution aqueuse à 1 pour 100 et régresser, d'abord par l'eau, puis par l'alcool à 70° pour obtenir un rose très léger.

¹⁹ Juvéniles de copépodes

surface par station). Le tamisage du sédiment, la fixation et la bocalisation des refus de tamis sont effectués sur le pont du bateau.

Les *stations intertidales*²¹ sont échantillonnées à pied lors de la marée basse, au niveau de mi-marée. Les prélèvements sont réalisés au moyen d'un carottier en PVC de 66 cm² de section (10 réplicats par station), enfoncé dans le sédiment jusqu'à 10-15 cm de profondeur. Tamisage et fixation des prélèvements sont réalisés de retour au laboratoire. Outre les 8 dates mensuelles d'échantillonnage fixées contractuellement d'avril à novembre, un échantillonnage supplémentaire a été pratiqué en janvier sur ces trois stations intertidales.

Le tamisage du sédiment est effectué sur maille carrée de 0,5 mm, au moyen d'un jet d'eau en pluie. Les refus de tamis sont fixés au formol neutre à 4% et colorés au Rose Bengale pendant au moins 24 heures. Après tri à la loupe binoculaire, les organismes sont identifiés, si possible jusqu'au niveau spécifique, et dénombrés par taxon ou espèce, avant d'être conservés dans de l'éthanol à 70%. Cette méthodologie d'échantillonnage et de traitement des échantillons est conforme à la norme internationale ISO 16665 (ISO, 2005).

²¹ situé dans la zone d'oscillation de la marée.

_

2. Conditions climatiques et hydrologiques

2.1. Caractères climatologiques dominants pour l'année 2009

Les informations climatologiques se rapportent à la station de Bordeaux-Mérignac qui est prise comme référence. Ce que l'on appelle « la normale » est une moyenne sur trente ans se décalant tous les dix ans. Actuellement, la normale est la période comprise entre 1971 et 2000. La **Figure 2-1** présente l'évolution des températures moyennes de l'air au cours de l'année. Les températures mensuelles moyenne de l'air depuis 1976 sont indiquées dans le **Tableau 2-1**

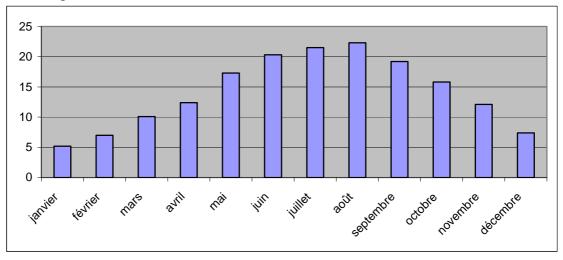


Figure 2-1 : Températures moyennes de l'air (Station de Bordeaux - Mérignac)

Janvier

T° moyenne de l'air : +5,2 °C mini : +1,6 °C maxi : +8,8 °C

La tempête du 24 est le fait marquant du mois : 160 km h à Mérignac, c'est le record absolu. Temps frais et ensoleillé en première décade, perturbé à partir du 18 avec beaucoup de pluie : 140% de la moyenne mensuelle au total. Un épisode neigeux la nuit du 05 au 06 donne 2 cm d'épaisseur. La fraîcheur du début de mois provoque un déficit de 1,2 °C sur les moyennes mensuelles. L'insolation est déficitaire.

Février

T° moyenne de l'air : +7.0 °C mini : +2.6 °C maxi : +11.5 °C

Toutes les pluies du mois sont tombées avant le 12. Elles représentent 40 % de la moyenne. Les températures sont un peu faibles, notamment en deuxième décade où il gèle fréquemment. La troisième décade est plus douce, mais des maximales supérieures à 15 °C après le 25. L'ensoleillement est excédentaire.

Mars

T° moyenne de l'air : +10,1 °C mini : +4,9 °C maxi : +15,3 °C

Temps perturbé jusqu'au 10, puis du 25 au 28. Le reste du mois est ensoleillé, très doux en deuxième décade où les 20 °C sont dépassés quatre fois. La quantité d'eau tombée est inférieure à la moitié de la moyenne trentenaire. La température moyenne est supérieure 0.5 °C à la normale. L'insolation est généreuse.

Avril

T° moyenne de l'air : +12,4 °C mini : +7,4 °C maxi : +17,4 °C

Mois doux et pluvieux. Les pluies tombées représentent 145 % de la moyenne, dont 40 % pour les seuls 27 et 28. La température moyenne est supérieure de 0,8 °C à la normale. Les maximales ont dépassé 20 °C 6 fois. Le 25, la maximale a perdu 14 °C par rapport à la veille. L'ensoleillement est 10 % sous la moyenne.

Mai

T° moyenne de l'air : +17,3 °C mini : +12,3 °C maxi : +22,2 °C

Beau temps chaud. Léger déficit pluviométrique, les pluies sont tombées essentiellement lors des épisodes orageux du 11 au 14. De fortes chutes de grêle le 11. Les températures sont souvent estivales, près de 2°C au-dessus de la moyenne. L'ensoleillement est généreux, surtout en dernière décade.

Juin

T° moyenne de l'air : +20,3 °C mini : +14,1 °C Maxi : +23,8°C

Si les pluies sont excédentaires à Bordeaux, ce n'est pas le cas partout en Gironde, au gré des orages. Si les températures sont assez proches des moyennes, elles ont assez fortement varié tout au long du mois : maximales autour des 20°C jusqu'au 08 et du 13 au 16, supérieures à 25°C ensuite. Les minimales sont plutôt élevées, mais inférieures à 10°C les 04, 08 et 18. Soleil quand même assez généreux, vent de nord-ouest dominant.

Juillet

T° moyenne de l'air : +21,5 °C mini : +15,9 °C maxi : +27,1 °C

Mois chaud et sec. Les précipitations sont déficitaires de 15%. Les températures sont légèrement excédentaires, le 21 est la journée la plus chaude avec 35,5°C. Au plus chaud de la journée du 17 la température plafonne à 20,1°C. L'ensoleillement a été généreux.

Août

T° moyenne de l'air : +22.3 °C mini : +16.2 °C maxi : +28.5 °C

Mois chaud et ensoleillé, mais plus sec que juillet. Les pluies représentent 40 % de la moyenne mensuelle. Les températures excèdent la moyenne de 1.4°C. Les maximales descendent rarement au-dessous de 25°C. Elles atteignent 30°C 8fois et 35°C 3fois. L'ensoleillement est généreux.

Septembre

T° moyenne de l'air : +19,2 °C mini : +13,2 °C maxi : +25,1 °C

Mois ensoleillé avec une troisième décade la plus ensoleillé depuis 63 ans après 2002. Les pluies représentent 53% de la moyenne. La température est de 1.1°C au-dessus de la moyenne, les maximales 1.4°C au-dessus. Elles ont dépassé 25°C 16 jours.

Octobre

T° moyenne de l'air : +15.8 °C mini : +10.9 °C maxi : +20.8 ° C

Encore un mois très doux et peu arrosé! Les pluies représentent 36% de la moyenne. La température moyenne est supérieure de 1,7°C à la moyenne du mois. Les maximales ont dépassé 20 °C 18 fois, contre 12 fois en moyenne. Les 29 °C sont atteints le 6, ce qui arrive une année sur 4. L'ensoleillement est excédentaire.

Novembre

T° moyenne de l'air : +12,1 °C mini : +9,0 °C maxi : +15,2 °C

Le défilé quasi continu des perturbations amène pluie, douceur et grisaille. Avec des minimales élevées et 12,1 degrés de température moyenne, novembre 2009 est au 4ème rang des mois de novembre les plus doux depuis 1946. Pour la quantité de pluie, il se place au 6ème rang avec 203,8 mm, soit presque 2 fois la moyenne. Le soleil s'est fait discret.

Décembre

T° moyenne de l'air : +7,4 °C mini : +4,1 °C maxi : +10,7 °C

De la pluie en première semaine et la deuxième quinzaine, de la froidure et quelques flocons au milieu, décembre 2009 est assez caractéristique de l'hiver océanique. Les pluies du mois représentent 86% de la normale. Les températures sont également proches de la moyenne. Les gelées, pendant la période froide du 13 au 19, atteignent –6,4 °C le 17 et –5,3 °C le 19. Le 16, pas de dégel, et retour de la douceur en fin de mois avec 18,9 °C le 29. Le soleil est bien présent pendant le froid.

Tableau 2-1 : températures moyennes mensuelles de l'air ($^{\circ}$) à la station de Bordeaux - Mérignac.

ANNEE	Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	MOY.
1946-1975	5,6	6,5	9,0	11,6	14,7	17,6	19,7	19,6	17,6	13,5	8,9	6,1	12,5
1976	5,5	8,0	8,7	11,2	15,1	21,5	21,5	20,9	16,6	13,5	8,1	6,0	13,1
1977	5,9	9,7	10,9	10,8	13,5	16,6	18,9	18,4	17,2	14,9	8,7	7,6	12,8
1978	5,7	8,2	9,4	9,8	14,1	16,9	18,8	19,3	17,8	13,7	8,4	8,4	12,5
1979	5,0	7,2	9,0	10,3	13,8	17,7	20,4	18,7	17,8	15,0	8,3	7,9	12,6
1980	5,1	9,1	8,2	10,8	13,7	16,2	17,8	20,5	18,0	13,1	8,0	5,3	12,2
1981	6,6	5,1	12,0	12,2	14,3	18,0	19,3	21,3	18,6	14,3	9,3	7,8	13,2
1982	12,4	8,0	8,7	11,9	15,2	19,2	21,7	19,0	19,1	13,4	10,6	7,3	13,9
1983	7,0	5,3	9,4	11,3	13,6	19,2	23,6	20,8	18,6	14,1	11,3	6,7	13,4
1984	7,1	5,6	7,4	13,0	12,1	18,0	20,8	20,0	16,2	13,7	11,2	6,5	12,6
1985	0,7	8,3	7,4	12,3	13,8	17,7	21,2	18,6	19,6	14,8	6,2	6,1	12,2
1986	6,9	3,4	8,6	8,1	15,5	18,3	20,7	19,3	17,9	15,4	9,2	7,4	12,6
1987	0,7	6,6	8,6	13,7	13,9	17,2	20,5	20,9	20,7	14,8	9,1	7,9	12,9
1988	9,5	7,8	8,7	13,2	16,0	18,4	19,6	20,5	18,1	15,4	9,1	6,9	13,6
1989	5,3	7,9	11,7	10,5	18,8	19,7	22,6	21,5	18,4	15,6	11,1	10,1	14,4
1990	7,3	12,3	11,0	11,4	18,3	18,5	22,0	23,0	19,3	15,7	10,2	4,7	14,5
1991	6,3	5,8	11,8	11,1	14,8	17,2	21,3	23,3	20,7	12,8	9,3	5,6	13,3
1992	3,5	6,9	9,9	11,7	17,8	17,7	21,4	21,8	17,3	12,1	12,6	7,8	13,4
1993	8,1	6,5	10,0	12,0	16,1	19,5	19,6	21,1	16,7	12,9	7,8	9,4	13,3
1994	7,8	8,6	12,1	11,1	16,2	19,2	22,8	22,7	17,1	15,2	12,5	9,2	14,5
1995	7,2	9,9	9,5	12,5	16,3	19,0	23,3	22,7	16,5	17,8	10,1	8,2	14,4
1996	9,7	6,1	9,7	12,8	15,4	20,6	21,2	20,0	16,6	14,3	9,7	7,0	13,6
1997	6,0	10,4	12,2	13,6	15,3	18,5	20,9	23,8	20,0	16,0	11,4	8,3	14,7
1998	8,4	8,7	11,5	11,6	17,4	19,0	20,3	22,4	18,9	14,1	8,1	6,9	13,9
1999	7,9	7,1	11,0	12,9	18,3	18,8	22,3	21,9	20,1	15,1	8,1	8,0	14,3
2000	5,6	9,5	10,0	12,6	17,6	20,0	20,2	22,4	19,5	14,6	10,5	10.2	14,8
2001	8,4	7,9	12,4	11,4	16,7	19,6	20,8	22,6	16,7	17,6	7,9	4,4	13,9
2002	8,4	9,7	11,6	12,8	15,3	19,7	20,0	19,9	18,1	15,6	11,6	10,2	14,4
2003	5,4	6,1	12,7	14,4	16,3	23,1	22,2	25,8	19,3	13,3	11,4	8,1	14,8
2004	7,6	7,4	8,8	11,8	16,0	20,9	20,7	21,6	19,3	16,2	8,8	6,3	13,8
2005	6,9	4,8	9,8	13,1	17,1	22,0	22,3	21,2	18,6	17,1	8,6	4,2	13,8
2006	5,7	5,3	10,8	12,7	16,7	21,4	25,2	19,8	21,1	17,9	12,4	5,6	14,6
2007	8,3	10,2	10,0	16,0	16,6	19,4	19,7	20,2	17,3	14,1	8,0	6,3	13,8
2008	8,3	10,4	9,8	12,2	17,1	19,0	20,6	20,5	16,9	13,7	9,5	5,8	13,7
2009	5,2	7,0	10,1	12,4	17,3	20,3	21,5	22,3	19,2	15,8	12,1	7,4	14,2
							Valeur	estimée				•	

2.2. Débits fluviaux

Les caractéristiques des débits fluviaux pour l'année sont données pour l'estuaire de la Gironde (débits cumulés de la Garonne et de la Dordogne) de Janvier à Décembre.

Les débits moyens (établis par périodes de 10 jours) évoluent entre : $217~\text{m}^3.\text{s}^{-1}$ du 21 au 31/07/2009 et $2334~\text{m}^3.\text{s}^{-1}$ du 21 au 31/01/2009.

Le débit instantané maxima est de 6068 m³.s⁻¹ relevé le 26/01/2009. Le débit instantané minima est de 181 m³.s⁻¹ relevé le 30/07/2009.

La moyenne annuelle pour l'année 2009 est de 782 m³.s⁻¹, <u>soit un déficit de 79 m</u>³.s⁻¹ par rapport à la moyenne annuelle pour la période 1982/2008 qui s'établit à 841 m³.s⁻¹.Il s'agit cependant d'une année "sèche", par suite des débits très déficitaires pendant la période estivale.

Par rapport à la moyenne 1982/2008, les débits 2009 sont nettement déficitaires en début d'année ; excédentaires du début de la 3^{éme} décade de janvier à la fin de la 2^{éme} décade de février (Première crue de l'année avec un pic maximum de l'année de 6068 m³.s⁻¹ le 26/01) ; déficitaires à nouveau du début de la 3^{éme} décade de février jusqu'à presque la fin de la 2^{éme} décade de mai, à nouveau excédentaires jusqu'à fin mai (2^{ème} crue en avril-mai, avec un pic de 3831 m³.s⁻¹, le 30/04) et à nouveau déficitaires depuis début juin jusqu'à la fin de l'année malgré deux mini-crue dans la 2^{ème} décade de novembre et 1^{ème} décade de décembre avec des pics de 975 et 1261 m³.s⁻¹ (**Figures 2.2 et 2.3**).

L'année 2009 semblable à 2008, est considérée comme une année sèche, car à partir du mois de juillet jusqu'à fin décembre les précipitations sont déficitaires. Il faut noter les crues de fin janvier et d'avril-mai, qui ne suffisent pas à provoquer l'éjection totale du bouchon vaseux.

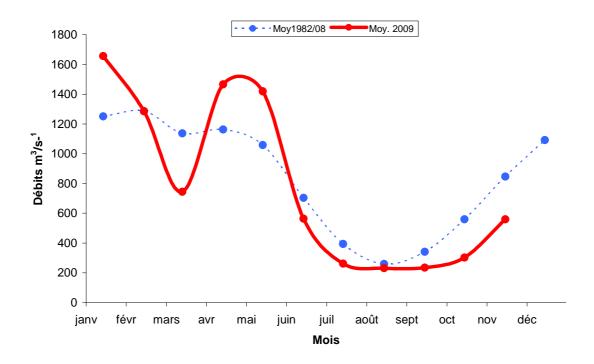


Figure 2-2 : Débits mensuels moyens de la Gironde en 2009

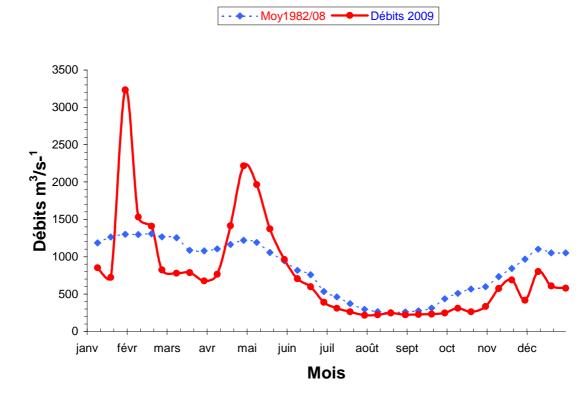


Figure 2-3: Débits moyens de la Gironde par périodes de 10 jours en 2009

3. Résultats des mesures in situ

Le contexte spatio-temporel de l'étude de surveillance écologique, et les méthodologies utilisées pour chaque thématique et paramètre, sont regroupés dans le chapitre 1 « Présentation du site et stratégie d'étude ».

3.1. Température de l'eau

3.1.1.1. Variations au cours de la marée

Point F-PK 67 (Tableau 3-1, Figure 3-1, Figure 3-2)

Le point F est situé à proximité du chenal de navigation. Les mesures de température relevées aux heures de basse mer, mi-marée et de pleine mer, font apparaître des écarts de température compris entre (écarts entre mini et maxi absolus)

0,29 °C et 1,40 °C en surface 0,40 °C et 1,36 °C au fond.

<u>L'écart maxima</u>: 1,40 °C en surface le 24 septembre, la température moyenne étant de 20,15 °C. et le débit de 241 m³.s⁻¹.

1,36 °C au fond le 24 septembre, la température moyenne étant de 19,77 °C et le débit de 241 m 3 .s $^{-1}$.

<u>L'écart minima</u>: 0,29 °C en surface le 11 novembre, la température moyenne étant de 12,89 °C et le débit de 574 m³.s⁻¹.

0,40 °C au fond le 14 octobre, la température moyenne étant de 18,55 °C et le débit de 325 m 3 .s $^{-1}$.

En été, au moment de l'intrusion saline maximale (PM), le gradient de température est très marqué de la surface au fond; et ceci, car les eaux marines sont beaucoup plus fraîches que les eaux continentales. (**Figures 3-1 et 3-2**).

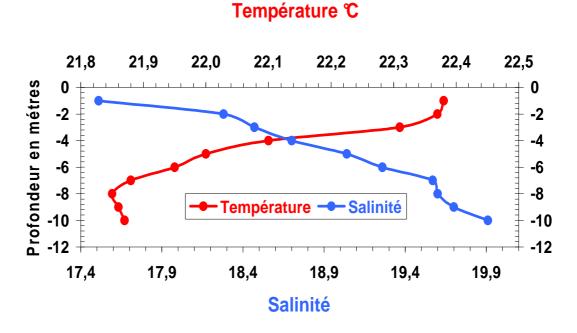


Figure 3-2: Evolution des gradients de température et de salinité au point F (PK 67) F PK 67 le 16 juillet 2009 à 13h10 au PM

Tableau 3-2 : Température de l'eau au point F (PK 67)

TEMPERATURES DE L'EAU EN SURFACE (S) ET AU FOND (F) POINT F PK 67

ANNEE F2009

		Minimum	Maximum		Moyenne	Ecart maxi		Qfl m3/s-1
DATES				Ecart	de	sur tranche	Coefficient	(moyenne des
		absolu	absolu		la marée	d'eau		10j.précèdents)
	S	13,96	14,88	0,92	14,47			
23-avr						0,12	77	1278
	F	14,01	14,80	0,79	14,41			
	S	16,62	16,98	0,36	16,83			
16-mai						0,56	42-40	1518
	F	16,06	17,05	0,99	16,51			
	S	20,55	21,32	0,77	20,93			
16-juin						0,93	47-46	678
	F	19,89	20,96	1,07	20,39			
	S	22,38	23,38	1,00	22,88			
16-juil						0,65	50-48	258
,	F	21,86	23,02	1,16	22,48			
	S	23,52	24,52	1,00	24,01			
17-août						0,28	51-58	249
	F	23.51	24,40	0,89	23,87			
	S	19,49	20,89	1,40	20,15			
24-sept						0.96	72-64	241
•	F	19,17	20,53	1,36	19,77	,		
	S	18,32	18,77	0,45	18,52			
14-oct		,		•	ĺ	0,20	56-63	325
	F	18,33	18,73	0,40	18,55	,		
	S	12,74	13,03	0,29	12,89			
11-nov		,	,		,	0,25	52-54	574
	F	12,70	13,28	0.58	12,96	, -		

 Mini S
 S
 12,74
 13,03
 0,29
 12,89
 0,12

 Mini F
 F
 12,70
 13,28
 0,40
 12,96

Maxi S

S

23,52

24,52

1,40

24,01

0,96

Maxi F

F

23,51

24,40

1,36

23,87

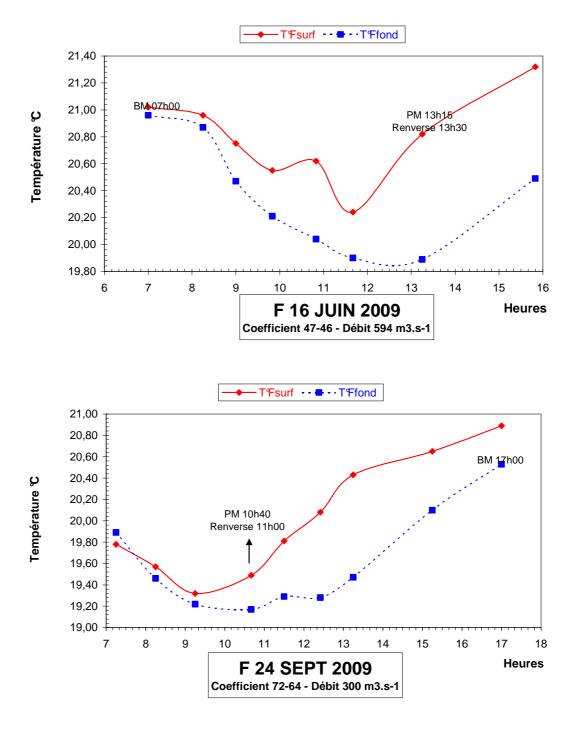


Figure 3-3 : Evolution des températures de l'eau au cours d'une marée au point F (PK 67) en 2009

Point E-PK 52 (Tableau 3-2, Figure 3-3)

Le point E est situé dans le chenal médian. Les mesures de température relevées aux heures de basse mer, mi-marée et de pleine mer, font apparaître des écarts de température compris entre (écarts entre mini et maxi absolus) :

0,33° C et 1.93 °C en surface 0,20° C et 0.94 °C au fond.

<u>L'écart maxima</u>: 1,93 °C en surface le 12 octobre la température moyenne étant de 20,81 °C. Débit de 324 m³.s⁻¹.

 $0,94~^{\circ}\text{C}$ au fond le 25 avril, la température moyenne étant 15,3 $^{\circ}\text{C}$ et le débit de 1563 m 3 .s $^{-1}$.

<u>L'écart minima</u>: 0,33 °C en surface le 19 août, la température moyenne étant de 25,01 °C. Débit de 253 m³.s⁻¹.

 $0,20~^{\circ}$ C au fond le 18 juin la température moyenne étant de 22,04 °C, et le débit de 645 m³.s⁻¹.

La figure établie avec les mesures principales et les mesures intermédiaires effectuées d'heure en heure pendant toute la marée (**Figure 3-3**) montre que les températures les plus élevées sont observées en surface aux étales de pleine mer et de basse mer.

Tableau 3-3 : Température de l'eau au point E (PK 52)

			1	POINT	E PK 52			
ANNEE E2009								
LLUUU		Minimum	Maximum		Moyenne	Ecart maxi		QfI m3/s-1
DATES				Ecart	de	sur tranche	Coefficient	(moyenne des
	S	absolu 14,67	absolu 15,55	0.00	la marée 15,21	d'eau		10j.précèdents
25-avr	3	14,07	15,55	0,88	13,21	0,22	92-95	1563
25-avi	F	14,70	15,64	0,94	15,30	0,22	32-33	1303
	S	16,27	17,24	0,97	16,81			
18-mai		,	,	,,,,	,	0,12	37-38	1481
	F	16,31	17,24	0,93	16,77	-,		
	S	21,92	22,27	0,35	22,09			
18-juin						0,15	47-50	645
	F	21,92	22,12	0,20	22,04			
	S	22,88	23,21	0,33	23,05			
18-juil						0,05	48-51	255
	F	22,84	23,26	0,42	23,05			
	S	24,85	25,18	0,33	25,01			
19-août	_				21.22	0,51	75-83	253
	F S	24,63	25,00	0,37	24,86			
22 cont	5	20,21	21,16	0,95	20,53	1,22	87-80	220
23-sept	F	19,94	20,44	0,50	20.17	1,22	07-00	239
	S	19,80	21,73	1,93	20,17 20,81			
12-oct	3	13,00	21,73	1,55	20,01	1,09	44-43	324
001	F	20,00	20,64	0,64	20,41	1,00	77 70	V <u>-</u> -
	S	13,43	14,05	0,62	13,77			
09-nov	-	,	,,,,	-,-	-,	0,28	56-53	470
	F	13,44	13,97	0,53	13,79			
				•				
lini C		40.40	44.05	0.00	42 77	0.05		
1ini S 1ini F	S F	13,43 13,44	14,05 13,97	0,33 0,20	13,77 13,79	0,05		

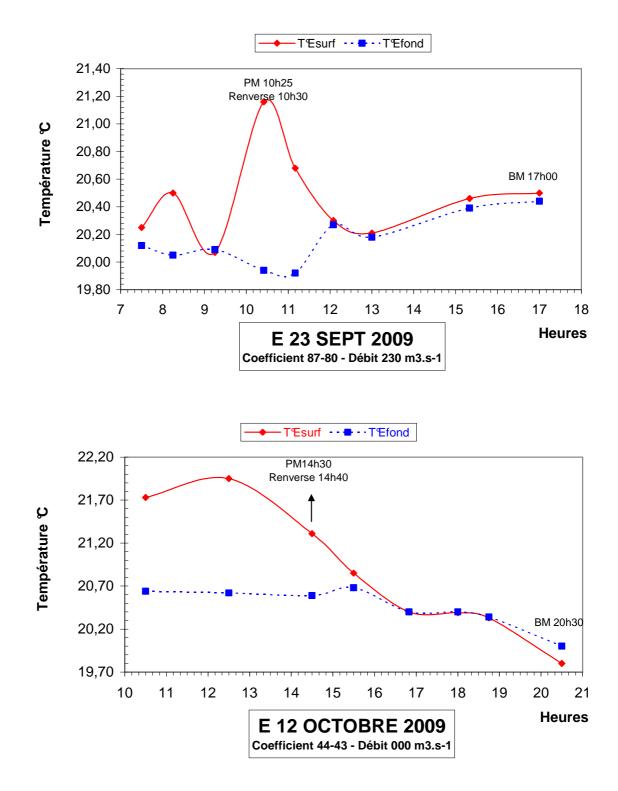


Figure 3-4 : Evolution des températures de l'eau au cours d'une marée au point E (PK 52) en 2009

Point K-PK 30 (Tableau 3-3; Figure 3-4)

Le point K est situé dans le chenal d'accès au Port de Blaye. Les mesures de température relevées aux heures de basse mer, mi-marée et de pleine mer, font apparaître des écarts de température compris entre (écarts entre mini et maxi absolus) :

0,24 °C et 1,44 °C en surface 0,13 °C et 1,72 °C au fond.

<u>L'écart maxima</u>: 1,44 °C en surface le 24 avril, la température moyenne étant de 15,13 °C. Débit de 1616 m³.s⁻¹;

1,72 °C au fond le 24 avril, la température moyenne étant de 15,02 °C. Débit de $1616~{\rm m}^3.{\rm s}^{-1}$.

<u>L'écart minima</u>: 0,24 °C en surface le 17 juin, la température moyenne étant de 16,66 °C, et les débits de 667 m³.s⁻¹.

0,13 °C au fond le 17 juin, la température moyenne étant de 16.64 °C et les débits de $667~{\rm m}^3.{\rm s}^{-1}$.

Les températures de l'eau, en surface et au fond, évoluent de façon presque similaire et les plus élevées sont relevées à BM en été et à PM en hiver. On observe toujours, suivant les moments, une inversion des températures, celles du fond devenant légèrement plus élevées que celles de la surface (quelques dixièmes de degré seulement).

Tableau 3-4 : Température de l'eau au point K (PK 30)

TEMPERATURES DE L'EAU EN SURFACE (S) ET AU FOND (F) POINT K PK 30

ANNEE K2009

		Minimum	Maximum		Moyenne	Ecart maxi		Qfl m3/s-1
DATES				Ecart	de	sur tranche	Coefficient	(moyenne des
		absolu	absolu		la marée	d'eau		10j.précèdents
	S	14,55	15,99	1,44	15,13			
24-avr						0,31	87	1616
	F	14,24	15,96	1,72	15,02			
	S	15,77	16,19	0,42	16,06			
17-mai						0,90	40-38	1499
	F	15,26	16,16	0,90	15,80			
	S	21,58	21,82	0,24	16,66			
17-juin						0,09	45-46	667
	F	21,64	21,77	0,13	16,64			
	S	23,88	24,26	0,38	24,10			
17-juil						0,02	47-46	257
	F	23,90	24,28	0,38	24,12			
	S	24,60	25,20	0,60	24,89			
18-août						0,21	66	250
	F	24,71	25,05	0,34	24,83			
	S	19,64	20,26	0,62	19,86			
22-sept						0,11	99-93	234
•	F	19,64	20,15	0,51	19,83			
	S	18,94	19,40	0,46	19,23			
13-oct					ĺ	0,25	45-49	330
	F	19,19	19,51	0,32	19,34			
	S	12,18	12,69	0,51	12,54			
10-nov		,	, i	,	,	0,31	52-52	516
	F	12,26	12,98	0,72	12,68	, -		

Mini S S 12,18 12,69 0,24 12,54 0,02
Mini F F 12,26 12,98 0,13 12,68

Maxi S S 24,60 25,20 1,44 24,89 0,90
Maxi F F 24,71 25,05 1,72 24,83

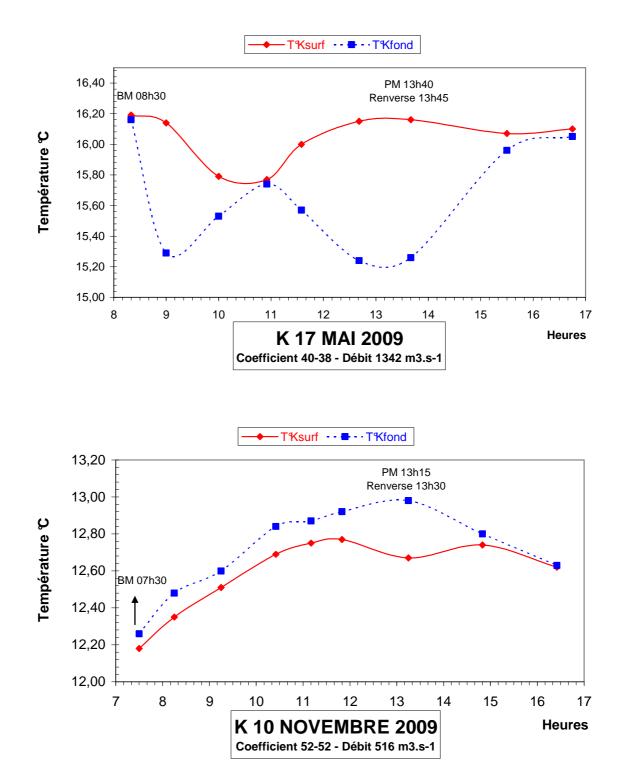


Figure 3-5 : Evolution des températures de l'eau au cours d'une marée au Point K (PK 30) en 2009

3.1.2. Variations annuelles

Point F - PK 67 (Figure 3-5)

Les températures moyennes, entre avril et novembre 2009 ont évolué :

de 12,89 °C le 11 novembre. à 24,01 °C le 17 août en surface. et de 12,96 °C le 11 novembre. à 23,87 °C le 17 août au fond.

Les températures maximales relevées sont :

24,52 °C le 17 août en surface 24,40 °C le 17 août au fond.

Les températures minimales relevées sont :

12,74°C le 11 novembre en surface 12,70°C le 11 novembre au fond.

Point E-PK 52 (Figure 3-5)

Les températures moyennes, entre avril et novembre 2009 ont évolué :

de 13,77°C le 09 novembre. à 25,01°C le 19 août en surface. et de 13,79°C le 09 novembre. à 24,86°C le 19 août au fond.

Les températures maximales relevées sont :

25,.18°C le 19 août en surface 25,00°C le 19 août au fond.

Les températures minimales relevées sont :

13,43 °C le 09 novembre en surface 13,44 °C le 09 novembre au fond.

Point K-PK 30 (Figure 3-5)

Les températures moyennes, entre avril et novembre 2009 ont évolué :

de 12,54 °C le 10 novembre. à 24,89 °C le 18 août en surface et de 12,68 °C le 10 novembre. à 24,83 °C le 18 août au fond.

Les températures maximales relevées sont :

25,20 °C le 18 août en surface 25,05 °C le 18 août au fond.

Les températures minimales relevées sont :

12,18 °C le 10 novembre en surface 12,26 °C le 10 novembre au fond.

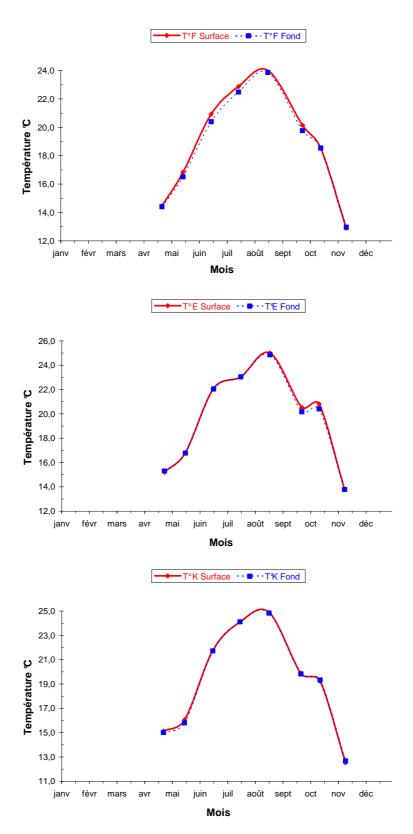


Figure 3-6 : Variations annuelles des températures moyennes de l'eau aux Points F,E,K en 2009

Par rapport à la moyenne 1976/2008 (**Figure 3-6**) la température moyenne en 2009 est inférieure au mois de mai à cause de la crue, et supérieure en juin. La comparaison des cinq dernières années (**Figure3-7**), montre que 2009 est une année où les températures mensuelles moyennes des eaux sont un peu en dessous de la moyenne pendant la période sensible, caractérisée par des températures des eaux élevées et des débits fluviaux d'étiage très faibles. L'insolation des mois de Juin, Juillet et Août est considérée comme généreuse par rapport à la normale. (Les caractères dominants sont tirés du tableau climatologique mensuel de la station Météo France à Mérignac).

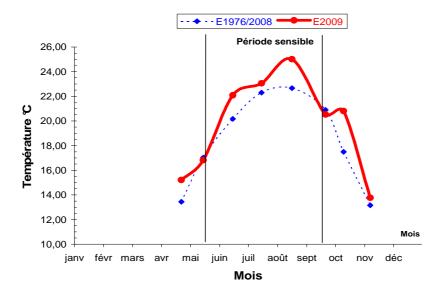


Figure 3-6 : Variations annuelles des températures mensuelles moyennes de l'eau au Point E (PK52) de 1976 à 2008 et en 2009

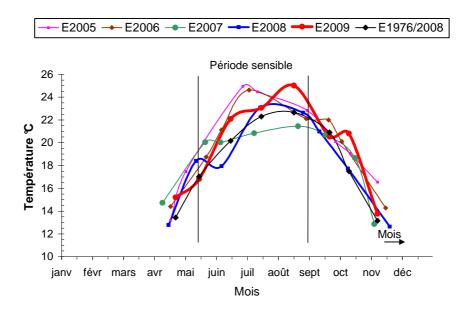


Figure 3-7: Variations pluriannuelles des températures mensuelles moyennes de l'eau au point E (PK 52) en 2005, 2006, 2007, 2008 et 2009

3.1.3. Synthèse des variations pluriannuelles des températures

Il est intéressant de suivre l'évolution à long terme de la température des eaux de l'estuaire. Ceci est possible, car nous disposons d'un suivi régulier aux points E et K depuis 1978. Ce suivi permet de déceler un éventuel réchauffement des eaux à long terme par les rejets de la centrale ou toute autre cause d'origine naturelle ou anthropique.

Mode opératoire.

Une moyenne annuelle des températures des eaux de l'estuaire est comparée à une moyenne annuelle de la température de l'air mesurée à Bordeaux Mérignac par la météorologie nationale. Il ne s'agit pas d'une moyenne sur toute l'année, mais seulement pour les mois où des mesures sont effectuées dans l'estuaire : mai, juin, juillet, août, septembre, octobre, novembre. Il s'agit des mois les plus chauds et les données extraites de ces calculs ne sont donc pas représentatives des conditions de l'année entière. Cependant, par comparaison, elles ont une valeur relative quant aux fluctuations des températures moyennes pendant les mois les plus chauds depuis 1978.

Pour les températures de l'air on utilise la moyenne annuelle des (Tn + Tx)/2 pour la période mai-novembre.

Tn correspond à la moyenne des minima journaliers pendant un mois ; Tx à la moyenne des maxima journaliers pendant le même mois.

Pour les températures de l'eau, on essaie dans la mesure du possible de s'affranchir des effets du réchauffement diurne. Pour ce faire, on utilise uniquement les mesures de température effectuées à 1 m du fond. Chaque mois de la période considérée (mainovembre), on relève la température minimale de l'eau près du fond le jour des mesures en M.E.. La valeur annuelle retenue est calculée en effectuant la moyenne de tous les minima mensuels.

Résultats.

On présente ci-après les résultats obtenus au point E au droit de la centrale du Blayais (**Figure 3-8**).

On note une tendance au réchauffement des eaux de l'estuaire près du fond depuis 1978, début des observations. Le réchauffement de l'eau est parallèle à l'élévation moyenne de la température de l'air à Mérignac. Jusqu'en 1990, réchauffements et refroidissements annuels sont bien corrélés entre l'air et l'eau. A partir de 1991, il semble y avoir une désynchronisation avec un retard au refroidissement de l'eau en 1991 que l'on n'observe qu'en 1992-1993. A partir de 1993 et jusqu'en 1997, on note une élévation continue de la température moyenne de l'eau alors que celle de l'air présente une diminution en 1996. En 1998 les températures de l'air et de l'eau diminuent. En 1999 la moyenne des températures de l'air ré augmente alors que celle de l'eau diminue encore (-0,2 °C) malgré un minimum absolu record de 24° C près du fond au 1^{er} Septembre. En 2000, la température de l'air reste stable et la température de l'eau continue à diminuer.

En 2001 il y a divergence. La température moyenne de l'air a baissé de 0,4 °C, alors que la moyenne de l'eau près du fond a augmenté de 1 °C (**Figure 3-8**). Rappelons qu'en 2001 la température de l'eau, et surtout en été, a été élevée.

En 2002, du fait que dans la période sensible l'insolation ait été déficitaire la température moyenne de l'air a baissé et, comme la température moyenne de l'eau dépend des conditions climatiques, elle a baissé aussi, du même ordre soit 0,3°C.

Si on examine la courbe de température au point K (à 25 Km en amont), on décèle les mêmes tendances, ce qui prouve que l'influence de la centrale ne peut-être invoquée pour expliquer ce phénomène.

2003 est une année caniculaire. Les températures de l'eau, depuis le début de l'année jusqu'en septembre, sont élevées (**Figure 3-7**)

En 2004 les températures moyennes sont excédentaires hors période sensible, alors que le mois de juillet est légèrement déficitaire par rapport à la moyenne 1976/2003 et que le mois d'août est égal à cette moyenne (**Figures 3-6** et **3-7**). C'est une année normale.

En 2005 et 2006 les températures moyennes sont excédentaires tout au long de l'année par rapport aux moyennes 1976/2004 et 1976/2005. Dans la période sensible les températures sont moins élevées qu'en 2003, sauf au mois de juin, mais 2005 et 2006 sont des années sèches.

En 2007 et 2008, on note une chute spectaculaire des températures moyennes de l'air, et à un moindre degré de l'eau, puis une stabilisation en 2009. La particularité des années 2007 et 2008 est à mettre en relation avec les variations de température des eaux océaniques globales en liaison avec les changements climatiques actuels.

La comparaison des températures eau-air (**Figure 3-8**) révèle qu' il y a élévation de la température de l'eau près du fond (de 0,54°C) et de celle de l'air (de 0,49°C) par rapport à 2004. Notons 3 périodes chaudes (1981, 1982, 1983), (1989, 1990, 1991), 1997 et que (2003, 2004, 2005, 2006) est la 4ème période en cours.

2005 est le record avec 20,36°C.

Notons aussi qu'il y a une pseudo-périodicité dans les variations des températures moyennes de l'eau, de l'ordre de 7 à 8 ans.

Sur la **Figure 3-9**, on a pour le point E, établi des corrélations entre les températures moyennes de l'air et de l'eau de l'estuaire. Lorsqu'on examine la période 1978-2009, on note une assez bonne corrélation.(**A**). Cette corrélation est évidemment améliorée et devient meilleure si on fait abstraction des 8 années qui s'écartent le plus de la droite de corrélation linéaire (**B**). Pour 1978 et 1979, l'explication réside vraisemblablement dans d'absence de mesures de températures de l'eau au mois de septembre, ce qui abaisse la moyenne des températures. Pour les autres années, 1991, 1996, 2004 et 2005 l'explication doit être recherchée dans une cause naturelle, non encore mise en évidence, car l'échantillonnage est complet. Cette cause pourrait avoir une origine extra régionale. (Le réchauffement climatique ?)

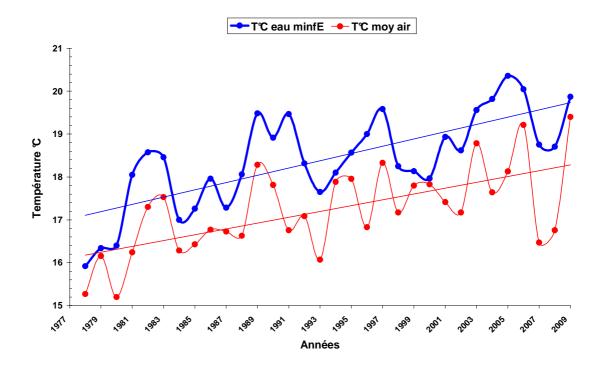
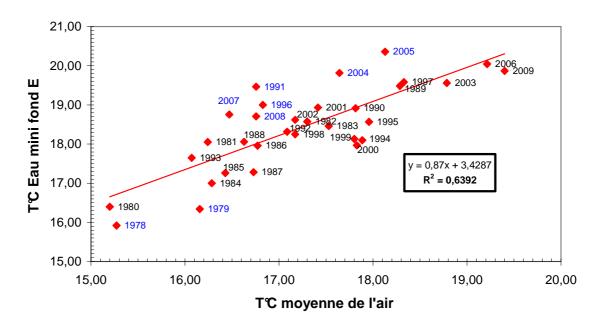



Figure 3-8 : Evolution relative des températures moyennes de l'air et de l'eau près du fond au point E (PK 52) au cours de la période 1978-2009 (de mai à novembre)

A - De 1978 à 2009 (31 ans)

B - De 1978 à 2009 sans 1978, 1979,1991, 1996, 2004,2005, 2007 et 2008

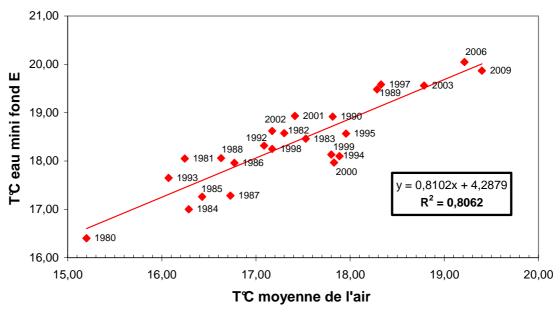


Figure 3- 9 : Corrélations entre les températures moyennes annuelles de l'air et les températures minimales moyennes annuelles de l'eau au point E (PK 52) (mai à novembre) –

A (de 1978 à 2009)

B (de 1980 à 2009 sans 1991, 1996, 2004, 2005, 2007 et 2008)

3.2. Salinité

3.2.1. Variation dans le temps

3.2.1.1. Au cours de la marée.

Les salinités relevées au cours d'une marée présentent des écarts minima et maxima qui sont compris :

Au Point F (Tableau 3-4, Figure 3-10)

```
en surface entre : 4,62 (16 mai)

et : 9,62 (14 octobre)

au fond entre : 8,47 (17 août)

et : 11,13 (23 avril)

(Coef 42-40) (Débit 1518 m³.s⁻¹)

(Coef 56-63) (Débit 249 m³.s⁻¹)

(Coef 51-58) (Débit 1278 m³.s⁻¹)
```

Au Point E (Tableau 3-5, Figure 3-12)

```
en surface entre : 1,22 (18 mai) (Coef 37-38) (Débit 1481 m<sup>3</sup>.s<sup>-1</sup>)

et : 6,61 (23 sept) (Coef 87-80) (Débit 239 m<sup>3</sup>.s<sup>-1</sup>)

au fond entre : 1,34 (18 mai) (Coef 37-38) (Débit 1481 m<sup>3</sup>.s<sup>-1</sup>)

et : 7,51 (23 sept) (Coef 87-80) (Débit 239 m<sup>3</sup>.s<sup>-1</sup>)
```

Au Point K (Tableau 3-6, Figure 3-14)

```
en surface entre : 0,00 (17 mai) (Coef 40-38) (Débit 1499 m³.s⁻¹) 
et : 4,65 (22 septembre) (Coef 99-93) (Débit 234 m³.s⁻¹) 
au fond entre : 0,00 (17 mai) (Coef 40-38) (Débit 1499 m³.s⁻¹) 
et : 5,19 (13 oct) (Coef 45-49) (Débit 330 m³.s⁻¹)
```

Comme toujours, les salinités les plus fortes ont été relevées au voisinage de la pleine mer près du fond et les salinités les plus faibles à l'étale de basse mer en surface.

Comme 2008, du fait des conditions climatiques, 2009 est une année sèche, les salinités sont donc fortes et nettement supérieures pendant l'été.

Tableau 3-5 : Salinités de l'eau au point F (PK 67)

					(1 T 4				
				V	′I-T4				
				POIN	T F PK 67	7			
				SAL	INITES				
ANNEE									
F2009									
DATES		Minimum	Maximum	Ecart	Moyenne de	Ecart maxi sur tranche	Coefficient	Qfl m3/s-1 (moyenne des	
		absolu	absolu	LCart	la marée	d'eau	Coemcient	10j.précèdents)	
23-avr	S	2,95	9,26	6,31	6,07	4,81	77	1278	
25-441	F	2,94	14,07	11,13	8,05	7,01	''	1270	
	S	1,11	5,73	4,62	3,48				
16-mai						6,45	42-40	1518	
	F	1,32	12,18	10,86	7,59				
	S	5,88	11,81	5,93	8,86				
16-juin	_					3,72	47-46	678	
	F	6,53	15,53	9,00	11,48				
40 ::	S	10,00	17,51	7,51	13,38	2.24	50-48	258	
16-juil	F	11,20	19,91	8,71	15,78	3,34	3,34	30-46	256
	S	13,77	22,05	8,28	17,71				
17-août	J	10,77	22,00	0,20	•••	1,97 51-58	51-58	249	
'' "	F	14,51	22,98	8,47	18,99	.,0.	0.00		
	S	13,29	21,28	7,99	17,08				
24-sept			· .		•	3,23	72-64	241	
	F	14,06	23,88	9,82	18,61				
	S	12,74	22,36	9,62	17,11				
14-oct						1,40	56-63	325	
	F	13,10	22,41	9,31	17,58				
44	S	7,83	16,83	9,00	12,09	0.00	50.54		
11-nov	F	0.50	10.40	0.07	12 57	2,60	52-54	574	
	Г	9,56	19,43	9,87	13,57	<u> </u>	<u> </u>		
Mini S	s	1 11	5,73	4,62	3,48	1,40			
Mini F	F	1,11 1,32	12,18	8,47	3,46 7,59	1,40			
Maxi S	s	13,77	22,36	9,62	17,71	6,45	ı		
Maxi F	F	14,51	23,88	11,13	18,99	U,**U			

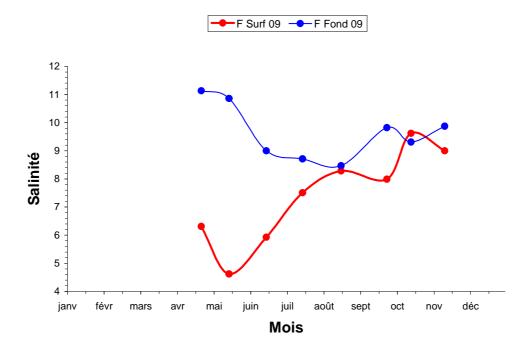


Figure 3-10 : Variations des écarts de salinité au cours de la marée au point F (PK 67) en 2009

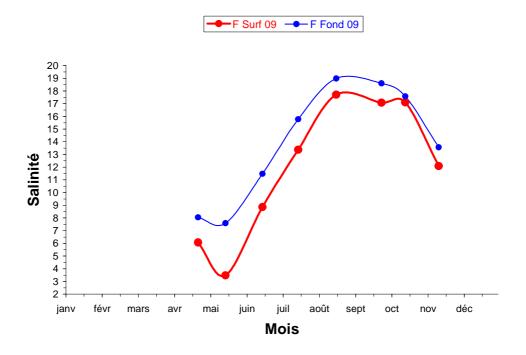


Figure 3-11 : Variations annuelles des salinités moyennes au point F (PK 67) en 2009

Tableau 3-6 : Salinités de l'eau au point E (PK 52)

				,	VI-5			
				POIN.	T E PK 52	2		
				. •		=		
				SAL	INITES			
ANNEE								
E2009								
DATES		Minimum	Maximum	Ecart	Moyenne de	Ecart maxi sur tranche	Coefficient	QfI m3/s-1 (moyenne des
DATES		absolu	absolu	Ecart	la marée	d'eau	Coefficient	10j.précèdents)
	S	0,57	2,71	2,14	1,56			4500
25-avr	F	0,58	3,80	3,22	1,77	1,09	92-95	1563
	S	0,38	1,36	1,22	0,79			
18-mai		,	,	·	,	0,29	37-38	1481
	F	0,14	1,48	1,34	0,93			
40 !!	S	1,61	4,97	3,36	3,54	0.00	47.50	0.45
18-juin	F	1,68	5,66	3,98	3,84	0,69	47-50	645
	s	4,90	9,58	4,68	7,32			
18-juil		,	,	,	,	0,39	48-51	255
	F	4,96	9,55	4,59	7,41			
40 04	S	6,83	13,11	6,28	10,17	0.00	75.00	050
19-août	F	7,00	13,74	6,74	10,49	0,63	75-83	253
	S	6,79	13,40	6,61	10,43			
23-sept						0,85	87-80	239
	F	6,74	14,25	7,51	11,02			
12-oct	S	7,82	12,09	4,27	10,51	0.96	44-43	324
12-001	F	7,87	13,05	5,18	10,95	0,90	44-4 3	J 24
	S	5,33	8,91	3,58	7,48			
09-nov						1,05	56-53	470
	F	5,39	9,96	4,57	7,80			
Mini S	S	0,14	1,36	1,22	0,79	0,29		
Mini F	F	0,14	1,36	1,22	0,79	0,29		
Mayi C		7.00	10.40	·	10.01	4.00	1	
Maxi S Maxi F	S F	7,82 7,87	13,40 14,25	6,61 7,51	10,81 11,02	1,09		

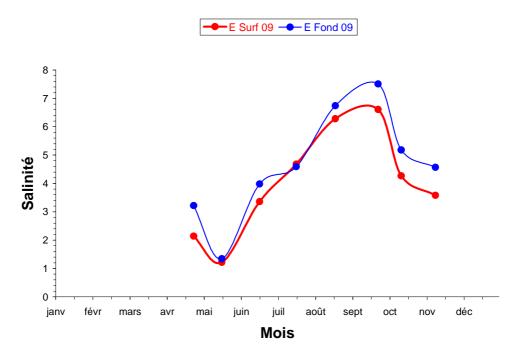


Figure 3-12 : Variations des écarts de salinité au cours de la marée au point E (PK 52) en 2009

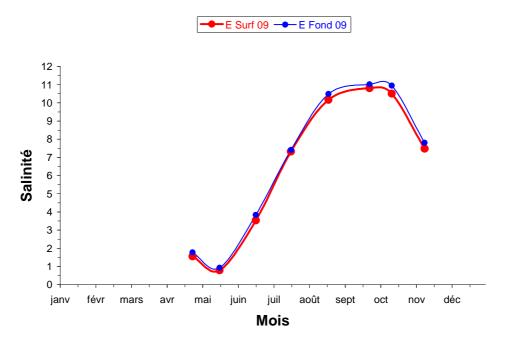


Figure 3-13 : Variations annuelles des salinités moyennes au point E (PK 52) en 2009

Tableau 3-7 : Salinités de l'eau au point K (PK 30)

				,	VI-6			
				POIN [®]	T K PK 30)		
				CAL	INITES			
				SAL	INITES			
ANNEE								
K2009								
DATES		Minimum	Maximum	Ecart	Moyenne de	Ecart maxi sur tranche	Coefficient	Qfl m3/s-1 (moyenne des
	_	absolu	absolu		la marée	d'eau		10j.précèdents)
24-avr	S	0,15	0,24	0,09	0,18	0,01	87	1616
	F	0,15	0,24	0,09	0,18			
17-mai	S	0,14	0,14	0,00	0,14	0.00	40-38	1499
I <i>I</i> -IIIai	F	0,14	0,14	0,00	0,14	0,00	40-36	1499
	s	0,16	0,48	0,32	0,30			
17-juin	F	0,16	0,48	0,32	0,30	0,01	45-46	667
	s	0,87	3,22	2,35	2,20			
17-juil	F	1,00	3,74	2,74	2,36	0,52	47-46	257
	S	1,53	4,91	3,38	3,12			
18-août	F	1,65	5,39	3,74	3,27	0,48	66	250
	S	1,76	6,41	4,65	4,21			
22-sept						0,26	99-93	234
	F	1,94	6,26	4,32	4,13			
12	S	2,07	6,30	4,23	4,50	0.70	45 40	220
13-oct	F	1,90	7,09	5,19	4,66	0,79	45-49	330
	S	0,52	3,63	3,11	2,37			
10-nov	•	0,02	0,00	٥,		0,95	52-52	516
	F	0,57	4,58	4,01	2,71			
Mini S	s	0,14	0,14	0,00	0,14	0,00		
Mini F	F	0,14	0,14	0,00	0,14			
Maxi S	S	2,07	6,41	4,65	4,50	0,95	l	
Maxi F	F	1,94	7,09	5,19	4,66			

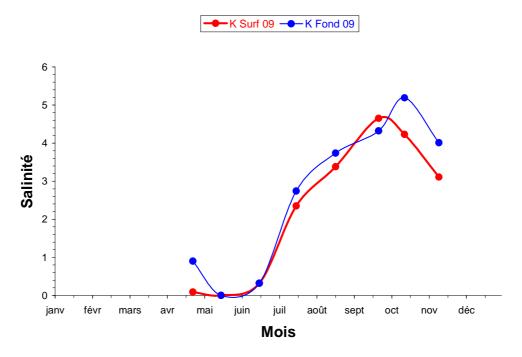


Figure 3-14 : Variations des écarts de salinité au cours de la marée au point K (PK 30) en 2009

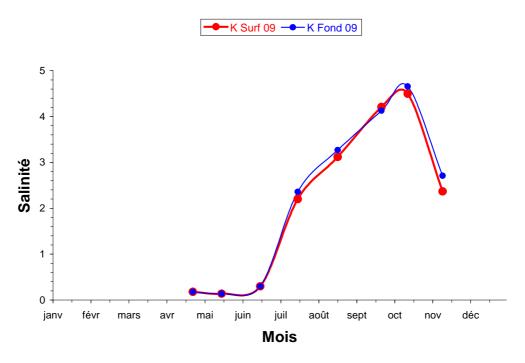


Figure 3-15 : Variations annuelles des salinités moyennes au point K (PK 30) en 2009

3.2.1.2. Les variations annuelles

Les salinités moyennes relevées au cours de l'année 2009 ont évolué :

Au Point F (Tableau 3-4, Figure 3-11)

en surface entre 3,48 (16 mai) et 17,71 (17 août) au fond entre 7,59 (16 mai) et 18,99 (17 août)

On relève les salinités minimales absolues le 16 mai :

1,11 en surface et 1,32 au fond à basse mer.

On relève les salinités maximales absolues le 14 oct. et le 24 sept.

22,36 en surface et 23,88 au fond à pleine mer.

Au Point E (Tableau 3-5, Figure 3-13)

en surface entre 0,79 (18 mai) et 10,81 (23 sept.) au fond entre 0,93 (18 mai) et 11,02 (23 sept.)

On relève les salinités minimales absolues le 18 mai:

0.14 en surface et 0.14 au fond à basse mer.

On relève les salinités maximales absolues le 23 sept.:

13,4 en surface et 14,25 au fond à pleine mer.

Au Point K (Tableau 3-6, Figure 3-15)

en surface entre 0,14 (17 mai) et 450 (13 oct.) au fond entre 0,14 (17 mai) et 4,66 (13 oct.)

On relève les salinités minimales absolues le 17 mai :

0,14 en surface et 0,14 au fond à basse mer.

On relève les salinités maximales absolues le 22 sept. et le 13 oct. :

6,41 en surface et 7,09 au fond à pleine mer.

L'évolution pluriannuelle des salinités aux Points F-E-K est indiquée dans le tableau ci-après.

En 2009, on relève aux 3 points, les grandes variations de salinités aux périodes indiquées ci-après :

	Point F	Point E	Point K
Salinités minimales	16 mai	18 mai	17 mai
Salinités maximales	14 oct. et 24 sept.	23 septembre	22 sept. et 13 oct.
Salinités moyennes maxi	17 août	23 septembre	13 octobre

Les variations pluriannuelles de salinités sont présentées dans le tableau suivant :

1985 S 1986 S	F	POII Max abs. - -	NT 2 Max.moy	POII		POI	NT E	POI	NT J	POII	NT K	
1985 S 1986 S	F	-	Max.moy	Max abs.			POINT F POINT E				POINT K	
1985 S 1986 S			_		Max.moy	Max abs.	Max.moy	Max abs.	Max.moy	Max abs.	Max.moy	
1985 S 1986 S		-	_	-	-	9,80	7,95	9,20	7,04	4,25	2,68	
1986 S	F		-	-	-	10,10	8,38	12,90	8,62	4,42	2,82	
1986 S	F	-	1		-	12,69	10,23	13,09	10,40	5,38	3,51	
		-	-	-	-	13,39	10,58	13,89	10,93	5,40	3,47	
		-	-	1	-	13,88	11,50	13,68	11,35	5,08	3,50	
1987 S	F	-	-	-	-	14,85	12,15	14,94	11,75	5,52	3,73	
		-	-	-	-	11,45	9,20	11,03	7,99	5,94	4,87	
	F	-	-	-	-	12,37	9,44	12,86	8,88	6,97	5,11	
1988 S		-	-	-	-	10,35	7,24	11,65	7,81	3,72	2,51	
	F	-	-	-	-	11,62	8,00	14,86	10,03	3,85	2,57	
1989 S		-	-	-	-	15,66	13,34	15,87	12,65	9,40	7,45	
	F	-	-	-	-	16,23	14,22	16,75	13,55	8,90	7,51	
1990 S		-	-	-	-	17,92	15,45	16,22	14,70	12,19	10,45	
	F	-	-		-	19,08	15,75	18,27	15,09	12,72	11,01	
1991 S		-	-		-	13,83	12,32	14,60	12,39	8,73	7,34	
	F	-	-	-	-	15,30	12,80	15,49	12,93	9,64	7,90	
1992 S		-	-	17,53	14,02	8,55	7,57	1	-	4,41	3,44	
	F	-	ı	18,69	14,78	10,03	7,99	-	-	4,90	3,53	
1993 S		-	-	19,00	14,53	10,10	8,70	-	-	5,20	4,18	
	F	-	-	19,60	15,03	11,60	9,28	-	-	5,90	4,43	
1994 S		-	-	20,20	16,50	12,80	9,50	-	-	5,15	3,30	
	F	-	-	21,50	18,00	13,50	9,90	-	-	5,15	3,50	
1995 S		-	-	21,20	17,20	12,85	10,84	-	-	4,35	3,01	
	F	-	-	22,30	20,33	15,20	11,80	-	-	4,40	3,14	
1996 S		-	-	19,40	14,95	10,05	8,40	-	-	5,15	3,90	
	F	-	-	21,50	15,53	11,30	8,84	-	-	5,15	3,85	
1997 S		-	-	16,95	12,74	9,50	7,85	-	-	5,25	3,90	
	F	-	-	17,50	13,88	10,30	8,08	-	-	5,25	4,00	
1998 S		25,60	20,50	-	-	12,70	10,11	-	-	6,85	4,71	
	F	26,50	21,15	1		13,85	10,48	-	-	6,80	4,94	
1999 S		-		20,65	18,29	13,90	11,00	-	-	4,07	2,82	
	F	-	-	22,35	19,68	15,20	11,37	1	-	4,12	2,99	
2000 S		-	-	20,70	14,91	10,65	7,44	-	-	4,40	2,71	
	F	-	-	22,40	16,58	11,43	8,03	1	-	4,30	2,90	
2001 S		-	-	18,31	12,93	7,68	5,98	-	-	2,60	1,75	
	F	-	-	20,04	15,49	8,53	6,36	-	-	2,90	1,82	
2002 S		-		19,20	13,66	9,44	7,68	-	-	4,50	3,30	
	F	-	1	20,75	14,84	10,41	8,15	-	-	4,37	3,22	
2003 S		-	-	23,97	20,13	15,78	13,44	-	-	8,17	6,10	
	F	-	-	29,98	21,77	17,11	14,02	1	-	7,85	5,95	
2004 S		-	-	23,65	18,32	15,25	11,36	-	-	5,75	3,65	
	F	-	-	24,45	18,74	15,50	11,71	-	-	5,87	3,78	
2005 S		-	-	22,78	19,74	15,41	12,68	-	-	7,74	5,37	
	F	-	-	25,80	23,04	16,00	12,82	-	-	7,55	5,62	
2006 S	_]	-	-	22,40	18,19	12,70	11,12	-	-	7,62	4,72	
	F	-	-	23,60	19,22	13,66	11,47	-	-	6,87	3,75	
2007 S		-	-	18,14	13,75	10,12	8,67	-	-	5,53	3,89	
	F	-	-	21,15	17,52	10,52	8,85	-	-	5,45	3,81	
2008 S	T	-	-	23,08	20,44	16,98	12,53	-	-	5,38	4,01	
	F	-		23,97	21,83	17,41	13,21	-	-	5,83	4,10	
2009 S	T	-	-	22,36	17,71	13,40	10,81	-	-	6,41	4,5	
	F	-	-	23,88	18,99	14,25	11,02	-	-	7,09	4,66	

Nous soulignons à nouveau la corrélation qui existe entre le débit fluvial, donc le volume d'eau douce introduit dans l'estuaire, le volume d'eau marine lié aux coefficients de marées et les valeurs de salinité mesurées (**Figures 3-16, 3-17, 3-18**).

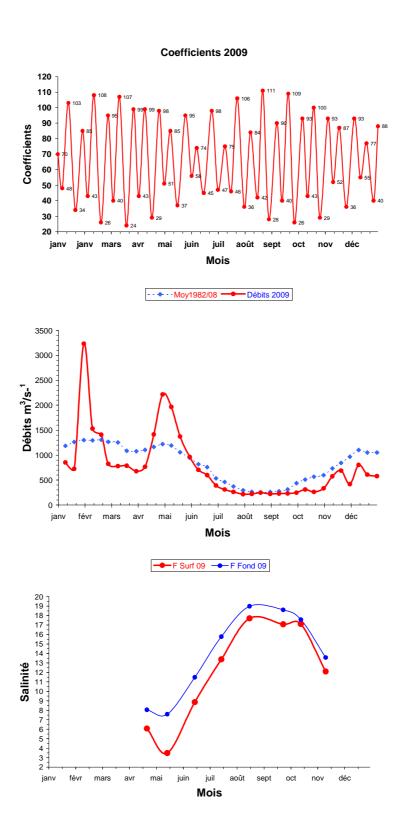


Figure 3-16 : Variations annuelles des salinités moyennes au Point F (PK 67), du débit fluvial et des coefficients de marée en 2009

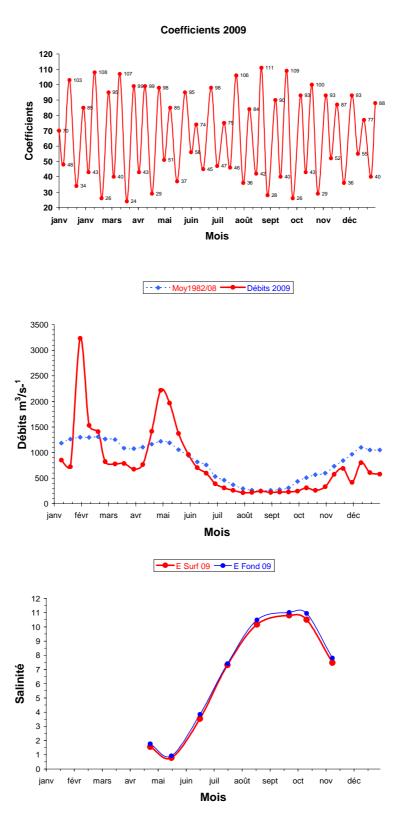


Figure 3-17 : Variations annuelles des salinités moyennes au Point E (PK 52), du débit fluvial et des coefficients de marée en 2009

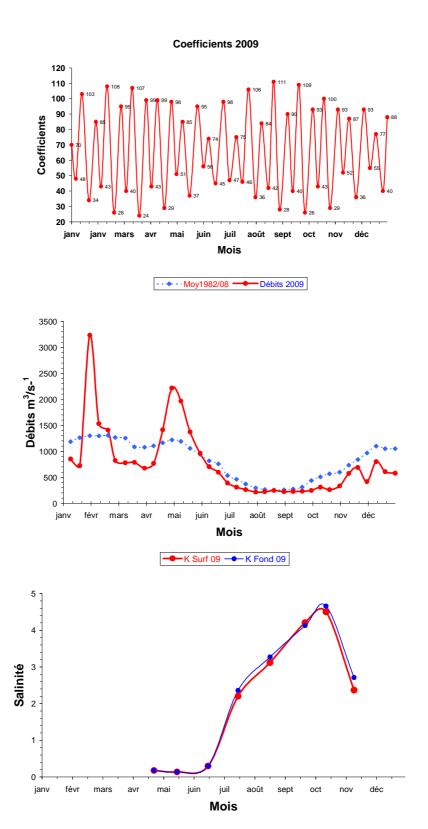


Figure 3-18 : Variations annuelles des salinités moyennes au Point K (PK 30), du débit fluvial et des coefficients de marée en 2009

Synthèse:

En 2009, la moyenne annuelle des débits est légèrement inférieure à celle de 2008. De ce fait, en 2009 à toutes les stations, les salinités moyennes et maximales sont très supérieures à celles enregistrées en 2008.

Au point F, les différences de salinité entre surface et fond montrent que les eaux y sont fréquemment stratifiées. Le gradient de salinité est évidemment fort en période de débits fluviaux importants. En revanche, les salinités sont homogènes sur toute la tranche d'eau aux stations E et K situées plus en amont ;

Au point K, les salinités maximales absolues au fond évoluent entre 12,72 en 1990 et 2,90 en 2001. Ce point est situé dans une zone très sensible à l'influence des débits fluviaux et la corrélation est étroite entre la salinité et le débit des fleuves.

Au point E, la salinité atteint 19,08 en 1990 et seulement 8,53 en 2001 ; le point F est fortement influencé par les eaux océaniques : 29,98 en 2003 et 17,50 au minimum en 1977.

La variabilité interannuelle de la salinité étant majoritairement reliée à la variabilité des débit fluviaux, il ne nous a pas paru judicieux de procéder à une illustration poussée des variations inter annuelles de ce paramètre.

3.3. Vitesse de courant

Point F

Les vitesses maximales de courant ont été relevées en majorité en jusant en surface et à égalité en jusant et en flot au fond (**Tableau 3-7, Figure 3-20**).

```
Les plus élevées ont été observées :
en surface le 23 avril : -175 cm.s<sup>-1</sup> (Qfl : 1278 m<sup>3</sup>.s<sup>-1</sup> - coef. 77)
et le 16 juillet : -143 cm.s<sup>-1</sup> (Qfl : 258 m<sup>3</sup>.s<sup>-1</sup> - coef. 50-48)
au fond le 23 avril : 140 cm.s<sup>-1</sup> (Qfl : 1278 m<sup>3</sup>.s<sup>-1</sup> - coef. 77)
et le 16 juillet : 88 cm.s<sup>-1</sup> (Qfl : 258 m<sup>3</sup>.s<sup>-1</sup> - coef 50-48)
```

Point E

Les vitesses maximales de courant ont été relevées en majorité en flot, en surface et au fond (**Tableau 3-7, Figure 3-21**).

```
Les plus élevées ont été observées : en surface le 19 août :-186 cm.s^{-1} (Qfl : 253 m^3.s^{-1} - coef. 75-83) et le 23 sept : 140 cm.s^{-1} (Qfl : 239 m^3.s^{-1} - coef. 87-80) au fond le 19 août : -128 cm.s^{-1} (Qfl :253 m^3.s^{-1} - coef. 75-83) et le 25 avril -105 cm.s^{-1} (Qfl :1563 m^3.s^{-1} - coef. 92-95)
```

Point K

Les vitesses maximales de courant ont été relevées en majorité en flot en surface et au fond (**Tableau 3-7, Figure 3-22**).

Les plus élevées ont été observées :

```
en surface le 22 sept : -163 cm.s<sup>-1</sup>
                                                                  (Qfl 234 \text{ m}^3.\text{s}^{-1} - \text{coef. } 99-93)
                                                                  (Qfl1616 \text{ m}^3.\text{s}^{-1} - \text{coef. } 87)
                                       -157 cm.s<sup>-1</sup>
             le 24 avril:
                                                                  (Qfl 516 \text{ m}^3.\text{s}^{-1} - \text{coef. } 52-52)
                                          146 cm.s<sup>-1</sup>
             le 10 nov :
                                                                  (Qfl 257 m<sup>3</sup>.s<sup>-1</sup> - coef. 47-46)
(Qfl :1616 m<sup>3</sup>.s<sup>-1</sup> - coef. 87)
                                          105 cm.s<sup>-1</sup>
au fond le 17 juillet
            le 24 avril:
                                       -100 cm.s<sup>-1</sup>
                                                                  (Ofl: 516 \text{ m}^3.\text{s}^{-1} - \text{coef.} 52-52)
                                            94 cm.s<sup>-1</sup>
             et le 10 nov:
```

Au point E, les vitesses maximales en surface de flot et de jusant sont inférieures à 2008 (**Tableau 3-7, Figure 3-19**).

Le régime des courants est différent au Point E, situé dans le chenal médian, par suite de **l'évolution de la morphologie des fonds** d'où l'importance du paramètre bathymétrique pour la répartition et les valeurs des vitesses maximales en plus des variations du débit fluvial et des coefficients de marée.

Tableau 3-7: Vitesses maximales de courant en cm.s⁻¹

		POINT F	PK 67	POINT E		POINT K	PK 30	
DATES	COEFFICIENTS	Vitesses N SURFACE	laximales FOND	Vitesses N SURFACE	laximales FOND	Vitesses N SURFACE	laximales FOND	Qfl*m³.s
23 avril	77	175	140					1 1278
25 avril	92-95			-134	-105			1563
24 avril	87					-157	-100	1616
16 mai	42-40	-128	82					1518
18 mai	37-38			-100	-76			1481
17 mai	40-38					-100	-70	1499
16 juin	47-46	-134	-65					678
18 juin	47-50			111	82			645
17 juin	45-46					94	76	667
16 juillet	50-48	-143	88					258
18 juillet	48-51			111	94			255
17 juillet	47-46					105	70	257
17 août	51-58	-117	-82					249
19 août	75-83			186	128			253
18 août	66					134	105	250
24 septembre	72-64	-111	-82					241
23 septembre	87-80			140	82			239
22 septembre	99-93					163	-76	234
14 octobre	56-63	-134	-76					325
12 octobre	44-43			-59	-59			324
13 octobre	45-49					123	88	330
11 novembre	52-54	-123	88					574
9 novembre	56-53			134	88			470
10 novembre	52-52					146	94	516

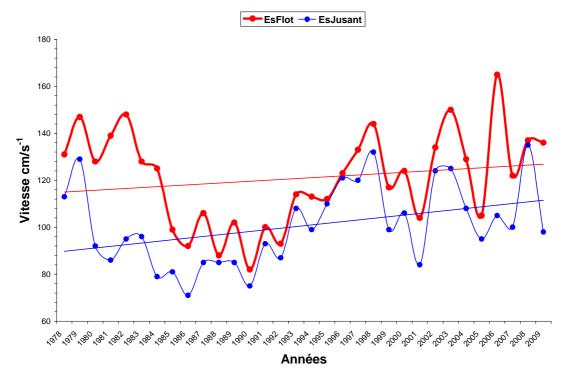
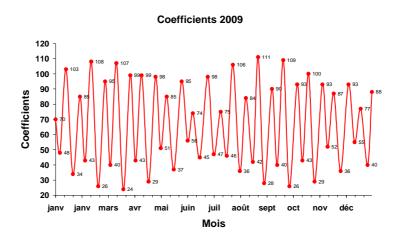
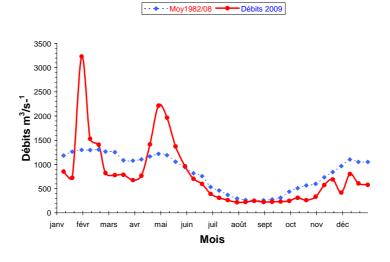




Figure 3-19 : Evolution de la vitesse maximale moyenne en surface au point E (PK52) au cours de la période 1978-2009

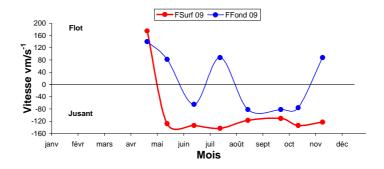
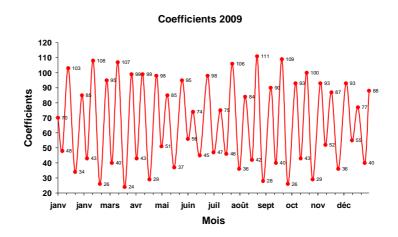
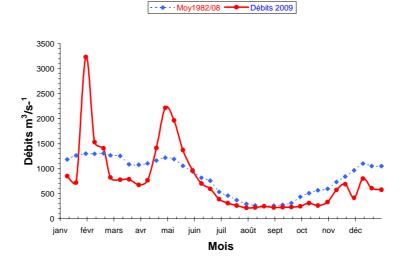




Figure 3-20 : Evolution des vitesses maximales de courant en surface et au fond au Point F (PK 67) au cours de l'année 2009, suivant les coefficients de marée et les débits fluviaux

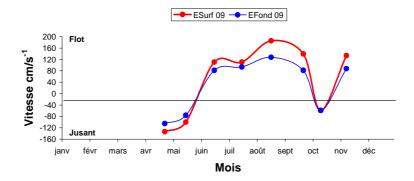
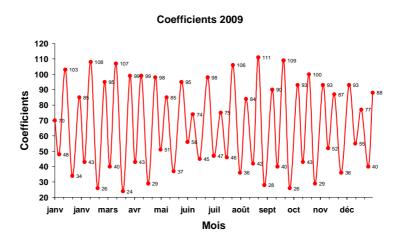
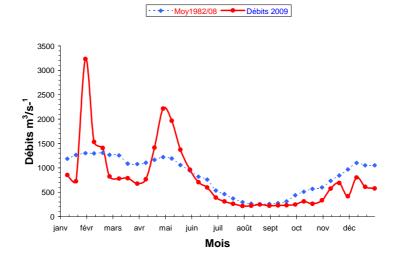




Figure 3-21 : Evolution des vitesses maximales de courant en surface et au fond au Point E (PK 52) au cours de l'année 2009, suivant les coefficients de marée et les débits fluviaux

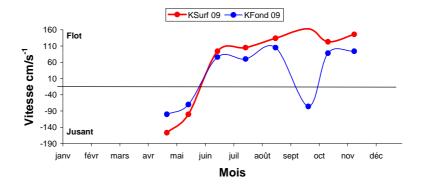


Figure 3-22 : Evolution des vitesses maximales de courant en surface et au fond au Point K (PK 30) au cours de l'année 2009, suivant les coefficients de marée et les débits fluviaux

Synthèse:

Le régime des courants est différent au Point E, situé dans le chenal médian, par suite de **l'évolution de la morphologie des fonds**, d'où l'importance du paramètre bathymétrique pour la répartition et les valeurs des vitesses maximales, en plus des variations du débit fluvial et des coefficients de marée. Ainsi on note que dans les années 80 et jusqu'en 1992, les vitesses maximales de flot et de jusant diminuent de moitié par suite de la modification de la bathymétrie ; il est évident que durant cette décennie, la dispersion des eaux réchauffées de la centrale a été moins efficace.

3.4. Concentration en matières en suspension (MES)

3.4.1. Variations dans le temps

3.4.1.1. Au cours de la marée

Les écarts des valeurs de MES mesurées au cours d'une marée ont varié :

Au Point F-PK 67 (Tableau 3-8)

```
en surface entre 0,004 g/l le 17 août (Qfl : 249 m^3.s^{-1} - coef. 51-58) et 0,390 g/l le 16 mai (Qfl : 1518 m^3.s^{-1} - coef. 42-40) au fond entre 0,213 g/l le 16 juillet (Qfl : 258 m^3.s^{-1} - coef. 50-48) et 6,940 g/l le 23 avril (Qfl : 1278 m^3.s^{-1} - coef. 77)
```

Au Point E-PK 52 (Tableau 3-9)

```
en surface entre 0,049 g/l le 18 mai (Qfl : 1481 m<sup>3</sup>.s<sup>-1</sup> - coef. 37-38) et 0,898 g/l le 23 sept (Qfl : 239 m<sup>3</sup>.s<sup>-1</sup> - coef. 87-80) au fond entre 0,349 g/l le 18 juillet (Qfl : 255 m<sup>3</sup>.s<sup>-1</sup> - coef. 48-51) et 2,950 g/l le 18 avril (Qfl : 470 m<sup>3</sup>.s<sup>-1</sup> - coef. 56-53)
```

Au Point K-PK 30 (Tableau 3-10)

```
en surface entre 0,053 g/l le 17 mai et 2,568 g/l le 22 sept au fond entre 0,134 g/l le 17 mai et 3,035 g/l le 10 nov (Qfl : 1499 m³.s⁻¹ - coef. 40-38) (Qfl : 1499 m³.s⁻¹ - coef. 40-38) (Qfl : 516 m³.s⁻¹ - coef. 52-52)
```

3.4.1.2. Variations annuelles

Au Point F-PK 67 (Figure 3-23)

```
Les MES moyennes ont varié : en surface de 0,051 g/l (17 août) à 0,405 g/l (11 nov) au fond de 0,161 g/l (16 juillet) à 2,530 g/l (23 avril)
```

Les MES minimales (Figure 3-26) ont été observées :

```
le 16 juillet, en surface : 0,029 g/l - Qfl : 258 m<sup>3</sup>.s<sup>-1</sup> - coef. 50-48 à mi-jusant. le 17 août, au fond : 0,054 g/l - Qfl : 249 m<sup>3</sup>.s<sup>-1</sup> - coef. 51-58 à la basse mer Les MES maximales (Figure 3-26) ont été observées : le 23 avril, en surface : 0,560 g/l - Qfl : 1278 m<sup>3</sup>.s<sup>-1</sup> - coef. 77 à mi-jusant. le 23 avril, au fond : 7,500 g/l - Qfl : 1278 m<sup>3</sup>.s<sup>-1</sup> - coef. 77 à mi-flot.
```


Au Point E-PK 52 (Figure 3-24)

Les MES moyennes ont varié:

en surface de 0,146 g/l (18 juin) à 0,623 g/l (23 sept) au fond de 0,375 g/l (18 mai) à 3,738 g/l (25 avril)

Les MES minimales (Figure 3-26) ont été observées :

le 18 juin en surf : 0,108 g/l - Qfl : 645 m³.s⁻¹ - coef. 47-50 à la pleine mer. le 18 juin au fond : 0,169 g/l - Qfl : 645 m³.s⁻¹ - coef. 47-50 à la pleine mer.

Les MES maximales (Figure 3-26) ont été observées :

le 23 sept, en surface : 1,046 g/l - Qfl : 239m³.s⁻¹ - coef. 87-80 à mi-flot le 25 avril au fond : 4,800 g/l - Qfl : 1563 m³.s⁻¹ - coef. 92-95 à la basse mer.

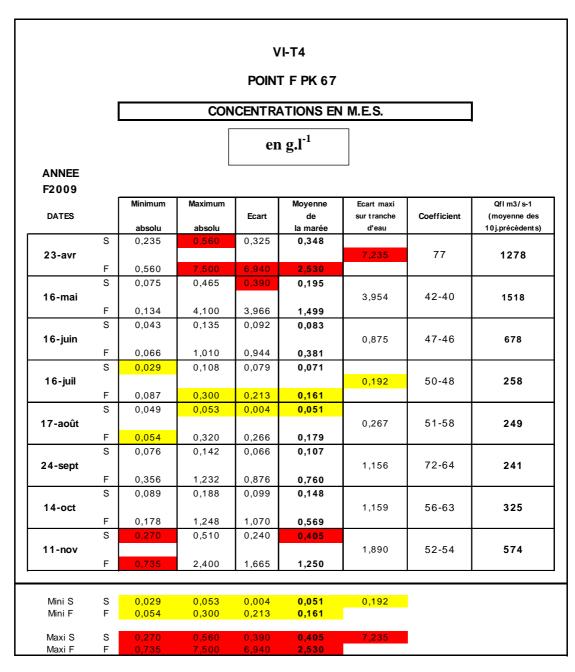
Au Point K-PK 30 (Figure 3-25)

Les MES moyennes ont varié:

en surface de 0,073 g/l (17 mai) à 1,592 g/l (22 sept) au fond de 0,130 g/l (17 mai) à 2,609 g/l (22 sept.)

<u>Les MES minimales</u> (**Figure 3-26**) ont été observées :

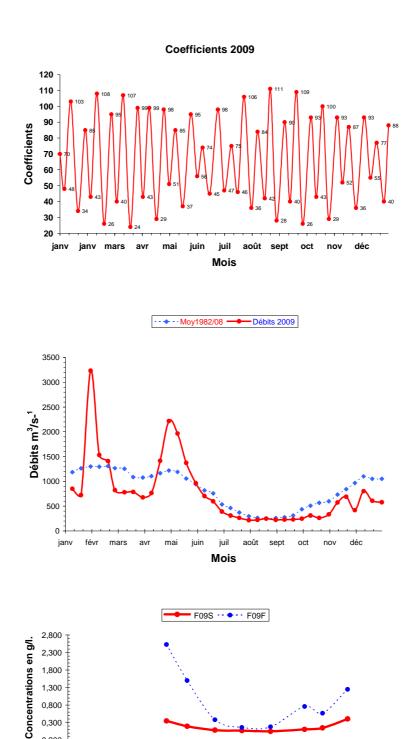
le 17 mai en surf : 0,044 g/l - Qfl : 1499 m³.s⁻¹ - coef. 40-38 à la pleine mer. le 17 mai au fond : 0,064 g/l - Qfl : 1499 m³.s⁻¹ - coef. 40-38 à la pleine mer.

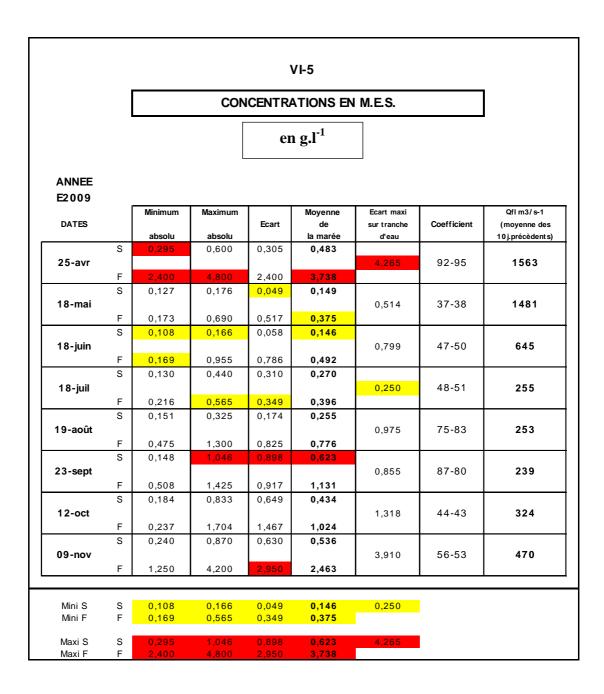

Les MES maximales (Figure 3-26) ont été observées :

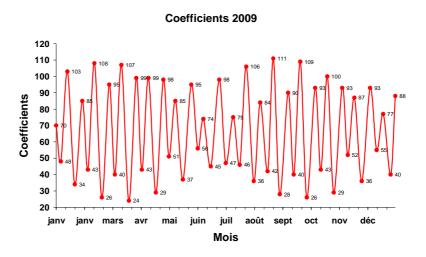
le 22 sept en surface : 2,795 g/l - Qfl : 234 m³.s⁻¹ - coef. 99-93 à mi-flot. le 22 sept au fond : 4,060 g/l - Qfl : 234 m³.s⁻¹ - coef. 99-93 à mi-flot.

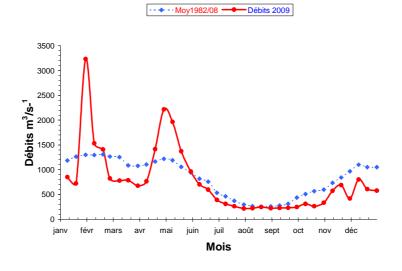
Les valeurs des minima et des maxima des turbidités de 2009 sont comparées à celles des années antérieures dans le **Tableau 3-11** et **Tableau 3-12**.

Tableau 3-8: MES au point F (PK 67)




Figure 3-23 : Variations annuelles des MES moyennes au point F (PK 67) suivant les coefficients de marée et les débits fluviaux en 2009


août


Mois

-0,200

Tableau 3-9 : MES au point E (PK 52)

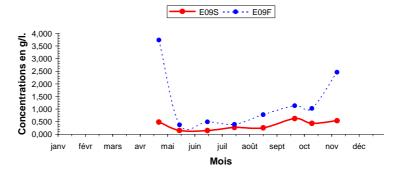
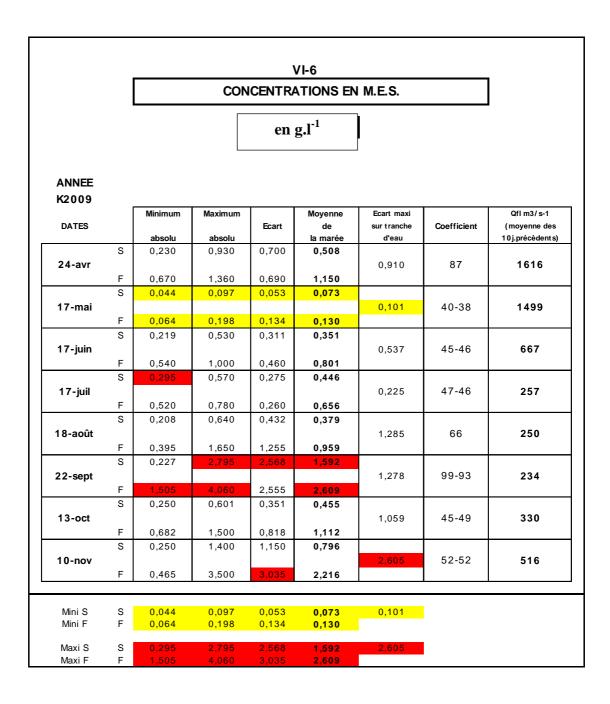
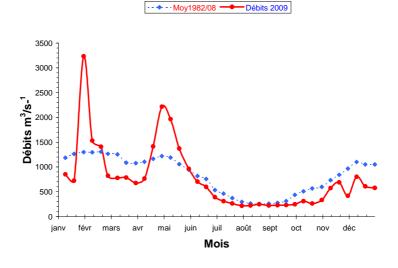




Figure 3-24 : Variations annuelles des MES moyennes au point E (PK 52) suivant les coefficients de marée et les débits fluviaux en 2009

Tableau 3-10 : MES au point K (PK 30)

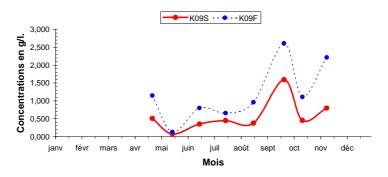


Figure 3-25 : Variations annuelles des MES moyennes au point K (PK 30) suivant les coefficients de marée et les débits fluviaux en 2009

3.4.2. Variations spatiales

3.4.2.1. Variations longitudinales

(Tableaux 3-8 à 3-10)

<u>Les valeurs maximales</u> de MES sont relevées fin avril au PK 67, fin avril et fin septembre au PK52, fin septembre au PK 30 :

```
au PK 67: 0,560 g/l en surface et 7,500 g/l au fond au PK 52: 1,046 g/l en surface et 4,800 g/l au fond au PK 30: 2,795 g/l en surface et 4,060 g/l au fond
```

<u>Les valeurs minimales</u> de MES sont relevées mi-juillet et mi-août au PK 67,en juin au PK 52, en mai au PK 30 :

```
au PK 67: 0,029 g/l en surface et 0,054 g/l au fond au PK 52: 0,108 g/l en surface et 0,169 g/l au fond au PK 30: 0,044 g/l en surface et 0,064 g/l au fond
```

3.4.2.2. variations verticales

(Tableaux 3-8 à 3-10)

```
au Point F: de 0,192 g/l (16 juillet) à 7,235 g/l (23 avril) 
au Point E: de 0,250 g/l (18 juillet) à 4,265 g/l (25 avril) 
au Point K: de 0,101 g/l (17 mai) à 2,605 g/l (10 novembre)
```

Sur toute la marée, les écarts ont évolué (mini absolu) - (maxi absolu) :

```
au Point F : de 0,029 g/l (16 juillet) à 7,500 g/l (23 avril.) 
au Point E : de 0,108 g/l (18 juin) à 4,800 g/l (25 avril) 
au Point K : de 0,044 g/l (17 mai) à 4,060 g/l (22 sept)
```

Synthèse:

Par rapport à 2008, les valeurs des concentrations de 2009 sont en moyenne inférieures. Tout au long de l'année et sur toute la verticale, les valeurs en M.E.S. sont très faibles. Les crues du début de l'année janvier et mai, ont pu éjecter une grande partie du bouchon vaseux qui, cette année encore, est remonté très en amont pendant la période d'étiage.

Sur le long terme, 2009 se situe parmi les années où les eaux sont les moins turbides durant de longues périodes.

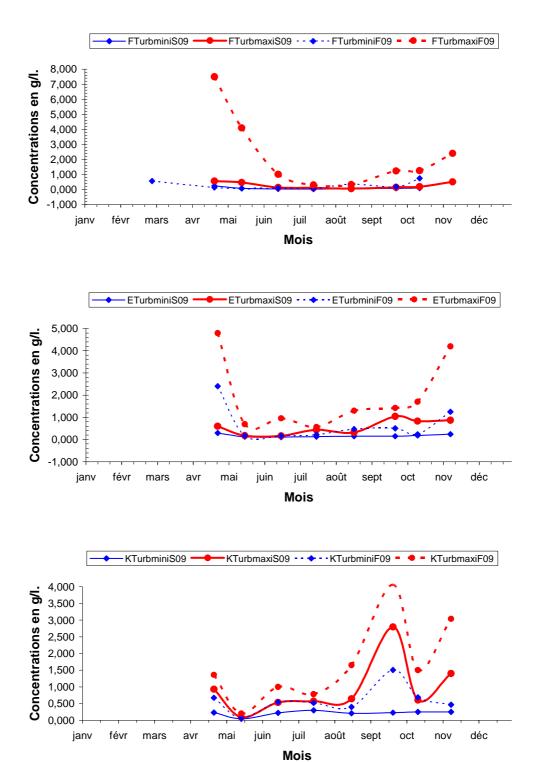


Figure 3-26 : Variations annuelles des MES minimales et maximales aux points F-E-K en 2009

Tableau 3-11 : Maximum et minimum des MES observés au cours des années 1978 à 2009

Point E-PK 52- SURFACE

Année g/l Date Débits Coefficients de courant (cm.s²)			TOINT L TIX	32- SUKFAC) <u> </u>	Vitagaaa maay
1978 mini. 1,260 21-juin 840 91-96 165 165 177 133-47 195 115	Année	a/I	Date	Débits	Coefficients	Vitesses max
1978 mini.	Aillice	9,,	Date		Coemicients	
maxi.	1978 mini.	0.056	30-août		43-47	
1979 mini. 0,040 07-juin 1814 52-56 115 1980 mini. 0,060 13-fevr 1580 44-48 -85 1980 mini. 0,060 13-fevr 1580 44-48 -85 1981 mini. 0,050 12-août 263 41-44 70 70-juil 372 72-73 160 70-juil 442 54-52 115 70-juil 442 40-71 40-juil 40-jui						
1980 mini. 0,060 13-fevr 1580 44-48 -85 1981 mini. 0,050 12-août 263 41-44 70 70 70 70 70 70 70			-			
maxi. 1,990 18-juin 400 72-67 160 maxi. 2,470 22-avr 1263 41-44 70 maxi. 2,470 22-avr 1276 85-84 180 maxi. 1,682 17-mars 1548 55-49 170 maxi. 1,220 30-nov 452 56-59 85 maxi. 1,00 80 33-70 49-50 85 maxi. 1,00 13-mars 1321 79-75 133 1986 mini. 0,072 14-mai 2146 62-86 90 maxi. 1,760 19-nov 386 79-76 120 1997 mini. 1,00 27-avr 1301 36-40 16	maxi.		-	685	73-77	155
1981 mini. 0,050 12-août 22-août 22-avr 1276 85-84 180 1992 mini. 0,079 07-juil 372 72-73 160 maxi. 1,682 17-mars 1548 55-49 170 1993 mini. 0,064 20-juil 442 54-52 115 maxi. 1,220 30-nov 452 56-59 85 maxi. 2,424 08-août 275 49-50 85 maxi. 2,424 08-août 275 49-50 85 maxi. 1,800 13-mars 1371 79-75 133 1985 mini. 0,080 25-sept 260 41-47 7-70 maxi. 1,800 13-mars 1422 80-71 150 1986 mini. 0,072 14-mai 2146 62-58 90 maxi. 1,760 19-nov 386 79-76 120 1987 mini. 0,108 19-août 438 33 70 maxi. 1,780 28-janv 1034 73-66 160 108 19-août 327 36-40 75 maxi. 1,700 24-août 327 36-40 75 maxi. 1,700 24-août 327 36-40 75 maxi. 1,902 11-juil 205 54-50 97 maxi. 1,902 11-juil 487 43-44 90 mini. 0,097 04-juil 487 43-44 90 mini. 0,037 05-juin 695 51-49 0,104 78 maxi. 1,216 13-mars 838 41-47 98 98 mini 0,049 05-nov 1790 37-40 -78 maxi. 1,380 04-nov 917 56-59 91 maxi. 1,380 04-nov 917 57-72 92 92 1998 mini 0,081 07-juil 725 54-59 PM PM 1998 mini 0,081 07-juil 725 54-59 PM PM 1998 mini 0,081 07-juil 286 49-88 BM 130 149 1	1980 mini.	0,060	13-févr	1580	44-48	-85
maxi. 2,470 22-avr 1276 85-84 180 maxi. 1,682 17-mars 1548 55-49 170 maxi. 1,682 17-mars 1548 55-49 170 maxi. 1,220 30-nov 452 56-59 85 maxi. 1,220 30-nov 452 56-59 85 maxi. 2,424 08-mars 1371 79-75 133 maxi. 1,800 13-mars 1422 80-71 150 maxi. 1,600 13-mars 1422 80-71 150 maxi. 1,760 19-nov 386 79-76 120 maxi. 1,760 19-nov 386 79-76 120 maxi. 1,760 19-nov 386 79-76 120 maxi. 1,760 28-janv 1034 73-66 160 1997 mini. 0,108 27-avr 1301 36-40 79-76 <t< td=""><td>maxi.</td><td>1,900</td><td>18-juin</td><td>400</td><td>72-67</td><td>160</td></t<>	maxi.	1,900	18-juin	400	72-67	160
1982 mini. 0,079 07-juil 372 72-73 160 maxi. 1,682 17-mars 1548 55-49 170	1981 mini.	0,050	12-août	263	41-44	70
maxi. 1,682 17-mars 1548 55-49 170 1983 mini. 0,064 20-juil 442 54-52 115 maxi. 1,220 30-nov 452 56-59 85 1984 mini. 0,152 08-août 275 49-50 85 1985 mini. 0,080 25-sept 260 41-47 -70 maxi. 1,800 13-mars 1422 80-71 150 1986 mini. 0,072 14-mai 2146 62-58 90 maxi. 1,760 19-nov 386 79-76 120 maxi. 1,780 19-août 438 33 70 maxi. 1,780 28-jarv 1034 73-66 160 160 1988 mini. 0,087 27-avr 1301 36-40 108 19-00 1989 mini. 1,120 25-54-50 97 44-34 90 14-44 90 1990 mini. 0,097 04	maxi.	2,470		1276	85-84	180
1983 mini. 0,064 20-juil 442 54-52 115 maxi. 1,220 30-nov 452 56-59 85 1984 mini. 0,152 08-août 275 49-50 85 313 1985 mini. 0,080 25-sept 260 41-47 -70 133 1985 mini. 0,080 25-sept 260 41-47 -70 133 1985 mini. 0,072 14-mai 2146 62-58 90 19-nov 386 79-76 120 1987 mini. 0,108 19-août 438 33 70 1988 mini. 0,108 19-août 438 33 70 1988 mini. 0,087 27-avr 1301 36-40 -75 1380 1989 mini. 0,120 11-juil 205 54-50 97 145 1989 1989 mini. 0,120 11-juil 205 54-50 97 1989 1989 mini. 1,760 12-avr 1030 64-56 449 0,104 1991 1030 64-56 449 0,104 1992 11-avr 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 64-56 45 1991 1030 65-50 1200 1030	1982 mini.	0,079	07-juil	372	72-73	160
maxi. 1,220 30-nov 452 56-59 85 1984 mini. 0,152 08-ao0t 275 49-50 85 maxi. 2,424 08-mars 1371 79-75 133 1985 mini. 0,080 25-sept 260 41-47 -70 maxi. 1,800 13-mars 1422 80-71 150 1986 mini. 0,072 14-mai 2146 62-58 90 maxi. 1,760 19-nov 386 79-76 120 maxi. 1,780 28-janv 1034 73-66 160 maxi. 1,700 24-août 327 36-40 108 1988 mini. 0,120 11-juil 205 54-50 97 maxi. 1,902 12-avr 1030 64-56 145 1999 mini. 0,097 04-juil 487 43-44 90 maxi. 1,768 14-nov 918 60-64 55	maxi.	1,682	17-mars	1548	55-49	170
1984 mini.	1983 mini.	0,064	20-juil	442	54-52	115
maxi. 2,424 08-mars 1371 79-75 133 1985 mini. 0,080 13-mars 1422 80-71 150 1986 mini. 0,072 14-mai 1422 80-71 150 1986 mini. 1,760 19-nov 386 79-76 120 1987 mini. 0,108 19-août 438 33 70 naxi. 1,780 28-janv 1034 73-66 150 1988 mini. 0,087 27-avr 1301 36-40 108 1998 mini. 0,120 11-juil 205 54-50 97 1980 mini. 0,087 27-avr 1301 36-40 108 1999 mini. 0,087 27-avr 1301 36-40 108 1990 mini. 0,087 21-zevr 1030 64-56 145 1990 mini. 0,097 04-juil 487 43-44 <td>maxi.</td> <td>1,220</td> <td>30-nov</td> <td>452</td> <td>56-59</td> <td>85</td>	maxi.	1,220	30-nov	452	56-59	85
1985 mini. 0,080 25-sept 260 41-47 -70 1986 mini. 0,072 14-mais 2146 62-58 90 19-maxi. 1,760 19-nov 386 33 37 70 1987 mini. 0,108 19-août 438 33 70 1988 mini. 0,087 27-evr 301 36-40 -75 36-40 108 19-80 108 19-80 108 19-80 108 109 108 109 108 109 108	1984 mini.	0,152	08-août	275	49-50	85
maxi. 1,800 13-mars 1422 80-71 150 1986 mini. 1,760 19-nov 386 79-76 120 1987 mini. 0,108 19-aout 386 79-76 120 1987 mini. 0,108 19-aout 438 33 70 1988 mini. 0,087 22-avr 1034 73-66 160 1989 mini. 0,020 22-avr 1301 36-40 -75 1989 mini. 0,120 11-juil 205 54-56 108 1990 mini. 0,020 12-avr 1030 64-56 145 1990 mini. 0,027 04-juil 467 43-44 90 maxi. 1,768 14-nov 918 60-64 55 1991 mini. 0,037 05-juin 695 51-49 0,104 1992 mini. 0,049 05-nov 1790 37-40	maxi.	2,424	08-mars	1371	79-75	133
1986 mini. 0,072 14-mai 2146 62-58 90 1987 mini. 0,108 19-aoùt 438 33 70 1988 mini. 0,108 19-aoùt 438 33 70 1988 mini. 0,087 27-avr 1301 36-40 -75 120 1989 mini. 0,120 11-juil 205 54-50 97 1989 mini. 0,120 11-juil 205 54-50 97 145 1990 mini. 0,097 04-juil 487 43-44 90 1991 mini. 0,037 05-juin 695 51-49 0,104 1992 mini. 0,037 05-juin 695 51-49 0,104 1992 mini 0,128 09-sept 325 51-45 94 1410 57-54 54 59 149 1410 57-54 54 59 149 1410 57-54 54 59 149 1410 57-54 54 59 149 1410 57-54 54 59 PM 1994 1380 04-nov 947 75-72 92 120 13-avr 914 59-67 114 113 113 1199 mini 0,033 05-mars 626 79-70 75-62 47-111 13-avr 1999 mini 0,033 05-mars 626 79-70 75-62 75-70	1985 mini.	0,080	25-sept	260	41-47	-70
maxi. 1,760 19-nov 386 79-76 120 1987 mini. 0,108 19-août 438 33 70 1988 mini. 0,087 27-avr 1301 36-40 -75 maxi. 1,700 24-août 327 36-40 108 1989 mini. 0,120 11-juil 205 54-50 97 maxi. 1,902 12-avr 1030 64-56 145 1990 mini. 0,097 04-juil 487 43-44 90 maxi. 1,768 14-nov 918 60-64 55 1991 mini. 0,037 05-juin 695 51-49 0,104 maxi. 1,216 13-mars 838 41-47 98 1992 mini. 0,049 05-nov 1790 37-40 -78 maxi. 1,334 09-juil 1410 57-54 94 1993 mini	maxi.	1,800	13-mars	1422	80-71	150
1987 mini. 0,108 19-août 438 33 70 1988 mini. 1,780 28-janv 1301 36-40 -75 maxi 1,700 24-août 327 36-40 -75 maxi 1,700 24-août 327 36-40 108 1998 mini. 0,120 11-juil 205 54-50 97 maxi. 1,902 12-avr 1030 64-56 145 1990 mini. 0,097 04-juil 487 43-44 90 maxi. 1,768 14-nov 918 60-64 55 1991 mini. 0,037 05-juin 695 51-49 0,104 maxi. 1,216 13-mars 838 41-47 98 1992 mini. 0,049 05-nov 1790 37-40 -78 maxi. 1,334 09-juil 1410 57-52 92 1994 mini.	1986 mini.	0,072	14-mai	2146	62-58	90
maxi. 1,780 28-janv 1034 73-66 160 1988 mini. 0,087 27-avr 1301 36-40 -75 maxi 1,700 24-août 327 36-40 108 1989 mini. 0,120 11-juil 205 54-50 97 maxi. 1,902 12-avr 1030 64-56 145 1990 mini. 0,097 04-juil 487 43-44 90 maxi. 1,768 14-nov 918 60-64 55 1991 mini. 0,037 05-juin 695 51-49 0,104 1992 mini. 0,049 05-nov 1790 37-40 -78 1993 mini. 0,128 09-sept 325 51-45 94 1994 mini. 0,128 09-sept 325 54-59 PM maxi 1,380 04-nov 1885 66-59 120 1994		1,760	19-nov	386	79-76	
1988 mini. 0,087 27-avr 1301 36-40 -75 1700 24-ao0t 327 36-40 108 1989 mini. 0,120 11-juil 205 54-50 97 1990 mini. 0,097 04-juil 487 43-44 90 1768 14-nov 918 60-64 55 1991 mini. 0,037 05-juin 695 51-49 0,104 maxi. 1,216 13-mars 838 41-47 98 1992 mini. 0,049 05-nov 1790 37-40 -78 maxi. 1,334 09-juil 1410 57-54 94 1993 mini 0,128 09-sept 325 51-45 Etale PM maxi 0,878 10-nov 947 75-72 92 92 1994 mini 0,081 07-juil 725 54-59 PM maxi 0,660 13-avr 914 59-67 114 1996 mini 0,122 25-juil 265 49-48 BM 1997 mini 0,141 16-avr 376 37-36 Etale PM 131 1997 mini 0,033 05-mars 626 79-70 -158 maxi 1,655 10-oct 501 59-64 113 1997 mini 0,033 05-mars 626 79-70 -158 maxi 1,652 02-sept 230 82-76 143 143 16-200 mini 0,094 08-sept 337 48-27 692 73-68 178 1200 mini 0,094 08-sept 337 31 82 12000 mini 0,094 08-sept 337 31 82 2000 mini 0,092 29-sept 333 105-106 140 1000 mini 0,0082 27-juil 173 61-65 116 maxi 1,965 12-sept 268 27-26 143 2000 mini 0,094 08-sept 307 31 82 2000 mini 0,0082 27-juin 448 49-49 -108 178 2000 mini 0,0092 23-août 266 26-27 Etale PM 2000 mini 0,106 23-août 266 26-27 Etale PM 2000 mini 0,106 23-août 266 26-27 Etale PM 2000 mini 0,106 23-août 266 266-27 Etale PM 2000 mini 0,108 23-août 266 266-27 Etale PM 2000 mini 0,108 23-août 266 266-27 Etale PM 2000 mi	1987 mini.	0,108	19-août	438	33	70
maxi 1,700 24-aodt 327 36-40 108 1989 mini. 0,120 11-juil 205 54-50 97 maxi. 1,902 12-avr 1030 64-56 145 1990 mini. 0,097 04-juil 487 43-44 90 maxi. 1,768 14-nov 918 60-64 55 1991 mini. 0,037 05-juin 695 51-49 0,104 maxi. 1,216 13-mars 838 41-47 98 1992 mini. 0,049 05-nov 1790 37-40 -78 1993 mini. 0,049 05-nov 1790 37-40 -78 1993 mini. 0,049 05-nov 1790 37-40 -78 1993 mini. 0,128 09-sept 325 51-45 Etale PM 1994 mini. 0,081 07-juil 725-72 92 92	maxi.	1,780	28-janv	1034	73-66	160
1989 mini. 0.120 11-juil 205 54-50 97 maxi. 1,902 12-avr 1030 64-56 145 1990 mini. 0,097 04-juil 487 43-44 90 maxi. 1,768 14-nov 918 60-64 55 1991 mini. 0,037 05-juin 695 51-49 0,104 maxi. 1,216 13-mars 838 41-47 98 1992 mini. 0,049 05-nov 1790 37-40 -78 maxi. 1,334 09-juil 1410 57-54 94 1993 mini 0,128 09-sept 325 51-45 Etale PM maxi 1,380 04-nov 947 75-72 92 1994 mini 0,081 07-juil 725 54-59 PM maxi 0,878 10-nov 1885 66-59 120 1995 mini 0,104 21-sept 285 39-44 Etale PM <	1988 mini.	0,087	27-avr	1301	36-40	-75
maxi. 1,902 12-avr 1030 64-56 145 1990 mini. 0,097 04-juil 487 43-44 90 maxi. 1,768 14-nov 918 60-64 55 1991 mini. 0,037 05-juin 695 51-49 0,104 1992 mini. 0,049 05-nov 1790 37-40 -78 1993 mini. 0,128 09-sept 325 51-45 94 1993 mini 0,128 09-sept 325 51-45 Etale PM 1994 mini 0,081 07-juil 725 54-59 PM 1995 mini 0,141 21-sept 285 39-44	maxi	1,700	24-août	327	36-40	108
1990 mini	1989 mini.	0,120	11-juil	205	54-50	97
maxi. 1,768 14-nov 918 60-64 55 1991 mini. 0,037 05-juin 695 51-49 0,104 maxi. 1,216 13-mars 838 41-47 98 1992 mini. 0,049 05-nov 1790 37-40 -78 maxi. 1,334 09-juil 1410 57-54 94 1993 mini 0,128 09-sept 325 51-45 Etale PM maxi 1,380 04-nov 947 75-72 92 92 maxi 0,878 10-nov 1885 66-59 120 120 maxi 0,860 13-avr 914 59-67 114 1996 mini 0,122 25-juil 265 49-48 BM maxi 1,055 10-oct 501 59-64 113 1997 mini 0,141 16-avr 376 37-36 Etale PM 1998 mini 0,033	maxi.	1,902	12-avr	1030	64-56	145
1991 mini. 1,216 13-mars 838 41-47 98 98 1992 mini. 0,049 05-nov 1790 37-40 -78 94 1993 mini 0,128 09-sept 325 51-45 51-45 94 1994 mini 0,081 07-juil 725 54-59 PM maxi 0,878 10-nov 1885 66-59 120 1995 mini 0,104 21-sept 285 39-44 Etale PM 1996 mini 0,122 25-juil 265 49-48 BM maxi 1,055 10-oct 501 59-64 113 1397 mini 0,041 16-avr 376 37-36 Etale PM maxi 0,033 05-mars 626 679-70 -158 maxi 0,033 05-mars 626 679-70 -158 1632 00-sept 397 55-62 +/-111 maxi 1,632 02-sept 393 305-106 140 2000 mini 0,072 31-août 236 50-55 106 maxi 0,078 17-sept 412 38-41 Etale BM maxi 1,059 10-oct 501 59-67 1148	1990 mini.	0,097	04-juil	487	43-44	90
maxi. 1,216 13-mars 838 41-47 98 1992 mini. 0,049 05-nov 1790 37-40 -78 maxi. 1,334 09-juil 1410 57-54 94 1993 mini 0,128 09-sept 325 51-45 Etale PM maxi 1,380 04-nov 947 75-72 92 1994 mini 0,081 07-juil 725 54-59 PM maxi 0,878 10-nov 1885 66-59 120 1995 mini 0,104 21-sept 285 39-44 Etale PM maxi 0,660 13-avr 914 59-67 114 1996 mini 0,122 25-juil 265 49-48 BM maxi 1,055 10-oct 501 59-64 113 1997 mini 0,141 16-avr 376 57-69 144 1998 mini	maxi.	1,768	14-nov	918	60-64	
1992 mini. 0,049 05-nov 1790 37-40 -78 maxi. 1,334 09-juil 1410 57-54 94 94 1993 mini 0,128 09-sept 325 51-45 Etale PM maxi 1,380 04-nov 947 75-72 92 92 1994 mini 0,081 07-juil 725 54-59 PM maxi 0,878 10-nov 1885 66-59 120 1995 mini 0,104 21-sept 285 39-44 Etale PM maxi 0,660 13-avr 914 59-67 114 1996 mini 0,122 25-juil 265 49-48 BM maxi 1,055 10-oct 501 59-64 113 113 1997 mini 0,141 16-avr 376 37-36 Etale PM maxi 2,674 10-juil 485 72-69 148 1998 mini 0,033 05-mars 626 79-70 -158 maxi 0,738 14-juil 268 89-87 155 1999 mini 0,064 23-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 maxi 1,632 02-sept 230 82-76 143 2000 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 178 2003 mini 0,082 27-juin 448 49-49 -108 maxi 1,965 12-sept 162 92-93 146 2004 mini 0,082 27-juin 448 49-49 -108 maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 2002 23-août 226 26-27 Etale PM maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,450 21-avr 961 48-45 157 2008 mini 0,092 23-août 226 26-27 Etale PM maxi 1,450 21-avr 961 48-45 157 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,0092 23-août 226 26-27 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,0000 0,0000 18-avr 1399 69 117 2009 mini 0,0000 0,0000 18-avr 1399 69 117 2009 mini 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,00000	1991 mini.	0,037	05-juin	695	51-49	0,104
maxi. 1,334 09-juil 1410 57-54 94 1993 mini 0,128 09-sept 325 51-45 Etale PM maxi 1,380 04-nov 947 75-72 92 1994 mini 0,081 07-juil 725 54-59 PM maxi 0,081 07-juil 725 54-59 PM maxi 0,088 10-nov 1885 66-59 120 1995 mini 0,104 21-sept 285 39-44 Etale PM maxi 0,660 13-avr 914 59-67 114 1996 mini 0,122 25-juil 265 49-48 BM 1997 mini 0,141 16-avr 376 37-36 Etale PM 1998 mini 0,033 05-mars 626 79-70 -158 maxi 0,738 14-juil 268 89-87 155 1999 mini		1,216	13-mars	838	41-47	98
1993 mini	1992 mini.	0,049	05-nov	1790	37-40	-78
maxi 1,380 04-nov 947 75-72 92 1994 mini 0,081 07-juil 725 54-59 PM maxi 0,878 10-nov 1885 66-59 120 1995 mini 0,104 21-sept 285 39-44 Etale PM maxi 0,660 13-avr 914 59-67 114 1996 mini 0,122 25-juil 265 49-48 BM maxi 1,055 10-oct 501 59-64 113 1997 mini 0,141 16-avr 376 37-36 Etale PM maxi 2,674 10-juil 485 72-69 148 1998 mini 0,033 05-mars 626 79-70 -158 1998 mini 0,064 23-sept 397 55-62 +/-111 maxi 1,632 02-sept 230 82-76 143 2000 mini	maxi.	1,334	09-juil	1410	57-54	94
1994 mini	1993 mini	0,128	09-sept	325	51-45	Etale PM
maxi 0,878 10-nov 1885 66-59 120 1995 mini 0,104 21-sept 285 39-44 Etale PM maxi 0,660 13-avr 914 59-67 114 1996 mini 0,122 25-juil 265 49-48 BM 1997 mini 0,141 16-avr 376 37-36 Etale PM maxi 2,674 10-juil 485 72-69 148 1998 mini 0,033 05-mars 626 79-70 -158 1999 mini 0,033 05-mars 626 79-70 -158 1999 mini 0,064 23-sept 397 55-62 +/-111 maxi 1,632 02-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 maxi 1,209 29-sept 333 105-106 140 2001		1,380		947	75-72	
1995 mini	1994 mini	0,081	07-juil	725	54-59	
maxi 0,660 13-avr 914 59-67 114 1996 mini 0,122 25-juil 265 49-48 BM maxi 1,055 10-oct 501 59-64 113 1997 mini 0,141 16-avr 376 37-36 Etale PM maxi 2,674 10-juil 485 72-69 148 1998 mini 0,033 05-mars 626 79-70 -158 1999 mini 0,064 23-sept 397 55-62 +/-111 maxi 1,632 02-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 maxi 1,209 29-sept 333 105-106 140 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini		0,878	10-nov	1885	66-59	
1996 mini 0,122 25-juil 265 49-48 BM maxi 1,055 10-oct 501 59-64 113 1997 mini 0,141 16-avr 376 37-36 Etale PM maxi 2,674 10-juil 485 72-69 148 1998 mini 0,033 05-mars 626 79-70 -158 1999 mini 0,064 23-sept 397 55-62 +/-111 maxi 1,632 02-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 maxi 1,209 29-sept 333 105-106 140 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi	1995 mini		21-sept			
maxi 1,055 10-oct 501 59-64 113 1997 mini 0,141 16-avr 376 37-36 Etale PM maxi 2,674 10-juil 485 72-69 148 1998 mini 0,033 05-mars 626 79-70 -158 maxi 0,738 14-juil 268 89-87 155 1999 mini 0,064 23-sept 397 55-62 +/-111 maxi 1,632 02-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 maxi 1,209 29-sept 333 105-106 140 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368			13-avr			
1997 mini 0,141 16-avr 376 37-36 Etale PM maxi 2,674 10-juil 485 72-69 148 1998 mini 0,033 05-mars 626 79-70 -158 maxi 0,738 14-juil 268 89-87 155 1999 mini 0,064 23-sept 397 55-62 +/-111 maxi 1,632 02-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 maxi 1,209 29-sept 333 105-106 140 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 mini	1996 mini				49-48	
maxi 2,674 10-juil 485 72-69 148 1998 mini 0,033 05-mars 626 79-70 -158 maxi 0,738 14-juil 268 89-87 155 1999 mini 0,064 23-sept 397 55-62 +/-111 maxi 1,632 02-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 2000 mini 0,094 08-sept 307 31 82 2001 mini 0,072 31-août 236 50-55 106 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
1998 mini 0,033 05-mars 626 79-70 -158 maxi 0,738 14-juil 268 89-87 155 1999 mini 0,064 23-sept 397 55-62 +/-111 maxi 1,632 02-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 maxi 1,209 29-sept 333 105-106 140 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 mini 0,089 11-juil 173 61-65 116 2004 mini 0,082 27-juin 448 49-49 -108 2005 mini 0,126 15-juil 273 50-47 123 <						
maxi 0,738 14-juil 268 89-87 155 1999 mini 0,064 23-sept 397 55-62 +/-111 maxi 1,632 02-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 maxi 1,209 29-sept 333 105-106 140 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 mini 0,089 11-juil 173 61-65 116 maxi 1,965 12-sept 162 92-93 146 2004 mini 0,082 27-juin 448 49-49 -108 maxi 0,212 06-nov 568 27-26 105 <tr< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td></tr<>			-			
1999 mini 0,064 23-sept 397 55-62 +/-111 maxi 1,632 02-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 maxi 1,209 29-sept 333 105-106 140 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 mini 0,089 11-juil 173 61-65 116 maxi 1,965 12-sept 162 92-93 146 2004 mini 0,082 27-juin 448 49-49 -108 maxi 0,212 06-nov 568 27-26 105 2005 mini 0,126 15-juil 273 50-47 123						
maxi 1,632 02-sept 230 82-76 143 2000 mini 0,094 08-sept 307 31 82 maxi 1,209 29-sept 333 105-106 140 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 mini 0,089 11-juil 173 61-65 116 maxi 1,965 12-sept 162 92-93 146 143 2004 mini 0,082 27-juin 448 49-49 -108 146 146 146 147 146 147 146 146 146 146 146 146 146 146 146 146 146 146			-			
2000 mini 0,094 08-sept 307 31 82 maxi 1,209 29-sept 333 105-106 140 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 mini 0,089 11-juil 173 61-65 116 2003 mini 0,089 11-juil 173 61-65 116 2004 mini 0,082 27-juin 448 49-49 -108 2004 mini 0,082 27-juin 448 49-49 -108 2005 mini 0,126 15-juil 273 50-47 123 2005 mini 0,150 06-juil 202 40-41 111						
maxi 1,209 29-sept 333 105-106 140 2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 mini 0,089 11-juil 173 61-65 116 2003 mini 0,089 11-juil 173 61-65 116 2004 mini 0,082 27-juin 448 49-49 -108 2004 mini 0,082 27-juin 448 49-49 -108 2005 mini 0,126 15-juil 273 50-47 123 2005 mini 0,150 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111			•			
2001 mini 0,072 31-août 236 50-55 106 maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 mini 0,089 11-juil 173 61-65 116 maxi 1,965 12-sept 162 92-93 146 2004 mini 0,082 27-juin 448 49-49 -108 maxi 0,212 06-nov 568 27-26 105 2005 mini 0,126 15-juil 273 50-47 123 maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM						
maxi 0,829 04-juil 312 68-71 120 2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 mini 0,089 11-juil 173 61-65 116 maxi 1,965 12-sept 162 92-93 146 2004 mini 0,082 27-juin 448 49-49 -108 2005 mini 0,212 06-nov 568 27-26 105 2005 mini 0,126 15-juil 273 50-47 123 maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70						
2002 mini 0,078 17-sept 412 38-41 Etale BM maxi 2,368 18-avr 692 73-68 178 2003 mini 0,089 11-juil 173 61-65 116 maxi 1,965 12-sept 162 92-93 146 2004 mini 0,082 27-juin 448 49-49 -108 maxi 0,212 06-nov 568 27-26 105 2005 mini 0,126 15-juil 273 50-47 123 maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
maxi 2,368 18-avr 692 73-68 178 2003 mini 0,089 11-juil 173 61-65 116 maxi 1,965 12-sept 162 92-93 146 2004 mini 0,082 27-juin 448 49-49 -108 maxi 0,212 06-nov 568 27-26 105 2005 mini 0,126 15-juil 273 50-47 123 maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM 2009 mini			-			
2003 mini 0,089 11-juil 173 61-65 116 maxi 1,965 12-sept 162 92-93 146 2004 mini 0,082 27-juin 448 49-49 -108 maxi 0,212 06-nov 568 27-26 105 2005 mini 0,126 15-juil 273 50-47 123 maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini <						
maxi 1,965 12-sept 162 92-93 146 2004 mini 0,082 27-juin 448 49-49 -108 maxi 0,212 06-nov 568 27-26 105 2005 mini 0,126 15-juil 273 50-47 123 maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM						
2004 mini 0,082 27-juin 448 49-49 -108 maxi 0,212 06-nov 568 27-26 105 2005 mini 0,126 15-juil 273 50-47 123 maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM						
maxi 0,212 06-nov 568 27-26 105 2005 mini 0,126 15-juil 273 50-47 123 maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM						
2005 mini 0,126 15-juil 273 50-47 123 maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM			-			
maxi 1,450 21-avr 961 48-45 157 2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM						
2006 mini 0,150 06-juil 202 40-41 111 maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM						
maxi 1,189 09-juin 326 61-65 120 2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM						
2007 mini 0,092 23-août 226 26-27 Etale PM maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM						
maxi 1,300 11-juil 469 59-61 -70 2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM						
2008 mini 0,074 11-oct 242 51 Etale PM maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM						
maxi 1,400 18-avr 1399 69 117 2009 mini 0,108 18-juin 645 47-50 Etale PM			,			
2009 mini 0,108 18-juin 645 47-50 Etale PM						
	maxi	0,108	25-avr	1563	92-95	Etale PM

^(*) Moyenne des 10 jours précèdents.

Tableau 3-12 : Maximum et minimum des MES observés au cours des années 1978 à 2009

Point E-PK 52 FOND

	1	I OIIIt L I I	N 32 FUND		Vitesses max
Année	g/l	Date	Débits	Coefficients	de courant
Ailliee	9/1	Date	(*)	Coefficients	(cm.s ⁻¹)
1978 mini.	0,136	30-août	177	43-47	90
maxi.	3,340	19-juil	524	76-82	120
1979 mini.	0,080	07-juin	1814	52-56	95
maxi.	5,470	13-mars	685	73-77	130
1980 mini.	0,090	13-févr	1580	44-48	-65
maxi.	2,860	23-avr	480	48-43	110
1981 mini.	0,058	12-août	263	41-44	75
maxi.	38,810	08-juil	327	66-62	105
1982 mini.	0,408	07-juil	372	72-73	150
maxi.	40,980	11-août	249	75-72	90
1983 mini.	0,164	08-juin	1471	56-51	-100
maxi.	41,960	22-juin	838	63-65	-100
1984 mini.	0,324	08-août	275	49-50	85
maxi.	31,310	11-janv	686	51-48	135
1985 mini.	0,102	25-sept	260	41-47	-55
maxi.	7,168	13-mars	1422	80-71	145
1986 mini.	0,124	14-mai	2146	62-58	65
maxi.	3,090	27-août	222	57-51	70
1987 mini.	0,174	19-août	438	33	50
maxi.	8,250	20-mai	700	58-54	110
1988 mini.	0,145	27-avr	1301	36-40	-55
maxi	3,580	24-août	327	36-40	95
1989 mini.	0,164	11-juil	205	54-50	80
maxi.	9,574	15-mars	1340	50-42	108
1990 mini.	0,190	04-juil	487	43-44	90
maxi.	5,940	04-avr	474	40	82
1991 mini.	0,060	05-juin	695	51-49	86
maxi.	3,178	14-nov	308	44-40	-79
1992 mini.	0,082	25-juin	1657	46-46	-78
maxi.	9,956	24-avr	410	50-44	-90
1993 mini	0,213	29-juil	456	51-45	-10
maxi	3,978	15-avr	650	40-37	-96
1994 mini	0,144	19-mai	1473	51-50	BM
maxi	5,978	05-mai	1784	46	BM
1995 mini	0,147	19-oct	378	33	Etale BM
maxi	2,453	24-mai	800	53	-82
1996 mini	0,174	25-juil	265	49-48	BM
maxi	6,216	25-avr	731	52-46	86
1997 mini	0,196	12-juin	475	58-53	BM
maxi	3,760	24-juil	311	104-101	-105
1998 mini	0,046	05-mars	626	79-70	-148
maxi	2,032	03-juin	703	45-43	80
1999 mini	0,102	02-sept	230	82-76	94
maxi	3,102	07-mai	1411	58-54	-88
2000 mini	0,179	21-juil	408	75-73	BM
maxi	5,007	13-avr	1161	49	-53
2001 mini	0,107	03-mai	1468	53	-88
maxi	1,314	09-nov	275	47-45	66
2002 mini	0,292	17-sept	412	38-41	PM
maxi	9,111	18-avr	692	73-68	-59
2003 mini	0,160	11-juil	173	61-65	85
maxi	7,398	14-nov	286	65-60	85
2004 mini	0,242	27-juin	448	49-49	88
maxi	0,523	22-oct	368	42-41	76
2005 mini	0,118	30-sept	322	44-51	85
maxi	2,350	21-avr	961	48-45	108
2006 mini	0,230	06-juil	202	40-41	76
maxi	8,667	20-avr	1134	48-43	94 Etala BM
2007 mini	0,147	23-août	226	26-27	Etale PM
maxi	3,950	08-juin	1163	60-58	-53
2008 mini	0,232	09-juin	2231	73-58	Etale BM
maxi 2009 mini	6,200 0.169	18-avr 18-juin	1399 645	69 47-50	-117 Etale PM
	0,169	18-juin 25-avr	645	47-50	
maxi	2,400	∠5-avr	1563	92-95	Etale PM

(*) Moyenne des 10 jours précèdents.

3.5. Oxygène dissous

3.5.1. Variations dans le temps

3.5.1.1. Au cours de la marée

Les écarts entre les valeurs des déficits par rapport à la saturation (maxi-mini en ml/l) s'échelonnent :

Au Point F-PK 67 (Tableau 3-13)

en surface entre 0,26 ml/l (14 oct.) et 0,50 ml/l (23 avril) au fond entre 0,14 ml/l (24 sept) et 0,71 ml/l (23 avril)

Au Point E PK 52 (Tableau 3-14)

en surface entre 0,10 ml/l (09 nov.) et 0,76 ml/l (12 oct) au fond entre 0,17 ml/l (09 nov.) et 0,70 ml/l (12 oct)

Au Point K-PK 30 (Tableau 3-15)

en surface entre 0,17 ml/l (10 nov) et 1,45 ml/l (22 sept) au fond entre 0,24 ml/l (10 nov) et 1,36 ml/l (22 sept)

3.5.1.2. Variations annuelles

Point F-PK 67 (Figures 3-27 et 3-28)

Les déficits moyens de l'année s'échelonnent entre :

en surface : 0,44 ml/l (7,88 %) le 16 juillet et 1,11 ml/l (15.91 %) le 23 avril. au fond : 0,33 ml/l (5.89 %) le 16 juillet et 0,95 ml/l (13,79 %) le 23 avril.

Les valeurs moyennes maximales de la marée ont été relevées :

le 11 nov en surface : 6,17 ml/l (89,97 %) (Qfl : 574 m³.s⁻¹ - coef. 52-54) le 11 nov au fond : 6,18 ml/l (90,08 %) (Qfl : 574 m³.s⁻¹ - coef. 52-54)

Les déficits moyens correspondants:

en surface : 0,69 ml/l (10,03 %) au fond : 0,68 ml/l (9.92 %)

Les valeurs moyennes minimales de la marée ont été relevées :

le 17 août en surface : 4,75 ml/l (88,18 %) (Qfl : 249 m³.s⁻¹ - coef. 51-58) le 17 août au fond : 4,60 ml/l (86,10 %) (Qfl : 249 m³.s⁻¹ - coef. 51-58)

Les déficits moyens correspondants :

en surface : 0,64 ml/l (11,82 %) au fond : 0,74 ml/l (13,90 %)

Les déficits minimum de l'année ont été relevés :

le 16 juillet en surface : 0,28 ml/l (5,06 %) (Qfl : 258 m³.s⁻¹ - coef. 50-48) le 16 juillet au fond : 0,21 ml/l (3,86 %) (Qfl : 258 m³.s⁻¹ - coef. 50-48)

Les déficits maximum ont été relevés :

le 23 avril en surface : 1,36 ml/l (19,33 %) (Qfl : 1278 $\text{m}^3.\text{s}^{-1}$ - coef. 77) le 23 avril au fond : 1,29 ml/l (18,31 %) (Qfl : 1278 $\text{m}^3.\text{s}^{-1}$ - coef. 77)

Les valeurs moyennes de l'année 2008 au point F évoluaient autour de 89,37 % du taux de saturation (5,67 ml/l). En 2009 les valeurs moyennes évoluent autour de 89,00 % (5,45 ml/l). Le déficit moyen annuel est évalué à 0,68 ml/l (11,00 %) alors qu'en 2008, il était évalué à 0,68 ml/l (10,63 %). (**Tableaux 3-13 et 3-16**)

Tableau 3-13: Oxygène dissous au point F (PK 67)

					VI-13 -	OXYGE	NE DISS	SOUS						
ANNEE F 2009						PO	INT F P	K 67						
	Ī	TAUX DE	1				DEF	TCIT		1	ECAR	MAXI .	1	Ofl: m3.s-1
DATES		SATURATION	MOY DE LA MAI	REE	Me	oyen	Min	imum	Max	cimum	TRANCE	IE D'EAU		(moy. 10 jours
		ml/l	ml/l	%	ml/l	%	ml/l	%	ml/l	%	ml/l	%	COEFFICIENT	précèdents)
23	S	6,95	5,84	84,09	1,11	15,91%	0,86	12,52%	1,36	19,33%	0,17	2,74	77	1278
Avril 2009	F	6,89	5,93	86,21	0,95	13,79%	0,68	10,14%	1,29	18,31%				
16	S	6,67	5,88	88,16	0,79	11,84%	0,68	10,31%	0,98	14,50%	0,20	0,68	42-40	1518
Mai 2009	F	6,55	5,77	88,17	0,78	11,83%	0,69	10,78%	0,93	13,81%				
16	S	6,01	5,43	90,32	0,58	9,68%	0,48	8,07%	0,86	14,15%	0,11	2,13	47-46	678
Juin 2009	F	5,98	5,48	91,69	0,50	8,31%	0,37	6,27%	0,73	12,02%				
16	S	5,60	5,16	92,12	0,44	7,88%	0,28	5,06%	0,64	11,32%	0,07	3,89	50-48	258
Juillet 2009	F	5,54	5,22	94,11	0,33	5,89%	0,21	3,86%	0,58	10,30%				
17	S	5,39	4,75	88,18	0,64	11,82%	0,43	8,03%	0,80	14,77%	0,18	2,34	51-58	249
Août 2009	F	5,34	4,60	86,10	0,74	13,90%	0,54	10,10%	0,91	16,84%				
24	S	5,76	5,10	88,55	0,66	11,45%	0,38	6,57%	0,81	14,00%	0,39	6,53	72-64	241
Sept 2009	F	5,75	4,95	86,01	0,81	13,99%	0,75	13,10%	0,89	15,23%				
14	S	5,97	5,41	90,61	0,56	9,39%	0,48	8,06%	0,74	12,11%	0,10	1,44	56-63	325
Octobre 2009	F	5,96	5,34	89,68	0,62	10,32%	0,51	8,74%	0,81	13,27%				
11	S	6,86	6,17	89,97	0,69	10,03%	0,52	7,80%	0,87	12,53%	0,08	2,66	52-54	574
Nov 2009	F	6,86	6,18	90,08	0,68	9,92%	0,35	5,38%	0,84	12,30%				
Moyennes	S	6,15	5,47	89,00	0,68	11,00%	0,51	8,30%	0,88	14,09%				
	F	6,11	5,43	89,01	0,67	10,99%	0,51	8,54%	0,87	14,01%				
	G	6,13	5,45	89,00	0,68	11,00%	0,51	8,42%	0,88	14,05%				
min Surf		5,39	4,75	84,09	0,44	7,88%	0,28	5,06%	0,64	11,32%	0,07	0.68		
min Fond		5,34	4,60	86,01	0,33	5,89%	0,21	3,86%	0,58	10,30%				
max Surf		6.95	6.17	92.12	1,11	15.91%	0.86	12.52%	1.36	19.33%	0.39	6.53		

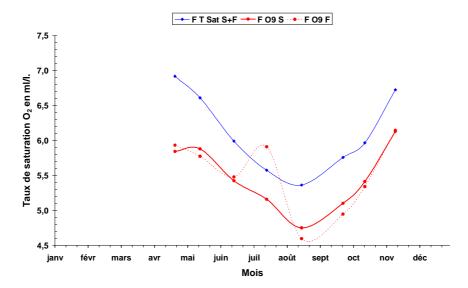


Figure 3-27 : Variations annuelles des valeurs moyennes d'oxygène dissous exprimées en ml.Γ¹ au Point F (PK 67) en 2009

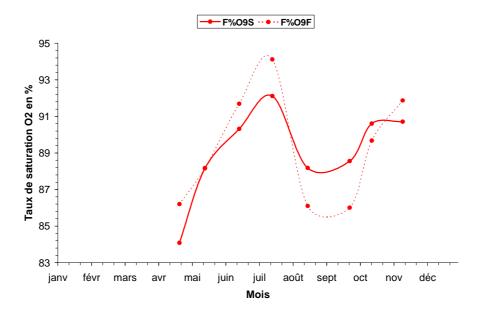


Figure 3-28 : Variations annuelles des valeurs moyennes d'oxygène dissous exprimées en % au Point F (PK 67) en 2009

Au Point E-PK 52 (Figures 3-29 et 3-30)

Les déficits moyens de l'année s'échelonnent entre :

en surface : 0,66 ml/l (12,02 %) le 19 août et 1,62 ml/l (21,62 %) le 09 nov. au fond : 0,70 ml/l (12,07 %) le 18 juillet et 1,60 ml/l (21,41 %) le 09 nov.

Les valeurs moyennes maximales de la marée ont été relevées

le 18 mai. en surface : 5,91 ml/l (86,57 %) (Qfl : 1481 m³.s⁻¹ - coef. 37-38) le 18 mai au fond : 5,89 ml/l (86,30 %) (Qfl : 1481 m³.s⁻¹ - coef. 37-38)

Les déficits moyens correspondants ont des valeurs de:

en surface : 0,92 ml/l (13,43 %) au fond : 0,94 ml/l (13,70 %)

Les valeurs moyennes minimales de la marée ont été relevées :

le 19 août. en surface : 4,82 ml/l (87,98 %) (Qfl : 253 m³.s⁻¹ - coef. 75-83) le 19 août au fond : 4,74 ml/l (86,38 %) (Qfl : 253 m³.s⁻¹ - coef. 75-83)

Les déficits moyens correspondants ont des valeurs de :

en surface : 0,66 ml/l (12,02 %) au fond : 0,75 ml/l (13,62 %)

Les déficits minimum de l'année ont été observés :

le 19 août. en surface : 0,53 ml/l (9,72 %) (Qfl : 253 m 3 .s $^{-1}$ - coef. 75-83) le 09 nov. au fond : 0,54 ml/l (7,93 %) (Qfl : 470 m 3 .s $^{-1}$ - coef. 56-53)

Les déficits maximum ont été relevés :

le 12 oct en surface : 1,39 ml/l (22,53 %) (Qfl : $324 \text{ m}^3.\text{s}^{-1}$ - coef. 44-43) le 12 oct au fond : 1,47 ml/l (23.86 %) (Qfl : $324 \text{ m}^3.\text{s}^{-1}$ - coef. 44-43)

Les valeurs moyennes de l'année 2008 au point E évoluaient autour de 87,01 % du taux de saturation (5,65ml/l). En 2009 les valeurs moyennes évoluent autour de 84,20 % (5,31 ml/l). Le déficit moyen annuel est évalué à 1,01 ml/l (15,80 %) alors qu'en 2008 il était évalué à 0,85 ml/l (12,99 %). (**Tableau 3-14**).

Tableau 3-14 Oxygène dissous au point E (PK 52)

					VI-14	- OXYG	ENE DIS	SSOUS						
ANNEE						POINT	E PK 52							
E 2009														
	ſ	TAUX DE					DEF	TCIT		1	ECART	MAXI	1	Ofl: m3.s-1
DATES		SATURATION	MOY DE 1	A MAREE	Mo	oyen	Min	mum	Max	imum	TRANCI	IE D'EAU		(moy. 10 jour
		ml/l	ml/l	%	ml/l	%	ml/l	%	ml/l	%	ml/l	%	COEFFICIENT	précèdents)
25	S	6,97	5,76	82,70	1,21	17,30%	1,11	16,12%	1,29	18,12%	0,18	3,85	92-95	1563
Avril 2009	F	6,94	5,79	83,45	1,15	16,55%	0,89	13,14%	1,47	20,68%				
18	S	6,82	5,91	86,57	0,92	13,43%	0,75	10,97%	1,06	15,72%	0,09	1,33	37-38	1481
Mai 2009	F	6,83	5,89	86,30	0,94	13,70%	0,81	11,91%	0,99	14,49%				
18	S	6,05	5,16	85,31	0,89	14,69%	0,80	13,25%	1,08	17,55%	0,21	3,51	47-50	645
Juin 2009	F	6,05	5,22	86,40	0,82	13,60%	0,63	10,50%	1,11	18,00%				
18	S	5,82	5,02	86,28	0,80	13,72%	0,67	11,52%	0,99	16,79%	0,13	2,30	48-51	255
Juillet 2009	F	5,81	5,11	87,93	0,70	12,07%	0,60	10,33%	0,89	15,14%				
19	S	5,48	4,82	87,98	0,66	12,02%	0,53	9,72%	0,88	15,71%	0,20	4,12	75-83	253
Août 2009	F	5,49	4,74	86,38	0,75	13,62%	0,56	10,20%	0,97	17,27%		Ť		
23	S	5,96	4,98	83,64	0,98	16,36%	0,70	12,00%	1,35	22,20%	0,14	4,02	87-80	239
Sept 2009	F	5,99	4,91	81,94	1,09	18,06%	0,90	15,12%	1,47	24,00%				
12	S	5,96	4,95	83,22	1,00	16,78%	0,63	10,78%	1,39	22,53%	0,10	2,08	44-43	324
Octobre 2009	F	5,98	4,91	82,13	1,07	17,87%	0,76	12,87%	1,47	23,86%				
9	S	7,50	5,88	78,38	1,62	21,62%	0,61	8,84%	0,71	10,20%	0,03	0,94	56-53	470
Nov 2009	F	7,48	5,88	78,59	1,60	21,41%	0,54	7,93%	0,71	10,21%				
Moyennes	S	6,32	5,31	84,26	1,01	15,74%	0,72	11,65%	1,09	17,35%				
	F	6,32	5,31	84,14	1,02	15,86%	0,71	11,50%	1,13	17,96%				
	G	6,32	5,31	84,20	1,01	15,80%	0,72	11,58%	1,11	17,65%	l			
in Surf		5.48	4.82	78.38	0.66	12.02%	0.53	8.84%	0.71	10.20%	0.03	0.94		
in Fond		5,49	4,74	78,59	0,70	12,07%	0,54	7,93%	0,71	10,21%	0,05	0,2.		
nax Surf		7,50	5,91	87.98	1.62	21,62%	1.11	16.12%	1,39	22,53%	0.21	4.12		

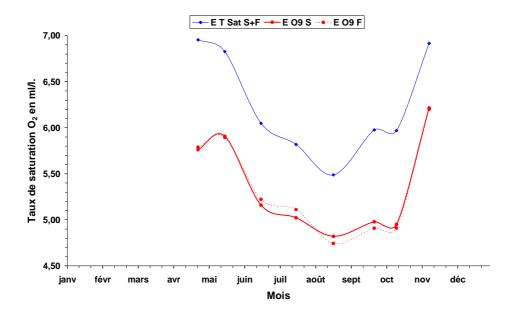


Figure 3-29 : Variations annuelles des valeurs moyennes d'oxygène dissous exprimées en $ml.\Gamma^1$ au Point E (PK 52) en 2008

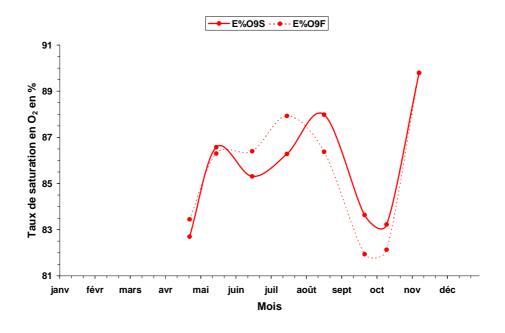


Figure 3-30 : Variations annuelles des valeurs moyennes d'oxygène dissous exprimées en % au Point E (PK 52) en 2009

Point K-PK 30 (Figures 3-31 et 3-32)

Les déficits moyens de l'année s'échelonnent entre :

en surface : 0,91 ml/l (13,15 %) le 16 mai et 2,44 ml/l (38,71 %) le 22 sept. au fond : 0,83 ml/l (11,96 %) le 16 mai et 2,52 ml/l (39,99 %) le 22 sept.

Les valeurs moyennes maximales de la marée ont été relevées

le 10 nov en surface : 6,02 ml/l (82,11 %) (Qfl : 516 m³.s⁻¹ - coef. 52-52) le 16 mai au fond : 6,14 ml/l (88,04 %) (Qfl : 1499 m³.s⁻¹ - coef. 40-38)

Les déficits moyens correspondants ont des valeurs de:

en surface : 1,32 ml/l (17,89 %) au fond : 0,83 ml/l (11,96 %)

Les valeurs moyennes minimales de la marée ont été relevées :

le 22 sept. en surface : 3,86 ml/l (61,29 %) (Qfl : 234 $\mathrm{m}^3.\mathrm{s}^{-1}$ - coef. 99-93) le 22 sept. au fond : 3,78 ml/l (60,01 %) (Qfl : 234 $\mathrm{m}^3.\mathrm{s}^{-1}$ - coef. 99-93)

Les déficits moyens correspondants ont des valeurs de :

en surface : 2,44 ml/l (38,71 %) au fond : 2,52 ml/l (39,99 %)

Les déficits minimum de l'année ont été observés :

le 16 mai en surface : 0,83 ml/l (11,92 %) (Qfl : 1499 m³.s⁻¹ - coef. 40-38) le 16 mai au fond : 0,75 ml/l (10,58 %) (Qfl : 1499 m³.s⁻¹ - coef. 40-38)

Les déficits maximum ont été relevés :

le 22 sept. en surface : 3,02 ml/l (47,67 %) (Qfl : 234 m³.s⁻¹ - coef. 99-93) le 22 sept. au fond : 3,09 ml/l (48,77 %) (Qfl : 234 m³.s⁻¹ - coef. 99-93)

Les valeurs moyennes de l'année 2008 au point K évoluaient autour de 85,24 % du taux de saturation (5,74 ml/l). En 2009 les valeurs moyennes évoluent autour de 78,46 % (5,12 ml/l). Le déficit moyen annuel est évalué à 1,39 ml/l (21,54 %) alors qu'en 2008 il était évalué à 0,97 ml/l (14,76 %) (**Tableaux 3-15** et **3-17**)

La comparaison des années 2008 et 2009, dites sèches, met en évidence des oxygénations relativement élevées. Le bouchon vaseux se situe plus en amont en 2008 qu'en 2009, d'où un déficit plus important au point K pk 30.

•

Tableau 3-15 : Oxygène dissous au point K (PK 30)

					V1-15	- OXYG	ENE DI	SSOUS						
ANNEE K 2009						POINT	K PK 30	ı						
	ſ	TAUX DE	İ				DEI	TCIT		1	ECAR'	Γ MAXI	1	Ofl: m3.s-1
DATES		SATURATION	MOY DE I	LA MAREE	Mo	yen	Min	imum	Max	imum	TRANCE	IE D'EAU		(moy. 10 jour
		ml/l	ml/l	%	ml/l	%	ml/l	%	ml/l	%	ml/l	%	COEFFICIENT	précèdents)
24	S	7,06	5,85	82,98	1,20	17,02%	1,06	15,34%	1,29	18,14%	0,14	1,81	87	1616
Avril 2009	F	7,08	5,96	84,28	1,11	15,72%	0,97	14,03%	1,22	16,88%				
16	S	6,92	6,01	86,85	0,91	13,15%	0,83	11,92%	1,10	15,91%	0,31	2,20	40-38	1499
Mai 2009	F	6,97	6,14	88,04	0,83	11,96%	0,75	10,58%	1,03	14,93%				
17	S	6,19	5,17	83,40	1,01	16,60%	0,88	14,14%	1,22	19,76%	0,07	1,13	45-46	667
Juin 2009	F	6,19	5,22	84,19	0,97	15,81%	0,85	13,69%	1,17	18,96%				
17	S	5,84	4,73	81,10	1,10	18,90%	0,98	16,77%	1,44	24,57%	0,15	2,63	47-46	257
Juillet 2009	F	5,84	4,83	82,72	1,01	17,28%	0,85	14,67%	1,29	21,95%				
18	S	5,73	4,67	81,41	1,07	18,59%	0,96	16,79%	1,30	22,54%	0,14	2,02	66	250
Août 2009	F	5,73	4,61	80,37	1,13	19,63%	1,02	17,80%	1,35	23,29%				
22	S	6,31	3,86	61,29	2,44	38,71%	1,58	24,93%	3,02	47,67%	0,15	2,43	99-93	234
Sept 2009	F	6,31	3,78	60,01	2,52	39,99%	1,73	27,37%	3,09	48,77%				
13	S	6,36	4,62	72,65	1,74	27,35%	1,58	25,24%	2,11	32,46%	0,07	0,71	45-49	330
Octobre 2009	F	6,34	4,57	72,18	1,77	27,82%	1,62	25,80%	2,14	33,17%				
10	S	7,34	6,02	82,11	1,32	17,89%	1,14	15,66%	1,31	17,88%	0,03	0,69	52-52	516
Nov 2009	F	7,30	6,02	82,50	1,28	17,50%	1,07	14,97%	1,32	17,89%				
Moyennes	S F	6,51 6.51	5,11 5,13	78,34 78,59	1,40 1.38	21,66% 21,41%	1,16 1.14	18,09%	1,65 1,63	25,59%				
	G	6,51	5,13	78,39 78,46	1,38	21,41%	1,14	17,89% 17,99%	1,63	25,27% 25,43%				
	J	0,51	5,12	, 0,40	- ,0/	21,3470	1,13	,,,,,,	1,07	-2,1370				
min Surf		5,73	3,86	61,29	0,91	13,15%	0,83	11,92%	1,10	15,91%	0,03	0,69		
min Fond]	5,73	3,78	60,01	0,83	11,96%	0,75	10,58%	1,03	14,93%				
max Surf		7,34	6.02	86,85	2.44	38,71%	1.58	25,24%	3.02	47,67%	0.31	2.63		

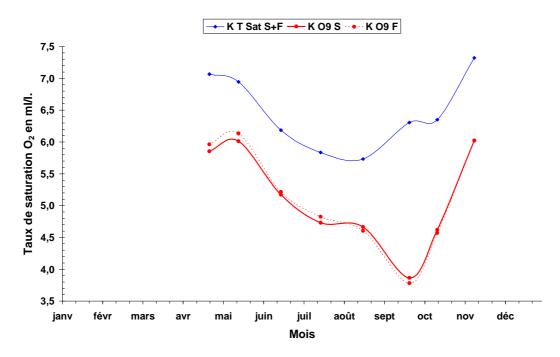


Figure 3-31 : Variations annuelles des valeurs moyennes d'oxygène dissous exprimées en ml.Γ¹ au Point K (PK 30) en 2009

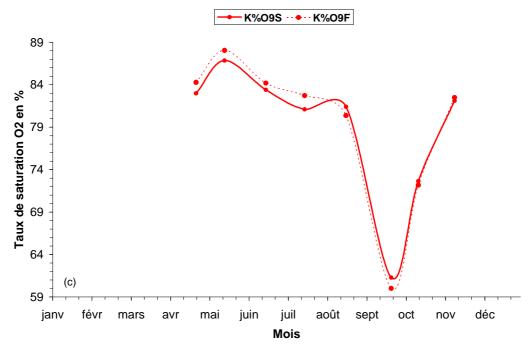


Figure 3-32 : Variations annuelles des valeurs moyennes d'oxygène dissous exprimées en % au Point K (PK 30) en 2009

3.5.1.3. Variations pluriannuelles

Tableau 3-16 : Moyenne des déficits annuels aux points F (PK 67) et E (PK 52) Intervalle de confiance Tn-1

	ANNEE	Nombre de	Moyenne des	Intervalle	n-1
		valeurs	déficits annuels : ml/ l	de confiance	
Point F	1992	62	1,110	0,0582	0,275
	1993	60	1,238	0,0610	0,284
	1994	64	1,107	0,0790	0,380
	1995	64	0,800	0,0645	0,310
	1996	64	0,937	0,0634	0,305
	1997	64	0,990	0,0355	0,171
	1998	64	0,873	0,0507	0,243
	1999	64	1,040	0,0534	0,256
	2000	64	1,201	0,0560	0,268
	2001	64	0,997	0,0617	0,295
	2002	64	1,010	0,0619	0,296
	2002	64	0,842	0,0752	0,360
	2003	64	0,786	0,0752	0,300
			,	,	,
	2005	64	0,448	0,0842	0,400
	2006	58	0,584	0,0690	0,330
	2007	48	0,415	0,0650	0,311
	2008	64	0,670	0,0600	0,285
	2009	64	0,667	0,0501	0,238
Point E	1978	124	0,499	0,1766	1,186
	1979	157	0,420	0,0611	0,463
	1980	163	0,496	0,0599	0,462
	1981	168	0,820	0,0526	0,412
	1982	162	0,843	0,0499	0,384
	1983	168	1,165	0,0444	0,348
	1984	100	1,337	0,0461	0,278
	1985	90	1,312	0,0599	0,342
	1986	90	1,175	0,0536	0,306
	1987	90	1,301	0,0554	0,316
	1988	90	1,362	0,0496	0,283
	1989	90	1,254	0,0782	0,446
	1990	86	1,186	0,0513	0,286
	1991	88	1,199	0,0513	0,300
	1992	64	1,259	0,0630	0,303
	1993	64	1,420		
		64		0,0535	0,257
	1994	64	1,097	0,1081	0,520
	1995		1,000	0,0730	0,351
	1996	64	1,047	0,0552	0,266
	1997	64	1,064	0,0435	0,209
	1998	64	1,147	0,0573	0,274
	1999	64	1,154	0,0558	0,267
	2000	64	1,456	0,0598	0,286
	2001	64	0,939	0,0845	0,405
	2002	64	1,170	0,0687	0,329
	2003	64	1,111	0,0851	0,408
	2004	64	1,039	0,0836	0,397
	2005	64	0,817	0,0670	0,318
	2006	64	0,819	0,0655	0,314
	2007	64	0,590	0,0495	0,237
	2008	64	0,768	0,0445	0,211
	2009	64	0,899	0,0504	0,240
Le			ablies d'après les valeurs m	,	,
			déficits moyens qui croît d		

Tableau 3-17 : Moyenne des déficits annuels aux points J (PK 52) et K (PK 30) Intervalle de confiance Tn-1

	ANNEE	Nombre de	Moyenne des	Intervalle	n-1
		valeurs	déficits annuels : ml/ l	de confiance	
Point J	1984	86	1,387	0,0698	0,390
	1985	90	1,294	0,0397	0,227
	1986	90	1,025	0,0576	0,329
	1987	90	1,470	0,0631	0,360
	1988	90	1,518	0,0503	0,287
	1989	90	1,422	0,0751	0,428
	1990	90	1,328	0,0524	0,299
	1991	88	1,338	0,0597	0,337
Point K	1984	90	1,511	0,0678	0,387
Onit it	1985	90	1,419	0,0708	0,474
	1986	90	1,241	0,0736	0,474
	1987	90	1,800	0,0790	0,451
	1988	90	1,361	0,0710	0,405
	1989	90	1,517	0,0644	0,368
	1990	90	1,628	0,0634	0,362
	1991	88	1,600	0,0620	0,350
	1992	64	1,592	0,0850	0,409
	1993	64	1,896	0,0746	0,359
	1994	64	1,132	0,1556	0,749
	1995	64	1,470	0,1522	0,732
	1996	64	1,553	0,0645	0,310
	1997	64	1,674	0,0658	0,317
	1998	64	1,516	0,0580	0,277
	1999	64	1,539	0,0642	0,307
	2000	64	1,709	0,0711	0,340
	2001	64	1,119	0,1103	0,528
	2002	64	1,710	0,0509	0,244
	2003	64	1,605	0,0927	0,444
	2004	64	1,542	0,1229	0,584
	2005	64	1,242	0,0682	0,324
	2006	64	1,219	0,0834	0,399
	2007	56	0,823	0,0972	0,466
	2008	64	0,946	0,0847	0,402
	2009	64	1,338	0,1166	0,554
	2006 2007 2008	64 56 64	1,219 0,823 0,946	0,0834 0,0972 0,0847	

3.5.2. Variations spatiales

Les variations spatiales sont étudiées longitudinalement (sur la longueur de l'estuaire) et verticalement (sur la tranche d'eau) à partir des mesures effectuées lors des 8 campagnes réalisées au cours de l'année.

3.5.2.1. Variations longitudinales

(Tableaux 3-13 à 3-15)

La moyenne des teneurs annuelles 2009 est de :

En surface:

Au Point F:

5,47 ml/l (89,00 %) pour une valeur de saturation de 6,15 ml/l, d'où un déficit de 0,68 ml/l (11,00 %).

Au Point E:

5,31 ml/l (84,26 %) pour une valeur de saturation de 6,32 ml/l, d'où un déficit de 1,01 ml/l (15,74 %)

Au Point K:

5,11 ml/l 78,34 %) pour une valeur de saturation de 6,51 ml/l, d'où un déficit de 1,40 ml/l (21,66 %).

Au fond:

Au point F:

5,43 ml/l (89,01 %) pour une valeur de saturation de 6,11 ml/l, d'où un déficit de 0,67 ml/l (10.24 %)

Au point E:

5,31 ml/l (84,14 %) pour une valeur de saturation de 6,32 ml/l, d'où un déficit de 1,02 ml/l (15,86 %)

Au Point K:

5,13 ml/l (78,59 %) pour une valeur de saturation de 6,51 ml/l, d'où un déficit de 1,38 ml/l (21,41 %)

Les déficits moyens mensuels (surface et fond) s'échelonnent :

Au Point F:

entre 0,33 ml/l (7,88 %) le 16 juillet et 1,11 ml/l (15,91 %) le 23 avril.

Au Point E:

entre 0,66 ml/l (12,02 %) le 19 août. et 1,62 ml/l (21,62 %) le 09 novembre.

Au Point K:

entre 0,83 ml/l (11,96 %) le 16 mai et 2,52 ml/l (39,99 %) le 22 septembre.

Pour l'année 2009 la comparaison des déficits aux trois points est représentée sur la **Figure 3-36**.

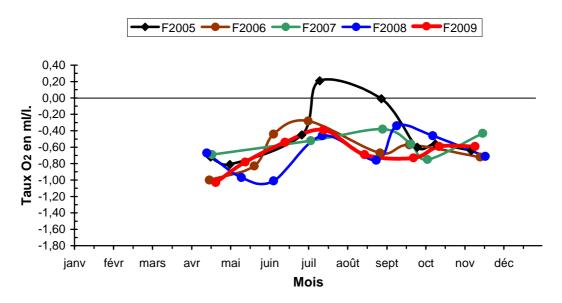


Figure 3-33 : Variations annuelles du déficit en oxygène dissous au point F (PK 67) (valeurs moyennes) de 2005 à 2009

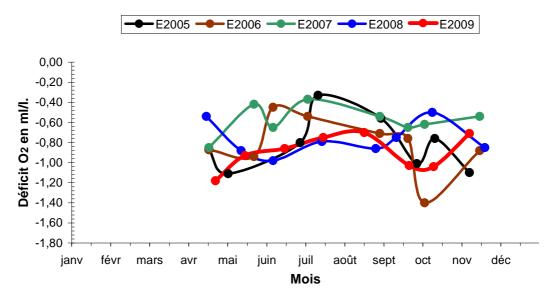


Figure 3-34 : Variations annuelles du déficit en oxygène dissous au point E (PK 52) (valeurs moyennes) de 2005 à 2009

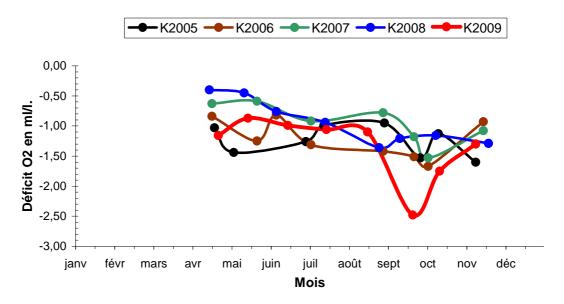


Figure 3-35 : Variations annuelles du déficit en oxygène dissous au point K (PK 30) (valeurs moyennes) de 2005 à 2008

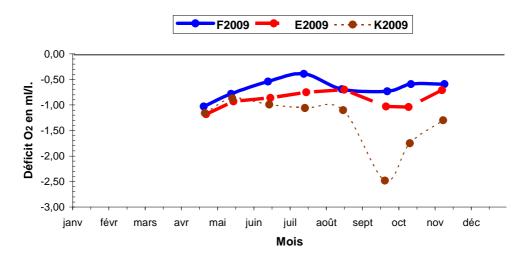


Figure 3-36 : Variations du déficit en oxygène dissous au point F, E, et K (valeurs moyennes) en 2009

3.5.2.2. Variations verticales

Les écarts maxima entre les déficits des teneurs en oxygène dissous sur <u>la tranche d'eau</u> ont évolué :

Au Point F-PK 67 (Tableau 3-13)

Entre 0,07 ml/l (3,89 %) le 16 juillet et 0,39 ml/l (6,53 %) le 24 sept. Cette dernière valeur a été observée à mi-jusant et correspond à des eaux ayant une température de 20,43° C en surface et 19,47° C au fond, et de turbidité : 0,096 g/l en surface et 0,973 g/l au fond

Au Point E-PK 52 (Tableau 3-14)

Entre 0,03 ml/l (0,94 %) le 09 nov et 0.21 ml/l (3,51 %) le 18 juin. Cette dernière valeur a été observée à la pleine mer et correspond à des eaux ayant une température de 22,27° C en surface et 22,12°C au fond, et de turbidité : 0,108 g/l en surface et 0,169 g/l au fond.

Au Point K-PK 30 (Tableau 3-15)

Entre 0,03 ml/l (0,69 %) le 09 nov et 0,31 ml/l (2,20 %) le 17 mai. Cette dernière valeur a été observée à la pleine mer et correspond à des eaux ayant une température de 16,16° C en surface et 15,26°C au fond, et de turbidité : 0,044 g/l en surface et 0,064 g/l au fond.

Les teneurs en oxygène dissous en surface sont légèrement supérieures à celles du fond dans la majeure partie des cas.

Synthèse:

Depuis le début des mesures (1978 pour le point E), on n'observe pas de diminution de la teneur en oxygène dissous des eaux. Les fluctuations observées sont liées à la turbidité des eaux et donc à la position moyenne du bouchon vaseux au cours de l'année. Ces dernières années, le bouchon vaseux se localise très en amont au cours de la période estivale, d'où des teneurs en oxygène dissous, relativement élevées pour l'estuaire à cette époque. Si le bouchon vaseux doit redescendre, suite à des augmentations de débit fluviaux même très modérés, il se produira immanquablement une baisse des teneurs en oxygène dissous, observée aux alentours de septembre - octobre depuis 2005.

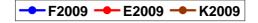
3.6. Mesure électrochimique du pH

3.6.1. Variations annuelles

Le pH moyen relevé au cours de l'année 2009 a évolué :

Au point F (Figure 3-37)

en surface entre 7,98 (24 septembre) et 8,23 (17 août) au fond entre 7,98 (24 septembre) et 8,21 (17 août)


Au point E (Figure 3-37)

en surface entre 7,60 (18 mai) et 8,17 (19 août) au fond entre 7,60 (18 mai) et 8,16 (18 juillet)

Au point K(Figure 3-37)

en surface entre 7,67 (17 mai) et 8,12 (10 novembre) au fond entre 7,73 (17 mai) et 8,12 (10 novembre) Ces valeurs varient très peu sur la tranche d'eau.

Le pH augmente d'amont en aval, au fur et à mesure que la proportion d'eau marine devient plus importante.

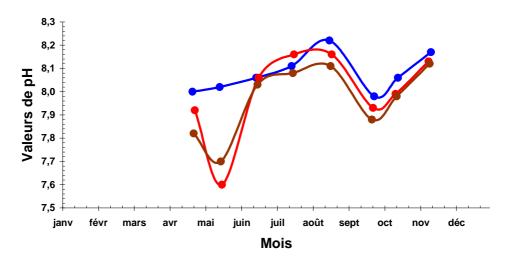


Figure 3-37 : Evolution du pH moyen (fond+surface) aux points F E K en 2009

La **Figure 3-38** montre l'évolution du taux de saturation en oxygène dissous et du pH aux points F, E et K. Les apports d'eaux douces printanières pluvionivales de faible pH sont bien oxygénés, ainsi que les eaux marines de pH plus élevées qui pénètrent dans

l'estuaire. En fin d'année, les petites crues automnales de faible pH, sous l'effet de la reconstitution du bouchon vaseux vers l'amont, sont moins bien oxygénées.

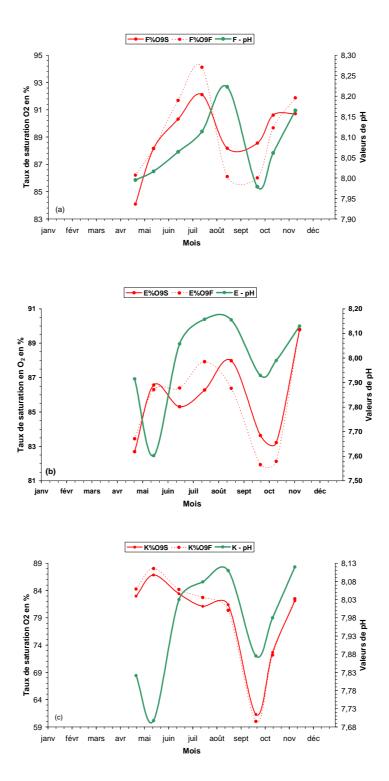


Figure 3-38 : Variations moyennes annuelles du pH (fond, surface) et du taux de saturation en oxygène au point F (a), E (b), K (c) en 2009

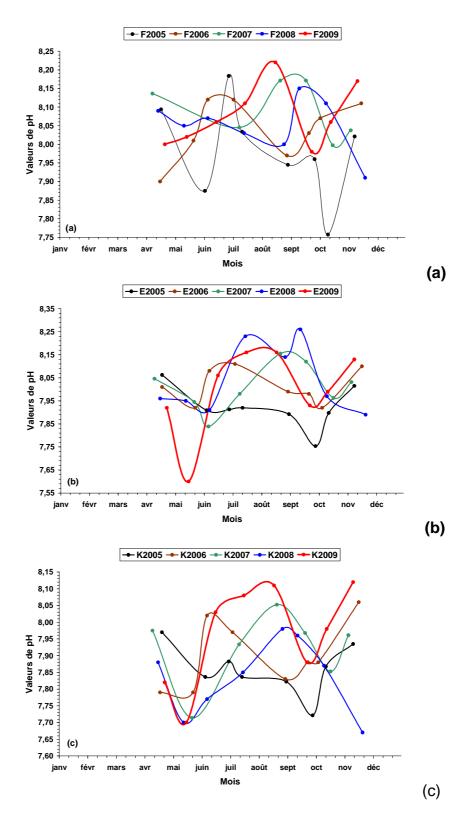


Figure 3-39 : Variations moyennes annuelles du pH aux points F (a), E (b), K (c) de 2006 à 2009

Synthèse:

Si on compare les 5 années, on note que le pH est très sensible au débit fluvial. Une augmentation brusque du débit fluvial (même minime), provoque une diminution du pH. La gamme de variation des pH est étroite (**Figure 3-39**). Au cours de l'été, on observe souvent une diminution progressive et lente du pH. Ceci indique une « stagnation » des eaux estuariennes et ce sont les petites augmentations de débit du début de l'automne qui y mettent fin.

4. Paramètres hydrobiologiques et contaminants chimiques

Le contexte spatio-temporel de l'étude de surveillance écologique, et les méthodologies utilisées pour chaque thématique et paramètre, sont regroupés dans le chapitre 1 « Présentation du site et stratégie d'étude ».

4.1. Carbone organique

L'article 29 de l'arrêté du 18 septembre 2003 autorisant Electricité de France à poursuivre les prélèvements d'eau et les rejets d'effluents liquides et gazeux pour l'exploitation du site nucléaire du Blayais, prévoit la quantification du carbone organique particulaire, tel que réalisé depuis 1992, et celle du carbone organique total. Compte tenu de la nature limoneuse des eaux de l'estuaire de la Gironde, il a été décidé²² de réaliser le dosage du carbone organique dissous ; la teneur en carbone organique total est alors obtenue par sommation des fractions particulaires et dissoutes.

4.1.1. Variations saisonnières

Compte tenu de la forte turbidité des eaux de la Gironde, par rapport à un milieu océanique ou fluvial, les concentrations en carbone organique total sont majoritairement très proches de celles du carbone organique particulaire pour les trois stations (**Figures 4-1 à 4-3**). Néanmoins, des variations des concentrations sont observées d'une station à l'autre. Pour les stations K et E, une diminution brutale des valeurs de COP et COT entre avril et mai 2009, puis une augmentation progressive des concentrations est observée jusqu'en novembre. Pour la station F, entre avril et juillet, les teneurs en COP diminuent de façon significative puis augmentent à compter du mois d'août. Pour les 3 stations, les teneurs les plus élevées en COT sont enregistrées pour les campagnes d'avril et novembre.

²² Réunion annuelle de suivi du 18 décembre 2003 au CNPE du Blayais

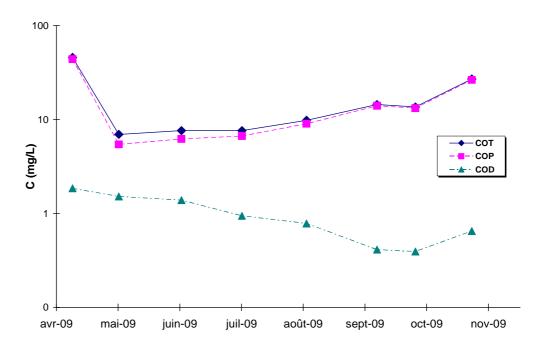


Figure 4-1 : Variations saisonnières des teneurs en carbone organique, moyenne par station et mission, station E

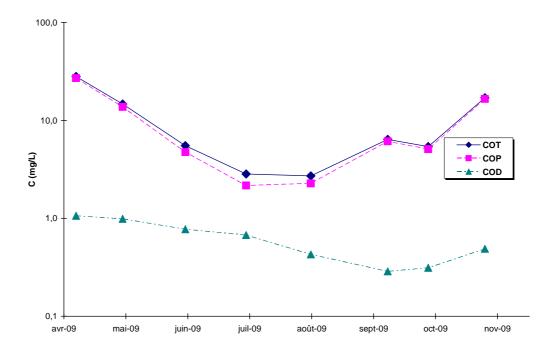


Figure 4-2 : Variations saisonnières des teneurs en carbone organique, moyenne par station et mission, station F

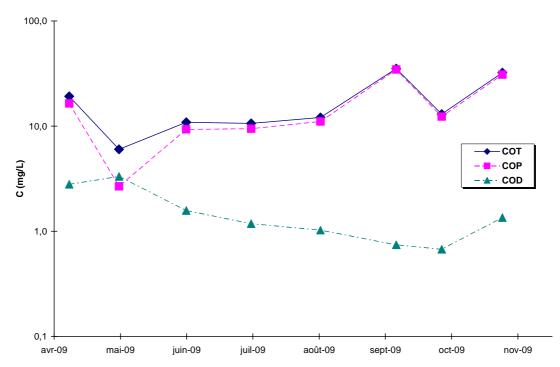


Figure 4-3 : Variations saisonnières des teneurs en carbone organique, moyenne par station et mission, station K

La fraction dissoute, bien que comparativement plus faible présente néanmoins des variations saisonnières intéressantes. Ainsi, pour 2009, une évolution amont - aval des teneurs en carbone organique dissous se dégage de façon significative, notamment à partir de la crue printanière (**Figure 4-4**). Les teneurs les plus faibles sont enregistrées à la station aval (F) et les plus élevées en amont (station K). Comme dans de nombreux cas (cf. § C), la station E constitue une situation intermédiaire, en raison de sa localisation dans l'Estuaire.

D'autre part, les teneurs enregistrées au printemps sont globalement plus faibles par rapport à celles de 2008 malgré le pic de COD observé en mai pour la station K (influence de la crue printanière).

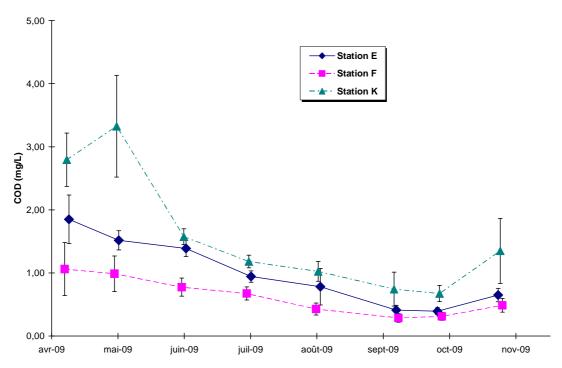


Figure 4-4 : Variations saisonnières des teneurs en carbone organique dissous, en moyenne par mission

La fraction particulaire du carbone organique (COP) est étroitement liée aux matières en suspension (MES). Ainsi, pour chaque station, on note toujours une harmonisation des variations saisonnières des teneurs en MES et en COP (**Figures 4-5 et 4-6**). La répartition des concentrations en COP par rapport à celles des MES est caractéristique des eaux de la Gironde en raison de la nature limoneuse des sédiments drainés par les deux principaux fleuves qui le constituent (**Figure 4-7**).

Trois périodes se distinguent nettement avec une corrélation linéaire des valeurs en MES et en COP pour les trois stations étudiées. En avril et au mois de novembre, les eaux présentent des concentrations plus élevées en MES et en COP pour la station E en comparaison aux deux autres stations. A partir du mois de mai, les tendances s'inversent; les valeurs en MES et en COP diminuent vers l'aval (station F) et augmentent vers l'amont (station K)

La station E présente les plus faibles variations et conserve sa situation de station de mesure intermédiaire, les plus fortes variations étant enregistrées pour la station F.

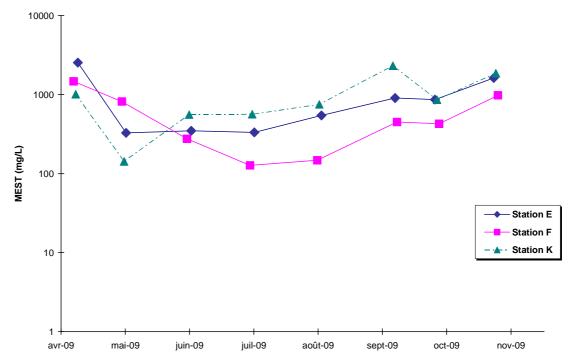


Figure 4-5 : Variations saisonnières des teneurs en matières en suspension, en moyenne par mission

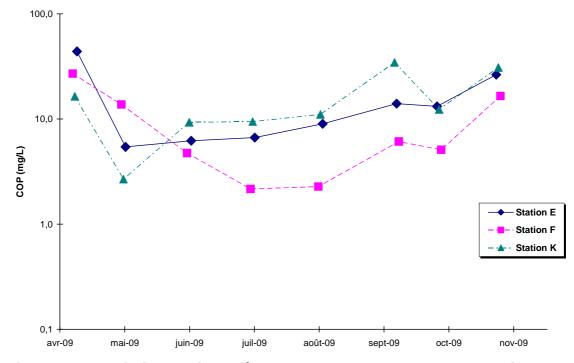


Figure 4-6 : Variations saisonnières des teneurs en carbone organique particulaire, en moyenne par mission

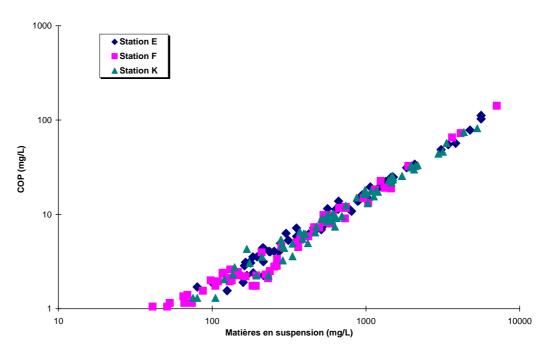


Figure 4-7 : répartitions des teneurs en COP par rapport à celles des matières en suspension, niveaux et missions confondus par station

D'autre part, la fraction organique des particules en suspension peut varier en fonction de la période de l'année et de la position de la station de mesures au sein de l'estuaire. Ces écarts peuvent être appréhendés au travers du ratio de carbone organique contenu dans les matières en suspension (COP/MES) (**Figures 4-8 et 4-9**). Pour toutes stations et niveaux confondus, les valeurs du ratio varient peu, comme observé en 2008 ; elles restent proches de la moyenne des mesures réalisées : 1,61%²³.

Aucun impact de la centrale n'est mis en évidence pour ces paramètres (COT, COD, MES). Les variations spatiales et temporelles enregistrées en 2009 sont induites par le fonctionnement naturel de l'Estuaire de la Gironde.

²³ Moyenne des mesures réalisées depuis 1993, toutes stations, temps de marée et niveaux confondus

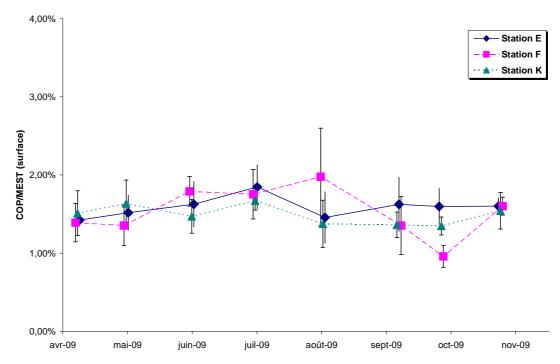


Figure 4-8 : Variations saisonnières du rapport COP/MES au niveau de la surface, en moyenne par station et mission

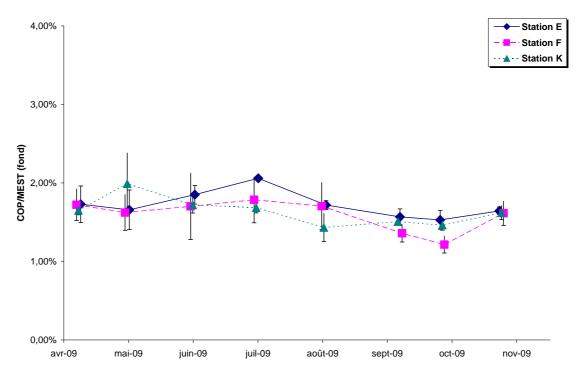


Figure 4-9 : Variations saisonnières du rapport COP/MES au niveau du fond, en moyenne par station et mission

4.1.2. Répartition du carbone organique et relation avec les paramètres hydro biologiques

4.1.2.1. Répartition du carbone organique

D'une manière générale, la fraction dissoute du carbone organique représente environ un tiers du total des deux fractions. Cependant, compte tenu de l'importance des matières en suspension dans l'estuaire de la Gironde, ce ratio est, habituellement, majoritairement inférieur à cette valeur (**Figure 4-10**).

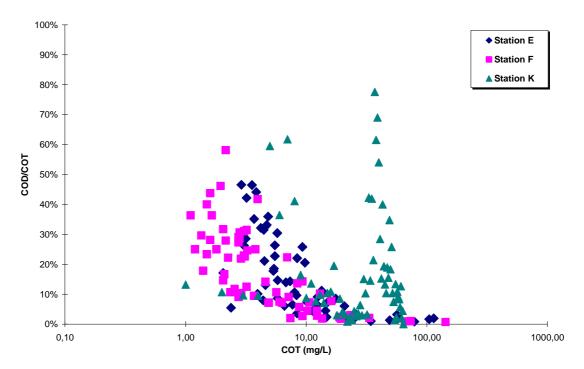


Figure 4-10 : Répartition du carbone organique, toutes stations, niveaux et temps de marée confondus.

Ainsi, pour les 192 mesures réalisées en 2009, 38 d'entre elles ont une teneur en carbone organique dissous (COD) représentant plus de 30% de la teneur en COT. Comparativement en 2008, 76 mesures présentaient une teneur en carbone organique dissous représentant plus de 30% de la teneur en COT, 19 sur 191 pour 2007 et 40 pour 183 enregistrements en 2006. En 2009, les teneurs en COD sont plus basses comparativement à 2008 et se rapprochent des valeurs enregistrées en 2007 et 2006.

Cette année, les ratios COD/COT supérieurs à 30 % sont répartis de façon homogène entre les 3 stations de mesure :

- 11 pour la station E,
- 13 pour la station K (amont),
- 14 pour la station F (aval).

Aussi, 75% des mesures de COD supérieures à 30% du COT sont enregistrés pour les points prélevés en surface.

4.1.2.2. Relation avec les paramètres hydro biologiques

4.1.2.2.1 Rapport COP/MES et matières en suspension

Cette représentation montre une constance du rapport COP/MES, proche de la valeur de référence (moyenne pluriannuelle :1,61 %), pour les 3 stations, tous niveaux et toutes périodes confondues, indépendamment de la concentrations en MES.

Le rapport COP/MES le plus élevé est enregistré pour les stations F et K (2,56%) (**Figure 4-11**). 16 mesures sur les 192 réalisées sont supérieures à 2%. Néanmoins, pour 12 d'entre elles le ratio est inférieur à 2,10%; elles restent donc très proches de 2% (**Tableau 4-1**).

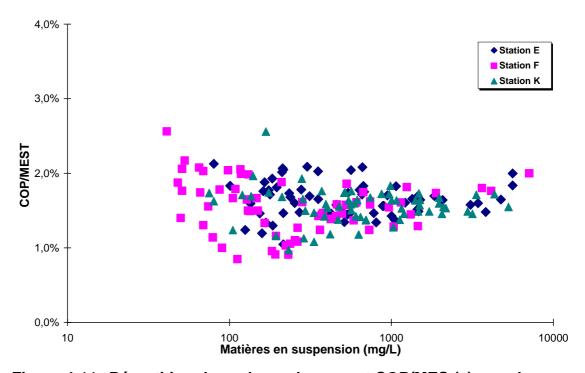


Figure 4-11 : Répartition des valeurs du rapport COP/MES (y) avec les teneurs en MES (x), par station.

Tableau 4-1 : ratio COP/MES supérieur à 2% (extrait de la base de données)

Station	Niveau	Date	COD mg/L	MES mg/l	COP mg/l	COP/MES	COT mg/L	COD/COT	Période
Е	S	23-sept-09	0,35	80	1,7	2,13%	2,05	17%	pleine mer
F	S	17-août-09	0,60	41	1,05	2,56%	1,65	36%	basse mer
F	S	17-août-09	0,35	53	1,15	2,17%	1,50	23%	pleine mer
К	F	17-mai-09	3,00	168	4,3	2,56%	7,30	41%	mi-jusant

4.1.3. Evolution des moyennes annuelles

4.1.3.1. Carbone organique total et dissous

La tendance observée en 2007 se confirme en 2009; après l'augmentation des moyennes annuelles enregistrée au cours de l'année 2006²⁴, pour l'ensemble des stations de mesures, les valeurs retrouvent un niveau proche de ceux enregistrés au cours des années 2004 et 2005 (**Figure 4-12**). D'une manière générale, en raison de l'impact des matières en suspension sur les teneurs en COT, les valeurs des moyennes annuelles sont plus élevées pour les mesures réalisées en fond. D'autre part, globalement, les concentrations moyennes annuelles de COT sont plus élevées en amont qu'en aval, en raison de fluctuations saisonnières plus importantes enregistrées à la station F. Cette tendance reste plus marquée sur les prélèvements de surface.

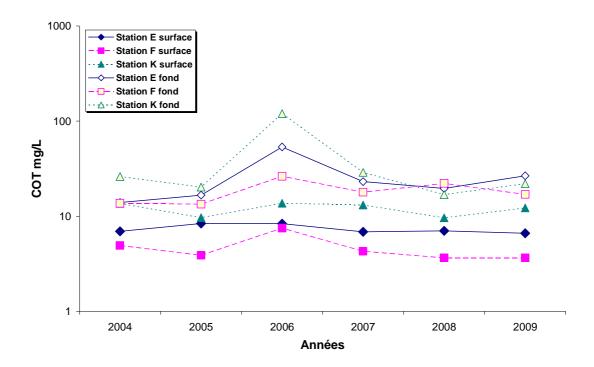


Figure 4-12 : évolution des moyennes annuelles des concentrations en COT, par station et niveau

Le carbone organique total étant principalement composé de carbone organique particulaire, les évolutions annuelles du COP suivent celles du COT (**Figure 4-13a**).

En ce qui concerne le carbone organique dissous, les teneurs moyennes annuelles se rapprochent des résultats obtenus en 2007; une nette diminution des concentrations est enregistrée en 2009 pour les 3 stations (**Figure 4-13b**). On note que les moyennes les plus faibles sont, depuis 2004, enregistrées à la station la plus en aval (F) et les plus élevées à la station la plus amont (K); la station E présente une situation intermédiaire

²⁴ Etude de surveillance écologique du site du CNPE « Le Blayais », année 2006

entre ces deux stations en raison de sa localisation dans l'Estuaire de la Gironde. Le carbone organique dissous a pour principale source les eaux douces. Aussi, la station K, située la plus en amont, est plus impactée par les apports fluviaux comparativement aux 2 autres stations. L'influence fluviale s'atténue progressivement vers aval, d'où des concentrations décroissantes de la station K vers la station F.

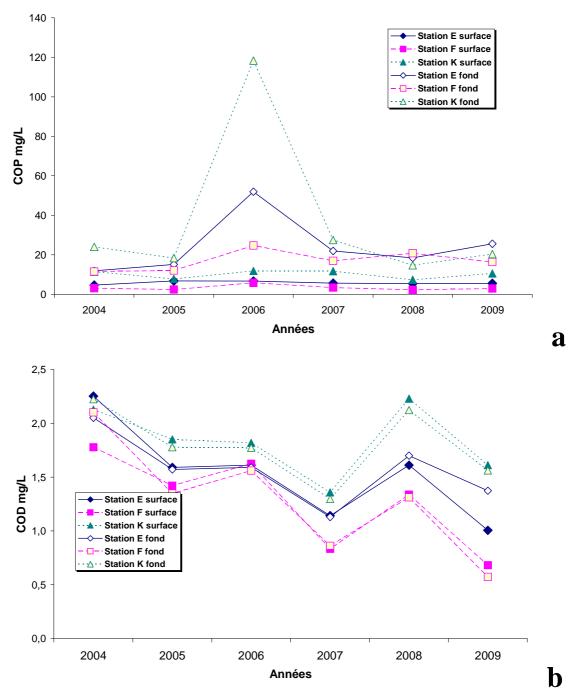


Figure 4-13: Evolution des moyennes annuelles des concentrations en COP et COD, par station et niveau

4.1.3.2. Carbone organique particulaire et matières en suspension

Pour les trois stations, l'évolution des moyennes annuelles des concentrations en MES et celles du COP sont étroitement dépendantes (**Figures 4-14 à 4-16**).

Pour la station E, les valeurs des moyennes annuelles des teneurs en carbone organique particulaire et en matières en suspension sont en légères augmentation au fond et tendent vers la moyenne enregistrée en 2007. En surface, les variations sont moins marquées ; aucune évolution notable n'est observée comparativement à 2008.

Inversement, pour la station aval (F), les enregistrements de fond diminuent et augmentent en surface.

La station K présente une nette augmentation des concentrations en MES et COP pour les 2 niveaux de mesures, tendance inversée comparativement à 2008.

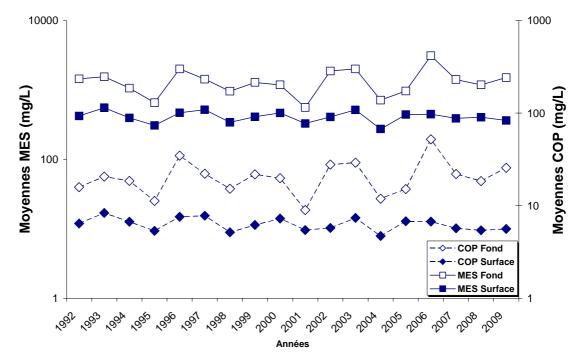


Figure 4-14 : Evolution des moyennes annuelles des concentrations en MES et en COP à la station E, par niveau.

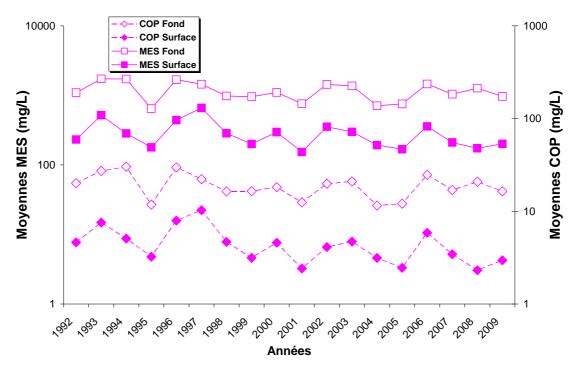


Figure 4-15 : Evolution des moyennes annuelles des concentrations en MES et en COP à la station F, par niveau

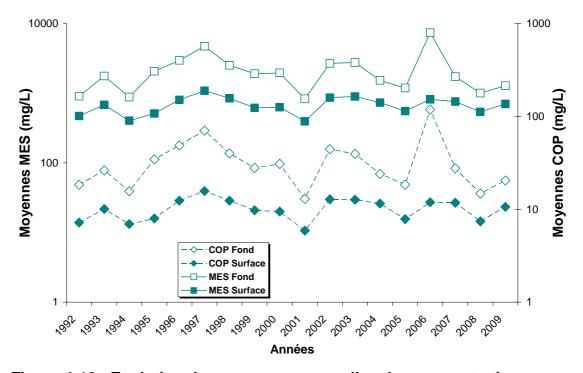


Figure 4-16 : Evolution des moyennes annuelles des concentrations en MES et en COP à la station K, par niveau

Le tableau ci-après fournit les valeurs des paramètres des régressions qui lient les concentrations en COP à celles des MES pour chaque année depuis 1993, toutes stations confondues (**Tableau 4-2**). La moyenne annuelle (1,58%), toutes stations et niveaux confondus, est inférieure à la valeur de la moyenne pluriannuelle 1993 – 2009 (1,61% pour 3072 données).

Tableau 4-2 : Paramètres des droites de régressions entre les teneurs en COP (mg/L) et celles en MES (mg/L), moyennes annuelles du rapport COP/MES, toutes stations confondues, période 1993 à 2009.

	Nb	Pente	Ord.	R	α^{25}	COP/MES
1993	188	1,36%	1,2	0,94	5.10 ⁻⁸⁹	1,56%
1994	192	1,77%	-0,1	1,00	4.10 ⁻²⁴⁰	1,86%
1995	168	1,67%	0,2	0,98	1.10 ⁻¹¹⁸	1,72%
1996	192	1,77%	-1,1	1,00	3.10 ⁻²⁰²	1,68%
1997	192	1,48%	0,4	0,99	8.10 ⁻¹⁶⁸	1,51%
1998	168	1,62%	-0,4	1,00	3.10 ⁻¹⁸⁵	1,59%
1999	191	1,62%	-0,3	0,97	3.10 ⁻¹¹⁶	1,64%
2000	189	1,63%	-0,3	1,00	3.10 ⁻¹⁸⁹	1,62%
2001	192	1,61%	-0,1	0,99	1.10 ⁻¹⁶¹	1,62%
2002	191	1,50%	-0,3	0,97	3.10 ⁻¹¹³	1,46%
2003	192	1,42%	0,5	0,98	3.10 ⁻¹²⁶	1,57%
2004	192	1,50%	0,7	0,99	1.10 ⁻¹⁶¹	1,56%
2005	192	1,59%	-0,3	0,99	1.10 ⁻¹⁴⁷	1,60%
2006	184	1,65%	-0,8	1,00	2.10 ⁻²²⁷	1,53%
2007	168	1,55%	0,2	0,99	1.10 ⁻¹⁵³	1,67%
2008	191	1,72%	-1,58	1,00	2.10 ⁻¹⁹³	1,39%
2009	192	1,75%	-1,07	0,99	9.10 ⁻¹⁷⁰	1,58%

A la station E, pour 2009, au niveau du fond comme en surface, la valeur de la moyenne du rapport COP/MES est en nette augmentation par rapport à 2008 et se rapproche des valeurs enregistrées en 2005 et 2007 (**Figure 4-17**) (moyenne annuelle 2009 : 1,72% au fond et 1,59% en surface ; moyenne pluriannuelle 1993 – 2009 : 1,59% au fond et 1,59% en surface).

A la station F, pour 2009, les valeurs des moyennes annuelles du rapport COP/MES sont en légère augmentation par rapport à 2008 (moyennes annuelles 2009 : 1,59% au fond et 1,52% en surface ; moyennes pluriannuelles 1993 – 2009 : 1,67% au fond et 1,69% en surface) (**Figure 4-18**).

²⁵ Risque α selon la loi de Snédécor (Loi F) pour u1 = 1 et u2 = N – 2 degrés de liberté.

-

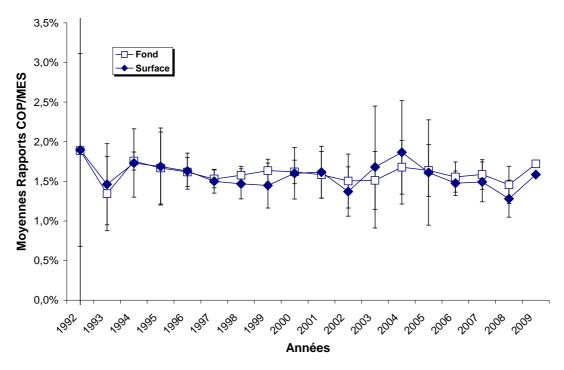


Figure 4-17 : Evolution des moyennes annuelles des rapports COP/MES à la station E, par niveau

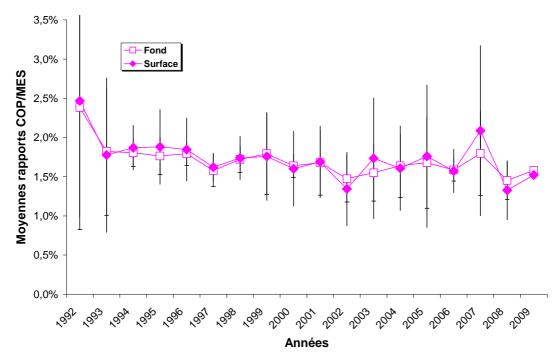


Figure 4-18 : Evolution des moyennes annuelles des rapports COP/MES à la station F, par niveau.

A la station K, les valeurs des moyennes annuelles des rapports COP/MES sont également en augmentation cette année (moyennes annuelles 2009 : 1,63% au fond et 1,44% en surface ; moyennes pluriannuelles 1993 – 2009 : 1,62% au fond et 1,52% en surface). (**Figure 4-19**)

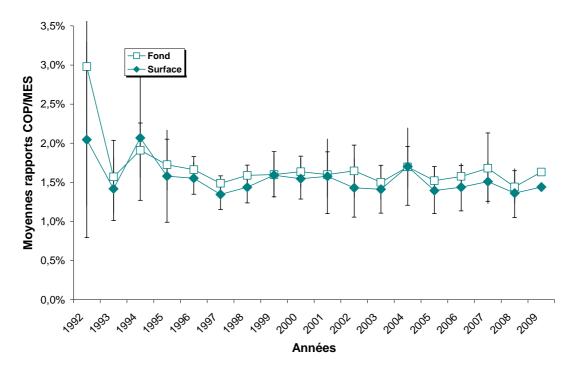


Figure 4-19 : Evolution des moyennes annuelles des rapports COP/MES à la station K, par niveau.

4.2. Chlorophylle et phéopigments

4.2.1. Variations saisonnières

4.2.1.1. Concentration en chlorophylle (a)

D'une manière générale, à la station E, les concentrations en pleine mer sont supérieures à celles de basse mer, notamment en été et au mois d'octobre. En 2009, les valeurs sont toutefois plus élevées comparativement à 2008 (**Figure 4-20**).

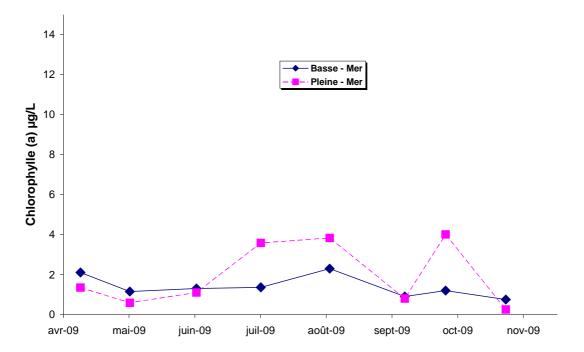


Figure 4-20 : Variations saisonnières des teneurs en chlorophylle (a) à la station E

A la station F, les teneurs en chlorophylle (a) présentent un profil similaire à celui de la station E : augmentation de la production primaire en été et en octobre (**Figure 4-21**). Toutefois, les concentrations en basse mer augmentent également de façon significative.

Pour la station K, durant la période d'étude, les teneurs en chlorophylle (a) présentent peu de fluctuation saisonnière et suivant le marnage (**Figure 4-22**).

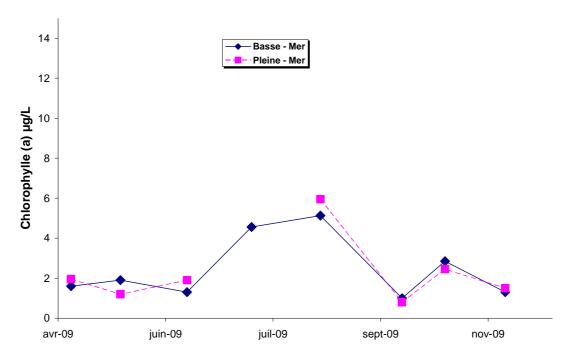


Figure 4-21 : Variations saisonnières des teneurs en chlorophylle (a) à la station F

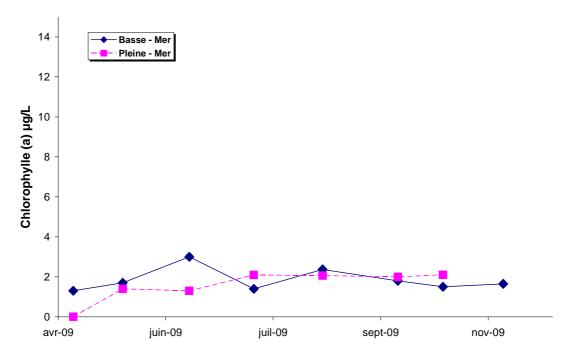


Figure 4-22 : Variations saisonnières des teneurs en chlorophylle (a) à la station K

4.2.1.2. Normalisation au carbone organique particulaire

Compte tenu de la nature particulaire et organique du phytoplancton, il paraît judicieux de rapprocher les concentrations en chlorophylle (a) de celles en carbone organique particulaire, exprimées dans les mêmes unités.

Pour la station E, cette normalisation n'apporte pas d'information complémentaire quant à l'évolution saisonnière de la biomasse algale (**Figure 4-23**). En effet, les variations saisonnières du rapport Chlorophylle (a) / carbone organique particulaire sont proches de celles présentées ci-dessus pour les concentrations brutes.

Pour la station F, cette normalisation permet de mettre en évidence l'augmentation significative de la biomasse algale en période estivale lors de l'intrusion des eaux halines. En effet, les valeurs des rapports chlorophylle (a) / carbone organique particulaire, enregistrées au cours de la période estivale, sont plus élevées qu'aux deux autres stations (**Figure 4-24**).

En revanche, à la station K, les valeurs de ce rapport pour la période estivale confirment l'absence de production primaire et la biomasse algale faible (**Figure 4-25**).

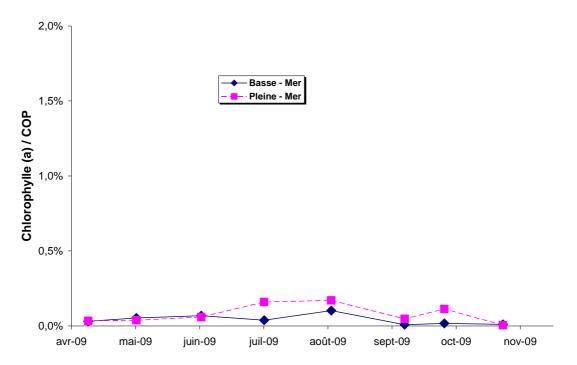


Figure 4-23 : Variations saisonnières du rapport entre la chlorophylle (a) et le COP à la station E

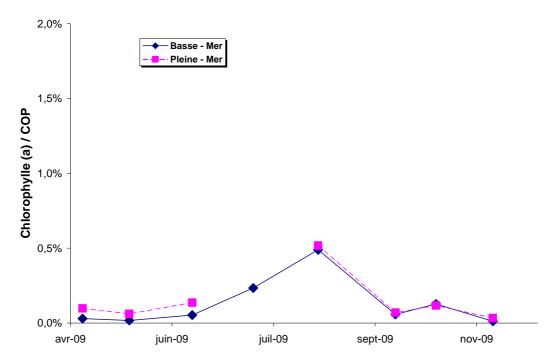


Figure 4-24 : Variations saisonnières du rapport entre la chlorophylle (a) et le COP à la station F

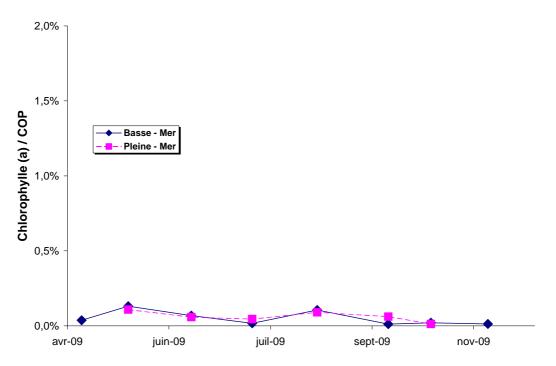


Figure 4-25 : Variations saisonnières du rapport entre la chlorophylle (a) et le COP à la station K

4.2.2. Evolution des moyennes annuelles

Une évolution dans les conditions d'application de la méthode d'essais (modification de la nature du filtre, extraction...) est intervenue en début d'année 2007. Cette évolution, rendue nécessaire par la mise sous accréditation de ce paramètre, pourrait être à l'origine des faibles valeurs enregistrées depuis 2007 comparativement aux années précédentes (**Figure 4-26**). En 2008 et en 2009, cette tendance se confirme ; néanmoins, une augmentation des concentrations est enregistrée entre 2008 et 2009.

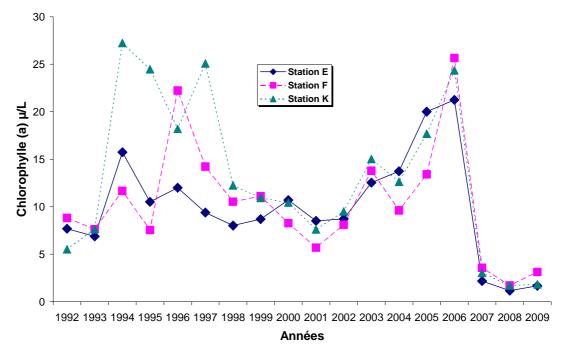


Figure 4-26 : Evolution des moyennes annuelles des teneurs en chlorophylle (a), par station

4.3. Sels nutritifs et bore

La mise en application du nouvel arrêté d'exploitation du 18 septembre 2003 a modifié considérablement le programme de surveillance relatif aux sels nutritifs dans le cadre de la surveillance écologique du milieu récepteur.

Initialement réalisée à la station E, la quantification des sels nutritifs a été étendue aux 2 autres stations de l'estuaire. De plus, le dosage des silicates est venu compléter la liste des sels dosés.

Enfin, en raison de l'utilisation de l'acide borique dans le cycle du traitement des eaux industrielles du CNPE, la quantification de cet élément a été demandée. Compte tenu de sa présence naturelle dans le milieu marin, nous n'avons pas considéré cet élément comme un polluant.

4.3.1. Variations saisonnière

4.3.1.1. Sels azotés

4.3.1.1.1 Ammonium

Sur les quarante huit mesures réalisées au cours de l'année 2009 seulement 14 ont présenté des concentrations en ammonium supérieures à la limite de quantification (0,5 µmol/L), avec une majorité au droit de la station K, puis dans l'ordre décroissant E et F (**Figure 4-27 à 4-29**). Les concentrations sont globalement faibles. Toutefois, les plus élevées, toute station confondue, sont observées au mois d'avril, sous l'influence de la crue printanière, avec 2,5 µmol/L au droit de la station K, 3,8 µmol/L au droit de E et 3,0 µmol/L au droit de K.

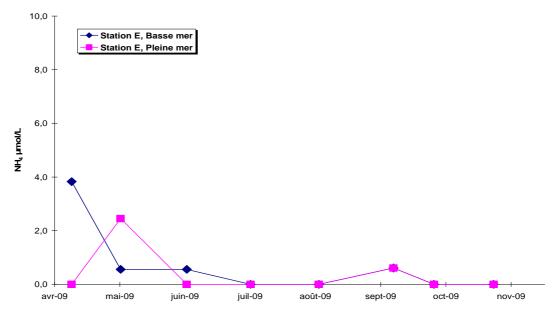


Figure 4-27 : Variations saisonnières des teneurs en ammonium à la station E

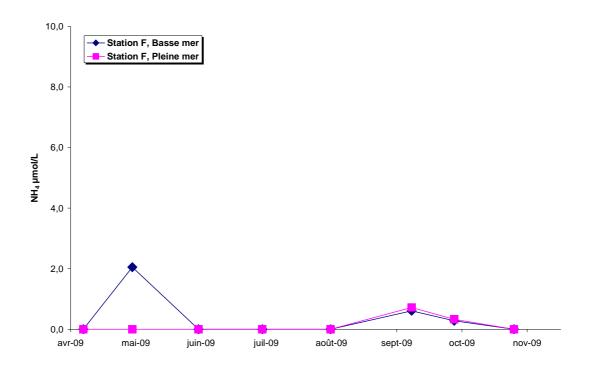


Figure 4-28 : Variations saisonnières des teneurs en ammonium à la station F

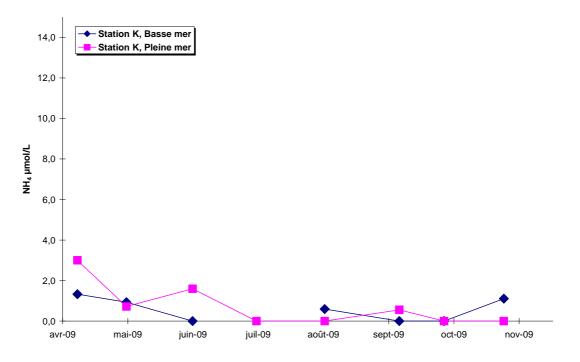


Figure 4-29 : Variations saisonnières des teneurs en ammonium à la station K

4.3.1.1.2 Nitrate et nitrite

Dans ce cadre, les valeurs de concentration évoluent de façon croissante de l'aval de l'estuaire (station F) vers l'amont (stations E et K) (**Figures 4-30 et 4-32**).

La station E présente un profil intermédiaire avec une diminution des teneurs en période printanière puis une stabilité des valeurs jusqu'à la fin de la période d'étude.

Au droit de la station F, à l'exception d'un pic au mois de mai en période de pleine mer, les concentrations diminuent progressivement jusqu'au mois d'août puis remontent jusqu'en novembre. Les teneurs sont toujours supérieures en période de basse mer, avec une forte amplitude entre les deux temps de marée.

A l'inverse, au droit de la station K, à l'exception d'une chute au mois de mai en période de basse mer, les teneurs augmentent jusqu'au mois d'août avec peu d'amplitude entre les temps de marée ; puis diminuent jusqu'en novembre avec des concentrations supérieures en période de pleine mer.

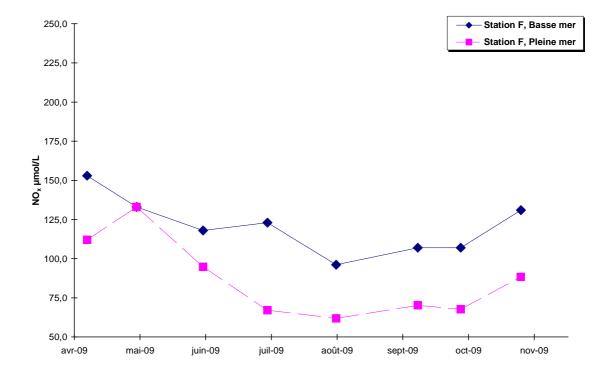


Figure 4-30 : Variations saisonnières des teneurs en nitrates – nitrites à la station F

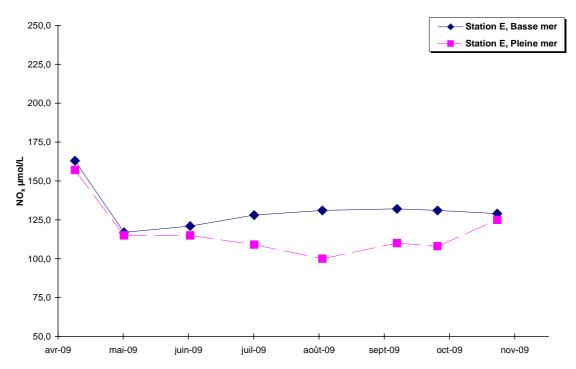


Figure 4-31 : Variations saisonnières des teneurs en nitrates – nitrites à la station E

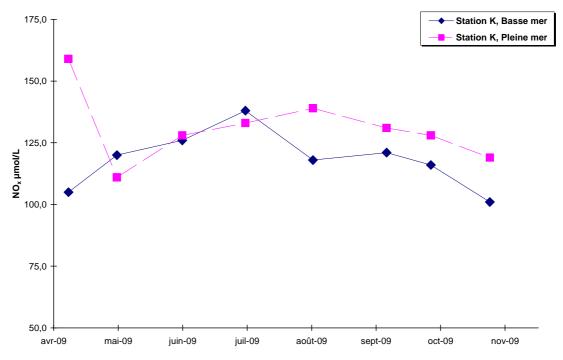


Figure 4-32 : Variations saisonnières des teneurs en nitrates – nitrites à la station K

Le gradient de concentration observé est caractéristique de l'apport d'origine fluvial de ces éléments toutefois cet apport semble moins marqué par rapport à 2008 (teneurs moyennes 2009 inférieures à 2008, étiage plus prononcé en 2009). Le profil observé au niveau de la station E est la conséquence du fonctionnement naturel de l'estuaire et est « intermédiaire » de part sa position géographique. L'impact du fonctionnement de la centrale n'a pas d'incidence sur le milieu naturel au regard des paramètres azotés.

4.3.1.2. Orthophosphates et rapport N/P

D'une manière générale, comme indiqué pour l'évolution des nitrates-nitrites, les valeurs des concentrations en orthophosphates évoluent de façon croissante de l'aval de l'estuaire vers l'amont (**Figures 4-33 à 4-35**).

Le profil est relativement comparable entre les 3 stations avec des concentrations en orthophosphates globalement supérieures en période de basse mer et en augmentation par paliers en début d'été et d'automne.

Au niveau de la station E, le profil est marqué par une augmentation brutale au mois de juin, une légère baisse en période d'étiage puis une augmentation en période automnale. L'évolution est représentative d'une situation intermédiaire entre celles des stations F et K.

Au niveau de la station F, après la fin de l'épisode de crue printanière, les concentrations augmentent tout au long de la période de mesure, avec toutefois une légère diminution en été.

Au niveau de la station K, le profil est nettement marqué par une augmentation au mois de mai, une légère baisse en période d'étiage puis une augmentation en période automnale.

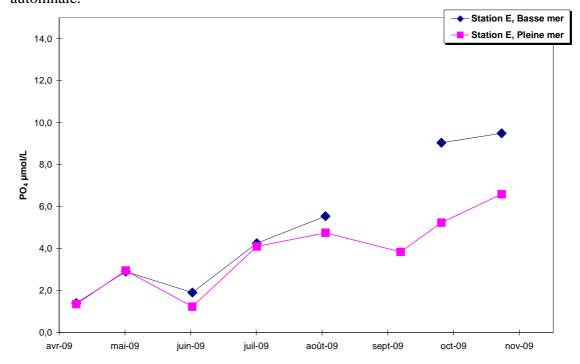


Figure 4-33 : Variations saisonnières des teneurs en orthophosphates à la station E

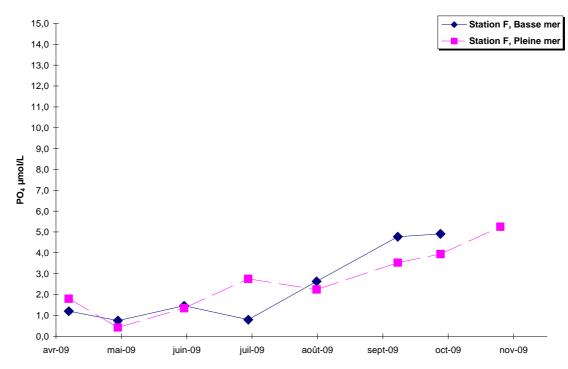


Figure 4-34 : Variations saisonnières des teneurs en orthophosphates à la station F

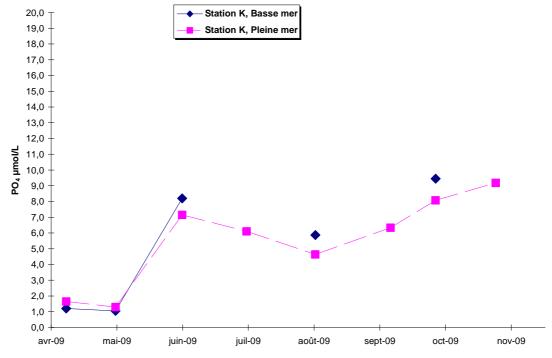


Figure 4-35 : Variations saisonnières des teneurs en orthophosphates à la station F

L'étude du rapport molaire N/P en milieu estuarien est primordiale pour apprécier les évolutions de biomasses planctoniques. En effet, en milieu océanique la valeur de ce rapport est de 16 (REDFIELD). Pour 2009, la valeur de ce rapport est très inégale selon la saison considérée et directement impactée par les évolutions des concentrations orthophosphates.

Ce rapport n'apporte pas d'information complémentaire quant à la période de production primaire identifiée précédemment.

Comme observé pour le profil des sels nutritifs azotés au droit de la station de mesure intermédiaire E, les évolutions des sels phosphorés mesurés sont le reflet du fonctionnement naturel de l'estuaire, sans impact direct de la centrale.

4.3.1.3. Silicates et bore

Comme l'ont montré les études de surveillances écologiques antérieures à 1992, la Dordogne présente des concentrations en silicates nettement supérieures à celles de la Garonne. Sur l'estuaire, il y a donc un gradient de concentration amont – aval (**Figure 4-36 à 4-38**). La station E représentant une situation intermédiaire entre la station F en aval où les teneurs sont plus faibles et la station K en amont où les teneurs sont plus élevées. D'une manière générale, les teneurs à pleine mer sont plus faibles que celles de basse mer.

Les concentrations sont plus ou moins stables tout au long de la période d'étude, à l'exception du dernier mois où une chute brutale est observée, atteignant des niveaux les plus bas jamais observés. En 2008, le phénomène exactement inverse s'était produit.

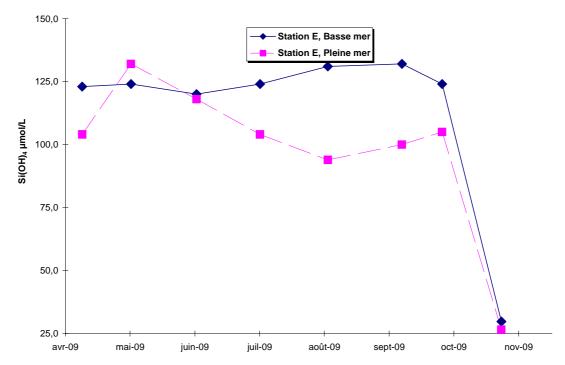


Figure 4-36 : Variations saisonnières des teneurs en silicates, station E

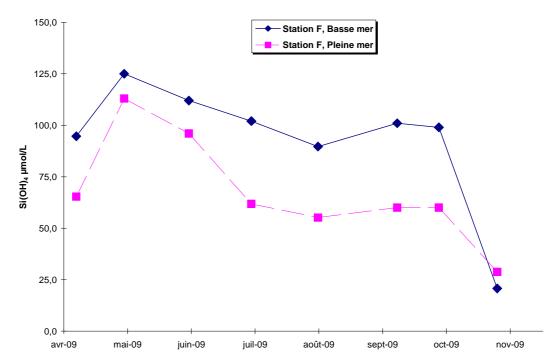


Figure 4-37 : Variations saisonnières des teneurs en silicates, station F

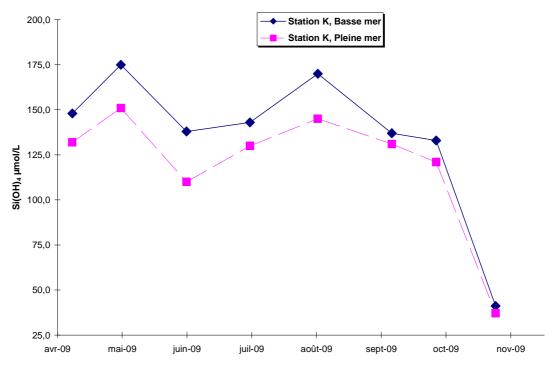


Figure 4-38 : Variations saisonnières des teneurs en silicates, station K

Pour les trois stations de l'estuaire, sur la période d'étude, les variations saisonnières des teneurs en bore sont étroitement corrélées avec celles de la salinité. Elles augmentent de façon très nette au cours de la période d'étiage et diminuent par la suite. Les teneurs de pleine mer sont toujours supérieures à celles de basse mer (**Figures 4-39** à **4-41**). Bien entendu, les teneurs les plus élevées sont toujours enregistrées à la station F et les plus faibles à la station K; les variations saisonnières enregistrées à la station E représentant une situation intermédiaire entre celles des stations F, en aval, et K, en amont. Enfin, à la station E, aucun « artefact », traduisant le rejet éventuel d'acide borique par la centrale, n'a été décelé.

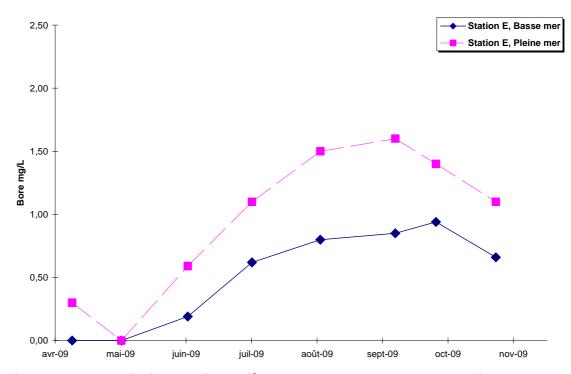


Figure 4-39 : Variations saisonnières des teneurs en bore, station E.

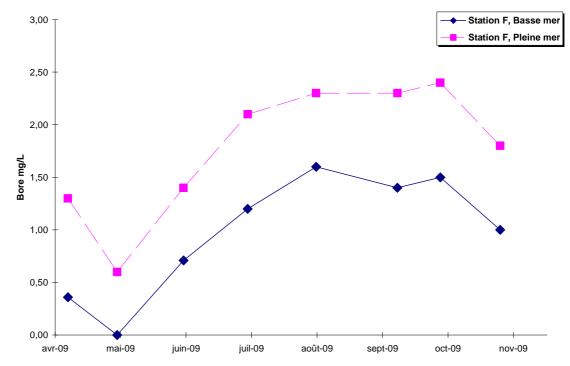


Figure 4-40 : Variations saisonnières des teneurs en bore, station F

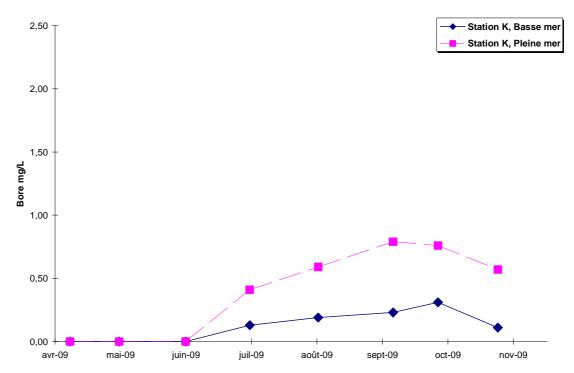


Figure 4-41 : Variations saisonnières des teneurs en bore, station K

4.3.2. Relation avec les paramètres hydro biologiques

4.3.2.1. Bore et salinité

Le bore étant présent de façon naturelle dans l'eau de mer, il n'est pas étrange d'avoir une droite de régression de pente positive entre les teneurs en bore enregistrées sur l'estuaire et la salinité des eaux (**Figure 4-42**). Pour l'année 2009, les paramètres de la droite de régression sont excellents et proches de ceux obtenus pour les précédents exercices.

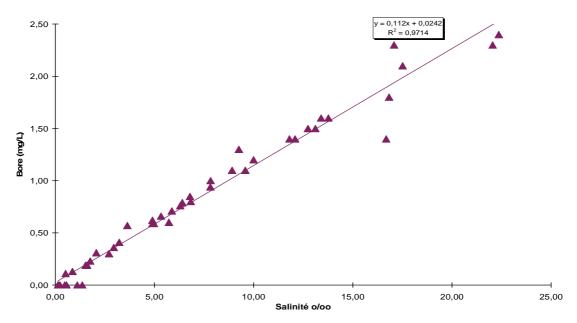


Figure 4-42 : Répartition des teneurs en bore avec la salinité, toutes stations et temps de marée

En particulier, à la station E, aucune déviation de cette relation n'est observée du fait d'un rejet éventuel d'acide borique de la part du CNPE du Blayais (**Figure 4-43**). Aucun impact du fonctionnement de la centrale n'est à considérer.

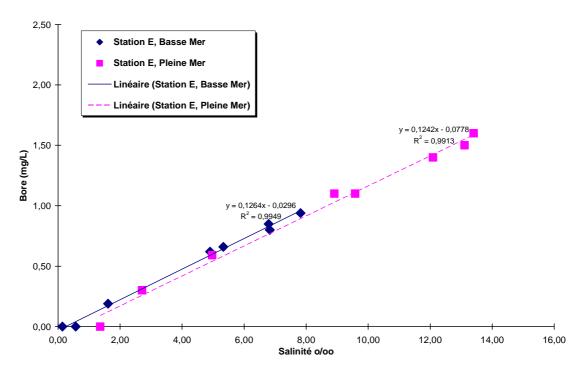


Figure 4-43 : Répartition des teneurs en bore avec la salinité, station E

4.3.3. Evolution des moyennes annuelles

4.3.3.1. Sels azotés

Les moyennes annuelles des teneurs en ammonium sont en légère diminution par rapport aux années précédentes, notamment au niveau des stations F et K (**Figure 4-44**). Pour la station E, la valeur obtenue en 2009 (1,4µmol/L) est légèrement inférieure à la moyenne pluriannuelle 1992-2009 (1,58 µmol/L).

Les moyennes annuelles des teneurs en nitrates – nitrites sont en nette diminution par rapport aux années précédentes, notamment au niveau des stations les plus influencées par les apports fluviaux soit E et K (**Figure 4-45**). Pour la station E, la valeur obtenue en 2009 (124,4µmol/L) est légèrement inférieure à la moyenne pluriannuelle 1992-2009 (138,5 µmol/L).

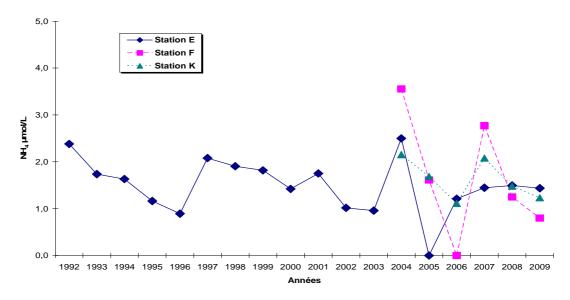


Figure 4-44 : Evolution des moyennes annuelles des teneurs en ammonium

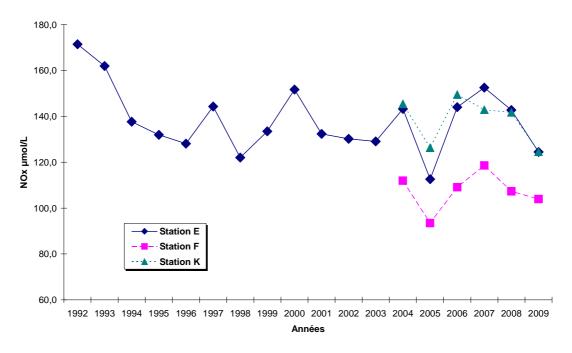


Figure 4-45 : Evolution des moyennes annuelles des teneurs en nitrates – nitrites

4.3.3.2. Orthophosphates et rapport N/P

Pour les trois stations, les valeurs des moyennes annuelles des teneurs en orthophosphates sont en nette augmentation et sont les plus hautes jamais observées pour les stations E et K (**Figure 4-46**). A la station E, la valeur obtenue en 2009 (4,3 μmol/L) est très supérieure à la moyenne pluriannuelle 1992 – 2009 (3,1 μmol/L)

La diminution des apports fluviaux en sels nutritifs azotés n'est pas observée sur les apports phosphorés.

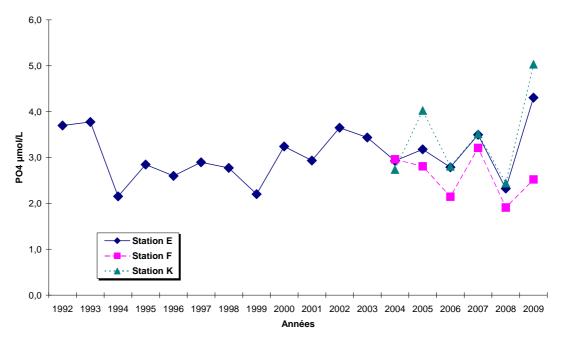


Figure 4-46 : Evolution des moyennes annuelles des teneurs en orthophosphates

4.3.3.3. Silicates et bore

Pour les trois stations considérées, les valeurs des moyennes annuelles des teneurs en silicates obtenues au cours de l'année 2009 sont les plus faibles obtenues depuis les précédents exercices (**Figure 4-47**). en corrélation avec la baisse des autres sels en provenance d'apports fluviaux.

Pour les 3 stations, les valeurs des moyennes annuelles en bore sont comparables à celles obtenues les années précédentes (**Figure 4-48**).

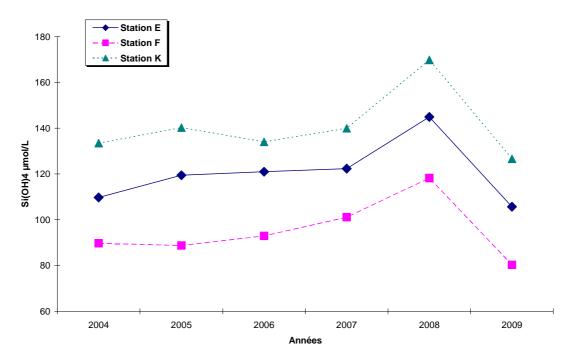


Figure 4-47 : Evolution des moyennes annuelles des teneurs en silicates

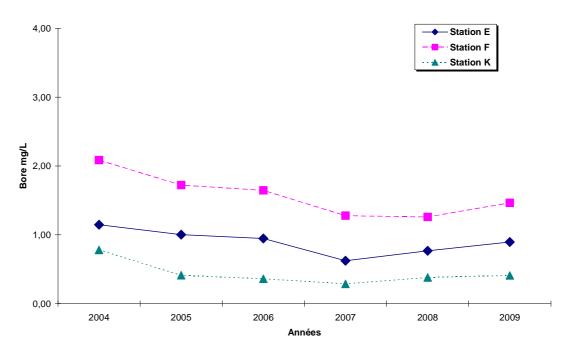


Figure 4-48 : Evolution des moyennes annuelles des teneurs en bore

4.4. Contaminants

4.4.1. Famille des amines

Pour les trois stations, les recherches de résidus de traitements des circuits secondaires du CNPE (éthanolamine, morpholine et hydrazine), dans les eaux de l'estuaire, se sont révélées négatives tout au long de la période d'étude.

4.4.2. Agents de surface anioniques

Sur les 48 mesures réalisées au cours de l'année 2009, trois d'entre elles se sont révélées positives, toutes au droit de la station F et à des niveaux de concentration très proches de la limite de quantification donc peu significatives (**Tableau 4-3**).

Tableau 4-3 : Recherche positive d'agents de surface anioniques.

Date	Station	TM	Valeur µg/L
23 avril 2009	F	BM	30
23 avril 2009	F	PM	20
16 juin 2009	F	PM	20

5. Vibrio halophiles

Le contexte spatio-temporel de l'étude de surveillance écologique, et les méthodologies utilisées pour chaque thématique et paramètre, sont regroupés dans le chapitre 1 « Présentation du site et stratégie d'étude ».

Compte tenu de l'évolution méthodologique de ces dernières années, nous présentons ci-dessous un récapitulatif des résultats obtenus depuis 2009. Les résultats des années antérieures, obtenus par une méthode par dilution en milieu liquide, ne peuvent être exploités conjointement.

5.1. Evolution spatio-temporelle

5.1.1. Variations saisonnières

D'une manière générale, comme nous le verrons, les *Vibrio* halophiles apparaissent dans l'estuaire de la Gironde avec le réchauffement des eaux.

Sur l'ensemble des 3 stations, compte tenu du bel étiage, la présence de *Vibrio* est détectée dès le mois de juin sur une période plus longue et avec des abondances nettement plus fortes que celles des années précédentes.

Les abondances les plus importantes sont observées au droit de la station E à partir du mois d'août, les plus faibles étant au niveau de la station la plus en amont (**Figure 5.1** à 5-3).

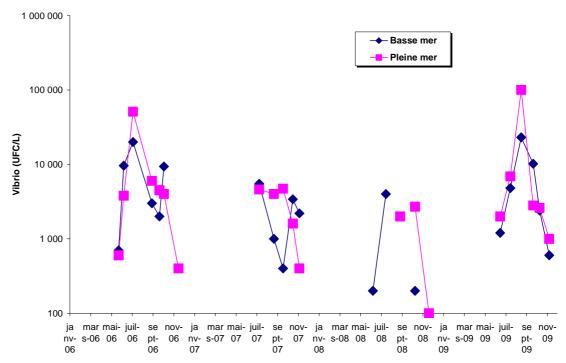


Figure 5-1. : Variations saisonnières des dénombrements de Vibrio halophiles à la station E

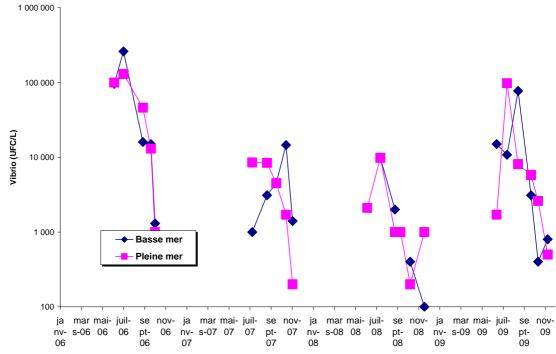


Figure 5-2. : Variations saisonnières des dénombrements de Vibrio halophiles à la station F

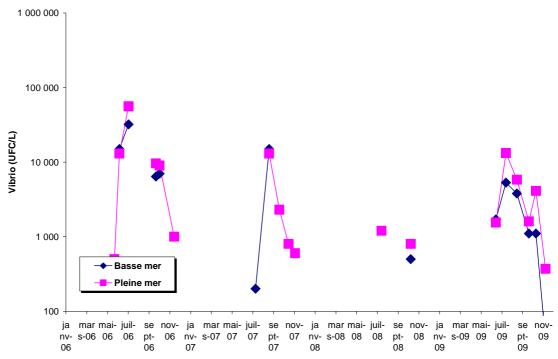


Figure 5-3. : Variations saisonnières des dénombrements de Vibrio halophiles à la station K

5.1.2. Relation avec la salinité et la température

Les *Vibrio* halophiles sont sensibles, non seulement à la salinité, mais surtout à la température. Les figures ci-après résument cette sensibilité à partir des recherches effectuées depuis 2006.

5.1.2.1. Abondance des *Vibrio* avec la salinité

En fait, le caractère halophile des *Vibrio* n'apparaît pas clairement au travers des résultats des dénombrements réalisés (**Figure 5-4**): aucune station n'est préférentiellement impactée de part sa position sur l'estuaire en terme de présence de *Vibrio*.

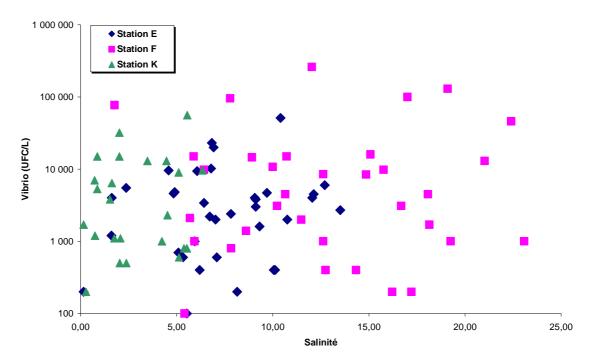


Figure 5-4. : Répartition des dénombrements des Vibrio avec la salinité

5.1.2.2. Abondance des *Vibrio* avec la température

Les *Vibrio* halophiles semblent plus sensible à la température qu'à la salinité (**Figure 5-5**). En effet il semble que l'abondance augmente avec la température, en particulier pour les stations E et F.

Les températures plus élevées mesurées au droit de la station de mesure E peuvent contribuer au potentiel de développement de ces espèces.

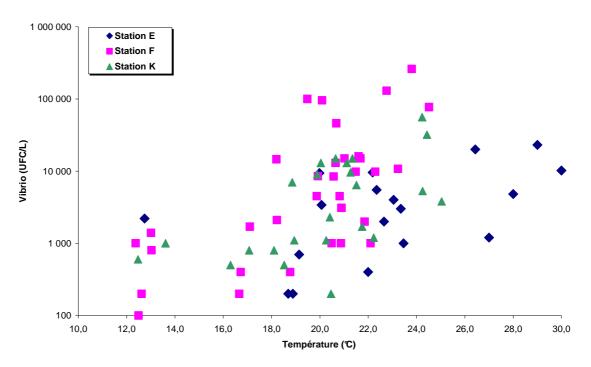


Figure 5-5. : Répartition des dénombrements des Vibrio avec la température

5.2. Spéciation

5.2.1. Occurrence des espèces

Différentes souches de *Vibrio* halophiles ont été identifiées. Les résultats obtenus ne montrent pas de différences importantes par rapport aux années précédentes : les eaux de l'estuaire contiennent principalement des *Vibrio parahaemolyticus*, *Vibrio alginolyticus* et *Vibrio vulnificus*.

Entre 2006 et 2009, 141 souches de *Vibrio* halophiles ont été détectées. La répartition des espèces, représentée par l'occurence des espèces identifiées comme *Vibrio*, montre que :

- 44 % des souches sont des Vibrio parahaemolyticus ;
- 18 % des souches sont des Vibrio alginolyticus;
- 26 % des souches sont des Vibrio vulnificus;
- 9 % des souches sont des Vibrio mimicus ;
- 9 % des souches sont des Vibrio fluvialis ;
- 8 % des souches sont des Vibrio cholerae.

5.2.2. Densité des espèces

La densité de l'espèce prend en compte la quantité de germes de chaque espèce identifiée rapportée au nombre total de *Vibrio*.

Depuis 2006, contrairement aux années précédentes, *Vibrio parahaemolyticus* domine. La densité de population, représentée par le rapport entre l'abondance de chaque espèce et l'abondance de la famille (*Vibrio* halophile) fait apparaître que :

- 63,0 % de l'abondance est due à *Vibrio parahaemolyticus* ;
- 3,3 % de l'abondance est due à Vibrio alginolyticus ;
- 20,2 % de l'abondance est due à Vibrio vulnificus ;
- 4,0 % de l'abondance est due à Vibrio mimicus.
- 1,2 % des souches sont des Vibrio fluvialis ;
- 1,7 % des souches sont des *Vibrio cholerae*.

6. Zooplancton

Le contexte spatio-temporel de l'étude de surveillance écologique, et les méthodologies utilisées pour chaque thématique et paramètre, sont regroupés dans le chapitre 1 « Présentation du site et stratégie d'étude ».

6.1. Evolution temporelle des principaux contingents au point E

Copépodes et Mysidacés (Crustacés) constituent l'essentiel du zooplancton dans cette zone moyenne de l'estuaire. Les espèces dominantes sont les copépodes *Eurytemora affinis*, *Acartia bifilosa* et *Acartia tonsa* ainsi que les Mysidacés *Neomysis integer* et *Mesopodopsis slabberi*. Une autre espèce autochtone, le Coelentéré (Méduse) *Nemopsis bachei*, est observée sporadiquement en été; peu représentée, elle n'est pas prise en considération dans cette étude. Enfin, quelques espèces dulçaquicoles peuvent être récoltées en très petit nombre lors de crues.

6.1.1. Variations des densités du Copépode Eurytemora affinis

Les résultats portent sur les observations effectuées au point E (**Figure 6-1**) entre mars et novembre 2009. Les copépodes sont largement dominés par l'espèce *Eurytemora affinis* qui constitue habituellement plus de 80 % du zooplancton, sauf quand les conditions d'étiage sont très accentuées comme ce fut le cas en 1990, 1991 et 1997. En 2009 l'abondance relative de cette espèce est élevée : de l'ordre de 75% du zooplancton total en moyenne sur l'année au niveau du maximum de son aire de distribution (point E). La densité annuelle moyenne d'*E. affinis* en 2009 au point E (4456 \pm 1324 ind./m³) est faible par rapport à la moyenne générale calculée sur 31 ans (7013 \pm 579 ind./m³).

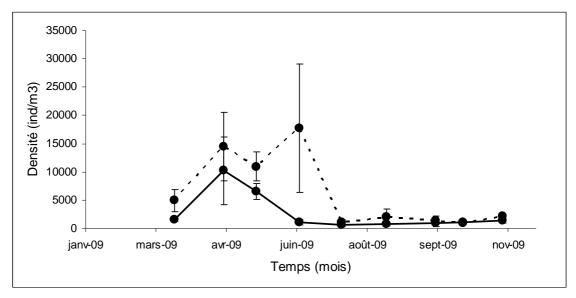


Figure 6-1 : Evolution mensuelle de la densité du copépode Eurytemora affinis en surface (trait plein) et au fond (pointillé) au point E (pk 52) en 2009. Moyennes mensuelles (± erreur standard) calculées à partir des 4 valeurs de densités observées au cours d'un demi-cycle de marée.

Ses fortes abondances s'étalent généralement entre Mars (hors protocole) et Juin pour une période correspondant à des températures comprises entre 9 et 15 °C et à des salinités comprises entre 0,3 10⁻³ et 3,6 10⁻³ psu. L'année 2009 (comme 2005, 2006 et 2008) présente un schéma temporel légèrement décalé avec un pic d'abondances un peu plus tardif qu'observé habituellement (habituellement : Mars, 2009 : Avril-Juin). Le maximum moyen (surface/fond) de densité en 2009 est observé le 25 Avril : 12362 ± 4338 ind./m³, il est caractérisé par des abondances proches au fond et en surface (respectivement : 14526 ± 6082 ind./m³ et 10198 ± 5994 ind./m³). Après le maximum moyen annuel, les densités restent importantes au fond pour atteindre les plus forts effectifs observés sur ce point en juin (17742 ± 11417 ind./m³) alors qu'elles diminuent en surface (1159 \pm 371 ind./m³). A partir du mois de juillet et durant toute la période estivale les abondances sont faibles (minimum en Octobre : 1068 ± 207 ind./m³). La reprise de production modérée habituellement observée en automne n'est que très peu significative cette année (maximum en novembre: 1783 ± 274 ind./m³). Cette dynamique saisonnière s'écarte donc sensiblement des observations faites durant les dernières années : elle est caractérisée par des effectifs maxima au printemps, puis une décroissance en été (minima en fin d'été) et une légère reprise de production automnale.

L'étude de la variabilité interannuelle des fluctuations de densité (**Figure 6-2**) montre une bonne reproductibilité globale des cycles saisonniers marqués par un pic annuel de densité. Globalement la série reste stable sur la période étudiée. On constate qu'après une certaine tendance à l'augmentation entre 1980 et 1984, les valeurs maximales ont diminué entre 1984 et 1990. Cette diminution, de même que la baisse des effectifs moyens, a été attribuée à la migration vers l'amont de la position moyenne du bouchon

vaseux (maximum de turbidité) consécutive à la baisse générale des débits durant cette période.

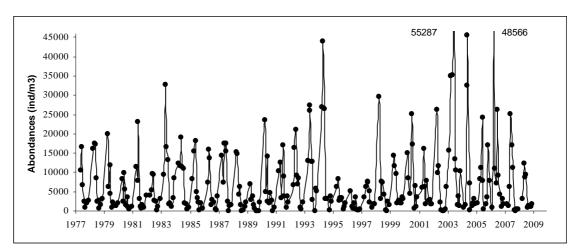
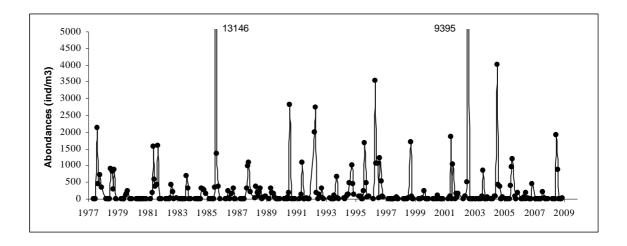



Figure 6-2 : Variation mensuelle des densités du copépode Eurytemora affinis au point E entre l'année 1978 et 2009 - Moyennes mensuelles calculées à partir des 8 valeurs de densités observées au cours d'un demi-cycle de marée (en surface et au fond)

La baisse du débit des fleuves a probablement entraîné un positionnement des populations de ce copépode vers la partie amont de l'estuaire (point K). A partir de 1991, le retour à des conditions de débit plus proches de la normale, a stoppé cette évolution et une augmentation des valeurs maximales apparaît jusqu'en 1995. Les observations de 1996 et 1997 marquent un retour à des conditions de débits modérés et s'accompagnent d'effectifs particulièrement faibles, comparables à ceux rencontrés en 1990. Les résultats obtenus en 2009, se distinguent, pour le point E, des données acquises les années précédentes (situation caractérisée par de fortes abondances, observées depuis 1998), avec des abondances annuelles moyennes faibles par rapport à la moyenne de la série (6° rang dans les valeurs basses : 4456 ± 1324 ind./m³ – le maxima observé en 2009 correspond à la 7° valeur minimale observée depuis le début du suivi : 12362 ± 4338 ind./m³). En 2009, ces faibles effectifs observés à la Station E sont attribuables à un déplacement de l'espèce en aval (point F) au mois de Mars consécutivement à la crue observée à cette période.

6.1.2. Variations des densités des copépodes Acartidés

Cette famille de Copépodes constitue le deuxième groupe dominant du zooplancton de l'estuaire de la Gironde et comprend deux espèces : *Acartia bifilosa* et *Acartia tonsa*. *Acartia bifilosa* est une espèce caractéristique des eaux de salinité comprise entre 2,0 et 25,0.10⁻³. En Gironde elle est généralement localisée dans la zone polyhaline (18,0 - 30,0 10⁻³) et colonise parfois la zone mésohaline (5,0 - 18,0 10⁻³) de l'estuaire en aval du point E en été. Sa présence et ses variations de densité au point E reflètent en grande partie l'extension de l'intrusion saline dans l'estuaire. Elle présente le plus souvent un maximum en début d'été. Cependant, des variations d'une année à l'autre, consécutives aux variations hydrologiques, peuvent être observées (**Figure 6-3**).

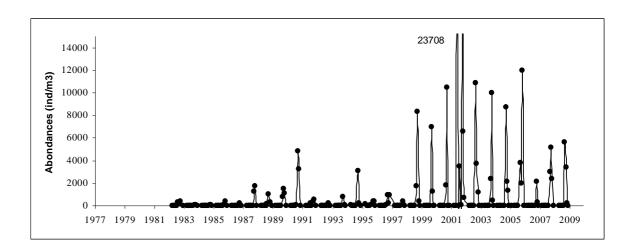


Figure 6-3 : Variations mensuelles de densités du copépode Acartia bifilosa (en haut) et Acartia tonsa (en bas) au point E entre 1978 et 2009 (densités mensuelles moyennes entre surface et fond) - Moyennes mensuelles calculées à partir des 8 valeurs de densités observées au cours d'un demi-cycle de marée (en surface et au fond)

La densité annuelle moyenne observée en 2009 au point E (310 \pm 198 ind./m³, e.g. même ordre de grandeur que ce qui avait été observé en 2006) fait partie des valeurs moyennes de la série établie sur les 31 précédentes années de prélèvements (moyenne sur les 31 ans : 301 ± 63 ind./m³). C'est aussi la $10^{\text{éme}}$ plus forte valeur d'abondance moyenne sur l'ensemble de la série et $8^{\text{éme}}$ plus forte valeur sur l'ensemble de la série pic d'abondance de l'espèce : 1907 ± 604 ind./m³). Cette hétérogénéité confirme la forte variabilité interannuelle des abondances de l'espèce. Le maximum de densité au point E est observé en Juin (1907 ± 604 ind./m³), en léger décalage avec la période classique

d'abondance maximale de l'espèce (Avril-Mai). La période de production habituelle de l'espèce en Gironde (Avril à Juillet/Août) est caractérisée en 2009 par des effectifs nuls en début de période, l'espèce n'étant présente cette année, dans cette zone de l'estuaire, que durant 2 mois : Juin et Juillet (période réduite comme en 2008 : Juillet et Août). Les moyennes des abondances en surface et au fond ne sont pas significativement différentes pendant le maximum d'abondance de l'espèce (**Figures 6-3 et 6-4**).

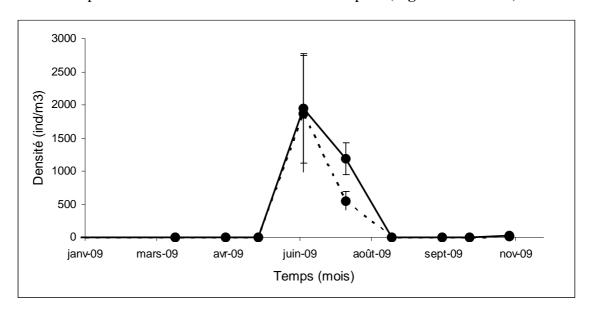


Figure 6-4 : Evolution mensuelle de la densité des copépodes Acartia bifilosa (en haut) et Acartia tonsa (en bas) en surface (trait plein) et au fond (pointillé) au point E (pk 52) en 2009 - Moyennes mensuelles (± erreur standard) calculées à partir des 4 valeurs de densités observées au cours d'un demi-cycle de marée.

Acartia tonsa, est une espèce introduite dans l'estuaire. C'est une espèce thermohalophile pouvant vivre à des salinités comprises entre $8\text{-}10.10^{\text{-}3}$ mais qui préfère un régime de salinité de type polyhalin (> $18\ 10^{\text{-}3}$). La densité annuelle moyenne observée au point E ($1032\pm616\ \text{ind./m}^3$) est supérieure à la moyenne des années suivant son apparition en Gironde ($1983\text{-}2009:799\pm246\ \text{ind./m}^3$). L'année 2009 se situe donc dans la continuité des forts effectifs observés depuis 1999 (avec une exception en 2007). En 2009, l'espèce apparaît relativement « tardivement » (Août) et présente un maximum de densité « classique » en période estivale : Août ($5651\pm1050\ \text{ind./m}^3$ - **Figure 6-3**), conforme aux observations habituelles (Août à début Octobre selon les années). Le maximum observé en 2009 (respectivement en surface et au fond : $5897\pm1994\ \text{ind./m}^3$, $5405\pm635\ \text{ind./m}^3$) est supérieur à la moyenne des maxima enregistrés depuis 1978 ($3819\pm957\ \text{ind./m}^3$) et dans la gamme des valeurs observées depuis 1999.

Le décalage temporel des pics de densité de ces deux espèces d'*Acartidae*, observé au point E en 1997, 2000, et de 2002 à 2008 s'observe encore cette année.

6.1.3. Variations des densités des Mysidacés

Deux espèces autochtones sont représentées dans l'estuaire de la Gironde : *Neomysis integer* et *Mesopodopsis slabberi* (**Figure 6-5 et 6-6**). La première espèce vit plutôt dans la partie amont de l'estuaire tandis que la deuxième colonise l'aval. Elles sont distribuées majoritairement entre les isohalines 0,5 10⁻³ et 22,0 10⁻³.

Les deux Mysidacés *N. integer* et *M. slabberi* sont habituellement récoltés d'avril à octobre au point E.

Comme en 2008, la densité moyenne annuelle de *Neomysis integer* en 2009 (22 ± 13 ind./m³) est faible par rapport à la moyenne générale des densités observées depuis 1978 (39 ± 4 ind./m³). Généralement, *N. integer* est l'espèce la plus abondante à la fin du printemps, ce qui est le cas cette année jusqu'en Juin, mois à partir duquel *M. slabberi* est mieux représentée (période estivale).

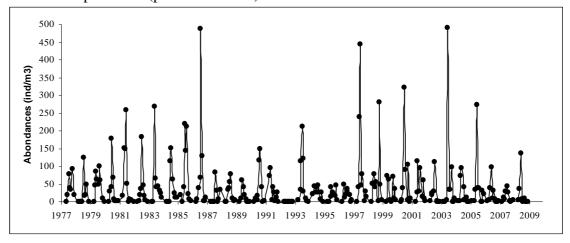


Figure 6-5 : Variations mensuelles de densités du Mysidacé Neomysis integer au point E entre 1978 et 2009 - Moyennes mensuelles calculées à partir des 8 valeurs de densités observées au cours d'un demi-cycle de marée (en surface et au fond)

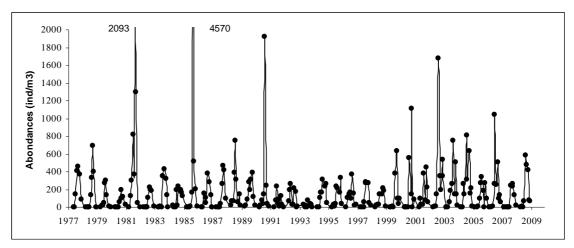
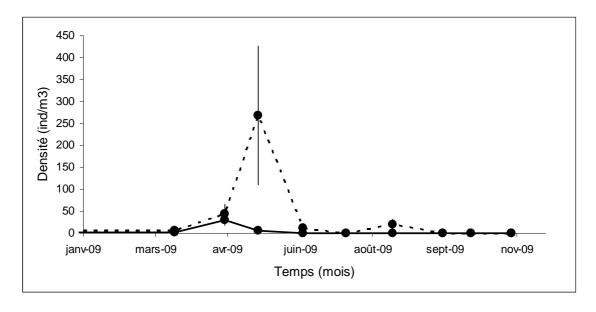



Figure 6-6 : Variations mensuelles de densités du Mysidacé Mesopodopsis slabberi au point E entre 1978 et 2009 - Moyennes mensuelles calculées à partir des 8 valeurs de densités observées au cours d'un demi-cycle de marée (en surface et au fond)

En 2009, *N. integer* a été récoltée essentiellement en début de période de prélèvement (Mars à Juin) ainsi qu'en été (Août). Le maximum mensuel de densité s'observe en Mai (**Figure 6-7**). La valeur du pic (moyenne mensuelle en Mai : 134 ± 91 ind./m³) est du même ordre de gradeur que la moyenne des maxima observés sur la série pour ce secteur de l'estuaire (moyenne des maxima : 168 ± 22 ind./m³). La plus forte valeur est observée au fond (267 ± 158 ind./m³ pour 7 ± 6 ind./m³ en surface et en Mai ; **Figure 6-7**), ce qui correspond au schéma classique connu pour cette espèce (habituellement plus abondante à proximité du fond).

Mesopodopsis slabberi présente des densités moyennes annuelles plus importantes que celles de l'espèce précédente ($191 \pm 70 \text{ ind./m}^3$). En 2009 sa densité moyenne annuelle est du même ordre de grandeur que la moyenne générale des observations effectuées depuis $1978 \ (178 \pm 22 \text{ ind./m}^3)$. *M. slabberi* a été récolté au point E essentiellement à partir du mois de Juin (elle est trouvée dès le mois de Mars, sans que ses effectifs ne dépassent 13 ind./m^3 avant Juin).

Le maximum de densité s'observe cette année en Juillet (moyenne mensuelle : 588 ± 174 ind./m³- **Figure 6-7**) avec une distribution des organismes hétérogène dans la colonne d'eau : maximum en surface : 832 ± 285 ind./m³ (fond : 343 ± 99 ind./m³), ce qui est habituel en Gironde pour cette espèce meilleure nageuse que la précédente et que l'on trouve souvent répartie de manière homogène dans la colonne d'eau ou avec des abondances supérieures en surface. Ces abondances maximales moyennes restent importantes pendant toute la période estiavle. Elles sont 4 fois plus élevées que celles de *Neomysis* ce qui correspond au schéma classique annuel moyen (facteur 4 sur l'ensemble de la série - **Figure 6-5** et **6-6**).

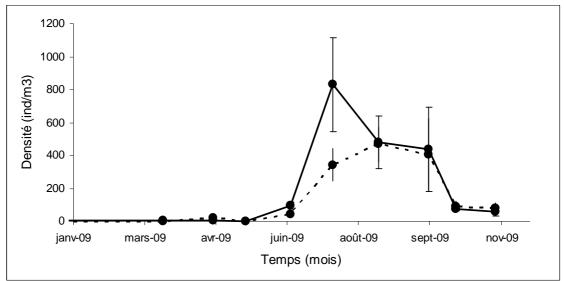


Figure 6-7 : Evolution mensuelle de la densité des Mysidacés Neomysis integer (en haut) et Mesopodopsis slabberi (en bas) au point E (pk 52), en surface (trait plein) et au fond (pointillé) au cours de l'année 2009 - Moyennes mensuelles (\pm erreur standard) calculées à partir des 4 valeurs de densités observées au cours d'un demi-cycle de marée

6.2. Structure démographique d'Eurytemora affinis au point E

6.2.1. Fécondité:

L'évolution dans le temps de la fécondité (définie par le nombre moyen d'œufs par sac ovigère porté par les femelles) dépend chez cette espèce de deux facteurs principaux :

- la température de l'eau. Il existe en effet une relation inverse entre le nombre d'œufs par sac ovigère et la température de l'eau (POLI & CASTEL, 1983).
- la quantité et la qualité des matières en suspension. (CASTEL & FEURTET, 1985). D'importantes MES peuvent en effet s'avérer préjudiciables au développement du phytoplancton et de faibles concentrations en phytoplancton sont susceptibles d'affecter la fécondité, même si l'espèce peut se nourrir à partir d'autres sources de carbone organique (IRIGOIEN *et al.*, 1996).

Les variations mensuelles de fécondité en 2009 (**Figure 6-8**) ne sont pas conformes aux observations habituelles : les valeurs les plus importantes ne sont pas observées cette année durant les périodes de développement printanier de la population. Les valeurs supérieures à la moyenne (moyenne 2009, point $E: 2,92 \pm 0,26$ œufs par sac ovigère) sont observées en période estivale (Juillet: $3,59 \pm 0,75$ et Septembre : $4,17 \pm 1,05$) durant laquelle les effectifs de la population sont faibles. Les valeurs plus élevées observées en Septembre précèdent le faible pic de production automnale.

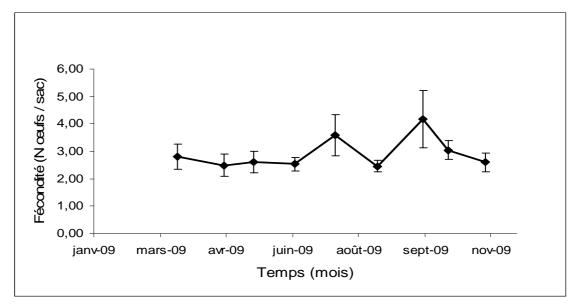


Figure 6-8 : Evolution du nombre moyen d'œufs par sac ovigère chez Eurytemora affinis au point E au cours de l'année 2009 - Moyennes mensuelles (± erreur standard) calculées à partir des 4 valeurs observées au cours d'un demi-cycle de marée

Depuis le début du suivi (1978), la fécondité d'*E. affinis* a, dans un premier temps, subit une forte diminution jusqu'en 1994, année à partir de laquelle la fécondité est restée à un niveau relativement stable et bas (**Figure 6-9**). En 2009, la fécondité moyenne (2,92 ± 0,26 œufs/sac) est du même ordre de grandeur que celles observées depuis 1994. La décroissance générale de la fécondité depuis 1978 pourrait être liée à l'évolution des températures dans l'estuaire (CASTEL, 1995) ; dans cette hypothèse, la stabilisation à un niveau bas des fécondités depuis 1994 reste inexpliquée.

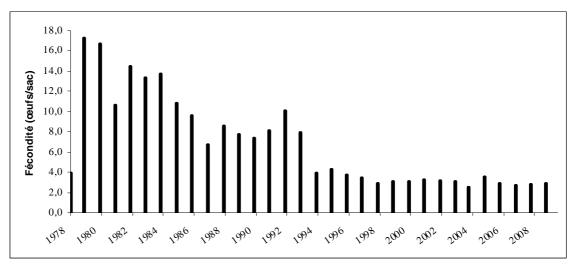


Figure 6-9: Evolution annuelle de la fécondité (nombre moyen d'oeufs par sac ovigère/an) du copépode Eurytemora affinis au point E entre 1978 et 2009 - Chaque point représente la moyenne des valeurs mensuelles calculée entre avril et novembre

6.2.2. Structure des populations

Les principaux paramètres utilisés pour caractériser la structure de la population du copépode *Eurytemora affinis* sont : le pourcentage de mâles par rapport à l'ensemble des adultes, le pourcentage de femelles ovigères par rapport à l'ensemble des femelles, le pourcentage de copépodites par rapport à la population totale. L'évolution dans le temps de ces paramètres démographiques intègre des successions de cohortes dont la durée de vie est variable et qui peuvent se chevaucher, ce qui rend délicate toute interprétation détaillée compte tenu du pas de temps d'échantillonnage.

Le sex-ratio des adultes est habituellement légèrement en faveur des mâles, ce qui ne se vérifie pas en 2009 (46 ± 3 % de mâles en moyenne). Alors que les variations de sex ratio étaient relativement stables les années précédentes, l'année 2009 se caractérise par une forte variabilité associée à une augmentation importante du pourcentage de mâles en période estivale (notamment en surface : **Figure 6-10**). Ce fort déséquilibre observé en fin d'été (maximum en Septembre : 65 %) se rapproche de ce qui a été observé en 2008. En général, le pourcentage de mâles est toujours un peu plus élevé en surface qu'au fond. En 2009, comme en 2008 cette caractéristique n'est pas observée (ce schéma est cependant classique de Juin à Août).

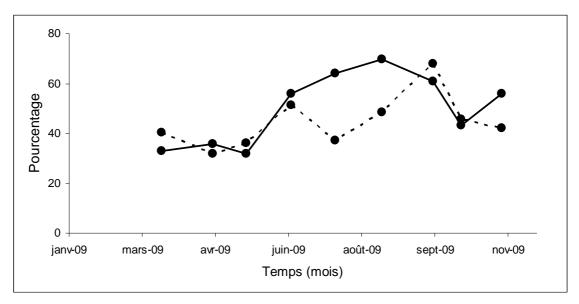


Figure 6-10 : Evolution mensuelle du pourcentage de mâles dans la population adulte du copépode Eurytemora affinis au point E (pk 52), en surface (trait plein) et au fond (pointillé) au cours de l'année 2009 - Chaque point représente la valeur moyenne calculée sur 4 prélèvements successifs au cours d'un demi-cycle de marée

Le pourcentage de femelles ovigères est inférieur en surface par rapport à ce qui est observé au fond pendant la majeure partie de l'année. Les valeurs les plus fortes (**Figure 6-11**) sont observées en fin d'été (septembre), elles sont faibles pendant la période de production de l'espèce (avril-juin). Le pourcentage moyen de l'année 2009 (19,0 %) est faible par rapport à la moyenne calculée à partir des valeurs des précédentes années de surveillance (29,3 %) mais se situe dans la gamme de valeurs observées depuis 1999.

La proportion moyenne de copépodites (copépodites 1 à 5 = stades juvéniles) en 2009 est plus importante en surface qu'au fond (sauf en septembre et novembre, **Figure 6-12**), ce qui traduit une distribution préférentielle des jeunes stades en surface (phénomène classiquement observé). La moyenne annuelle (60,0 %) est identique à la moyenne des observations des années précédentes (59,3 %). Comme souvent, les plus forts pourcentages sont notés de Mars à Juin (pendant le pic d'abondance de l'espèce) et pendant la période estivale (période durant laquelle les effectifs sont très faibles). Les valeurs élevées observées en Septembre, précèdent la légère reprise de production automnale.

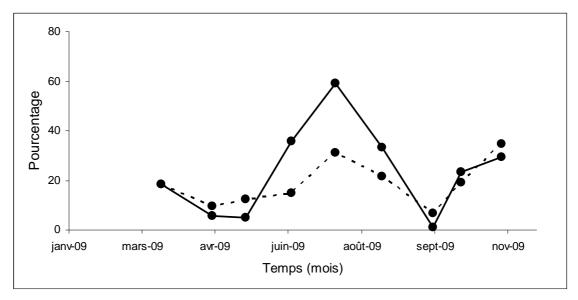


Figure 6-11 : Evolution mensuelle du pourcentage de femelles ovigères chez le copépode Eurytemora affinis au point E (pk 52), en surface (trait plein) et au fond (pointillé) au cours de l'année 2009 - Chaque point représente la valeur moyenne calculée sur 4 prélèvements successifs au cours d'un demi-cycle de marée

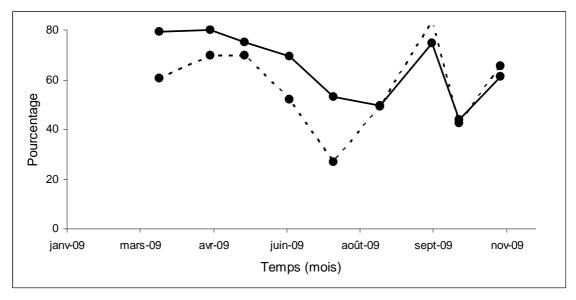


Figure 6-12 : Evolution mensuelle du pourcentage de copépodites dans la population totale du Copépode Eurytemora affinis au point E (pk 52), en surface (trait plein) et au fond (pointillés) au cours de l'année 2009 - Chaque point représente la valeur moyenne calculée sur 4 prélèvements successifs au cours d'un demi-cycle de marée

6.2.3. Mortalité

Les résultats sont présentés en pourcentages de mortalité, tous stades confondus. Les fluctuations temporelles observées au cours du cycle annuel en 2009 (**Figure 6-13**) sont faibles quelle que soit la période de l'année.

La mortalité annuelle moyenne en 2009 $(0.4 \pm 0.1 \%)$ est particulièrement faible en référence aux données acquises depuis 30 ans et du même ordre de grandeur que ce qui a été observé lors des années précédentes $(4^{\text{éme}})$ valeur la plus faible sur l'ensemble de la série).

La moyenne annuelle observée en 2009 concorde avec la diminution de la mortalité observée depuis 1999. La tendance observée au cours des 11 dernières années (**Figure 6-14**) est proche de celle des années 1984 à 1988.

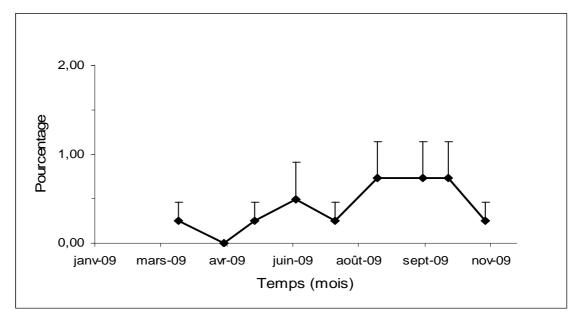


Figure 6-13 : Evolution mensuelle du pourcentage de mortalité du copépode Eurytemora affinis au point E, au cours de l'année 2009 - Chaque point du graphique représente la valeur moyenne (± erreur standard) calculée sur 4 prélèvements successifs au cours d'un demicycle de marée (2 en surface et 2 au fond)

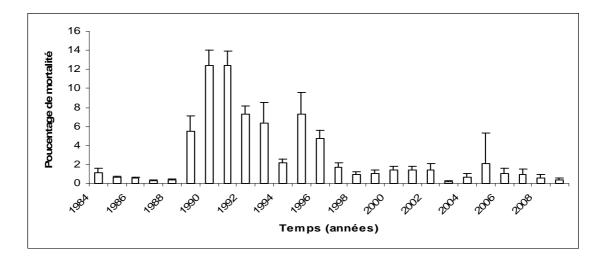


Figure 6-14 : Evolution du pourcentage de mortalité du Copépode Eurytemora affinis au point E, entre 1984 et 2009 - Chaque point sur le graphique représente la valeur moyenne annuelle (± erreur standard) calculée sur l'ensemble des prélèvements

6.3. Comparaison de l'évolution des principaux contingents aux points F, E, K

Les espèces dominantes sont identiques dans les trois stations mais leur représentativité est différente. Dans la partie amont de l'estuaire, c'est l'espèce *E. affinis* qui domine ; la partie médiane est essentiellement occupée par les copépodes *Acartidae*. Au point le plus amont (pk 30), notamment à marée basse, on trouve quelques espèces dulçaquicoles (*Acanthocyclops* sp, *Bosmina* sp, *Daphnia* sp, etc., notamment des copépodes cyclopoïdes cette année au point K en Septembre et Novembre) mais leur densité est toujours très faible, de même que dans le point le plus aval, à marée haute et en période d'étiage, on peut noter l'intrusion d'espèces néritiques (en particulier cette année des Cténaires en mai et juillet au point F et des méduses au point E en septembre).

Les comparaisons entre stations reposent sur la moyenne de tous les prélèvements effectués au cours d'une marée pour chaque mission.

6.3.1. Variations des densités du Copépode Eurytemora affinis

En 2009, *E. affinis* constitue l'essentiel du peuplement de copépodes dans les deux stations étudiées en amont de l'estuaire (points E et K, l'espèce dominante en aval est *A. tonsa*). La densité moyenne annuelle d'*E. affinis* au point F (3815 ± 1345 ind./m³) est proche de celle observée au point E (4456 ± 1324 ind./m³). L'abondance de l'espèce est beaucoup plus forte en amont K (10111 ± 3940 ind./m³, **Figure 6-15**). La localisation aval de l'espèce, déjà observée en 2005 et 2006, n'est pas observée cette année (comme depuis 2007) ce qui peut indiquer un retour à un schéma de distribution de l'espèce plus classique : le pic de densité est de façon générale toujours situé juste en amont du maximum de turbidité, là où les copépodes sont piégés (CASTEL, 1995). La période de fortes abondances de l'espèce est globalement identique dans les deux stations aval : avril à Juin, elle est plus précoce en amont (effectifs les plus importants notés en 2009 : point K en Mars (hors protocole) : 43025 ± 13545 ind./m³, **Figure 6-15**). Les pics d'abondances en aval sont simultanés en Avril et de même amplitude : à la station médiane (E) : 12362 ± 4338 ind./m³ - à la station aval (F) : 10307 ± 3425 ind./m³ (station aval non échantillonnée en Mars).

L'année 2009 se distingue donc, comme cela a pu être observé les années précédentes, par des périodes d'abondances maximales différentes en amont (K) et en aval de l'estuaire (E et F). 2009 est aussi marquée par une augmentation plus précoce (*Mars, hors protocole*) des abondances en amont (Station K), et un maintient des effectifs à des niveaux plus importants qu'en aval durant toute l'année.

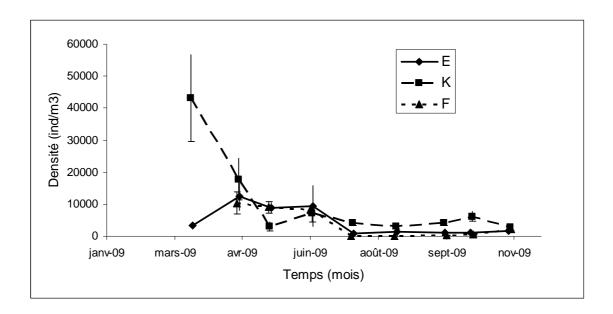


Figure 6-15 : Evolution mensuelle de la densité du copépode Eurytemora affinis aux points F (pk 67), E (pk 52) et K (pk 30) au cours de l'année 2009 - Chaque point du graphique représente la valeur moyenne calculée sur 8 prélèvements au cours d'un demi-cycle de marée (4 en surface et 4 au fond) (± erreur standard)

La comparaison des densités moyennes interannuelles (**Tableau 6-1**) entre 1984 et 2009 montre que les années caractérisées par une absence de crues²⁶ (notamment printanières) ou par une forte turbidité (sècheresse printano-estivale) sont des années pour lesquelles la densité du copépode est plus élevée au point K qu'au point E; la situation étant inversée les années caractérisées par des crues. Le schéma observé en 2009 correspond à une situation classique « hors crue » pour laquelle la population du copépode *E. affinis* est principalement répartie sur la zone amont de l'estuaire ; la crue observée en début d'année (janvier) n'ayant pas d'incidence durable jusqu'au premier mois de prélèvement (Mars) sur la répartition de la population.

Ifremer

_

²⁶ Mais ces observations ne sont possibles que si les périodes de crue sont échantillonnées (ce qui n'est plus toujours possible depuis 1992 –année du recul du début de la période d'observation au mois d'avril-)

Tableau 6-1 : Evolution des densités moyennes annuelles (ind./m3) du copépode Eurytemora affinis observées au cours de la période 1984-2009 - Le point J est situé au niveau du pk 52 dans le chenal de navigation

Année	Point F	Point E	Point J	Point K
	Pk 67	Pk 52	Pk 52	Pk 30
1984		9600	8500	6100
1985		9100	11100	5500
1986		5900	7900	4900
1987		5300	6400	5800
1988		7400	7900	5200
1989		5300	5500	8200
1990		2400	2400	3000
1991		5600	4700	7100
1992		6400		4700
1993	4300	8200		9300
1994	3000	6252		1873
1995	2161	7896		3673
1996	3743	3010		6843
1997	2156	1098		2526
1998	832	5226		7167
1999	4704	6214		5283
2000	2747	5693		5653
2001	7069	8393		23358
2002	3470	5112		3978
2003	2175	3857		4956
2004	4238	17216		11400
2005	11104	9641		8886
2006	9277	8475		14034
2007	5433	11316		4778
2008	1835	6414		6400
2009	3815	4456		10111

6.3.2. Variation des densités des Copépodes Acartidés

Les copépodes *Acartidae* sont représentés par deux espèces : *Acartia bifilosa* et *Acartia tonsa* dont la distribution spatio-temporelle est sensiblement différente (cf. **Figure 6-4**).

Les densités moyennes du copépode *Acartia bifilosa* (**Tableau 6-2** et **Figure 6-16**) sont maximales au point E $(310 \pm 198 \text{ ind./m}^3)$ et décroissent vers l'amont et l'aval de l'estuaire (maximum au point F : $128 \pm 47 \text{ ind./m}^3$ et maximum au point K : $5 \pm 5 \text{ ind./m}^3$). La période d'abondance maximale est identique dans les différentes stations et correspond à la période estivale (Juin-Juillet) : en aval : maximum annuel au point F en Juillet: $422 \pm 73 \text{ ind./m}^3$; en zone médiane : maximum annuel au point E en Juin : $1907 \pm 604 \text{ ind./m}^3$; maximum annuel au point K en Juillet : $46 \pm 22 \text{ ind./m}^3$). Un seul pic

d'abondance est observé en 2009. La présence de ce pic estival, observé certaines années, est une caractéristique des années : 1979, 1982, 1987, 1993, 1997, 2002, 2005, 2008 ; 2009 ne rentre dans ce schéma saisonnier).

Ceci qui correspond à un schéma intermédiaire de la distribution spatio-temporelle de l'espèce dans l'estuaire. Le caractère polyhalin d'A. bifilosa s'illustre souvent par une distribution dans la partie aval de la Gironde, l'espèce ne colonisant l'estuaire amont qu'à la faveur de la remontée de l'intrusion saline. Cette année est caractérisée par une position médiane de l'espèce dans l'estuaire (centrée sur le point E, situation déjà observée en 2003).

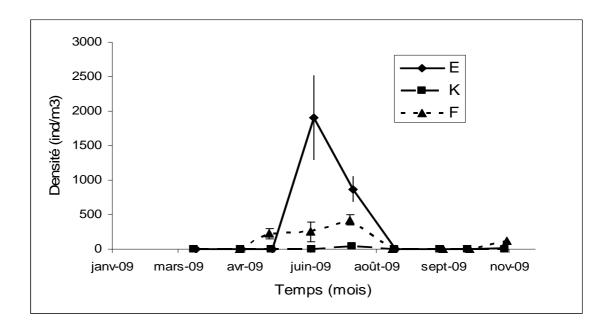


Figure 6-16 : Evolution mensuelle de la densité du Copépode Acartia bifilosa aux points F (pk 67), E (pk 52, rejet) et K (pk 30) au cours de l'année 2009 - Chaque point du graphique représente la valeur moyenne calculée sur 8 prélèvements au cours d'un demi-cycle de marée (4 en surface et 4 au fond) (± erreur standard)

Tableau 6-2 : Evolution des densités moyennes annuelles (ind./m3) du copépode Acartia bifilosa au cours de la période 1984-2009 - Le point J est situé au pk 52 dans le chenal de navigation

Année	Point F	Point E	Point J	Point K
1984		209	198	1
1985		321	418	15
1986		2514	2862	14
1987		94	238	4
1988		464	1101	4
1989		149	150	9
1990		147	314	16
1991		569	726	4
1992	609	173		1
1993	970	430		2
1994	1000	17		5
1995	3440	287		3
1996	733	340		5
1997	1133	846		1
1998	804	9		3
1999	2232	204		12
2000	1646	34		0
2001	11210	15		0
2002	544	415		3
2003	519	1359		139
2004	1102	97		1
2005	1976	500		5
2006	1927	279		5
2007	398	69		3
2008	452	25		2
2009	128	310		5

Le copépode *Acartia tonsa* est une espèce polyhaline : il présente en 2009 un gradient décroissant d'abondance des stations aval vers les stations amont (**Tableau 6-3**). Les plus fortes abondances sont observées au point F (moyenne annuelle : 4829 ± 2161 ind./m³), elles sont intermédiaires au point E (moyenne annuelle : 1032 ± 616 ind./m³), l'espèce étant très peu représentée au point K (moyenne annuelle : 169 ± 91 ind./m³). Son caractère thermophile se traduit en termes de développement dans l'estuaire par une période de production de fin d'été succédant à la période de production d'A. *bifilosa*. *A. tonsa* a présenté en 2009 (**Figure 6-17**) un pic de densité simultané en Août aux points E et K (5651 ± 1050 et 868 ± 302 ind./m³) et décalé en Septembre en aval (point F : 18875 ± 8427 ind./m³).

Différents travaux tendent à montrer que la disparition saisonnière d'A. bifilosa et d'A. tonsa en hiver et leur présence (quelquefois massive) estivale dans le plancton au moment du maximum thermique sont dues à la formation d'œufs de résistance capables de résister au froid et se développant dès que les températures redeviennent favorables (GAUDY, 1992 pour A. tonsa; VIITASALO, 1992 pour A. bifilosa).

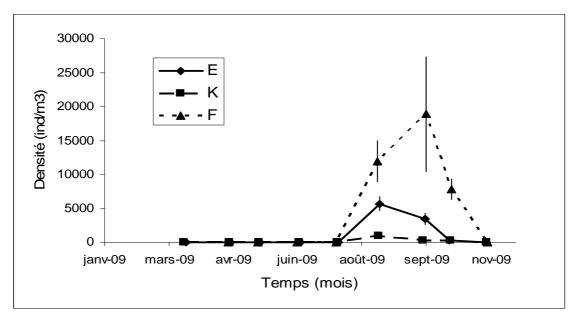


Figure 6-17 : Evolution mensuelle des densités du copépode Acartia tonsa aux points F (pk 67), E (pk 52, rejet) et K (pk 30) au cours de l'année 2009 - Chaque point du graphique représente la moyenne calculée sur 8 prélèvements au cours d'un demi-cycle de marée (4 en surface et 4 au fond) (± erreur standard)

Tableau 6-3 : Evolution des densités moyennes annuelles (ind./m3) du copépode Acartia tonsa aux points F (pk 67), E (pk 52, rejet) et K (pk 30) au cours de la période 1984-2009 - Le point J est situé au pk 52 dans le chenal de navigation

Année	Point F	Point E	Point J	Point K
1984		58	97	20
1985		35	459	27
1986		129	356	48
1987		64	406	36
1988		410	484	16
1989		302	519	233
1990		534	3253	478
1991		933	1223	261
1992	1120	114	1223	14
1993	970	430		4
1994	81	15		7
1995	1168	417		8
1996	291	109		6
1997	366	165		7
1998	1849	57		18
1999	2880	1183		149
2000	1086	918		123
2001	1918	1541		472
2002	1386	1048		42
2003	1	1971		1039
2004	3626	1289		79
2005	2177	1224		134
2006	2138	1786		72
2007	2224	247		30
2008	4456	1057		146
2009	4829	1032		169

6.3.3. Variation des densités de Mysidacés

En 2009, les effectifs de *Neomysis integer* sont globalement faibles par rapport à ce qui a pu être observé sur l'ensemble de la série ; en moyenne l'espèce est essentiellement peu représentée dans la station amont (**Tableau 6-4** ; moyennes annuelles : point $K: 10 \pm 4$ ind./m³ - point $E: 22 \pm 13$ ind./m³ - point $F: 18 \pm 9$ ind./m³).

Les densités maximales de l'espèce s'observent classiquement en 2009 dans la zone aval de l'estuaire (aux points F ou E). Cette année, comme en 2008 et contrairement à ce qui avait pu être parfois récemment observé (2006 et 2007), les pics sont décalés

dans le temps dans les 3 stations (**Figure 6-18**) avec une période de présence plus précoce en aval qu'en amont : 77 ± 37 ind./m³ en Juin au point F, 137 ± 91 ind./m³ en Mai au point E et 31 ± 22 ind./m³ en Juillet au point K. La présence plus constante à la station E (effectifs parfois faibles), interprété comme une localisation de l'aire de distribution de l'espèce principalement dans la zone médiane de l'estuaire, n'est pas observée cette année, les pics de développement de l'espèce étant relativement localisés dans le temps en 2009.

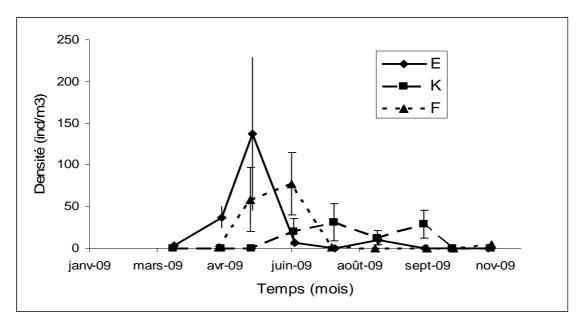


Figure 6-18 : Evolution mensuelle de la densité du Mysidacé Neomysis integer aux points F (pk 67), E (pk 52, rejet) et K (pk 30), au cours de l'année 2009 - Chaque point du graphique représente la valeur moyenne calculée à partir de 8 prélèvements au cours d'un demi-cycle de marée (4 en surface et 4 au fond) au cours d'un demi-cycle de marée (± erreur standard)

Tableau 6-4 : Evolution des densités moyennes annuelles (ind./m3) du Mysidacé Neomysis integer aux points F (pk 67), E (pk 52, rejet) et K (pk 30) au cours de la période 1984-2009 - Le point J est situé au pk 52 dans le chenal de navigation

Année				
	Point F	Point E	Point J	Point K
1984		36	45	22
1985		57	51	21
1986		78	147	63
1987		101	68	33
1988		79	41	37
1989		17	34	16
1990		27	15	6
1991		55	15	12
1992	26	20		3
1993	18	3		3
1994	45	30		1
1995	51	35		10
1996	7	21		5
1997	9	22		7
1998	29	105		37
1999	18	41		8
2000	29	31		12
2001	120	73		24
2002	21	43		9
2003	5	23		15
2004	1	67		13
2005	36	23		47
2006	56	44		12
2007	11	20		6
2008	18	13		4
2009	18	22		10

La seconde espèce dominante, *Mesopodopsis slabberi* (**Figure 6-19**) présente un schéma de distribution classique (gradient décroissant de l'aval vers l'amont, **Tableau 6-5**.): abondances très proches et plus importantes aux points E (moyenne annuelle: 191 ± 70 ind./m³) et F (167 ± 37 ind./m³), qu'au point K (72 ± 30 ind./m³). Il s'agit d'une espèce polyhaline dont le centre de distribution se situe normalement en aval du pk 67 et dont la pénétration dans l'estuaire est fortement dépendante des débits fluviaux. Les plus fortes abondances sont trouvées en période estivale aussi bien en aval (points F et E (respectivement en Août: 309 ± 99 ind./m³ et Juillet 588 ± 177 ind./m³) qu'en amont (255 ± 92 ind./m³).

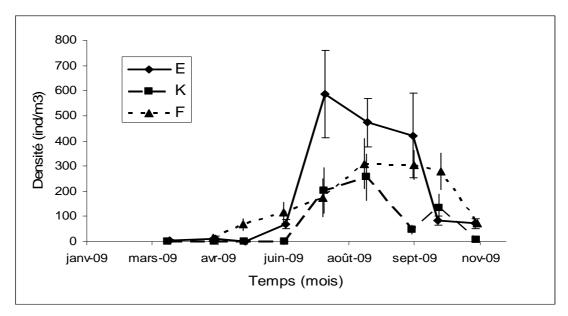


Figure 6-19 : Evolution mensuelle de la densité du Mysidacé Mesopodopsis slabberi aux points F (pk 67), E (pk 52, rejet) et K (pk 30), au cours de l'année 2009 - Chaque point du graphique représente la valeur moyenne calculée à partir de 8 prélèvements au cours d'un demi cycle de marée (4 en surface et 4 au fond) au cours d'un demi-cycle de marée (± erreur standard)

Tableau 6-5 : Evolution des densités moyennes annuelles (ind./m3) du Mysidacé Mesopodopsis slabberi aux points F (pk 67), E (pk 52, rejet) et K (pk 30) au cours de la période 1984-2009 - Le point J est situé au pk 52 dans le chenal de navigation

Année	Point F	Point E	Point J	Point K
1984		191	135	46
1985		114	151	40
1986		787	2740	178
1987		169	367	211
1988		223	408	88
1989		177	173	85
1990		124	521	41
1991		260	234	62
1992	155	65	23 .	8
1993	114	106		6
1994	71	12		4
1995	185	141		10
1996	166	130		8
1997	137	136		9
1998	215	118		15
1999	177	92		9
2000	214	144		32
2001	310	211		63
2002	258	169		31
2003	74	180		134
2004	434	209		49
2005	294	254		98
2006	303	128		38
2007	224	237		30
2008	195	90		47
2009	167	191		72

6.4. Structure démographique d'Eurytemora affinis aux points F, E, et K

6.4.1. Paramètres de population

De manière générale (**Tableau 6-6**), la structure démographique d'*Eurytemora affinis* est proche d'une station à l'autre.

Tableau 6-6 : Principaux paramètres démographiques de Eurytemora affinis au cours de la période 1984-2009 - M : % de mâles par rapport à la population adulte, F. ov. : % de femelles ovigères/total des femelles, C : % de copépodites

Année		Point F		Point E		Point K			
	M	F. ov.	С	M	F. ov.	С	M	F.	С
								ov.	
1984				53	25	67	54	15	67
1985				55	23	67	56	18	67
1986				58	30	60	55	26	56
1987				54	35	65	59	23	77
1988				54	19	62	51	20	52
1989				52	32	67	52	31	71
1990				48	34	60	50	21	59
1991				46	27	67	46	26	67
1992	60	34	58	54	36	62	54	25	58
1993	62	33	55	51	33	65	44	17	75
1994	53	25	67	45	24	68	44	18	62
1995	39	19	59	41	32	62	45	18	62
1996	52	30	60	49	30	54	47	20	62
1997	51	26	49	53	30	48	46	16	58
1998	50	27	46	48	32	52	47	17	68
1999	60	22	34	42	20	53	39	9	57
2000	48	18	63	35	13	65	40	11	60
2001	50	15	58	52	20	47	42	13	47
2002	57	26	48	56	26	45	45	12	53
2003	50	15	82	37	15	66	54	17	64
2004	43	20	55	45	20	64	42	10	59
2005	51	17	58	51	26	54	50	15	63
2006	32	9	39	42	20	64	44	12	57
2007	47	20	53	53	21	45	44	10	60
2008	43	16	48	44	19	57	43	11	57
2009	54	18	48	46	19	60	42	10	61

L'évolution saisonnière du sex-ratio (**Figure 6-20**) est assez différente d'une station à l'autre. On observe globalement un équilibre (proche de 40-45%) du sex ratio sur la période d'étude avec, en moyenne, une prédominance de femelles (ce qui représente une différence avec les données du début de l'étude : dominance de mâles) : en moyenne 46% au point E et 42 % au point K. Le point F fait exception avec 54 % de mâles en moyenne. Cette valeur moyenne est très influencée par la très forte valeur du mois d'Août : épisode de forte variabilité caractérisé par un déséquilibre en faveur des mâles en période estivale dans la zone aval de l'estuaire (100 % de mâles par rapport au total d'adultes - août est par ailleurs caractérisés par de très faibles effectifs de l'espèce : 4 ind./m³ en août).

L'année 2009 est marquée, comme c'est le cas des dernières années d'observation (e.g. 2005, 2006, 2007), par une faible représentation moyenne des femelles ovigères : 18% au point F (22% sur l'ensemble de la série), 19% au point E (26% sur la série) et 10% au point K (17% sur la série). Le pourcentage de femelles ovigères est globalement faible lors de la période de forte abondance de l'espèce (période durant laquelle les copépodites sont dominants).

L'évolution du pourcentage de copépodites est habituellement « homogène » dans l'estuaire. Cette année, durant la période de fortes abondances de début d'été, la population est dominée par les copépodites. L'année 2009 est par ailleurs marquée par une meilleure représentativité des jeunes stades en amont (point K : 57%) et en zone médiane (point E : 57%) qu'en aval (48%) et par des pourcentages moyens faibles aux points F et K par rapport à ce qui a pu être observé sur la série (F : 48% pour 55% sur la série ; K : 57% pour 62% ; les abondances relatives sont similaires en 2009 au point E par rapport à la moyenne de la série).

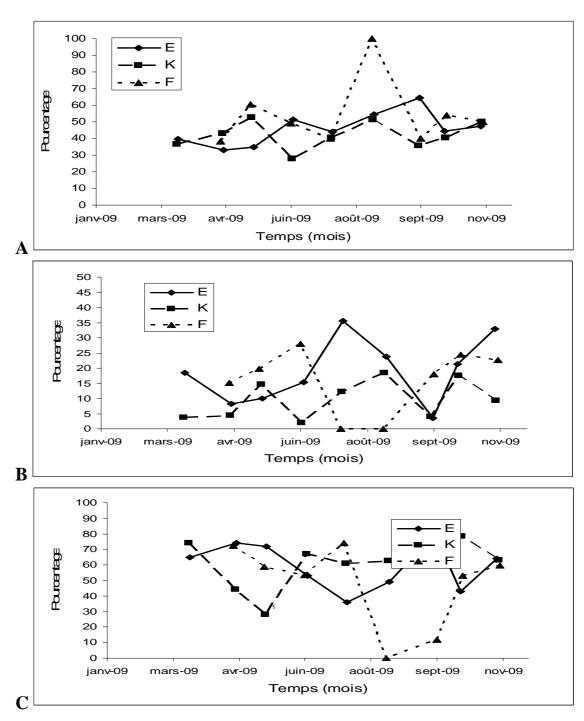


Figure 6-20 : Evolution mensuelle de la structure démographique du copépode Eurytemora affinis aux points F (pk 67), E (pk 52, rejet) et K (pk 30) au cours de l'année 2009 - % mâles/adultes (A), % femelles ovigères (B), % de copépodites (C), calculés sur 8 prélèvements au cours d'un demi-cycle de marée (4 en surface et 4 au fond)

6.4.2. Fécondité

En 2009, les fécondités enregistrées aux points K, E et F (**Figure 6-21**) ne diffèrent pas, la plupart du temps, significativement d'une station à l'autre : les faibles valeurs trouvées au point E se retrouvent donc en aval et en amont (2.9 ± 0.3) œufs/femelle au point E, 2.8 ± 0.1 en F et 3.1 ± 0.5 en K).

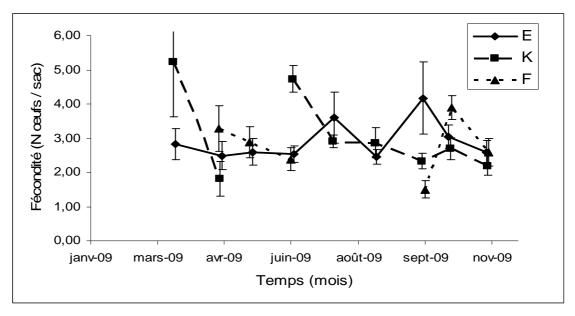


Figure 6-21 : Evolution mensuelle de la fécondité (nombre d'œufs moyen/sac ovigère) des femelles du copépode Eurytemora affinis aux points F (pk 67), E (pk 52, rejet) et K (pk 30) au cours de l'année 2009 - Chaque point du graphique représente la valeur moyenne calculée sur 8 prélèvements au cours d'un demi-cycle de marée (4 en surface et 4 au fond) (± erreur standard)

En 2009 pour les 3 points, la fécondité est à nouveau particulièrement faible par rapport à l'ensemble des précédentes années (**Tableau 6-7**).

Tableau 6-7 : Fécondité moyenne du copépode Eurytemora affinis (nombre moyen d'œufs par sac ovigère ± erreur standard) entre les stations F (pk 67), E (pk 52, rejet) et K (pk 30) au cours de la période 1984-2009 - Le point J est situé au pk 52 dans le chenal de navigation

Année	Point F	Point E	Point J	Point K
1984		12.9 ± 1.9	14.8 ± 1.9	13.7 ± 1.7
1985		$11,1 \pm 3,9$	9.5 ± 1.3	$10,3 \pm 2,1$
1986		$9,1 \pm 1,5$	$8,4 \pm 0,6$	$7,6 \pm 1,0$
1987		$6,4 \pm 0,6$	$6,8 \pm 0,8$	6.4 ± 1.3
1988		7.5 ± 0.8	$7,0 \pm 0,5$	$6,6 \pm 0,6$
1989		$7,4 \pm 0,4$	$7,5 \pm 0,4$	$7,6 \pm 0,6$
1990		6.8 ± 0.5	6.8 ± 0.4	$5,7 \pm 0,3$
1991		7.6 ± 0.8	7.5 ± 0.3	7.0 ± 0.2
1992	$9,2 \pm 0,9$	9.6 ± 0.8	, ,	$8,5 \pm 0,5$
1993	$7,5 \pm 0,6$	$7,4 \pm 0,9$		$10,1 \pm 3,5$
1994	$3,6 \pm 0,5$	$4,0 \pm 0,4$		$3,1 \pm 0,3$
1995	$3,3 \pm 0,5$	$4,0 \pm 0,4$		$2,8 \pm 0,3$
1996	$4,1 \pm 0,5$	$3,4 \pm 0,2$		$3,4 \pm 0,2$
1997	4.1 ± 0.3	$3,4 \pm 0,2$		$2,7 \pm 0,2$
1998	$3,6 \pm 0,1$	$2,9 \pm 0,1$		$2,7 \pm 0,2$
1999	$2,9 \pm 0,2$	$3,0 \pm 0,1$		$2,5 \pm 0,1$
2000	$2,6 \pm 0,2$	$3,1 \pm 0,3$		$2,1 \pm 0,1$
2001	$3,5 \pm 0,2$	$3,3 \pm 0,3$		$3,1 \pm 0,1$
2002	$3,0 \pm 0,2$	$2,9 \pm 0,2$		$2,6 \pm 0,1$
2003	$2,7 \pm 0,4$	$2,9 \pm 0,2$		$2,7 \pm 0,3$
2004	$2,7 \pm 0,2$	$2,5 \pm 0,4$		$2,5 \pm 0,4$
2005	$3,3 \pm 0,6$	$3,3 \pm 0,6$		$2,6 \pm 0,2$
2006	$3,0 \pm 0,9$	$2,9 \pm 0,4$		$2,3 \pm 0,6$
2007	$2,2 \pm 0,4$	$2,7 \pm 0,4$		$2,3 \pm 0,3$
2008	$2,7 \pm 0,6$	$2,8 \pm 0,8$		$2,3 \pm 0,6$
2009	$2,8 \pm 0,1$	$2,9 \pm 0,3$		$3,1 \pm 0,5$

Après une baisse continue de 1984 à 1987, le nombre d'œufs par sac ovigère tendait à se stabiliser de 1988 à 1991 aux différents points et même à remonter au point K. Puis une nouvelle tendance à la baisse est apparue de façon généralisée sur tous les points (stabilisation depuis 1994). Cette décroissance du nombre d'œufs peut être liée aux variations de la température de l'eau comme cela a été observé chez *E. affinis* tant en laboratoire (POLY & CASTEL, 1983) que sur le terrain (CASTEL & FEURTET, 1992; HIRCHE, 1992).

6.4.3. Mortalité

Le pourcentage moyen de mortalité reste faible (< 1% en moyenne) tout au long de l'année sur l'ensemble de l'aire de répartition de l'espèce (**Figure 6-22**).

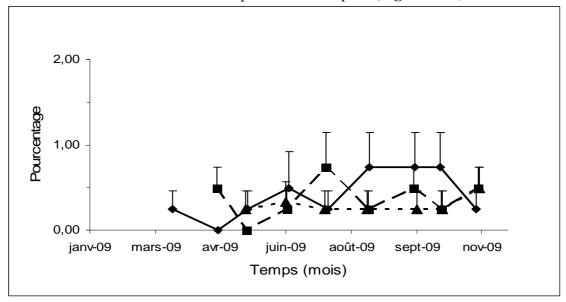


Figure 6-22 : Evolution mensuelle de la mortalité du copépode Eurytemora affinis aux points E (pk 52, rejet), F (pk 67) et K (pk 30) au cours de l'année 2009 - Chaque point du graphique représente la valeur moyenne calculée à partir de 4 prélèvements au cours d'un demi-cycle de marée (4 en surface et 4 au fond) (± erreur standard)

Les valeurs sont très faibles sur l'ensemble du suivi. Les fortes mortalités observées dans la partie médiane et dans la partie amont de l'estuaire en été en 2005, ne sont pas observées cette année (**Tableau 6-8.**). La stratégie d'échantillonnage utilisée n'est pas en mesure de vérifier si les rejets thermiques de la centrale engendrent un phénomène de surmortalité.

Tableau 6-8 : Mortalité moyenne annuelle du copépode Eurytemora affinis (± erreur standard) aux points F (pk 67), E (pk 52, rejet) et K (pk 30) au cours de la période 1984-2009 - Le point J est situé au pk 52 dans le chenal de navigation

Année	Point F	Point E	Point J	Point K
	Pk 67	Pk 52	Pk 52	Pk 30
1984		$1,1 \pm 0,5$	0.7 ± 0.2	0.7 ± 0.2
1985		0.7 ± 0.1	0.9 ± 0.1	$1,1 \pm 0,3$
1986		0.6 ± 0.1	0.5 ± 0.1	0.5 ± 0.1
1987		0.3 ± 0.1	0.2 ± 0.1	$0,2 \pm 0,1$
1988		$0,4 \pm 0,1$	0.5 ± 0.1	0.3 ± 0.1
1989		$5,5 \pm 1,6$	$3,7 \pm 0,8$	$5,0 \pm 1,4$
1990		$12,4 \pm 1,6$	$11,3 \pm 1,8$	$8,7 \pm 1,3$
1991		$12,4 \pm 1,5$	$14,0 \pm 1,6$	$12,2 \pm 2,8$
1992	$5,8 \pm 1,1$	$7,3 \pm 0,8$		$5,7 \pm 0,8$
1993	$5,7 \pm 1,8$	$6,3 \pm 2,2$		$4,4 \pm 1,1$
1994	6.8 ± 2.7	$2,2 \pm 0,4$		$7,8 \pm 3,2$
1995	$1,1 \pm 0,3$	$7,3 \pm 2,3$		$3,3 \pm 1,0$
1996	5.8 ± 1.9	$4,7 \pm 0,9$		$9,3 \pm 2,4$
1997	$2,0 \pm 0,9$	$1,7 \pm 0,5$		$1,5 \pm 0,5$
1998	0.7 ± 0.3	0.9 ± 0.3		$5,9 \pm 2,8$
1999	0.7 ± 0.3	$1,0 \pm 0,4$		$1,6 \pm 0,6$
2000	0.6 ± 0.3	$1,4 \pm 0,4$		$1,8 \pm 0,7$
2001	0.6 ± 0.3	$1,4 \pm 0,4$		$2,1 \pm 0,5$
2002	0.9 ± 0.3	$1,4 \pm 0,7$		0.8 ± 0.4
2003	$0,2 \pm 0,1$	$0,2 \pm 0,1$		$0,5 \pm 0,2$
2004	0.8 ± 0.3	0.7 ± 0.3		$0,3 \pm 0,1$
2005	0.7 ± 0.2	$2,1 \pm 3,2$		0.8 ± 0.4
2006	0.2 ± 0.3	$1,0 \pm 0,7$		$1,0 \pm 2,3$
2007	0.5 ± 0.7	0.9 ± 1.0		$0,5 \pm 0,6$
2008	0.3 ± 0.4	0.6 ± 0.3		0.5 ± 0.3
2009	0.3 ± 0.0	$0,4 \pm 0,1$		$0,4 \pm 0,1$

Synthèse:

Le programme de surveillance écologique a pour objectif la mise en évidence des modifications éventuelles apportées au milieu par la centrale par rapport à un état de référence (fin des années 70 ; cf. présentation du site et stratégie d'étude - chapitre 1).

La stratégie de suivi permet donc de dégager les grandes lignes de l'évolution intra- et inter- annuelle du compartiment zooplanctonique dans l'estuaire de la Gironde, en liaison avec les modifications majeures apportées par l'implantation de la centrale (e.g. tache thermique), mais ne donne en aucun cas l'assurance de la détermination d'un éventuel impact localisé (dans le temps ou l'espace) : pas de temps et échelle spatiale non adaptés avec la dynamique spatiale et temporelle du compartiment étudié en milieu estuarien.

C'est aussi pour ces raisons que certaines observations faites (e.g. diminution du nombre d'œufs portés par *Eurytemora*) ne peuvent pas être expliquées avec les données acquises; ceci demanderait des études spécifiques, avec une stratégie adaptée à l'identification des processus impliqués.

Pour les objectifs initialement fixés et en tenant compte des remarques ci-dessus, nous pouvons noter que l'année 2009 est une année qui se situe dans la continuité des observations faites pour lesquelles le compartiment zooplanctonique évolue, notamment en relations avec les paramètres environnementaux (e.g. débits, température, ...), sans mise en évidence, à cette échelle, d'un impact de la centrale.

7. Macrofaune benthique

Le contexte spatio-temporel de l'étude de surveillance écologique, et les méthodologies utilisées pour chaque thématique et paramètre, sont regroupés dans le chapitre 1 « Présentation du site et stratégie d'étude ».

Le suivi de la macrofaune benthique est réalisé en 6 stations :

- 3 stations dans le domaine subtidal (chenaux toujours immergés), localisées aux points F (PK 67), E (PK 52) et K (PK 30), conformément à l'article 29 de l'arrêté du 18 septembre 2003;
- 3 stations dans le domaine intertidal (zone découvrant à marée basse), localisées sur la rive gauche de l'estuaire en vis-à-vis des stations subtidales, à savoir St-Christoly (PK 66), St-Estèphe (PK 55) et Lamarque (PK 35). La position géographiques de ces stations est indiquée sur la **Figure 7-1**.

7.1. Composition granulométrique du sédiment

La composition granulométrique du sédiment (3 cm superficiels homogénéisés, après élimination éventuelle des éléments grossiers) a été déterminée par diffraction laser au microgranulomètre Malvern (analyses réalisées par l'équipe de sédimentologie de l'UMR EPOC) sur des carottes de sédiment prélevées au cours de chaque mission.

7.1.1. Sédiments intertidaux (Figure 7-2)

Le sédiment des trois stations intertidales est fortement vaseux. Comme les années précédentes, la composition granulométrique est remarquablement constante au cours du temps et semblable pour les trois stations :

- à St-Christoly (PK 66): 83-91% de grains < 63 μm (« vases »);
- à St-Estèphe (PK 55): 85-90% de vases;
- à Lamarque (PK 35) : 88-97% de vases.

La constance de la composition granulométrique du sédiment au cours de l'année n'implique pas nécessairement une stabilité temporelle du sédiment. Les observations de terrain montrent en effet une alternance de périodes de sédimentation et d'érosion liées à l'hydrodynamisme du milieu (périodes de crue et d'étiage, dépôts lors de la présence du bouchon vaseux, agitation par les vagues, etc.), en particulier à St-Christoly.

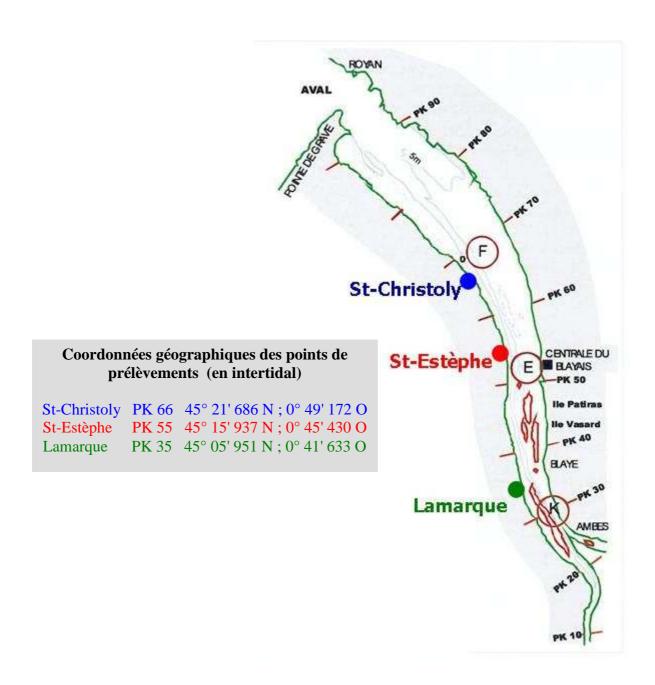
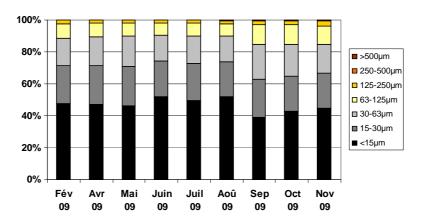



Figure 7-1 : Localisation des stations de prélèvement de la macrofaune benthique en intertidal

Saint-Christoly (PK 66) 100% 80% ■ >500µm ■ 250-500µm 60% □ 125-250µm □ 63-125µm ■ 30-63µm 40% ■ 15-30µm ■ <15µm 20% 0% Fév Avr Mai Juin Juil Aoû Sep Oct Nov 09 09 09 09 09 09 09 09 09

Saint-Estèphe (PK 55)

Lamarque (PK 35)

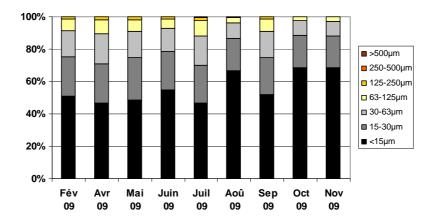
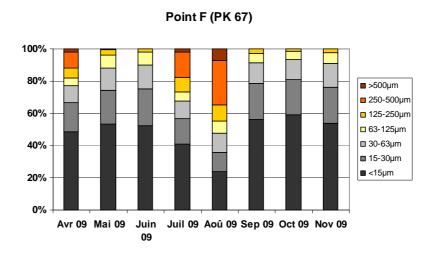
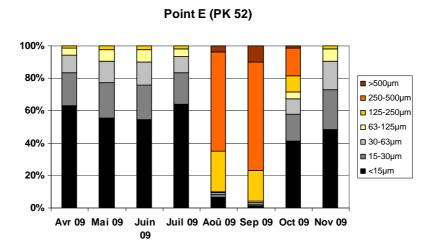


Figure 7-2 : Composition granulométrique du sédiment des stations intertidales en 2009


7.1.2. Sédiments subtidaux (Figure 7-3)


La composition granulométrique du sédiment aux trois stations subtidales présente une forte variabilité au cours de l'année :

- au Point F (PK 67), le sédiment est généralement à dominante vaseuse, avec 88-93% de particules < 63 μm en mai-juin et de septembre à novembre ; une présence importante de sables est cependant notée en avril, et surtout en juillet et août (seulement 48% de vases en août);
- au Point E (PK 52), le sédiment est constitué essentiellement de vases (90-94%) d'avril à juillet et en novembre ; en revanche, en août et septembre, le sédiment est essentiellement sableux, contenant alors seulement 3-9% de vases ;
- au Point K (PK 30), le sédiment est majoritairement sableux d'avril à octobre ; il subit cependant, au cours de l'année, un envasement graduel, la teneur en vases passant de 2% en avril à 83% en novembre.

Alors que la composition granulométrique du sédiment des trois stations subtidales était restée relativement stable au cours de l'année 2008, celle-ci a fortement fluctué au cours de l'année 2009, comme cela avait été observé au cours des années 2006 et 2007. Les causes de cette forte variabilité temporelle peuvent avoir plusieurs origines : lien avec les crues (érosion du sédiment superficiel ou apports sédimentaires), lien avec les activités de dragage du Grand Port Maritime de Bordeaux, sédiment en mosaïque, etc. Etant donné l'étroite dépendance de la faune benthique vis-à-vis de la texture sédimentaire, la variabilité de la composition granulométrique n'est certainement pas sans conséquence sur la dynamique des peuplements benthiques.

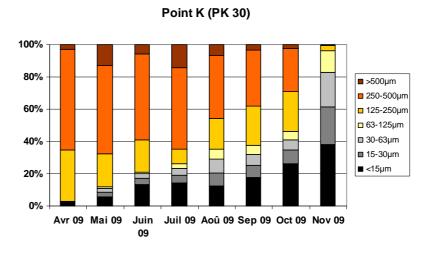


Figure 7-3 : Composition granulométrique du sédiment des stations subtidales en 2009

7.2. Evolution temporelle de la richesse spécifique des peuplements macrobenthiques

La richesse spécifique (RS) de la macrofaune benthique est faible dans les stations échantillonnées en Gironde, ce qui est une caractéristique générale de la faune dans les domaines méso- et oligohalins des estuaires.

Dans le domaine subtidal, *la richesse spécifique mensuelle* (nombre d'espèces échantillonnées chaque mois par station) suit globalement un gradient croissant vers l'aval, sans tendance saisonnière marquée (**Figure 7-4**):

- au Point F (PK 67), le nombre d'espèces échantillonnées à chaque date varie de 2 à 7 (soit, en moyenne sur l'année, 5,1 ± 0,6 espèces par date), et *la richesse* spécifique annuelle (nombre total d'espèces échantillonnées au cours de l'année dans chaque station) est de 10;
- au Point E (PK 52), 0 à 6 espèces sont échantillonnées par date (RS mensuelle moyenne = 2,6 ± 1,8 espèces), pour une RS annuelle de 6 espèces;
- au Point K (PK 30), 1 à 4 espèces sont échantillonnées par date (RS mensuelle moyenne = 2,1 ± 1,2 espèces), pour une RS annuelle de 7 espèces.

Dans le domaine intertidal, les mêmes constatations peuvent être formulées (**Figure 7-5**):

- à St-Christoly (PK 66), RS mensuelle moyenne = 6.9 ± 2.6 espèces (2 à 10 espèces par date) et RS annuelle = 14 espèces;
- à St-Estèphe (PK 55), RS mensuelle moyenne = 4.4 ± 0.5 espèces (4 à 5 espèces par date) et RS annuelle = 6 espèces;
- à Lamarque (PK 35), RS mensuelle moyenne = 1.8 ± 0.7 espèces (1 à 3 espèces par date) et RS annuelle = 6 espèces.

La comparaison inter-annuelle de la richesse spécifique aux 6 stations du suivi (**Figure 7-6**) permet de mettre en évidence :

- un gradient croissant de RS vers l'aval, tant au niveau subtidal qu'intertidal ;
- une nette tendance pluri-annuelle à la diminution de la RS en domaine subtidal depuis 2004; en domaine intertidal, par contre, la RS reste relativement stable sur l'ensemble du suivi;
- une inversion du maximum de RS entre domaine subtidal et domaine intertidal : plus élevée en subtidal sur la période 2004-2006, la RS tend maintenant à être plus élevée en domaine intertidal.

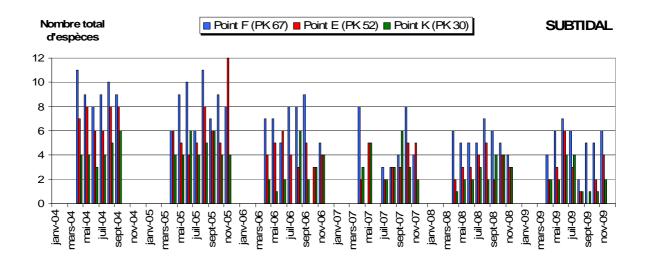


Figure 7-4 : Evolution mensuelle de la richesse spécifique du macrobenthos des stations subtidales au cours des années 2004 à 2009

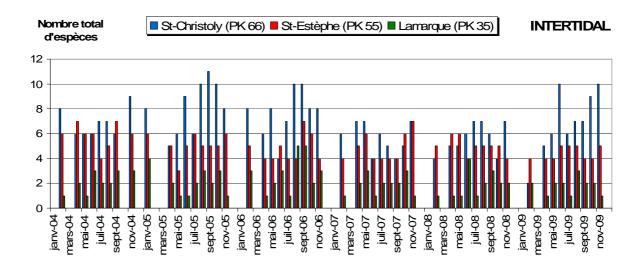


Figure 7-5 : Evolution mensuelle de la richesse spécifique du macrobenthos des stations intertidales au cours des années 2004 à 2009

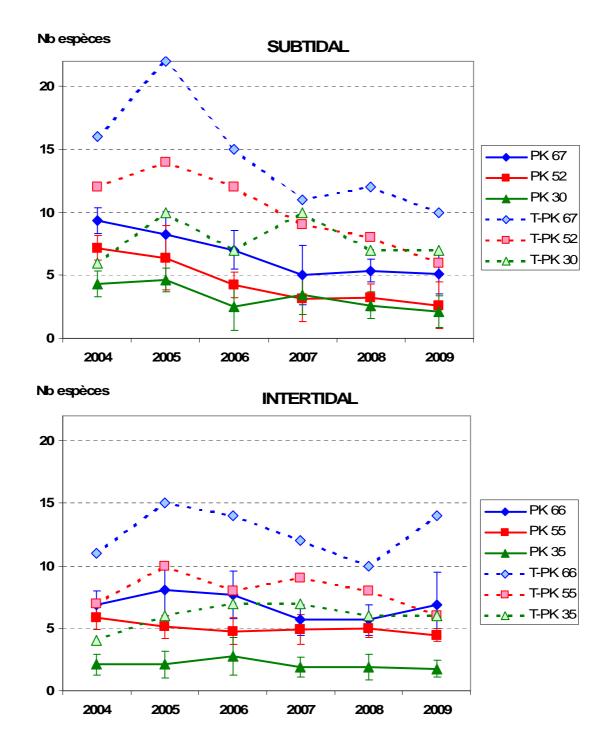


Figure 7-6 : Evolution annuelle de la richesse spécifique du macrobenthos des stations intertidales et subtidales de 2004 à 2009. En traits continus et symboles pleins : nombre moyen (± écart-type) d'espèces par date d'échantillonnage. En traits hachurés et symboles estompés : nombre total d'espèces échantillonnées au cours de l'année

7.3. Evolution temporelle des peuplements macrobenthiques subtidaux

Le détail des variations mensuelles des densités de l'ensemble des espèces dans chaque station subtidale est donné dans le **Tableau 7-1**.

7.3.1. Point F (PK 67) (Figure 7-7)

Les abondances dans cette station sont faibles. Les densités maximales et minimales sont observées respectivement en juin $(634 \pm 57 \text{ ind./m}^2)$ et en septembre $(30 \pm 13 \text{ ind./m}^2)$. La dynamique du peuplement est déterminée (1) par les annélides polychètes *Heteromastus filiformis* (93% de l'abondance totale en avril, 52% lors du pic de densité de juin) et *Streblospio shrubsolii* (51% du total en octobre), les fluctuations de ces deux espèces étant cependant irrégulières, et (2) par les mysidacés *Mesopodopsis slabberi* et *Neomysis integer* (56% et 67% du total, respectivement en mai et août).

7.3.2. Point E (PK 52) (Figure 7-8)

Les abondances maximales et minimales sont observées respectivement en mai ($1136 \pm 229 \text{ ind./m}^2$) et en septembre (0 ind./m^2). Les densités les plus fortes (mai et juin) sont dues aux annélides oligochètes qui représentent alors plus de 90% de l'abondance totale. Aux autres dates, le peuplement est composé presque exclusivement de crustacés nageurs, essentiellement des mysidacés, aux effectifs faibles.

7.3.3. Point K (PK 30) (Figure 7-9)

Les densités totales sont extrêmement faibles (les plus faibles des 6 stations échantillonnées), comprises entre 2 ± 2 ind./m² en octobre et 58 ± 21 ind./m² en août. Aucune saisonnalité ne peut être mise en évidence. Le peuplement est dominé par des formes nageuses de Crustacés (amphipodes et mysidacés).

7.3.4. Comparaison avec les années antérieures (Figure 7-10)

D'une manière générale, les peuplements subtidaux présentent toujours des abondances faibles et une saisonnalité peu marquée.

Les abondances au point F sont, en 2009, du même ordre que celles relevées de 2006 à 2008 et très inférieures à celles de 2004-2005, en particulier en raison d'un déficit en annélides polychètes.

Celles du point E sont en augmentation depuis le minimum de 2006 et reviennent presque au maximum de 2005, hors prolifération automnale de *Boccardiella ligerica*.

Les abondances au point K sont, en 2009, les plus faibles de la série avec celles de 2006, en raison de la quasi absence de larves d'Insectes (d'origine inconnue : autochtone ou dérivant depuis l'amont ?), habituellement présentes au printemps et en automne.

Tableau 7-1: Evolution mensuelle des densités (nombres moyens d'individus par m2) des diverses espèces macrobenthiques subtidales au cours de l'année 2009. Entre parenthèses, erreur standard de la moyenne. Les phylums auxquels appartiennent les différents taxons sont indiqués dans la colonne de gauche: O = Annélides Oligochètes, P = Annélides Polychètes, C = Crustacés, I = Insectes

	Taxons	24/04/09	15/05/09	17/06/09	17/07/09	18/08/09	16/09/09	14/10/09	11/11/09
Poir	nt F (PK 67)								
О	Oligochaeta spp.	-	-	-	-	-	-	4 (2)	-
P	Heteromastus	190	-	330	52 (10)	36 (17)	10 (8)	12 (6)	170
	filiformis	(35)		(51)					(42)
	Nephtys hombergii	-	-	-	-	-	2(2)	2 (2)	-
	Streblospio shrubsolii	-	30 (11)	178 (40)	10 (8)	-	12 (5)	64 (18)	32 (13)
С	Crangon crangon	-	4(2)	2(2)	-	-	-	-	2(2)
	Cyathura carinata	8 (2)	2(2)	20 (5)	4(2)	-	4 (4)	-	10 (10)
	Eurydice cf. spinigera	-	-	-	10 (8)	-	-	-	4 (4)
	Gammarus salinus	2(2)	16 (5)	6 (2)	-	-	-	-	-
	Mesopodopsis slabberi	4 (4)	16 (5)	90 (25)	4 (4)	72 (50)	2 (2)	44 (5)	50 (13)
	Neomysis integer	-	50 (16)	8 (4)	4 (4)	-	-	-	-
Poir O	oligochaeta spp.	8 (6)	1102	390	_				
U	Offgochaeta spp.	8 (6)	(233)	(98)	_	-	-	_	-
P	Streblospio shrubsolii	-	-	6 (4)	-	-	-	-	2(2)
С	Crangon crangon	-	-	2 (2)	-	-	-	-	-
	Gammarus salinus	-	6 (4)	4(2)	2(2)	-	-	2(2)	2(2)
	Mesopodopsis	6 (6)	28 (15)	12 (10)	148	52 (11)	-	2(2)	76 (22)
	slabberi				(66)				
	Neomysis integer	-	-	6 (4)	14(2)	-	-	-	4(2)
Poir	nt K (PK 30)								
P	Heteromastus filiformis	-	-	-	4 (4)	-	-	-	-
С	Bathyporeia sp.	10 (3)	-	8 (4)	2(2)	-	-	-	-
Ť	Crangon crangon	-	_	-	-	_	_	_	2(2)
	Gammarus zaddachi	20 (9)	18 (6))	8 (4)	14 (2)	-	5 (5)	-	- (-)
	Mesopodopsis slabberi	-	-	-	-	58 (21)	-	-	48 (14)
	Neomysis integer	_	_	26 (7)	2 (2)	_	-	_	_
I	Larves Insectes indét.	_	2 (2)	2 (2)	-	_	-	2 (2)	-
-		1	- (-)	- (-)	1	1	1	- (-)	ı

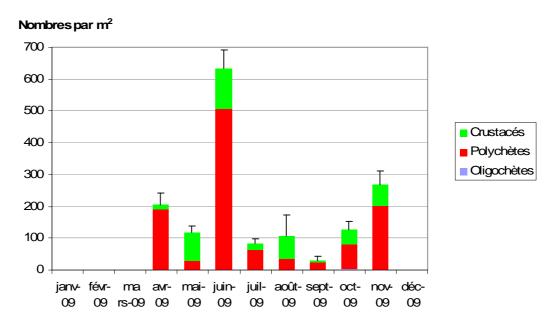


Figure 7-7 : Evolution mensuelle de la densité (moyenne + ES) du macrobenthos au Point F (PK 67) en 2009

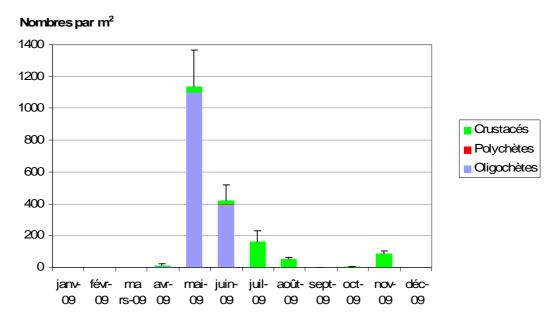


Figure 7-8 : Evolution mensuelle de la densité (moyenne + ES) du macrobenthos au Point E (PK 52) en 2009

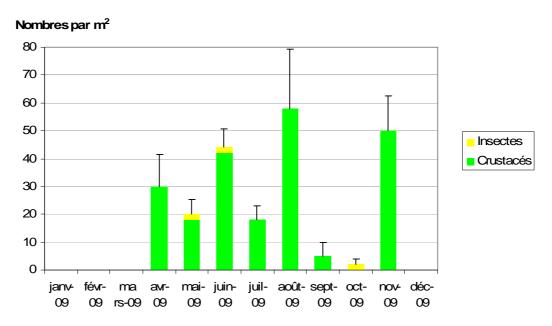


Figure 7-9 : Evolution mensuelle de la densité (moyenne + ES) du macrobenthos au Point K (PK 30) en 2009

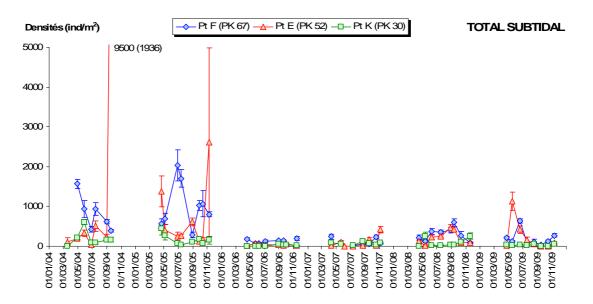


Figure 7-10 : Evolution mensuelle de la densité (moyenne ± ES) du macrobenthos des stations subtidales de 2004 à 2009

7.4. Variations de densités des principales espèces subtidales

7.4.1. Annélides Oligochètes (Figure 7-11)

Ce groupe, particulièrement abondant en estuaire et constitué d'espèces à forte préférence pour les vases, n'est bien représenté dans le domaine subtidal qu'au Point E. Après une forte chute en 2006 et 2007, l'abondance des Oligochètes remonte en 2009 à des niveaux d'abondance voisins des maxima de 2005 (maximum à 1102 ± 233 ind./m² en mai), tout en n'étant présents que d'avril à juin.

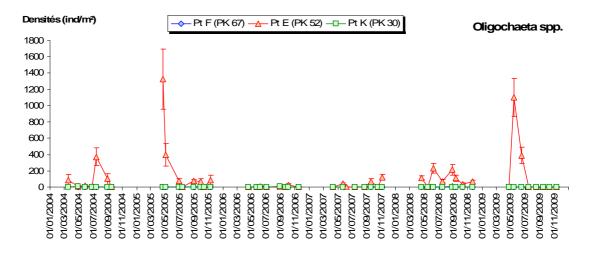


Figure 7-11 : Evolution mensuelle de l'abondance (moyenne ± ES) des Annélides Oligochètes dans les stations subtidales de 2004 à 2009

7.4.2. Annélides Polychètes (Figure 7-12)

Deux espèces sont bien représentées dans le domaine subtidal, essentiellement au Point F: le capitellidé *Heteromastus filiformis* et le spionidé *Streblospio shrubsolii*. Il s'agit d'espèces déposivores (= mangeuses de matière organique particulaire), soit de subsurface (*H. filiformis*), soit de surface (*S. shrubsolii*). Au Point F, les abondances d'*H. filiformis* restent faibles en 2009 (maximum de densité de 330 ± 51 ind./m² en juin), tout comme en 2006-2008, et sans tendance saisonnière. *S. shrubsolii* présente en 2009 un niveau d'abondance moyen par rapport aux années antérieures, avec un pic à 178 ± 40 ind./m² en juin, précédant une disparition estivale presque complète qui coincide avec l'ensablement du substrat évoqué plus haut.

Quelques individus de *Nephtys hombergii*, espèce carnivore fréquentant les eaux côtières, apparue en 2005 au Point F, réapparaissent à cette station en septembre-octobre.

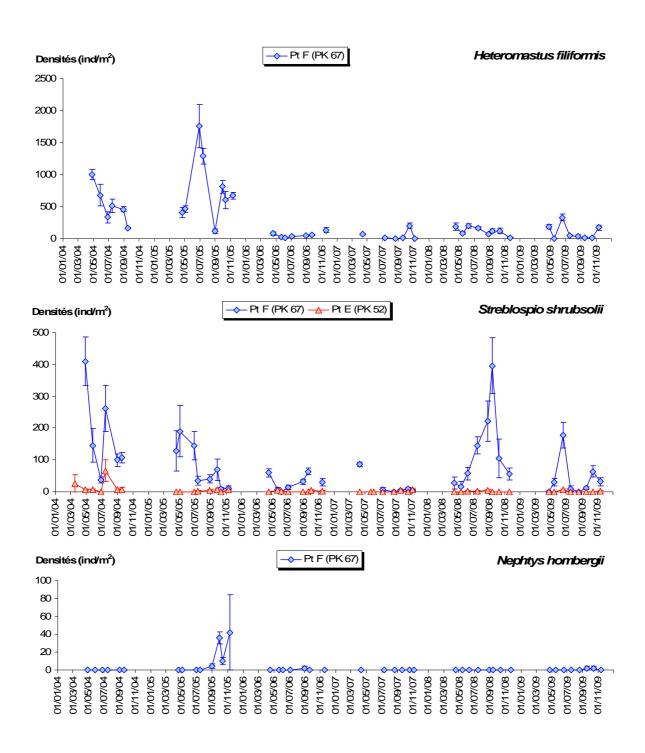


Figure 7-12 : Evolution mensuelle de l'abondance (moyenne ± ES) des principales espèces d'Annélides Polychètes dans les stations subtidales de 2004 à 2009

7.4.3. Crustacés Amphipodes et Isopodes (Figure 7-13)

L'amphipode *Bathyporeia* sp., bien représenté en 2004 au Point K et à un degré moindre aux Points E et F, a depuis lors disparu presque totalement de toutes les stations (quelques individus échantillonnés entre avril et juin 2009, au Point K).

Les amphipodes *Gammarus salinus* aux Points F (maximum : 16 ± 5 ind./m² en mai) et E (maximum : 6 ± 4 ind./m² en mai) et *G. zaddachi* au Point K (maximum : 20 ± 9 ind./m² en avril) présentent en 2009 des abondances voisines de celles de 2005-2008, très inférieures à celles de 2004.

Plus fréquent en domaine intertidal, l'isopode *Cyathura carinata* est aussi présent en domaine subtidal. En 2009, il n'est échantillonné qu'au Point F, avec un maximum de 20 ± 5 ind./m² en juin, et des abondances du même ordre de grandeur que les années précédentes.

L'espèce introduite *Synidotea laticauda* (isopode) est absent de toutes les stations en 2009, et diminue régulièrement depuis 2004.

7.4.4. Crustacés Mysidacés (Figure 7-14)

Mesopodopsis slabberi et *Neomysis integer* sont des espèces prédatrices du zooplancton et à forte affinité benthique, présentes donc à la fois dans les échantillons planctoniques et benthiques. Dans toutes les stations, les abondances de *M. slabberi* restent à un niveau modeste en 2009 (maximum de 148 ± 66 ind./m² en juillet au Point E), comparativement aux années antérieures (bien en-dessous des valeurs relevées en 2005).

Chez *Neomysis integer*, qui a un cycle de vie plus précoce dans l'année, le maximum d'abondance est atteint en mai au Point F $(50 \pm 16 \text{ ind./m}^2)$. Au Point E, l'abondance de cette espèce est en forte diminution depuis 2004.

7.4.5. Larves d'Insectes (Figure 7-15)

Les larves d'Insectes (appartenant aux familles des Chironomidae et Ceratopogonidae) sont présentes exclusivement au Point K. Elles y sont cependant extrêmement rares en 2009, tout comme en 2006, contrastant ainsi avec les années 2004-2005 et 2007-2008 où étaient survenus deux pics d'abondance, au printemps et en automne.

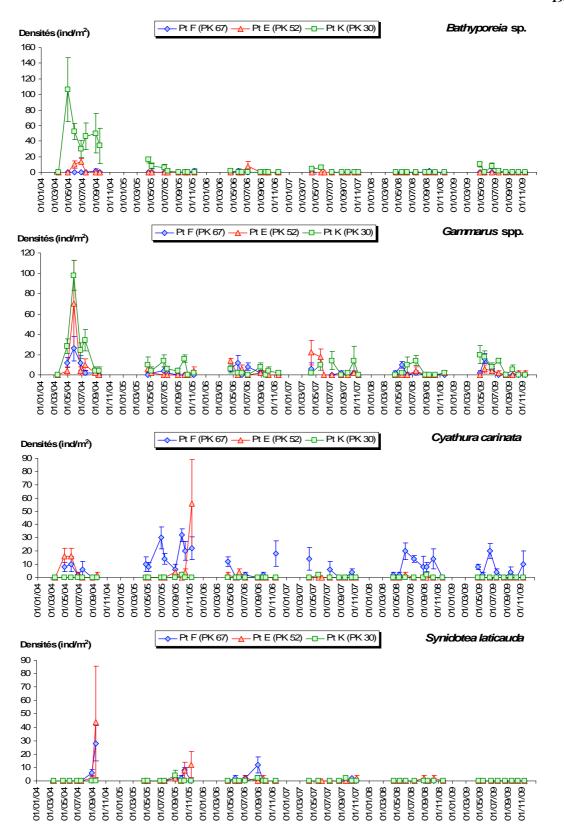


Figure 7-13 : Evolution mensuelle de l'abondance (moyenne ± ES) des principales espèces de Crustacés Amphipodes (Bathyporeia sp. et Gammarus spp.) et Isopodes (Cyathura carinata et Synidotea laticauda) dans les stations subtidales de 2004 à 2009

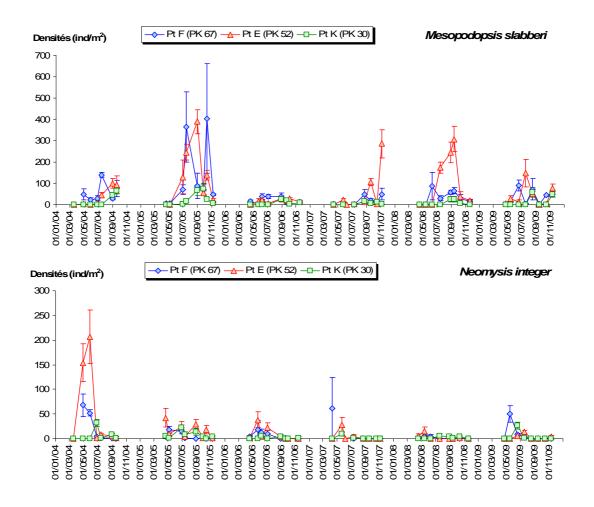


Figure 7-14 : Evolution mensuelle de l'abondance (moyenne ± ES) des principales espèces de Crustacés Mysidacés dans les stations subtidales de 2004 à 2009

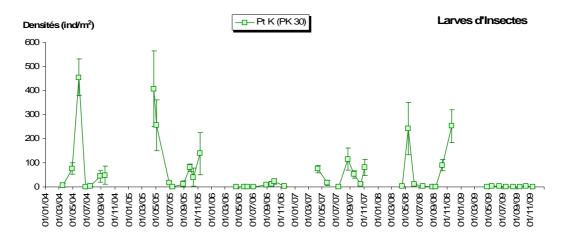


Figure 7-15 : Evolution mensuelle de l'abondance (moyenne ± ES) des larves d'Insectes dans les stations subtidales de 2004 à 2009

7.5. Evolution temporelle des peuplements macrobenthiques intertidaux

Le détail des variations mensuelles des densités de l'ensemble des espèces dans chaque station intertidale est donné dans le **Tableau 7-2**.

7.5.1. St-Christoly (PK 66) (Figure 7-16)

Les densités totales montrent une saisonnalité marquée au cours de l'année 2009, passant d'un minimum de 712 \pm 132 ind./m² en février à un maximum de 6364 \pm 1925 ind./m² en septembre, avant de diminuer jusqu'en novembre (3985 \pm 464 ind./m²).

Le peuplement de cette station est dominé en biomasse par le mollusque bivalve *Scrobicularia plana* et en densité par l'annélide polychète *Streblospio shrubsolii*, ce dernier représentant jusqu'à 88-79% de l'abondance totale (octobre et novembre). Le pic d'abondance de septembre est dû à l'amphipode *Corophium volutator*, qui représente alors 51% de l'abondance totale.

7.5.2. St-Estèphe (PK 55) (Figure 7-17)

Dans cette station, l'évolution annuelle des densités montre également une saisonnalité marquée, depuis un minimum d'abondance en février (1333 \pm 179 ind./m²) jusqu'à un maximum en octobre (11303 \pm 660 ind./m²).

Trois composantes déterminent la dynamique du peuplement dans cette station :

- les annélides oligochètes, qui représentent 28 à 61% de l'abondance totale sur l'ensemble de l'année;
- les annélides polychètes, avec *Hediste diversicolor* (15-55% de l'abondance totale jusqu'en août), puis *Streblospio shrubsolii* (17-37% de l'abondance totale de septembre à novembre);
- l'amphipode *Corophium volutator*, avec 21-51% de l'abondance totale d'août à octobre.

7.5.3. Lamarque (PK 35) (Figure 7-18)

Le peuplement est ici dominé à 99-100% par les annélides oligochètes. Les densités totales dans cette station se situent entre 1970 ± 552 ind./m² (février) et 26818 ± 4725 ind./m² (septembre).

7.5.4. Comparaison avec les années antérieures (Figure 7-19)

Les peuplements benthiques intertidaux présentent des abondances beaucoup plus élevées qu'en domaine subtidal, avec des maxima de l'ordre de 10^4 ind./m², contre 10^2 à 10^3 ind./m² en subtidal.

A St-Christoly, les abondances observées en 2009 sont faibles : voisines de celles de 2006 et 2008, supérieures aux minima de 2007, mais très inférieures aux abondances de 2004-2005. Cette station est, depuis 2007, celle aux abondances les plus faibles parmi les trois stations intertidales suivies, alors qu'en 2004 y avaient été relevées les abondances les plus élevées.

A St-Estèphe, l'abondance du peuplement en 2009 peut être qualifiée de moyenne, similaire à celle des années 2007-2008, mais inférieures à celle des années 2004-2006.

A Lamarque, en revanche, après une chute en 2006-2007, l'abondance retrouve en 2009 les niveaux élevés qu'elle avait atteints en 2004-2005, atteignant même en septembre la plus forte valeur jamais atteinte dans l'ensemble des 6 stations du suivi benthique.

Tableau 7-2: Evolution mensuelle des densités (nombres moyens d'individus par m2) des diverses espèces macrobenthiques intertidales au cours de l'année 2009. Entre parenthèses, erreur standard de la moyenne. Les phylums auxquels appartiennent les différents taxons sont indiqués dans la colonne de gauche: O = Annélides Oligochètes, P = Annélides Polychètes, B = Mollusques Bivalves, G = Mollusques Gastéropodes, C = Crustacés, I = Insectes

	Taxons	10/02/09	7/04/09	11/05/09	10/06/09	3/07/09	19/08/09	21/09/09	19/10/09	19/11/09	
St-	St-Christoly (PK 66)										
О	Oligochaeta spp.	-	15 (15)	-	76 (47)	-	61 (40)	1242 (561)	15 (15)	15 (15)	
P	Aphelochaeta marioni	-	-	-	15 (15)	-	-	-	-	-	
	Hediste diversicolor	-	-	-	-	-	30 (20)	ı	15 (15)	30 (20)	
	Heteromastus filiformis	-	45 (45)	-	30 (20)	15 (15)	15 (15)	15 (15)	-	15 (15)	
	Pseudopolydora pulchra	-	-	-	-	-	-	-	30 (20)	45 (23)	
	Pygospio elegans	-	-	-	15 (15)	-	-	-	15 (15)	-	
	Streblospio shrubsolii	-	258 (88)	424 (262)	454 (93)	439 (177)	1242 (241)	1409 (237)	3515 (528)	3167 (483)	
G	Assiminea sp.	-	-	15 (15)	-	-	-	ı	-	-	
	Hydrobia ulvae	-	-	45 (32)	-	-	-	45 (32)	30 (20)	15 (15)	
В	Macoma balthica	-	-	-	15 (15)	15 (15)	-	-	15 (15)	15 (15)	
	Scrobicularia plana	-	227 (52)	61 (33)	212 (56)	182 (67)	182 (38)	167 (62)	273 (59)	288 (73)	
С	Corophium volutator	591 (129)	-	45 (23)	30 (20)	15 (15)	242 (68)	3242 (1460)	-	151 (60)	
	Cyathura carinata	121 (49)	151 (60)	136 (53)	227 (76)	303 (87)	212 (65)	242 (76)	91 (40)	242 (46)	
	Synidotea laevidorsalis	_	-	-	15 (15)	-	_	-	_	_	
St-	Estèphe (PK 55)										
О	Oligochaeta spp.	394 (120)	1727 (476)	1591 (266)	682 (211)	1227 (283)	1833 (241)	2424 (504)	5015 (652)	3091 (769)	
P	Hediste diversicolor	727 (74)	636 (87)	439 (116)	454 (81)	561 (60)	1106 (78)	-	-	-	
	Streblospio shrubsolii	91 (61)	439 (100)	636 (151)	348 (96)	379 (104)	242 (79)	1454 (203)	3561 (561)	2061 (641)	
С	Corophium volutator	-	-	-	45 (23)	61 (40)	1136 (391)	4409 (802)	2348 (864)	30 (20)	
	Cyathura carinata	121 (38)	30 (20)	106 (39)	91 (40)	91 (33)	121 (38)	439 (80)	379 (61)	348 (78)	
I	Larves Insectes indét.	_	-	-	_	-	-	-	-	15 (15)	
La	marque (PK 35)					1	ı		ı		
О	Oligochaeta spp.	1954 (553)	12924 (1269)	12519 (1278)	12758 (1077)	8076 (983)	22773 (3725)	26773 (4746)	15970 (1961)	13165 (3053)	
P	Hediste diversicolor	-	-	-	30 (20)	-	15 (15)	-	-	-	
	Streblospio shrubsolii	-	-	-	-	-	-	-	15 (15)	-	
С	Corophium volutator	-	-	-	-	-	45 (32)	45 (45)	-	-	
	Cyathura carinata	15 (15)	-	-	-	-	-	-	-	-	
I	Larves Insectes indét.	-	-	38 (25)	-	-	-	-	-	-	

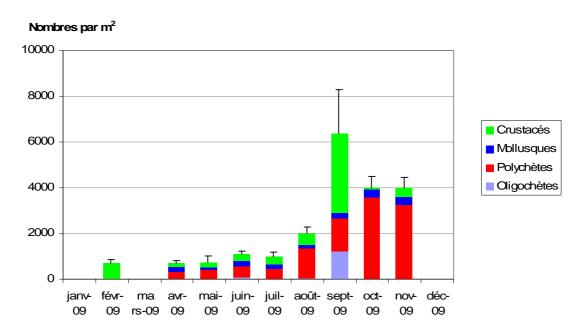


Figure 7-16 : Evolution mensuelle de la densité (moyenne + ES) du macrobenthos à St-Christoly (PK 66) en 2009

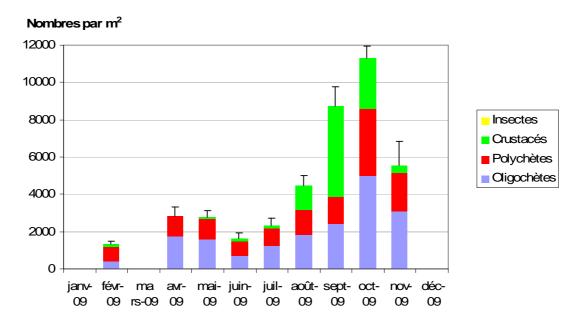


Figure 7-17 : Evolution mensuelle de la densité (moyenne + ES) du macrobenthos à St-Estèphe (PK 55) en 2009

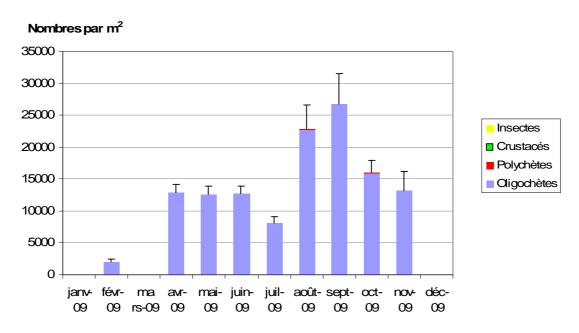


Figure 7-18 : Evolution mensuelle de la densité (moyenne + ES) du macrobenthos à Lamarque (PK 35) en 2009

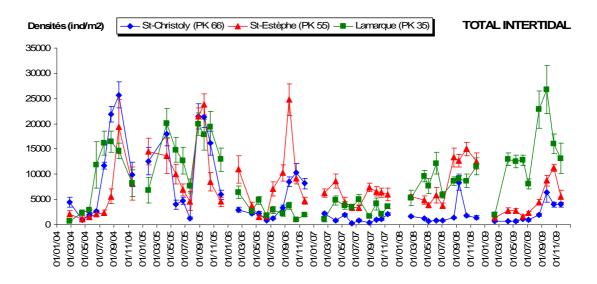


Figure 7-19 : Evolution mensuelle de la densité (moyenne ± ES) du macrobenthos des stations intertidales de 2004 à 2009

7.6. Variations de densités des principales espèces intertidales

7.6.1. Annélides Oligochètes (Figure 7-20)

Composante dominante, parfois unique, du peuplement de la station Lamarque (domaine oligohalin), ce groupe prospère en 2009, atteignant la densité maximale record de 26773 ± 4746 ind./m² en septembre.

Inversement, à la station St-Estèphe, les densités de 2009, minimales en février (394 \pm 120 ind./m²) et maximales en octobre (5015 \pm 652 ind./m²), se situent parmi les plus faibles valeurs du suivi.

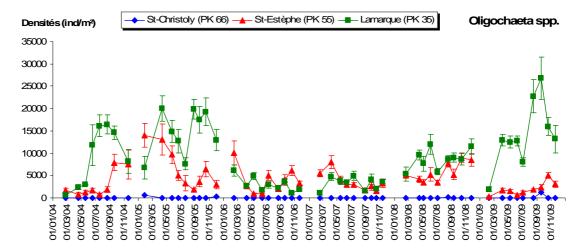


Figure 7-20 : Evolution mensuelle de l'abondance (moyenne ± ES) des Annélides Oligochètes dans les stations intertidales de 2004 à 2009

7.6.2. Annélides Polychètes

Hediste (= Nereis) diversicolor, espèce galéricole et omnivore de grande taille, avait présenté en 2008 un spectaculaire recrutement à St-Estèphe (atteignant 1894 ± 225 ind./m² en novembre); en 2009, l'espèce se maintient avec des densités mensuelles de 439 à 1106 ind./m² jusqu'en août, puis disparaît totalement à partir de septembre (**Figure 7-21**). A St-Christoly, cette espèce, typique des milieux estuariens et lagunaires, a pratiquement disparu depuis 2005.

Les densités du capitellidé *Heteromastus filiformis* chutent en 2009 à la station St-Christoly, où les abondances les plus élevées ont été observées entre 2006 et 2008 (**Figure 7-21**).

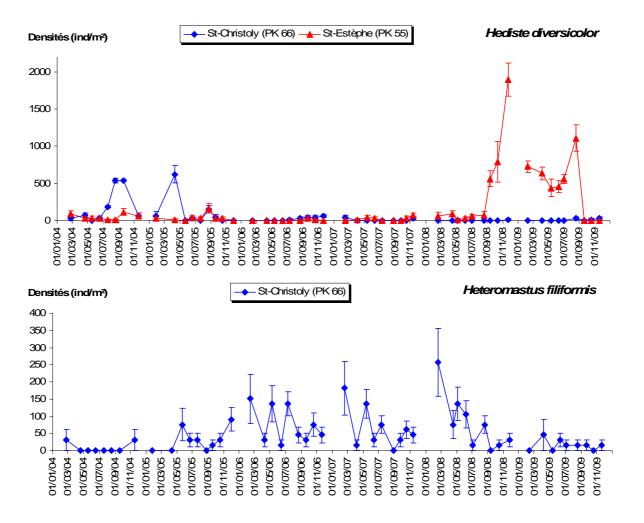


Figure 7-21 : Evolution mensuelle de l'abondance (moyenne ± ES) des Annélides Polychètes Hediste diversicolor et Heteromastus filiformis dans les stations intertidales de2004 à 2009

Le spionidé *Streblospio shrubsolii*, fortement représenté à St-Christoly de 2004 à 2006 avec des densités maximales de 10 à 15000 ind./m², a vu ses abondances chuter fortement depuis 2007, atteignant un maximum de seulement 3515 ± 528 ind./m² en octobre 2009. A St-Estèphe, en revanche, cette espèce atteint en octobre 2009 son abondance maximale $(3561 \pm 561 \text{ ind./m²})$ (**Figure 7-22**).

Un autre polychète spionidé, *Pseudopolydora pulchra*, présent en densité notable à St-Christoly de 2004 à 2006, a quant à lui disparu presque totalement depuis 2007 (**Figure 7-22**).

7.6.3. Mollusques (Figure 7-23)

Le gastéropode *Hydrobia ulvae*, plutôt localisé dans la partie aval de l'estuaire, présent à St-Christoly de 2004 à 2006, y a disparu depuis 2007. Cette espèce est toutefois toujours observée dans cette localité, mais dans la partie supérieure de l'estran.

Scrobicularia plana, bivalve de grande taille (environ 40 mm de longueur de coquille à l'état adulte), est bien représenté en zone intertidale, depuis l'embouchure de l'estuaire jusqu'à St-Christoly. Dans cette station, les effectifs de cette population restent relativement stables (autour de 200 ind./m²) durant l'année 2009. Bien que l'abondance de cette espèce tende à diminuer depuis 2005, de nombreux jeunes individus sont observés durant le deuxième semestre de 2009, signe d'un bon recrutement annuel.

Un autre bivalve, *Macoma balthica*, caractéristique des vasières intertidales de la zone polyhaline de l'estuaire, apparaît épisodiquement depuis 2005 à St-Christoly. Ses fluctuations d'abondance sont peu significatives, car l'espèce se trouve ici en limite amont de répartition dans l'estuaire.

7.6.4. Crustacés (Figure 7-24)

L'amphipode *Corophium volutator* est un élément essentiel des vasières intertidales de tout l'estuaire de la Gironde, ne pénétrant qu'accidentellement en amont de St-Estèphe et présentant un cycle biologique marqué, caractérisé par de fortes abondances en fin d'été. A St-Estèphe, il présente en 2009 un pic modéré de densité en septembre (4409 \pm 802 ind./m²), analogue à ceux de 2007 et 2008, mais représentant seulement le 1/3 du maximum de densité des années 2005-2006. A St-Christoly, où cette espèce avait quasiment disparu en 2006 et 2007, un recrutement très fugace s'est produit en 2008 et 2009 (3242 \pm 1460 ind./m² en septembre 2009), très inférieur aux densités maximales observées en 2004 et 2005.

L'isopode *Cyathura carinata* est une espèce constante des 2 stations intertidales le plus en aval, mais qui présente des fluctuations assez erratiques. A St-Christoly, il régresse sensiblement en abondance en 2009 (maximum de 303 ± 87 ind./m² en juillet), par rapport aux années 2004-2006. A St-Estèphe, il atteint cependant sa valeur maximale $(439 \pm 80 \text{ ind./m}^2)$ en septembre 2009.

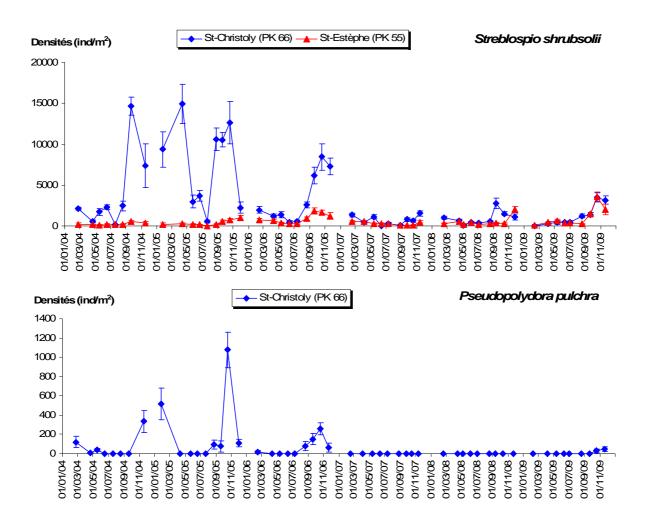


Figure 7-22 : Evolution mensuelle de l'abondance (moyenne ± ES) des Annélides Polychètes Spionidae dans les stations intertidales de 2004 à 2009

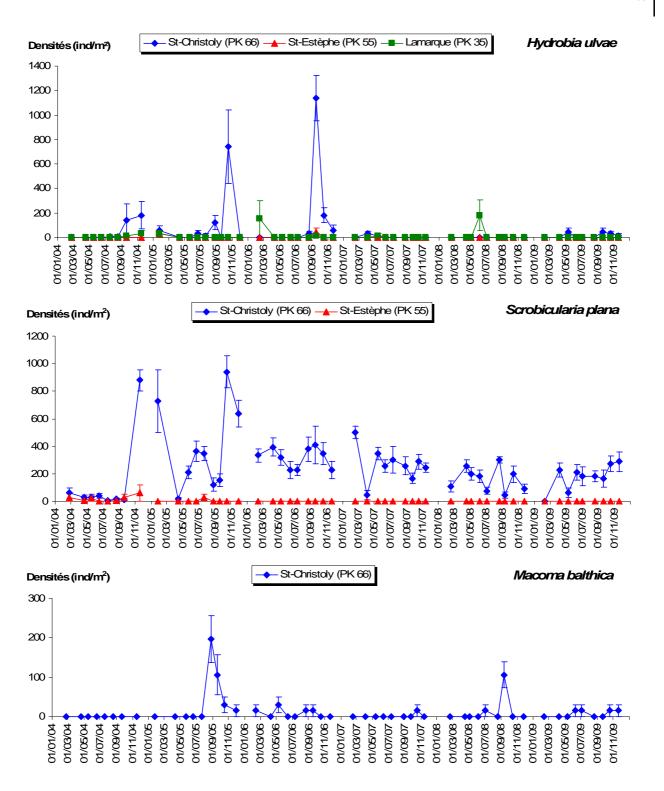


Figure 7-23 : Evolution mensuelle de l'abondance (moyenne ± ES) des principales espèces de Mollusques dans les stations intertidales de 2004 à 2009

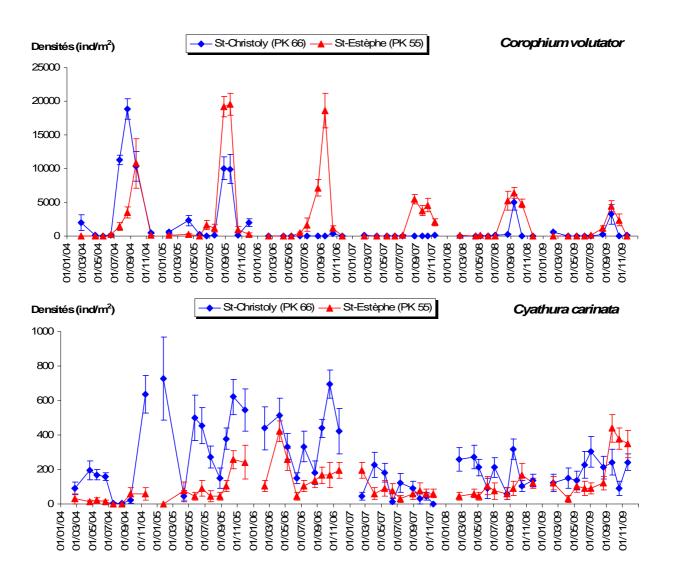


Figure 7-24 : Evolution mensuelle de l'abondance (moyenne ± ES) des principales espèces de Crustacés dans les stations intertidales de 2004 à 2009

Synthèse:

La composition granulométrique du sédiment a montré en 2009, comme les années précédentes, une très grande stabilité temporelle dans les trois stations intertidales (83 à 97% de vases). En revanche, dans le domaine subtidal, la granulométrie a subi d'importantes fluctuations : aux points F et E, où prédominait généralement un substrat vaseux (88 à 94% de vases), une forte composante sableuse a été relevée en été (32 à 48% de vases au point F en juillet-août, seulement 3 à 9% de vases au point E en août-septembre) ; inversement, au point K, le sédiment, normalement sableux, s'est envasé graduellement (de 2% de vases en avril à 83% en novembre).

Alors que la richesse spécifique (nombre d'espèces) des peuplements benthiques s'avère stable sur la durée du suivi en intertidal, elle diminue significativement en subtidal depuis 2004. Plus élevée en subtidal sur la période 2004-2006, la richesse spécifique est ainsi devenue en 2009 plus forte en intertidal qu'en subtidal.

L'abondance des peuplements benthiques subtidaux est faible. De manière générale, la comparaison inter-annuelle met en évidence des abondances relativement élevées sur la période 2004-2005, suivies d'une chute importante en 2006 et d'une remontée des abondances de 2007 à 2009. Ce schéma s'applique pour les points F et E, avec des maxima respectifs de 634 et 1136 ind./m2 en 2009. Au point K, en revanche, les abondances sont restées à un niveau extrêmement faible en 2009 (max. 58 ind./m2).

Dans le domaine intertidal, les abondances sont beaucoup plus élevées qu'en subtidal. En 2009, elles se sont situées à un niveau moyen pour les stations St-Christoly (max. 6364 ind./m2) et St-Estèphe (max. 11303 ind./m2), et atteignent un niveau jamais atteint (max. 26818 ind./m2) à la station Lamarque, où le peuplement est constitué presque exclusivement d'oligochètes. Sur une échelle pluri-annuelle, les peuplements benthiques de St-Christoly et St-Estèphe suivent un patron similaire, avec des abondances fortes de 2004 à 2006, et moyennes à faibles de 2007 à 2009. A Lamarque, l'évolution est sensiblement différente, avec des abondances fortes en 2004-2005, faibles en 2006-2007, et un retour à des valeurs élevées de 2008 à 2009.

Dans l'état actuel du suivi (une durée de seulement 6 années), il est difficile de statuer sur une année de référence. Il semble que la dynamique annuelle et inter-annuelle des peuplements macrobenthiques des 6 stations suivies dans l'estuaire de la Gironde est essentiellement gouvernée par des fluctuations naturelles de l'environnement hydroclimatique. L'activité du CNPE du Blayais ne paraît pas générer de perturbation significative de ce compartiment biologique.

8. Références bibliographiques

Allen G. P., 1972.- Etude des processus sédimentaires dans l'estuaire de la Gironde. Thèse Doct. d'Etat Sc. Nat, Université Bordeaux 1, 369, 310 p.

Aminot A., Kérouel R., 2004.- Hydrologie des écosystèmes marins Paramètres et analyses. Ed. Ifremer, 336 p.

Bendschneider K., Robinson R.J., 1952.- A new spectrophotometric method for the determinantion of nitrite in sea water. J. Mar. Res., 11, pp. 87-96.

Castaing P., 1981.- Le transfert à l'océan des suspensions estuariennes. Cas de la Gironde. Thèse d'Etat Sc. Nat, Université Bordeaux 1, 701, 530 p.

Castel J. et Courties C., 1977.- Le zooplancton. In : "Etude écologique de l'estuaire de la Gironde". Rapp. Final E.D.F.-CNEXO, pp. 220-295.

Castel J., 1995 - Long-term change in Eurytemora affinis population (Copepoda, Calanoida) in the Gironde estuary. Hydrobiologia, 34, pp. 85-101.

Castel J., Courties C., et Poli, 1979.- Etude expérimentale du cycle biologique de Eurytemora hirundoides (Crustacea, Copepoda). Rapp. EDF-CNEXO, 16 p.

Castel J., Feurtet A., 1985 - Dynamique du copépode Eurytemora hirundoides dans l'estuaire de la Gironde : utilisation d'un modèle à compartiments. J. Rech. Océanogr., 10(4), pp. 134-136.

Castel J., Feurtet A., 1992 - Fecundity and mortality rates of the copepod Eurytemora affinis in the Gironde estuary. Proc. 25th Europ. Mar. Biol. Symp., Ferrara. Olsen & Olsen, pp.143-149.

CNEXO, 1977.- Etude écologique de l'estuaire de la Gironde. Rapport final, 490 p.

Dressel D.M., Heinle D.R. et Grote M.C., 1972 - Vital staining to sort dead and live copepods. Chesapeake Sci., 13, pp. 156-159.

Edmonson W.T., 1971 - Methods for processing samples and developing data. In: "A manual for the assessment of secondary productivity in freshwater (Edmonson W.T. et Winberg éds), I.B.P. Handbook 17, pp. 127-169, Blackwell, Oxford et Edinburgh.

Frontier S., 1972 - Calcul de l'erreur sur un comptage de zooplancton. J. exp. mar. Biol. Ecol., 8, pp. 121-132.

Gaudy (1992) Biologie de la population du copépode Acartia tonsda Dana dans un milieu semi-clos: l'Etang de Berre. Ann. Inst. Océanogr., 68(1-2), pp. 159-168.

Hirche H.J. (1992). Egg production of Eurytemora affinis effect of K-strategy. Estuar.Coast.Shelf.Sci., 35, pp. 395-407.

Irigoien X., Castel J., Gasparini S., 1996.- Gut clearance rate as predictor of food limitation situations. Application to two estuarine copepods: Acartia bifilosa and Eurytemora affinis. Mar. Ecol. Prog. Ser., 131, pp. 159-163.

ISO, 2005.— Qualité de l'eau — Lignes directrices pour l'échantillonnage quantitatif et le traitement d'échantillons de la macrofaune marine des fonds meubles. Norme internationale ISO/FDIS 16665, 32 p.

Koroleff F., 1969.- Direct determination of ammonia in natural waters as indophenol blue. ICES, C.M. 1969/C, Hydr. Comm. 9 p.

Murphy J., Riley J.P., 1962.- A modified single solution method for the determination of phosphate in natural waters. *Anal. Chim. Acta.*, 27, pp. 31-36.

Naguy B.G., 1993.- Analyse quantifiée de l'évolution hydro-morphologique séculaire de l'estuaire amont de la Gironde. Thèse de 3ème cycle, Université Bordeaux 1, 193 p.

Poli J.M., Castel J., 1983 - Cycle biologique en laboratoire d'un copépode planctonique de l'estuaire de la Gironde : Eurytemora hirundoides (Nordquist, 1888). Vie Milieu, 33(2), pp. 79-86.

Viitasalo (1992) Calanoid resting eggs in the Baltic Sea: implications for the population dynamics of Acartia bifilosa (Copepoda). Marine Biology, 114, pp. 397-405.

Wood E.D., Armstrong F.A.J., and Richards F.A., 1967.- Determination of nitrate in sea water by cadmium copper reduction to nitrite. J. Mar. Biol. Ass. U.K. 47, pp. 23-31.

9. Annexes

9.1. Annexe 1 : Dénombrement des divers prélèvements et mesures

Nombre de mesures réalisées in situ

DATES	Profondeur	Température	Salinité	Direction et Vitesse de Courant	Points
23 avril	4	8	8	8	F
25 avril	4	8	8	8	K
24 avril	4	8	8	8	Е
16 mai	4	8	8	8	F
18 mai	4	8	8	8	K
17 mai	4	8	8	8	E
16 juin	4	8	8	8	F
18 juin	4	8	8	8	K
17 juin	4	8	8	8	E
16 juillet	4	8	8	8	F
18 juillet	4	8	8	8	K
17 juillet	4	8	8	8	E
17 août	4	8	8	8	F
19 août	4	8	8	8	K
18 août	4	8	8	8	E
24 septembre	4	8	8	8	F
23 septembre	4	8	8	8	K
22 septembre	4	8	8	8	E
14 octobre	4	8	8	8	F
12 octobre	4	8	8	8	K
13 octobre	4	8	8	8	E
11 novembre	4	8	8	8	F
9 novembre	4	8	8	8	K
10 novembre	4	8	8	8	E
TOTAL	96	192	192	192	

Nombre de prélèvements pour l'étude de la pollution dans les masses d'eau

DATES	Chimie	Phyto-	Sels	Bactério-	Agents	Morpholine	Bore	Points
	COP+COT	plancton	Nutritifs	logie	de surface	Hydrazine	total	
23 avril	16	2	2	4	2	2	2	F
25 avril	16	2	2	4	2	2	2	K
24 avril	16	2	2	4	2	2	2	E
16 mai	16	2	2	4	2	2	2	F
18 mai	16	2	2	4	2	2	2	K
17 mai	16	2	2	4	2	2	2	E F
16 juin	16	2	2	4	2	2	2	F
18 juin	16	2	2	4	2	2	2	K
17 juin	16	2	2	4	2	2	2	E
16 juillet	16	2	2	4	2	2	2	F
18 juillet	16	2	2	4	2	2	2	K
17 juillet	16	2	2	4	2	2	2	E
17 août	16	2	2	4	2	2	2	F
19 août	16	2	2	4	2	2	2	K
18 août	16	2	2	4	2	2	2	E
24 septembre		2	2	4	2	2	2	F
23 septembre	16	2	2	4	2	2	2	K
22 septembre	16	2	2	4	2	2	2	E F
14 octobre	4	0	0	0	0	0	0	F
12 octobre	16	2	2	4	2	2	2	K
13 octobre	16	2	2	4	2	2	2	E
11 novembre	16	2	2	4	2	2	2	F
9 novembre	16	2	2	4	2	2	2	K
10 novembre	16	2	2	4	2	2	2	E
TOTAL	372	46	46	92	46	46	46	•

Nombre de prélèvements pour l'étude des MES, la teneur en oxygène dissous, et le pH

DATES	Concentrations en MES		OXYGENE	DISSOUS	р	Points	
	Surface	Fond	Surface	Fond	Surface	Fond	
23 avril	4	4	4	4	4	4	F
25 avril	4	4	4	4	4	4	K
24 avril	4	4	4	4	4	4	E
16 mai	4	4	4	4	4	4	F
18 mai	4	4	4	4	4	4	K
17 mai	4	4	4	4	4	4	E F
16 juin	4	4	4	4	4	4	F
18 juin	4	4	4	4	4	4	K
17 juin	4	4	4	4	4	4	E F
16 juillet	4	4	4	4	4	4	F
18 juillet	4	4	4	4	4	4	K
17 juillet	4	4	4	4	4	4	E
17 août	4	4	4	4	4	4	F
19 août	4	4	4	4	4	4	K
18 août	4	4	4	4	4	4	E
24 septembre	4	4	4	4	4	4	F
23 septembre		4	4	4	4	4	K
22 septembre	4	4	4	4	4	4	E
14 octobre	4	4	4	4	4	4	F
12 octobre	4	4	4	4	4	4	K
13 octobre	4	4	4	4	4	4	E
11 novembre	4	4	4	4	4	4	F
9 novembre	4	4	4	4	4	4	K
10 novembre	4	4	4	4	4	4	E
TOTAL	96	96	96	96	96	96	

Nombre de prélèvements pour l'étude faunistique

DATES	PLAN	CTON	BENTHOS	Points
	Surface	Fond	Surface	
23 avril	4	4	5	F
25 avril	4	4	5	K
24 avril	4	4	5	Е
16 mai	4	4	5	F
18 mai	4	4	5	K
17 mai	4	4	5	Е
16 juin	4	4	5	F
18 juin	4	4	5	K
17 juin	4	4	5	E
16 juillet	4	4	5	F
18 juillet	4	4	5	K
17 juillet	4	4	5	E
17 août	4	4	5	F
19 août	4	4	5	K
18 août	4	4	5	E
24 septembre	4	4	5	F
23 septembre	4	4	5	K
22 septembre	4	4	5	E
14 octobre	4	4	5	F
12 octobre	4	4	5	K
13 octobre	4	4	5	E
11 novembre	4	4	5	F
9 novembre	4	4	5	K
10 novembre	4	4	5	E
TOTAL	96	96	120	

Remarques : en milieu intertidal, des prélèvements complémentaires ont été effectués à hauteur des trois points géographiques étudiés

9.2. Annexe 2 : Tableaux des résultats de mesures

BLAYAIS Av	ril 2009	Heure	Profond	Hauteur	Oxygène	Concent.		Temp.	Vitesse	Direction		
		Légale	Totale	Mesure	Dissous	en M.E.S.	Salinité				PH	OBSERVATIONS
POINTS	STATIONS	(TU+2)	(m)	(m)	(ml/l)	(g/l)		(°C)	(cm/s)	(/Nord)		
	1.0			1.00		0.225		12.06	12		0.10	m/\/ / 5125
	1 S PM	6h00	9.80	1,00	6,02	0,235	9,26	13,96	13	026	8,10	PM à Laména 5h25 P=(770) 1027 hPa
	1 F	onoo	9,80	8,80	6.02	0.560	14.07	14.01	13	180	8.08	P=(7/0) 1027 nPa
F	2 S			1.00	5.95	0,560	5.90	14,01	100	003	8.04	
	Mi-Jus	9h00	7.20	1,00	5,75	0,500	5,70	14,50	100	003	0,04	P=(770) 1027 hPa
PK 67	2 F		.,	6,20	6,05	1,230	8,15	14,26	47	317	8,05	1 (1.10) 1021 111
23	3 S			1,00	5,67	0,330	2,95	14,88	0	293	7,95	BM à Laména 12h05
Avril 2009	BM	12h30	5,80									P=(770) 1027 hPa
	3 F			4,80	5,75	0,830	2,94	14,80	13	143	7,94	Renverse: 12h50
Coef: 77	4 S Mi-Flot	151.10	7.30	1,00	5,74	0,265	6,18	14,67	175	130	7,94	D (550) 1025 I D
	Mi-Flot 4 F	15h10	7,30	6.30	5.91	7,500	7.04	14.55	140	136	7.86	P=(770) 1027 hPa
	4 F			0,30	3,91	7,300	7,04	14,55	140	130	7,80	
	1.5			1.00	5.79	0.600	1.59	15.55	128	169	7.98	
	Mi-Flot	4h35	7,40	-,	-,		-,	10,00			.,	P=(762) 1016 hPa
	1 F			6,40	5,84	4,650	1,38	15,64	105	179	7,90	
E	2 S			1,00	5,74	0,295	2,71	15,34	13	065	8,04	PM à Pauillac 7h02
	PM	7h25	9,20									P=(762) 1016 hPa
PK 52	2 F			8,20	5,91	2,400	3,80	15,56	0	007	8,02	Renverse: 7h40
25 Avril 2009	3 S		5.40	1,00	5,70	0,500	1,35	15,27	134	020	7,91	D (500 101 (1D
AVrii 2009	Mi-Jus 3 F	11h10	5,40	4.40	5.77	3.100	1.31	15.31	105	001	7.83	P=(762) 1016 hPa
Coef: 92-95	4 S	_		1.00	5.81	0.535	0.57	14.67	7	100	7,83	
Coci. 72-73	BM	14h30	4.70	1,00	5,61	0,555	0,57	14,07	,	100	7,67	BM à Pauillac 14h22
	4 F	1-11150	4,70	3.70	5.63	4.800	0,58	14.70	13	150	7.75	P=(762) 1016 hPa
	•					/				•		
	1 S			1,00	5,84	0,390	0,24	14,55	13	001	7,86	PM à La Reuille 7h07
	PM	7h30	10,60									P=(763) 1017 hPa
	1 F			9,60	5,98	1,300	0,24	14,24	42	327	7,85	
K	2 S			1,00	5,88	0,480	0,16	14,80	105	001	7,80	
PV 20	Mi-Jus 2 F	11h45	7,30	6.30	5.05	1.270	0.16	14.74	50	220	7.70	P=(763) 1017 hPa
PK 30 24	2 F 3 S	—		1.00	5,95 5.86	0.230	0,16 0.15	14,74	59 13	339 019	7,79 7.85	BM à La Reuille 14h35
Avril 2009	BM	15h10	6.50	1,00	3,80	0,230	0,15	15,99	13	019	1,83	P=(763) 1017 hPa
A111 2009	3 F	151110	5,50	5.50	5.96	0.670	0.15	15.96	13	135	7.83	Renverse: 15h10
Coef: 87	4 S	1		1,00	5,83	0,930	0,16	15,16	152	123	7,80	
	Mi-Flot	17h15	8,70	,	.,	.,	1	.,				P=(763) 1017 hPa
	4 F			7,70	5,97	1,360	0,17	15,13	65	137	7,79	

BLAYAIS N	Mai 2009	Heure	Profond	Hauteur	Oxygène	Concent.		Temp.	Vitesse	Direction		
		Légale	Totale	Mesure	Dissous	en M.E.S.	Salinité	•			PH	OBSERVATIONS
POINTS	STATIONS	(TU+2)	(m)	(m)	(ml/l)	(g/l)		(°C)	(cm/s)	(/Nord)		
	•				•		•					
	1 S			1,00	5,76	0,465	1,11	16,98	13	089	8,04	BM à Laména 5h04
	BM 1 F	6h10	6,90	5.90	5.78	0.520	1.32	17.05	41	126	8.05	P=(763) 1017 hPa
F	2 S			1.00	5,76	0,146	4.05	16.79	88	122	8.03	
	Mi-Flot	8h35	8,80	1,00		.,		-,				P=(763) 1017 hPa
PK 67	2 F			7,80	5,78	4,100	9,65	16,39	82	138	7,94	
16	3 S			1,00	5,93	0,094	5,73	16,62	7	357	8,03	PM à Laména 11h28
Mai 2009	PM 3 F	11h50	9,00	8.00	5.73	0.134	12.18	16.06	0	248	7.98	P=(763) 1017 hPa Renverse: 11h55
Coef: 42-40	4 S			1.00	5,91	0,075	3.02	16,92	128	008	8.06	Renverse: 11n55
COCI. 12 10	Mi-Jus	14h45	7,40	1,00		.,		-,-				P=(764) 1018 hPa
	4 F			6,40	5,80	1,240	7,21	16,54	59	310	8,00	, , , , , , , ,
							0.00	16.92	100	018	7.68	
	1 S Mi-Jus	4h45	6.00	1,00	6,05	0,176	0,75	16,92	100	018	7,68	P=(768) 1024 hPa
	1 F	41143	0,00	5.00	6.00	0.690	1.04	16.80	73	004	7.70	F=(708) 1024 IIF4
	2 S			1,00	6,05	0,130	0,14	16,27	13	148	7,48	BM à Pauillac 7h51
	BM	8h25	5,20									P=(768) 1024 hPa
E PK 52	2 F			4,20	5,96	0,405	0,14	16,31	13 82	174	7,50	Renverse: 8h30
18 Mai 2009	3 S Mi-Flot	11h20	6.70	1,00	5,84	0,163	0,89	16,82	82	174	7,62	P=(769) 1026 hPa
Mai 2009	3 F	111120	0,70	5.70	5,84	0.232	1.06	16.72	53	177	7.58	F=(709) 1020 HFa
Coef: 37-38	4 S			1,00	5,69	0,127	1,36	17,24	0	001	7,63	1
	PM	14h00	7,50									PM à Pauillac 13h58
	4 F			6,50	5,78	0,173	1,48	17,24	7	344	7,63	P=(769) 1026 hPa
	1 S			1.00	5.80	0.068	0.14	16.19	0	035	7.71	BM à La Reuille 7h36
	BM	8h30	8.20	1,00	5,80	0,008	0,14	10,19	U	033	7,71	P=(763) 1017 hPa
	1 F		1	7,20	5,87	0,106	0,14	16,16	18	192	7,82	
	2 S			1,00	6,14	0,097	0,14	15,77	94	124	7,70	
K PK 30	Mi-Flot	10h55	10,00	l	6.20	0.198	0.14	15.74	59	143	7.69	P=(764) 1018 hPa
17	2 F 3 S	!		9,00 1.00	6,02	0,198	0,14	15,74	59 13	015	7,69	PM à La Reuille 13h18
Mai 2009	PM	13h40	10.50	1,00	0,02	0,044	0,14	10,10	13	015	7,02	P=(764) 1018 hPa
2009	3 F		,50	9,50	6,34	0,064	0,14	15,26	18	345	7,70	Renverse: 13h45
Coef: 40-38	4 S			1,00	6,09	0,081	0,14	16,10	100	352	7,64	
	Mi-Jus	16h45	9,00	l		0.151		1605	70	227	7.70	P=(764) 1018 hPa
	4 F			8,00	6,14	0,151	0,14	16,05	70	327	7,70	

BLAYAIS Ju	iin 2009	Heure	Profond	Hauteur	Oxygène	Concent.		Temp.	Vitesse	Direction		
		Légale	Totale	Mesure	Dissous	en M.E.S.	Salinité				PH	OBSERVATIONS
POINTS	STATIONS	(TU+2)	(m)	(m)	(ml/l)	(g/l)		(°C)	(cm/s)	(/Nord)		
	1 S BM	7h00	6,90	1,00	5,35	0,107	5,88	21,02	7	102	8,03	BM à Laména 6h20 P=(771) 1028 hPa
	I F	/n00	6,90	5.90	5.23	0.250	6,53	20.96	13	197	8.06	P=(7/1) 1028 nPa
F	2 S			14h14	5,54	0,135	9,73	20,55	105	141	8,05	
	Mi-Flot	9h50	8,90									P=(771) 1028 hPa
PK 67	2 F 3 S			7,90 1.00	5,53 5,43	1,010 0.043	12,47 11.81	20,21	65	132 339	8,05 8,10	PM à Laména
16 Juin 2009	PM	13h15	9.30	1,00	3,43	0,043	11,01	20,62	13	339	6,10	P=(771) 1028 hPa
Jun 2009	3 F	151115	2,50	8,30	5,44	0,066	15,53	19,89	7	011	8,07	Renverse: 13h30
Coef: 47-46	4 S			1,00	5,59	0,046	8,03	21,32	134	005	8,09	
	Mi-Jus 4 F	15h50	7,40	6.40	5.50	0.197	11.39	20.49	65	307	8.06	P=(771) 1028 hPa
	41		<u> </u>	0,40	3,30	0,177	11,57	20,47	0.5	307	0,00	
	1 S			1,00	5,21	0,156	3,89	21,93	111	017	8,07	
	Mi-Jus	6h00	5,50			0.055	2.07	22.05		002	0.05	P=(770) 1026 hPa
	1 F 2 S		ļ	4,50 1.00	5,25 5,07	0,955 0,155	3,97 1.61	22,05 21,92	76 7	002 141	8,06 8.06	BM à Pauillac 9h10
	BM	9h30	4,80	1,00	3,07	0,133	1,01	21,72	,	141	0,00	P=(770) 1026 hPa
E PK 52	2 F			3,80	5,04	0,230	1,68	21,92	7	213	8,05	Renverse: 9h35
18	3 S	12h10	7.00	1,00	5,22	0,166	3,69	22,22	94	176	8,03	
Juin 2009	Mi-Flot 3 F	12h10	7,00	6.00	5.26	0.615	4.03	22.07	65	178	8.03	P=(770) 1026 hPa
Coef: 47-50	4 S			1.00	5,14	0.108	4,97	22,27	7	213	8,09	
	PM	15h00	8,00									PM à Pauillac 15h00
	4 F			7,00	5,35	0,169	5,66	22,12	0	083	8,07	P=(770) 1026 hPa
	1.5	1	1	1.00	5.25	0.383	0.27	21.58	82	016	8.04	
	Mi-Jus	5h40	7,70	1,00	3,23	0,303	.,,		32	-10	-,5"	P=(768) 1024 hPa
	1 F			6,70	5,23	,n920	0,27	21,64	53	344	8,04	
	2 S BM	9h30	6,60	1,00	5,35	0,270	0,16	21,75	7	120	8,05	BM à La Reuille 8h59
K PK 30	2 F	21130	0,00	5.60	5,32	0.745	0.16	21.74	0	140	8.03	P=(768) 1024 hPa Renverse: 9h30
17	3 S	<u> </u>	1	1,00	5,26	0,530	0,29	21,82	94	130	8,01	Kenverse, 91130
Juin 2009	Mi-Flot	12h05	8,30									P=(768) 1024 hPa
Coef: 45-46	3 F 4 S			7,30	5,19	1,000	0,30 0,48	21,77 21.81	76	152 028	8,03 8.02	
Coer: 45-46	PM	15h00	9.80	1,00	5,00	0,219	0,48	21,81	/	028	8,02	PM à La Reuille 14h39
	4 F	151100	>,00	8,80	4,95	0,540	0,48	21,72	7	357	8,02	P=(768) 1024 hPa

Juillet 20	009	Heure	Profond	Hauteur	Oxygène	Concent.		Temp.	Vitesse	Direction		
		Légale	Totale	Mesure	Dissous	en M.E.S.	Salinité				PH	OBSERVATIONS
POINTS	STATIONS	(TU+2)	(m)	(m)	(ml/l)	(g/l)		(°C)	(cm/s)	(/Nord)		
	1 S			1.00	5.05	0.086	10.00	23.23	0	179	8.09	BM à Laména 6h30
	BM	7h25	6.90	1,00	5,05	0,086	10,00	23,23	U	179	8,09	P=(768) 1024 hPa
	1 F	7.1.2.3	0,70	5,90	5,09	0,122	11,20	23,02	35	131	8,10	1 =(700) 1024 iii a
F	2 S			1,00	5,12	0,108	13,61	22,54	105	145	8,14	
	Mi-Flot	9h55	8,00	7.00	5.10	0.200	1624	22.22	88	140	0.12	P=(768) 1024 hPa
PK 67 16	2 F 3 S			7,00 1.00	5,18 5,23	0,300	16,24 17,51	22,32 22,38	88	140 280	8,12 8,17	PM à Laména 12h45
Juillet 2009	PM	13h40	9.50	1,00	3,23	0,000	17,51	22,30	0	200	0,17	P=(766) 1021 hPa
	3 F			8,50	5,29	0,087	19,91	21,86	18	140	8,13	Renverse: 13h35
Coef: 50-48	4 S	16h10	8.00	1,00	5,23	0,029	12,41	23,38	143	005	8,11	
	Mi-Jus 4 F	16h10	8,00	7.00	5.30	0.136	15.75	22.73	47	325	8.05	P=(764) 1019 hPa
	4.5			7,00	3,30	0,130	13,73	22,13	47	323	0,05	
	1 S			1,00	5,14	0,315	7,08	23,21	76	020	8,17	
	Mi-Jus	6h20	6,30	5.30	5.18	0.565	7.47	23.26	59	355	8.16	P=(770) 1027 hPa
	1 F 2 S			1.00	4,91	0,363	4.90	23,26	13	135	8.14	BM à Pauillac 9h36
	BM	10h35	5.30	1,00	7,71	0,175	4,70	25,00		155	0,1-1	P=(771) 1028 hPa
E PK 52	2 F			4,30	5,01	0,216	4,96	23,02	13	175	8,15	Renverse: 10h05
18	3 S	13h00	7.00	1,00	5,02	0,440	7,71	23,06	105	165	8,15	
Juillet 2009	Mi-Flot 3 F	13h00	7,00	6,00	5.11	0.560	7.66	23.06	94	185	8.14	P=(771) 1028 hPa
Coef: 48-51	4 S			1,00	5,02	0,130	9,58	22,88	13	135	8,18	
	PM	15h40	8,20									PM à Pauillac 15h27
	4 F			7,20	5,15	0,242	9,55	22,84	7	210	8,17	P=(771) 1028 hPa
	1 S	1		1.00	4,81	0.360	2,30	24,26	65	360	8.07	
	Mi-Jus	6h00	7,50	, , , ,							-,	P=(767) 1022 hPa
	1 F			6,50	4,85	0,545	2,29	24,28	53	325	8,06	
	2 S	9h45	6.00	1,00	4,42	0,570	0,87	24,25	35	105	8,05	BM à La Reuille 9h15
K PK 30	BM 2 F	9043	6,00	5.00	4.58	0.780	1.00	24.26	42	125	8.04	P=(767) 1022 hPa Renverse: 9h50
17	3 S	1		1,00	4,86	0,560	2,39	24,02	82	130	8,09	Kenverse. 7050
Juillet 2009	Mi-Flot	12h20	8,00									P=(767) 1022 hPa
Coef: 47-46	3 F			7,00 1.00	4,91 4.84	0,780	2,39 3,22	24,02 23,88	53	145 060	8,10 8,11	
Coer: 47-46	4 S PM	15h20	8.50	1,00	4,84	0,295	3,22	23,88	13	000	8,11	PM à La Reuille 14h55
	4 F	131120	0,50	7,50	4,97	0,520	3,74	23,90	13	340	8,11	P=(767) 1022 hPa

Août 20	09	Heure	Profond	Hauteur	Oxygène	Concent.		Temp.	Vitesse	Direction		
		Légale	Totale	Mesure	Dissous	en M.E.S.	Salinité				PH	OBSERVATIONS
POINTS	STATIONS	(TU+2)	(m)	(m)	(ml/l)	(g/l)		(°C)	(cm/s)	(/Nord)		
	•						•			•		•
	1 S			1,00	4,94	0,051	17,63	23,93	117	329	8,25	
	Mi-Jus	7h05	7,20		4.79	0.220	19.08	23,77	82	312	8.23	P=(766) 1021 hPa
_	1 F 2 S			6,20 1,00	4,79	0,220	19,08	24,52	82	097	8,23 8,20	BM à Laména 9h54
F	BM	10h40	6.30	1,00	4,03	0,051	13,77	24,32	,	097	6,20	P=(767) 1023 hPa
PK 67	2 F	101140	0,30	5.30	4.51	0.054	14.51	24.4	18	172	8.19	Renverse: 10.40
17	3 S			1.00	4,84	0,053	17,40	24,08	88	133	8,22	
Août 2009	Mi-Flot	13h35	8,00	, , ,	·							P=(768) 1024 hPa
	3 F			7,00	4,67	0,320	19,37	23,80	76	124	8,19	
Coef: 51-58	4 S			1,00	4,59	0,049	22,05	23,52	13	146	8,26	
	PM 4 F	16h25	9,30	8.30	4.41	0.120	22,98	23.51	13	174	8.24	PM à Laména 16h03 P=(768) 1024 hPa
L	4 F			8,30	4,41	0,120	22,98	23,31	13	1/4	8,24	P=(/68) 1024 hPa
	1 S			1.00	4.96	0.325	9,95	24.88	186	152	8.15	
	Mi-Flot	3h30	6,90	-,	,	-,-		,			.,.	P=(765) 1020 hPa
	1 F			5,90	4,93	1,300	10,08	24,97	105	181	8,10	
	2 S			1,00	4,81	0,151	13,11	25,14	13	312	8,20	PM à Pauillac 5h49
	PM	7h00	9,20						_			P=(765) 1020 hPa
E PK 52	2 F 3 S			8,20	4,62 4.81	0,475 0,290	13,74 10,80	24,63 24.85	0 88	236 339	8,21 8,19	Renverse: 7h00
Août 2009	Mi-Jus	9h55	6.70	1,00	4,81	0,290	10,80	24,83	88	339	8,19	P=(766) 1021 hPa
Aut 2009	3 F	71133	0,70	5.70	4.81	0.785	11.13	24.82	42	352	8.15	F=(700) 1021 IIFa
Coef: 75-83	4 S			1.00	4.70	0,252	6,83	25.18	13	106	8.12	
	BM	13h30	5,40	-,	, ,		.,	.,.				BM à Pauillac 13h08
	4 F			4,40	4,63	0,545	7,00	25	13	119	8,12	P=(767) 1023 hPa
-						0.300		01.20			0.14	
	1 S PM	6h35	8.60	1,00	4,74	0,208	4,91	24,60	0	065	8,14	PM à La Reuille 5h40
	PM 1 F	00135	8,60	7.60	4.60	0.510	5,39	24.73	7	228	8.16	P=(767)1023 hPa
	2 S			1.00	4,00	0,640	3,07	24,73	82	318	8.11	i
	Mi-Jus	9h35	6,80	1,00	.,,,	2,310	.,07	,/.5	32	2.10	-,	P=(767)1023 hPa
K PK 30	2 F			5,80	4,68	1,280	3,14	24,71	53	323	8,12	, 1023 u
18	3 S			1,00	4,47	0,303	1,53	25,04	59	126	8,08	BM à La Reuille 12h55
Août 2009	BM	13h30	5,30	l								P=(767)1023 hPa
0.66	3 F			4,30	4,44	0,395	1,65	24,83	70	149	8,08	Renverse: 13h20
Coef: 66	4 S	155.45	7.20	1,00	4,74	0,365	2,98	25,20	128	132	8,10	D (T(T) LOSS LD
	Mi-Flot 4 F	15h45	7,30	6.30	4.70	1.650	2.88	25,05	82	144	8.09	P=(767)1023 hPa
	4 F			6,30	4,/0	1,000	4,88	45,05	62	144	0,09	

Septembre	2009	Heure Légale	Profond Totale	Hauteur Mesure	Oxygène Dissous	Concent. en M.E.S.	Salinité	Temp.	Vitesse	Direction	PH	OBSERVATIONS
POINTS	STATIONS	(TU+2)	(m)	(m)	(ml/l)	(g/l)		(°C)	(cm/s)	(/Nord)	•••	
		_										
	1 S	7h15	6.70	1,00	5,00	0,076	16,68	19,78	128	149	7,99	
	Mi-Flot	/n15	6,70	5.70	4.94	1.232	16.19	19.89	76	158	7.98	P=(765) 1020 hPa
F	2 S			1.00	4,94	0.115	21.28	19,89	13	248	7,98	PM à Laména 9h52
r	PM	10h40	7.80	1,00	4,53	0,113	21,20	19,49	13	240	1,55	P=(765) 1020 hPa
PK 67	2 F	1011-10	7,00	6.80	4.83	0.477	23.88	19.17	7	057	7.97	Renverse: 11h00
24	3 S			1,00	5,36	0,096	17,08	20,43	111	336	7,94	Renverse. 111100
Septembre 2009	Mi-Jus	13h15	6,00									P=(765) 1020 hPa
•	3 F			5,00	4,97	0,973	20,31	19,47	70	310	7,96	
Coef: 72-64	4 S			1,00	5,11	0,142	13,29	20,89	7	024	8,01	
	BM	17h00	4,70									BM à Laména 16h15
	4 F			3,70	5,05	0,356	14,06	20,53	13	309	7,99	P=(765) 1020 hPa
				1.00	5.05	1.046	11.15	20.25	140	191	7.97	
	1 S Mi-Flot	7h30	7.60	1,00	5,05	1,040	11,15	20,23	140	191	1,91	P=(768) 1024 hPa
	Mi-Flot	/1130	7,00	6,60	4,98	1.327	11,20	20.12	82	191	7,95	P=(/68) 1024 nPa
	2 S	_		1.00	5.11	0.148	13.40	21.16	13	296	8.00	PM à Pauillac 9h23
	PM	10h25	8.40	1,00	5,11	0,1-10	15,10	21,10	13	270	0,00	P=(770) 1026 hPa
E PK 52	2 F		.,	7,40	4,97	0,508	14,25	19,94	7	149	8,00	Renverse: 10h30
23	3 S			1,00	5,01	0,728	11,90	20,21	70	357	7,89	
Septembre 2009	Mi-Jus	13h00	6,40									P=(767) 1023 hPa
	3 F			5,40	5,05	1,265	11,90	20,18	42	346	7,83	
Coef: 87-80	4 S			1,00	4,74	0,570	6,79	20,50	13	007	7,92	
	BM	17h00	4,50	2.50	4.55	1 125		20.44		200	2.02	BM à Pauillac 16h35
	4 F			3,50	4,65	1,425	6,74	20,44	0	298	7,87	P=(768) 1024 hPa
	1.8			1.00	4.74	2,795	4.61	19.64	134	144	7.86	
	Mi-Flot	7h55	8.60	1,00	4,74	2,193	4,01	17,04	134	144	7,80	P=(771) 1027 hPa
	1 F	,1133	5,00	7.60	4,59	4.060	4,54	19.64	70	140	7,88	1 -(//1) 102/ IIFa
	2 S	1		1.00	3,90	0.227	6.41	19.73	13	331	7.86	PM à La Reuille 9h40
	PM	10h45	8,10	I	- ,	.,		. ,	-			P=(771) 1027 hPa
K PK 30	2 F	1		7,10	3,83	1,505	6,26	19,73	13	308	7,89	Renverse: 11h10
22	3 S			1,00	3,50	2,240	4,04	19,82	76	347	7,89	
Septembre 2009	Mi-Jus	14h00	6,50	1			I					P=(772) 1029 hPa
	3 F			5,50	3,47	2,715	3,78	19,79	36	348	7,83]
Coef: 99-93	4 S	151.26	5.20	1,00	3,32	1,105	1,76	20,26	13	018	7,92	
	BM	17h36	5,30	4.30	3,25	2.157	1.94	20.15	7	211	7.87	BM à La Reuille 17h10
	4 F	1	l	4,30	3,25	2,15/	1,94	20,15	/	211	7,87	P=(772) 1029 hPa

Octobre 2	2009	Heure Légale	Profond Totale	Hauteur Mesure	Oxygène Dissous	Concent. en M.E.S.	Salinité	Temp.	Vitesse	Direction	PH	OBSERVATIONS
POINTS	STATIONS	(TU+2)	(m)	(m)	(ml/l)	(g/l)		(°C)	(cm/s)	(/Nord)		
	1.5	_		1.00	5.47	0.152	17.95	18.39	134	326	8.08	
	Mi-Jus	6h30	6,00	, , ,	5.37	0.636	19.35	18.59	76	316	8.07	P=(768) 1024 hPa
F	1 F 2 S			5,00 1,00	5,35	0,030	12,74	18,77	13	001	8,03	BM à Laména 9h28
PK 67	BM 2 F	10h15	4,90	3,90	5.28	0.178	13.10	18.73	13	004	8.05	P=(768) 1024 hPa Renverse: 10h20
14	3 S			1,00	5,51	0,089	15,38	18,58	123	164	8,07	
Octobre 2009	Mi-Flot 3 F	12h40	6,20	5.20	5,49	1,248	15,47	18,53	76	162	8,05	P=(770) 1027 hPa
Coef: 56-63	4 S	16h20	7.80	1,00	5,32	0,164	22,36	18,32	7	144	8,08	PM à Laména 15h33
	PM 4 F	16h20	7,80	6,80	5,23	0,212	22,41	18,33	13	129	8,06	Pm a Lamena 15n33 P=(770) 1027 hPa
	1.5			1.00	5,21	0.386	11.22	21.73	47	196	8.00	
	Mi-Flot	10h30	7,10	, , ,			· ·	,				P=(770) 1027 hPa
	1 F 2 S			6,10 1,00	5,16 4,98	1,704 0.184	11,94 12.09	20,64	42	186 312	7,92 8.00	PM à Pauillac 13h13
E PK 52	PM	14h30	7,80	, , ,	4.97	0.237	13.05	20.59	7	289	8.00	P=(770) 1027 hPa
12 E PK 52	2 F 3 S			6,80 1,00	4,97	0,237	10,90	20,59	59	350	8,00	
Octobre 2009	Mi-Jus 3 F	16h50	5,50	4.50	4,84	0.910	10.92	20.40	59	354	7.99	P=(769) 1025 hPa
Coef: 44-43	4 S			1,00	4,77	0,332	7,82	19,80	7	148	8,01	
	BM 4 F	20h30	4,80	3,80	4,67	1,243	7,87	20,00	0	036	8,00	BM à Pauillac 20h01 P=(769) 1025 hPa
					4.67	0.601	4.82	19.36	88	330	7.97	
	1 S Mi-Jus	6h30	6,70	1,00				.,			.,	P=(770) 1027 hPa
	1 F 2 S			5,70 1.00	4,65 4.39	0,682 0,528	4,87 2,07	19,40 18.94	65 7	310 187	7,97 8.00	BM à La Reuille 9h41
	BM	10h20	6,00	1,00		.,.	, , , ,	-,-				P=(770) 1027 hPa
K PK 30	2 F 3 S			5,00 1.00	4,32 4,73	1,213 0,441	1,90 4.82	19,19 19,22	7 105	117 145	7,98 7,97	Renverse: 10h20
Octobre 2009	Mi-Flot	12h55	7,50	, , ,				.,			.,	P=(770) 1027 hPa
Coef: 45-49	3 F 4 S			6,50 1.00	4,70 4,69	1,500 0,250	4,77 6,30	19,25 19,40	59 7	166 227	7,95 8,01	
	PM 4 F	15h55	9,00	8,00	4,62	1,052	7,09	19,51	7	254	7,99	PM à La Reuille 15h27 P=(770) 1027 hPa

Novembre 2	2009	Heure Légale	Profond Totale	Hauteur Mesure	Oxygène Dissous	Concent. en M.E.S.	Salinité	Temp.	Vitesse	Direction	PH	OBSERVATIONS
POINTS	STATIONS	(TU+1)	(m)	(m)	(ml/l)	(g/l)	Samue	(°C)	(cm/s)	(/Nord)	111	OBSERVATIONS
	1 S			1,00	6,07	0,495	7,83	13,03	13	191	8,18	BM à Laména 6h44
	BM	7h30	5,00									P=(752) 1002 hPa
	1 F 2 S			4,00	5,98 6,19	0,830 0,510	9,56	13,28	13	171	8,16	
F		10h10	7.30	1,00	6,19	0,510	11,00	12,96	111	141	8,15	P=(750) 1000 hPa
PK 67	Mi-Flot 2 F	10010	7,30	6.30	6.23	2,400	11.61	13.02	82	143	8.13	P=(750) 1000 nPa
11	3 S	_		1.00	6,05	0.270	16,83	12,74	7	257	8,13	PM à Laména 12h59
Novembre 2009	PM	13h35	8.40	1,00	0,05	0,270	10,63	12,74	,	231	0,19	P=(750) 1000 hPa
11070111510 2005	3 F	151155	0,10	7.40	6.13	0.735	19.43	12.70	7	149	8.17	Renverse: 13h30
Coef: 52-54	4 S			1,00	6,21	0,345	12,68	12,84	123	327	8,18	
	Mi-Jus	16h45	6,10	1			1					P=(748) 997 hPa
	4 F			5,10	6,24	1,035	13,66	12,83	82	318	8,16	
	1 S			1,00	6,17	0,870	7,79	13,95	82	010	8,13	
	Mi-Jus	14h30	7,10									P=(760) 1012 hPa
	1 F 2 S			6,10 1,00	6,18 6,15	2,700 0,745	7,98 5,33	13,97 13,43	36 13	021 178	8,13 8,13	BM à Pauillac 17h32
	BM	18h05	5.40	1,00	0,15	0,743	5,33	13,43	13	1/8	8,13	P=(762) 1016 hPa
E PK 52	2 F	18005	5,40	4.40	6.14	1.700	5,39	13.44	7	187	8.12	Renverse: 18h15
9	3 S	-		1.00	6,26	0.290	7.90	14.05	134	187	8.14	Kenverse, 181113
Novembre 2009	Mi-Flot	20h40	7.70	1,00	-,	-,	7,70	1-1,05	154	107	0,1-1	P=(762) 1016 hPa
11070111510 2005	3 F		.,	6.70	6.23	4.200	7,87	13.82	70	177	8.11	. ()
Coef: 56-53	4 S			1,00	6,28	0,240	8,91	13,63	13	160	8,15	
	PM	23h30	8,70	1								PM à Pauillac 23h23
	4 F			7,70	6,26	1,250	9,96	13,91	13	181	8,13	P=(762) 1016 hPa
					5.00	1.040						
	1 S	71.20	6.10	1,00	5,88	1,040	0,52	12,18	0	303	8,07	BM à La Reuille 7h05
	BM 1 F	7h30	6,10	5.10	5,88	3,500	0.57	12.26	13	250	8.07	P=(762) 1016 hPa
	2 S	 		1.00	6,08	0,495	2.81	12,26	100	250 140	8,07	
	Mi-Flot	10h25	7.90	1,00	5,00	0,493	2,81	12,09	100	140	0,14	P=(760) 1013 hPa
K PK 30	2 F	101123	7,70	6,90	6.08	3,100	3.12	12.84	88	147	8.13	1 -(100) 1013 iii d
10	3 S			1.00	6,12	0,250	3,63	12,67	13	303	8.13	PM à La Reuille 12h10
Novembre 2009	PM	13h15	8,90	,			. ,	,	1		.,	P=(760) 1013 hPa
1	3 F			7,90	6,09	0,465	4,58	12,98	13	303	8,13	Renverse:
Coef: 52-52	4 S			1,00	6,01	1,400	2,51	12,62	105	324	8,15	
	Mi-Jus	16h25	7,00	l			l		1			P=(760) 1013 hPa
	4 F			6,00	6,05	1,800	2,57	12,63	76	315	8,14	

9.3. Annexe 3 : Tableau des résultats analytiques

9.3.1. Résultats bruts de mesures de MES, COD et COP

Date	Station	Temps Marée	Niveau	COT mg/L	COD mg/L	MES mg/L	COP mg/L	COP/MES
23-avr-09	F	BM	S	6,95	1,55	373	5,4	1,45%
23-avr-09	F	BM	F	16,15	1,25	966	14,9	1,54%
23-avr-09	F	MF	S	3,95	1,65	223	2,3	1,03%
23-avr-09	F	MF	F	143,00	1,00	7100	142,0	2,00%
23-avr-09	F	PM	S	2,75	0,75	134	2,0	1,49%
23-avr-09	F	PM	F	10,25	0,45	609	9,8	1,61%
23-avr-09	F	MJ	S	8,45	1,15	461	7,3	1,58%
23-avr-09	F	MJ	F	33,40	0,70	1886	32,7	1,73%
25-avr-09	Е	BM	S	9,30	2,40	513	6,9	1,35%
25-avr-09	Е	BM	F	114,20	2,20	5610	112,0	2,00%
25-avr-09	Е	MF	S	9,75	2,00	536	7,8	1,45%
25-avr-09	Е	MF	F	104,70	1,70	5610	103,0	1,84%
25-avr-09	Е	PM	S	5,75	1,75	271	4,0	1,48%
25-avr-09	Е	PM	F	57,80	1,10	3830	56,7	1,48%
25-avr-09	Е	MJ	S	8,40	1,85	460	6,6	1,42%
25-avr-09	Е	MJ	F	56,60	1,80	3430	54,8	1,60%
24-avr-09	K	BM	S	6,15	2,60	211	3,6	1,68%
24-avr-09	K	BM	F	18,90	2,50	1002	16,4	1,64%
24-avr-09	K	MF	S	20,60	3,00	1076	17,6	1,64%
24-avr-09	K	MF	F	35,15	3,75	1968	31,4	1,60%
24-avr-09	K	PM	S	6,20	2,60	333	3,6	1,08%
24-avr-09	K	PM	F	25,45	2,45	1406	23,0	1,64%
24-avr-09	K	MJ	S	12,85	2,75	615	10,1	1,64%
24-avr-09	K	MJ	F	28,30	2,70	1480	25,6	1,73%
16-mai-09	F	BM	S	13,02	1,32	740	11,7	1,58%
16-mai-09	F	BM	F	9,33	1,33	585	8,0	1,37%
16-mai-09	F	MF	S	3,21	1,01	165	2,2	1,33%
16-mai-09	F	MF	F	73,63	0,73	4135	72,9	1,76%
16-mai-09	F	PM	S	2,81	0,86	130	2,0	1,50%
16-mai-09	F	PM	F	2,88	0,63	150	2,3	1,50%
16-mai-09	F	MJ	S	2,15	1,25	90	0,9	1,00%
16-mai-09	F	MJ	F	10,62	0,77	530	9,9	1,86%
18-mai-09	Е	BM	S	3,85	1,70	135	2,2	1,59%
18-mai-09	Е	BM	F	4,84	1,74	165	3,1	1,88%
18-mai-09	Е	MF	S	4,60	1,50	175	3,1	1,77%
18-mai-09	Е	MF	F	13,40	1,50	680	11,9	1,75%
18-mai-09	Е	PM	S	2,90	1,35	125	1,6	1,24%
18-mai-09	Е	PM	F	3,70	1,30	185	2,4	1,30%
18-mai-09	Е	MJ	S	4,71	1,56	215	3,15	1,47%
18-mai-09	Ε	MJ	F	17,60	1,50	945	16,1	1,70%
17-mai-09	K	BM	S	5,80	4,50	105	1,3	1,24%

17-mai-09	K	BM	F	7,53	4,48	175	3,05	1,74%
17-mai-09	K	MF	S	5,33	3,28	120	2,1	1,71%
17-mai-09	K	MF	F	8,50	3,10	280	5,4	1,93%
17-mai-09	K	PM	S	4,20	2,90	80	1,3	1,63%
17-mai-09	K	PM	F	3,40	2,10	75	1,3	1,73%
17-mai-09	K	MJ	S	5,99	3,24	140	2,75	1,96%
17-mai-09	K	MJ	F	7,30	3,00	168	4,3	2,56%
16-juin-09	F	ВМ	S	3,25	0,80	147	2,5	1,67%
16-juin-09	F	ВМ	F	3,80	0,95	263	2,9	1,08%
16-juin-09	F	MF	S	3,06	0,95	128	2,1	1,65%
16-juin-09	F	MF	F	23,30	0,70	1246	22,6	1,81%
16-juin-09	F	РМ	S	2,15	0,60	87	1,6	1,78%
16-juin-09	F	PM	F	2,05	0,65	69	1,4	2,03%
16-juin-09	F	MJ	S	1,95	0,90	51	1,1	2,06%
16-juin-09	F	MJ	F	4,60	0,65	210	4,0	1,88%
18-juin-09	Ε	ВМ	S	3,55	1,65	159	1,9	1,19%
18-juin-09	Е	ВМ	F	5,50	1,45	234	4,1	1,73%
18-juin-09	E	MF	S	4,45	1,40	178	3,05	1,71%
18-juin-09	Ē	MF	F	13,70	1,40	672	12,3	1,83%
18-juin-09	Ē	PM	S	3,20	1,35	101	1,9	1,83%
18-juin-09	E	PM	F	5,50	1,25	211	4,3	2,01%
18-juin-09	E	MJ	S	4,20	1,35	162	2,9	1,76%
18-juin-09	E	MJ	F	20,75	1,25	1068	19,5	1,83%
17-juin-09	K	BM	S	6,15	1,75	294	4,4	1,50%
17 juin 03 17-juin-09	K	BM	F	10,65	1,75	512	8,9	1,74%
17 juin 03 17-juin-09	K	MF	S	10,50	1,60	544	8,9	1,64%
17 juin 03 17-juin-09	K	MF	F	18,30	1,60	970	16,7	1,72%
17-juin-09 17-juin-09	K	PM	S	3,75	1,50	194	2,3	1,16%
17-juin-09 17-juin-09	K		F	10,30	1,40	562	2,3 8,9	1,10%
17-juin-09 17-juin-09	K	PM MJ	S	7,75	1,50	394	6,3	1,59%
17-juin-09 17-juin-09	K		F	19,60	1,50	987	18,1	1,83%
16-juil-09	F	MJ	S	2,75	0,80	109	2,0	
16-juil-09 16-juil-09	F	BM	F	3,10	0,80	117		1,79%
•	F	BM	S			98	2,4	2,05%
16-juil-09	F	MF	S F	2,80	0,80		2,0	2,04%
16-juil-09		MF		5,65	0,60	354	5,1	1,43%
16-juil-09	F	PM	S	1,50	0,60	69 105	0,9	1,30%
16-juil-09	F	PM	F	2,25	0,50	105	1,8	1,67%
16-juil-09	F	MJ	S	1,60	0,70	48	0,9	1,88%
16-juil-09	F	MJ	F	3,05	0,70	118	2,4	1,99%
18-juil-09	E	BM	S	4,50	0,95	196	3,6	1,81%
18-juil-09	E	BM	F	5,35	0,95	215	4,4	2,05%
18-juil-09	E	MF	S	8,00	0,85	353	7,2	2,03%
18-juil-09	E	MF	F	12,30	0,80	563	11,5	2,04%
18-juil-09	E	PM	S	3,15	0,90	154	2,3	1,46%
18-juil-09	E	PM	F	5,40	1,00	213	4,4	2,07%
18-juil-09	E	MJ	S	7,35	1,05	302	6,3	2,09%
18-juil-09	E	MJ	F	14,85	1,05	663	13,8	2,08%
17-juil-09	K	BM	S	9,80	1,30	565	8,5	1,50%
17-juil-09	K	BM	F	13,75	1,35	740	12,4	1,68%
17-juil-09	K	MF	S	11,10	1,15	565	10,0	1,76%
17-juil-09	K	MF	F	16,15	1,15	870	15,0	1,72%

17-juil-09	K	PM	S	5,80	1,10	284	4,7	1,65%
17-juil-09	K	PM	F	10,10	1,05	519	9,1	1,74%
17-juil-09	K	MJ	S	7,75	1,20	372	6,6	1,76%
17-juil-09	K	MJ	F	10,60	1,15	592	9,5	1,60%
17-août-09	F	BM	S	1,65	0,60	41	1,1	2,56%
17-août-09	F	BM	F	1,60	0,45	66	1,2	1,74%
17-août-09	F	MF	S	1,80	0,45	65	1,4	2,08%
17-août-09	F	MF	F	6,30	0,45	422	5,9	1,39%
17-août-09	F	PM	S	1,50	0,35	53	1,2	2,17%
17-août-09	F	PM	F	2,90	0,30	131	2,6	1,98%
17-août-09	F	MJ	S	3,20	0,40	254	2,8	1,10%
17-août-09	F	MJ	F	1,10	0,40	50	0,7	1,40%
19-août-09	Е	BM	S	2,38	0,13	215	2,3	1,05%
19-août-09	Ε	BM	F	12,43	1,13	636	11,3	1,78%
19-août-09	Е	MF	S	6,80	0,95	354	5,9	1,65%
19-août-09	Е	MF	F	25,65	0,85	1508	24,8	1,64%
19-août-09	Е	PM	S	3,05	0,80	168	2,3	1,34%
19-août-09	Е	PM	F	10,15	0,75	541	9,4	1,74%
19-août-09	Е	MJ	S	5,80	0,85	278	5,0	1,78%
19-août-09	Ε	MJ	F	12,10	0,80	659	11,3	1,71%
18-août-09	K	ВМ	S	3,45	1,20	232	2,3	0,97%
18-août-09	K	ВМ	F	6,15	1,20	419	5,0	1,18%
18-août-09	K	MF	S	6,00	1,10	333	4,9	1,47%
18-août-09	K	MF	F	33,50	1,00	2096	32,5	1,55%
18-août-09	K	PM	S	3,10	0,80	136	2,3	1,69%
18-août-09	K	PM	F	9,40	0,80	604	8,6	1,42%
18-août-09	K	MJ	S	10,60	1,10	694	9,5	1,37%
18-août-09	K	MJ	F	24,50	1,00	1496	23,5	1,57%
24-sept-09	F	BM	S	2,10	0,35	183	1,8	0,96%
24-sept-09	F	BM	F	4,85	0,35	363	4,5	1,24%
24-sept-09	F	MF	S	1,20	0,30	51	0,9	1,76%
24-sept-09	F	MF	F	19,45	0,35	1320	19,1	1,45%
24-sept-09	F	PM	S	1,40	0,25	74	1,2	1,55%
24-sept-09	F	PM	F	7,40	0,15	497	7,3	1,46%
24-sept-09	F	MJ	S	1,20	0,30	79	0,9	1,14%
24-sept-09	F	MJ	F	13,55	0,25	1034	13,3	1,29%
23-sept-09	Е	ВМ	S	11,85	0,45	778	11,4	1,47%
23-sept-09	Е	ВМ	F	25,10	0,50	1454	24,6	1,69%
23-sept-09	Е	MF	S	14,35	0,35	896	14,0	1,56%
23-sept-09	Е	MF	F	22,30	0,40	1446	21,9	1,51%
23-sept-09	Е	PM	S	2,05	0,35	80	1,7	2,13%
23-sept-09	Ε	PM	F	8,40	0,30	554	8,1	1,46%
23-sept-09	E	MJ	S	11,30	0,50	806	10,8	1,34%
23-sept-09	E	MJ	F	19,95	0,45	1216	19,5	1,60%
22-sept-09	K	ВМ	S	16,75	1,25	1126	15,5	1,38%
22-sept-09	K	ВМ	F	34,35	1,05	2172	33,3	1,53%
22-sept-09	K	MF	S	44,60	0,60	2960	44,0	1,49%
22-sept-09	K	MF	F	82,60	0,70	5293	81,9	1,55%
22-sept-09	K	PM	S	3,75	0,50	288	3,3	1,13%
22-sept-09	K	PM	F	22,30	0,50	1466	21,8	1,49%
22-sept-09	K	MJ	S	30,60	0,70	2054	29,9	1,46%
=		0	-	,	-,	•	, -	.,,

22-sept-09	K	MJ	F	46,75	0,65	3166	46,1	1,46%
14-oct-09	F	BM	S	2,55	0,30	194	2,3	1,16%
14-oct-09	F	BM	F	3,70	0,35	264	3,4	1,27%
14-oct-09	F	MF	S	1,35	0,40	112	1,0	0,85%
14-oct-09	F	MF	F	19,20	0,40	1456	18,8	1,29%
14-oct-09	F	PM	S	2,35	0,25	231	2,1	0,91%
14-oct-09	F	PM	F	2,75	0,25	237	2,5	1,05%
14-oct-09	F	MJ	S	2,05	0,30	192	1,8	0,91%
14-oct-09	F	MJ	F	9,30	0,25	730	9,1	1,24%
12-oct-09	Ε	ВМ	S	7,70	0,50	457	7,2	1,58%
12-oct-09	Ε	ВМ	F	22,35	0,45	1470	21,9	1,49%
12-oct-09	Е	MF	S	6,60	0,40	425	6,2	1,46%
12-oct-09	Е	MF	F	34,35	0,35	2072	34,0	1,64%
12-oct-09	E	PM	S	3,95	0,40	184	3,6	1,93%
12-oct-09	Е	PM	F	4,40	0,35	253	4,1	1,60%
12-oct-09	E	MJ	S	14,65	0,35	1002	14,3	1,43%
12-oct-09	Е	MJ	F	14,75	0,35	1046	14,4	1,38%
13-oct-09	K	ВМ	S	8,30	0,90	628	7,4	1,18%
13-oct-09	K	ВМ	F	18,50	0,80	1158	17,7	1,53%
13-oct-09	K	MF	S	7,10	0,65	468	6,5	1,38%
13-oct-09	K	MF	F	26,20	0,70	1714	25,5	1,49%
13-oct-09	K	PM	S	6,00	0,50	387	5,5	1,42%
13-oct-09	K	PM	F	18,05	0,65	1196	17,4	1,45%
13-oct-09	K	MJ	S	9,65	0,55	644	9,1	1,41%
13-oct-09	K	MJ	F	10,25	0,65	698	9,6	1,38%
11-nov-09	F	ВМ	S	12,25	0,55	670	11,7	1,75%
11-nov-09	F	ВМ	F	7,15	0,65	456	6,5	1,43%
11-nov-09	F	MF	S	8,75	0,50	523	8,3	1,58%
11-nov-09	F	MF	F	66,00	0,60	3630	65,4	1,80%
11-nov-09	F	PM	S	4,90	0,35	282	4,6	1,61%
11-nov-09	F	PM	F	12,35	0,35	740	12,0	1,62%
11-nov-09	F	MJ	S	6,01	0,45	379	5,6	1,47%
11-nov-09	F	MJ	F	18,85	0,45	1144	18,4	1,61%
9-nov-09	Е	ВМ	S	8,30	0,80	511	7,5	1,47%
9-nov-09	Е	ВМ	F	32,00	0,80	1840	31,2	1,70%
9-nov-09	Е	MF	S	4,60	0,60	238	4,0	1,68%
9-nov-09	Е	MF	F	78,85	0,65	4750	78,2	1,65%
9-nov-09	E	PM	S	5,80	0,50	313	5,3	1,69%
9-nov-09	Е	PM	F	22,85	0,55	1346	22,3	1,66%
9-nov-09	E	MJ	S	14,45	0,65	884	13,8	1,56%
9-nov-09	E	MJ	F	49,25	0,65	3082	48,6	1,58%
10-nov-09	K	ВМ	S	15,00	1,90	1028	13,1	1,27%
10-nov-09	K	ВМ	F	76,75	2,25	4330	74,5	1,72%
10-nov-09	K	MF	S	58,30	1,10	3345	57,2	1,71%
10-nov-09	K	MF	F	7,30	1,10	403	6,2	1,54%
10-nov-09	K	PM	S	25,85	1,15	1504	24,7	1,64%
10-nov-09	K	PM	F	8,25	0,85	476	7,4	1,55%
10-nov-09	K	MJ	F	34,10	1,10	1974	33,0	1,67%
				•				

9.3.2. Résultats bruts de mesures de chlorophylle et phaeopigments

	Temps Niveen Chlo a Phaeo Chlo a / Pig/MES Taux										
Date	Station	Marée	Niveau	μg/L	μg/L	COP	ppm	Chl a			
23-avr-09	F	BM	S	1,60	2,70	0,03%	12	0,37			
23-avr-09	F	PM	S	1,95	0,97	0,10%	22	0,67			
25-avr-09	Е	BM	S	2,10	3,95	0,03%	8	0,35			
25-avr-09	Ε	PM	S	1,35	1,90	0,03%	12	0,42			
24-avr-09	K	BM	S	1,30	1,40	0,04%	7	0,48			
24-avr-09	K	PM	S	<0,8	7,50		23				
16-mai-09	F	BM	S	1,90	4,30	0,02%	8	0,31			
16-mai-09	F	PM	S	1,20	0,90	0,06%	16	0,57			
18-mai-09	Е	BM	S	1,15	1,05	0,05%	16	0,52			
18-mai-09	Е	PM	S	0,59	0,56	0,04%	9	0,51			
17-mai-09	K	BM	S	1,70	1,30	0,13%	29	0,57			
17-mai-09	K	PM	S	1,40	0,80	0,11%	28	0,64			
16-juin-09	F	BM	S	1,30	2,00	0,05%	22	0,39			
16-juin-09	F	PM	S	1,90	0,70	0,14%	38	0,73			
18-juin-09	Ε	BM	S	1,30	2,60	0,07%	25	0,33			
18-juin-09	Ε	PM	S	1,10	0,70	0,06%	18	0,61			
17-juin-09	K	BM	S	3,00	4,80	0,07%	27	0,38			
17-juin-09	K	PM	S	1,30	2,90	0,06%	22	0,31			
16-juil-09	F	BM	S	4,56	1,38	0,23%	54	0,77			
16-juil-09	F	PM	S		0,74		11	0,00			
18-juil-09	Ε	BM	S	1,36	1,20	0,04%	13	0,53			
18-juil-09	Е	PM	S	3,58	1,28	0,16%	32	0,74			
17-juil-09	K	BM	S	1,40	3,43	0,02%	9	0,29			
17-juil-09	K	PM	S	2,09	2,21	0,04%	15	0,49			
17-août-09	F	BM	S	5,13	1,14	0,49%	153	0,82			
17-août-09	F	PM	S	5,95	1,16	0,52%	134	0,84			
19-août-09	Ε	BM	S	2,29	1,38	0,10%	17	0,62			
19-août-09	Ε	PM	S	3,83	1,57	0,17%	32	0,71			
18-août-09	K	BM	S	2,37	2,61	0,11%	21	0,48			
18-août-09	K	PM	S	2,06	0,90	0,09%	22	0,70			
24-sept-09	F	BM	S	1,00	<0,4	0,06%					
24-sept-09	F	PM	S	0,80	<0,4	0,07%					
23-sept-09	Е	BM	S	0,90	1,70	0,01%	3	0,35			
23-sept-09		PM	S	0,80	0,70	0,05%	19	0,53			
22-sept-09		BM	S	1,80	6,60	0,01%	7	0,21			
22-sept-09		PM	S	2,00	2,30	0,06%	15	0,47			
14-oct-09	F	ВМ	S	2,85	1,80	0,13%	24	0,61			
14-oct-09	F	PM	S	2,45	1,70	0,12%	18	0,59			
12-oct-09	Е	ВМ	S	1,20	3,30	0,02%	10	0,27			
12-oct-09	Е	PM	S	4,00	1,65	0,11%	31	0,71			
13-oct-09	K	ВМ	S	1,50	3,00	0,02%	7	0,33			
13-oct-09	K	PM	S	2,10	2,00	0,01%	3	0,51			
11-nov-09	F	ВМ	S	1,30	2,30	0,01%	8	0,36			
11-nov-09	F	PM	S	1,50	1,40	0,03%	4	0,52			
9-nov-09	Е	BM	S	0,75	2,05	0,01%	2	0,27			
9-nov-09	E	PM	S	0,25	1,10	0,005%	1	0,19			
10-nov-09	K	BM	S	1,65	5,80	0,01%	2	0,22			
10-nov-09	K	PM	S	1,05	2,10	0,004%	7	0,33			

9.3.3. Résultats bruts de mesures de sels nutritifs et du bore

Date	Station	Temps Marée	Niveau	NH4 µmol/L	NOx µmoL/L	PO4 µmoL/L	N/P	Silicates µmoL/L	Bore mg/L
23-avr-09	F	ВМ	S	< 0,5	153,0	1,2	128	94,7	0,36
23-avr-09	F	PM	S	<0,5	112,0	1,8	62	65,3	1,30
25-avr-09	Ε	ВМ	S	3,8	163,0	1,4	116	123,0	<0,10
25-avr-09	Ε	PM	S	<0,5	157,0	1,4	116	104,0	0,30
24-avr-09	K	ВМ	S	1,3	105,0	1,2	88	148,0	<0,10
24-avr-09	K	PM	S	3,0	159,0	1,7	96	132,0	<0,10
16-mai-09	F	ВМ	S	2,05	133,0	0,75	177	125,0	<0,10
16-mai-09	F	PM	S	<0,56	133,0	0,42		113,0	0,60
18-mai-09	Е	BM	S	0,56	117,0	2,9	40	124,0	<0,10
18-mai-09	Е	PM	S	2,5	115,0	2,95	39	132,0	<0,10
17-mai-09	K	BM	S	0,94	120,0	1,05	114	175,0	<0,10
17-mai-09	K	PM	S	0,7	111,0	1,3	85	151,0	<0,10
16-juin-09	F	BM	S	<0,56	118,0	1,5	81	112,0	0,71
16-juin-09	F	PM	S	<0,56	94,8	1,4	70	96,0	1,40
18-juin-09	Е	BM	S	0,56	121,0	1,9	64	120,0	0,19
18-juin-09	Е	PM	S	<0,56	115,0	1,2	93	118,0	0,59
17-juin-09	K	BM	S	<0,56	126,0	8,2	15	138,0	<0,10
17-juin-09	K	PM	S	1,6	128,0	7,15	18	110,0	<0,10
16-juil-09	F	BM	S	<0,28	123,0	0,79	156	102,0	1,20
16-juil-09	F	PM	S	<0,28	67,1	2,75	24	61,8	2,10
18-juil-09	Ε	BM	S	<0,27	128,0	4,3	30	124,0	0,62
18-juil-09	Е	PM	S	<0,27	109,0	4,1	27	104,0	1,10
17-juil-09	K	BM	S		138,0	0,3		143,0	0,13
17-juil-09	K	PM	S	<0,27	133,0	6,1	22	130,0	0,41
17-août-09		BM	S	<0,5	96,1	2,6	37	89,7	1,60
17-août-09		PM	S	<0,5	61,9	2,24	28	55,2	2,30
19-août-09		BM	S	<0,5	131,0	5,5	24	131,0	0,80
19-août-09		PM	S	<0,5	100,0	4,8	21	93,9	1,50
18-août-09		BM	S	0,6	118,0	5,9	20	170,0	0,19
18-août-09		PM	S	<0,5	139,0	4,6	30	145,0	0,59
24-sept-09		BM	S	0,6	107,0	4,8	22	101,0	1,40
24-sept-09		PM	S	0,7	70,2	3,5	20	60,0	2,30
23-sept-09	Е	BM	S	0,6	132,0	14,4	9	132,0	0,85
23-sept-09	E	PM	S	0,6	110,0	3,8	29	100,0	1,60
22-sept-09		BM	S	<0,56	121,0	19,8	6	137,0	0,23
22-sept-09		PM	S	0,56	131,0	6,3	21	131,0	0,79
14-oct-09	F	BM	S	0,3	107,0	4,9	22	99,0	1,50
14-oct-09	F	PM	S	0,3	67,7	3,9	17	60,0	2,40
12-oct-09	Е	BM	S	<0,28	131,0	9,0	14	124,0	0,94
12-oct-09	Е	PM	S	<0,28	108,0	5,2	21	105,0	1,40
13-oct-09	K	BM	S	<0,5	116,0	9,5	12	133,0	0,31
13-oct-09	K	PM	S	<0,28	128,0	8,1	16	121,0	0,76
11-nov-09	F	BM	S	<0,28	131,0	10,9	12	20,8	1,00
11-nov-09	F	PM	S	<0,28	88,4	5,3	17	28,8	1,80
9-nov-09	Е	BM	S	<0,28	129,0	9,5	14	29,7	0,66
9-nov-09	Е	PM	S	<0,28	125,0	6,6	19	26,5	1,10
10-nov-09	K	BM	S	1,1	101,0	19,2	5	41,2	0,11
10-nov-09	K	PM	S	<0,28	119,0	9,2	13	37,2	0,57

9.3.4. Contaminants

		Temps		Hydrazine	Morpholine	Ethanolamine	Agents de surface
Date	Station	Marée	Niveau	mg/L	mg/L	mg/L	anioniques (µg/L)
23-avr-09	F	ВМ	S	<0,1	<0,1	<0,1	0,030
23-avr-09	F	PM	S	<0,1	<0,1	<0,1	0,020
25-avr-09	Ε	ВМ	S	<0,1	<0,1	<0,1	<20
25-avr-09	Ε	РМ	S	<0,1	<0,1	<0,1	<20
24-avr-09	K	ВМ	S	<0,1	<0,1	<0,1	<20
24-avr-09	K	РМ	S	<0,1	<0,1	<0,1	<20
16-mai-09	F	ВМ	S	<0,1	<0,1	<0,1	<20
16-mai-09	F	РМ	S	<0,1	<0,1	<0,1	<20
18-mai-09	Е	ВМ	S	<0,1	<0,1	<0,1	<20
18-mai-09	Е	PM	S	<0,1	<0,1	<0,1	<20
17-mai-09	K	ВМ	S	<0,1	<0,1	<0,1	<20
17-mai-09	K	РМ	S	<0,1	<0,1	<0,1	<20
16-juin-09	F	ВМ	S	<0,1	<0,1	<0,1	<20
16-juin-09	F	PM	S	<0,1	<0,1	<0,1	20
18-juin-09	E	ВМ	S	<0,1	<0,1	<0,1	<20
18-juin-09	E	PM	S	<0,1	<0,1	<0,1	<20
17-juin-09	K	BM	S	<0,1	<0,1	<0,1	<20
17-juin-09	K	PM	S	<0,1	<0,1	<0,1	<20
16-juil-09	F	BM	S	<0,1	<0,1	<0,1	<40
16-juil-09	F	PM	S	<0,1	<0,1	<0,1	<20
18-juil-09	E	BM	S	<0,1	<0,1	<0,1	<20
18-juil-09	E	PM	S	<0,1	<0,1	<0,1	<20
17-juil-09	K	BM	S	<0,1	<0,1	<0,1	<20
17 juil-09	K	PM	S	<0,1	<0,1	<0,1	<20
17-août-09		BM	S	<0,1	<0,1	<0,1	<20
17-août-09		PM	S	<0,1	<0,1	<0,1	<20
19-août-09		BM	S	<0,1	<0,1	<0,1	<20
19-août-09		PM	S	<0,1	<0,1	<0,1	<20
18-août-09		BM	S	<0,1	<0,1	<0,1	<20
18-août-09		PM	S	<0,1	<0,1	<0,1	<20
24-sept-09	F		S	<0,1	<0,1	<0,1	<20
24-sept-09 24-sept-09	F	BM PM	S	<0,1	<0,1	<0,1	<20
23-sept-09	E	BM	S	<0,1	<0,1	<0,1	<20
23-sept-09 23-sept-09	_		S	<0,1	<0,1	<0,1	<20
23-sept-09 22-sept-09	E K	PM	S	<0,1	<0,1	<0,1	<20
22-sept-09 22-sept-09	K	BM	S	<0,1	<0,1	<0,1	<20
14-oct-09	F	PM	S	<0,1	<0,1	<0,1	<20
14-oct-09	F	BM	S	<0,1	<0,1	<0,1	<20
12-oct-09		PM	S	<0,1	<0,1		<20
	E E	BM	S	<0,1 <0,1	<0,1 <0,1	<0,1	<20 <20
12-oct-09		PM	S			<0,1	
13-oct-09	K	BM	S	<0,1	<0,1	<0,1	<20
13-oct-09	K	PM		<0,1	<0,1	<0,1	<20
11-nov-09	F	BM	S	<0,1	<0,1	<0,1	<20
11-nov-09	F	PM	S	<0,1	<0,1	<0,1	<20
9-nov-09	E	BM	S	<0,1	<0,1	<0,1	<20
9-nov-09	E	PM	S	<0,1	<0,1	<0,1	<20
10-nov-09	K	BM	S	<0,1	<0,1	<0,1	<20
10-nov-09	K	PM	S	<0,1	<0,1	<0,1	<20

9.3.5. Résultats bruts de Vibrios halophiles - méthode milieu solide (filtration sur membrane)

		Tomas		V novoh	Valain	V vulni	V chol	V mim	V. flu	V halo
Date	Station	Temps Marée	Niveau	V parah UFC/L	V algin UFC/L	UFC/L	UFC/L	UFC/L	UFC/L	UFC/L
23-avr-09	F	BM	S	<10	<10	<10	<10	<10	<10	<10
23-avr-09	F	PM	S	<10	<10	<10	<10	<10	<10	<10
25-avr-09	E	BM	S	<10	<10	<10	<10	<10	<10	<10
25-avr-09	Е	PM	S	<10	<10	<10	<10	<10	<10	<10
24-avr-09	K	ВМ	S	<10	<10	<10	<10	<10	<10	<10
24-avr-09	K	PM	S	<10	<10	<10	<10	<10	<10	<10
16-mai-09	F	ВМ	S	<10	<10	<10	<10	<10	<10	<10
16-mai-09	F	PM	S	<10	<10	<10	<10	<10	<10	<10
18-mai-09	Е	ВМ	S	<10	<10	<10	<10	<10	<10	<10
18-mai-09	Е	PM	S	<10	<10	<10	<10	<10	<10	<10
17-mai-09	K	ВМ	S	<10	<10	<10	<10	<10	<10	<10
17-mai-09	K	PM	S	<10	<10	<10	<10	<10	<10	<10
16-juin-09	F	ВМ	S	<100	<100	15000	<100	<100	<100	<100
16-juin-09	F	PM	S	<10	400	1300	<10	<10	<10	<10
18-juin-09	E.	ВМ	S	<100	<100	800	Р	400	<100	<100
18-juin-09	E	РМ	S	<100	P <100	1700	300	<100	<100	<100
17-juin-09	K	ВМ	S	<10	<10	500	220	980	<10	<10
17-juin-09	K	PM	S	<10	<10	<10	250	1300	<10	<10
16-juil-09	F	ВМ	S	3000	P <100	7800	<100	<100	<100	<100
16-juil-09	F	PM	S	<1000	14000	84000	<1000	<1000	<1000	<1000
18-juil-09	E	ВМ	S	<1000	<100	4000	800	<100	<100	<1000
18-juil-09	E	PM	S	400	1500	5000	<100	<100	<100	<100
17-juil-09	K	ВМ	S	500	<100	3500	300	2000	<100	<100
17-juil-09	K	PM	S	400	<100	6600	2200	4000	<100	<100
17-août-09	F	ВМ	S	2000	P <1000	69000	<1000	<1000	6000	<1000
17-août-09	F	PM	S	3700	200	4200	<1000	<100	<100	<1000
19-août-09	E	ВМ	S	1000	1000	2000	17000	<1000	2000	<1000
19-août-09	E	PM	S		P <10 000		<1 000	<1000	<1000	<1000
18-août-09	K	ВМ	S	1000	400	2400	<200	<200	<200	<200
18-août-09	K	PM	S	600	P <200	1200	4000	<200	<200	<200
24-sept-09	F	ВМ	S	1000	800	1000	<100	<100	300	<100
24-sept-09	F	PM	S	600	<100	400	<100	<100	4800	<100
23-sept-09	E	ВМ	S	3000	1000	5000	<100	<100	1200	<100
23-sept-09	E	PM	S	1000	500	1300	<100	<100	<100	<100
22-sept-09	K	ВМ	S	800	P <100	100	100	<100	100	<100
22-sept-09	K	PM	S	1100	200	<100	<100	<100	300	<100
14-oct-09	F	ВМ	S	P <200	400	<200	<200	<200	<200	<200
14-oct-09	F	PM	S	1000	800	<100	<100	<100	800	<100
12-oct-09	E	ВМ	S	1000	1000	400	<200	<200	P <200	<200
12-oct-09	E	PM	S	1000	1000	P <200	P <200	<200	600	<200
13-oct-09	K	ВМ	S	500	500	100	<100	<100	<100	<100
13-oct-09	K	PM	S	1900	200	1800	<100	<100	200	<100
11-nov-09	F	ВМ	S	400	P <100	<100	<100	<100	400	<100
11-nov-09	F	PM	S	<10	500	<10	<10	<10	<10	<10
9-nov-09	E	ВМ	S	200	P <100	<100	<100	<100	400	<100
9-nov-09	E	PM	S	P <100	1000	<100	<100	<100	<100	<100
10-nov-09	K	BM	S	30	<10	<100	<100	<100	100	<100
10-nov-09	K	PM	S	100	70	<10	200	<10	<10	<10
					UFC/L (UF				P = Pr	
Γ	mary sc p	ui iiiiiali		.c v 101103 CI	OIC/L (UI	L – Omics I	ormani Coi	onic).	. – 11	Cochec

9.3.6. Tableau synthétique des résultats de dénombrement des Vibrios halophiles - méthode milieu solide (filtration sur membrane)

Campagne	Stati	on E	Stati	on F	Station K		
2009	Basse mer	Pleine mer	Basse mer	Pleine mer	Basse mer	Pleine mer	
Avril	<10	<10	<10	<10	<10	<10	
Mai	<10	<10	<10	<10	<10	<10	
Juin	800 Vv 400 Vm présence de Vc	1 700 Vv 300 Vc présence de Va	15 000 Vv	1 300 Vv 400 Va	220 Vc 500 Vv 980 Vm	250 Vc 1 300 Vm	
Juillet	4 000 Vv 800 Vc	1 500 Va 5 000 Vv 400 Vp	7 800 Vv 3 000 Vp présence de Va	84 000 Vv 14 000 Va	500 Vp 3 500 Vv 300 Vc 2 000 Vm	6 600 Vv 2 200 Vc 400 Vp 4 000 Vm	
Août	17 000 Vc 1 000 Va 1 000 Vp 2 000 Vv 2 000 Vf	> 100 000 avec présence de Vp - Va - Vv	69 000 Vv 2 000 Vp 6 000 Vf présence de Va	3 700 Vp 4 200 Vv 200 Va	400 Va 2 400 Vv 1 000 Vp	600 Vp 1 200 Vv 4 000 Vc présence de Va	
Septembre	3 000 Vp 1 000 Va 1 200 Vf 5 000 Vv	1 000 Vp 500 Va 1 300 Vv	1 000 Vv 800 Va 1 000 Vp 300 Vf	600 Vp 400 Vv 4 800 Vf	800 Vp 100 Vv 100 Vc 100 Vf présence de Va	1 100 Vp 200 Va 300 Vf	
Octobre	1 000 Vp 1 000 Va 400 Vv présence de Vf	1 000 Vp 1 000 Va 600 Vf présence de Vc - Vv	400 Va Présence de Vp	1 000 Vp 800 Va 800 Vf	500 Vp 500 Va 100 Vv	1 900 Vp 200 Va 1 800 Vv 200 Vf	
Novembre	400 Vf 200 Vp présence de Va	1 000 Va présence de Vp	400 Vp 400 Vf présence de Va	500 Va	30 Vp 10 Vf	100 Vp 70 Va 200 Vc	

Analyse par filtration : nb. de Vibrios en UFC/L (UFL = Unités Formant Colonie)

Vp = Vibrio parahaemolyticus

Va = Vibrio alginolyticus

Vv = Vibrio vulnificus

Vm = Vibrio mimicus

 $Vc = Vibrio\ cholerae$

 $Vf = vibrio\ fluvialis$

