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Abstract: 
 

An approach combining laboratory experiments and numerical modelling was used to investigate the 
behaviour of a floc population during an idealized tidal cycle. The experiment was conducted on 
suspended sediments at a concentration of 93 mg l−1 collected in the field. It was based on a jar test 
device to reproduce tidal-induced turbulence and coupled with a CCD camera system and image post-
processing software to monitor floc size distribution. At the same time, a 0D size-class based 
aggregation/fragmentation model (FLOCMOD) was developed to simulate changes in the floc 
population over the tidal cycle. Experimental results revealed strong variability of the behaviour of 
microfloc and macrofloc populations with respect to the varying shear rates observed in situ. In 
particular, the major dependency of floc sizes on the Kolmogorov microscale was confirmed. Time-
scale differences were also observed for aggregation and fragmentation processes which led to 
asymmetrical floc behaviour despite symmetrical tidal forcing. Model results, i.e. average diameter, 
maximum diameter and floc size distribution, were in good agreement with experimental data with an 
RMS error between observed and computed average diameters of below 25 μm over the tidal cycle. 
FLOCMOD was optimized in terms of the time step, number of size classes and size range: only 
seven classes ranging from 50 to 643 μm associated with a dynamically-adaptable time step were 
needed to correctly reproduce experimental results, characterized by an RMS error of less than 5 μm 
with respect to the reference case (100 classes from 4 to 1500 μm). Sensitivity analyses were 
performed on major parameters or processes: initial floc size distribution, primary particle size, fractal 
dimension and fragmentation function (binary, ternary, erosion or collision-induced fragmentation). 
Results showed that initial floc size distribution played a role only during the first aggregation stage. 
Low variability of the fractal dimension did not significantly modify model results, while larger 
differences were observed when the primary particle size was changed, especially towards the largest 
sizes (10 μm). Nevertheless, these two structural parameters had a strong impact on the calculated 
mean settling velocity with differences of 0.2 mm s−1 compared with the reference case. Different 
fragmentation functions were shown to significantly modify model results, except for collision-induced 
shear stress. In particular, combining floc erosion with binary breakup in the shear fragmentation term 
enabled us to reproduce bimodal distributions, patterns that are typically observed in situ. 
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1 Introduction 

 

Aggregation and fragmentation are key processes in investigating cohesive sediment dynamics in 

natural systems as they control the formation of macroflocs, their size and main structural 

characteristics, and hence their fate in the water column (Eisma, 1996). These processes are 

essential in estuarine macrotidal environments as controlling parameters vary strongly over time and 

space, particularly hydrodynamics and related turbulence, which are reported to be among the most 

important factors (Milligan and Hill, 1998; Manning and Dyer, 1999).  

 

Many studies have observed and quantified flocculation processes and changes in floc populations 

over time using in situ measurements during tidal cycles (Eisma and Li, 1993; Fennessy et al., 1994; 

Fennessy and Dyer, 1996; Van der Lee, 2000; Fettweis et al., 2006; Uncles et al., 2006). These 

authors observed major changes in floc populations during the different stages of the tidal cycle, and a 

strong dependency on hydrodynamic conditions, often quantified by shear rate, G, or the Kolmogorov 

microscale, η. However, most of these measurements were based on Eulerian sampling. This does 

not enable the behaviour of a population of flocs to be monitored with respect to the forcings they 

undergo when transported within the system but only particles flowing through the sampling volume 

with no knowledge of their previous history. However, aggregation processes are complex 

mechanisms that last from several minutes to several hours depending on the nature of SPM (van 

Leussen, 1994), and information on their history is thus essential to understand floc behaviour.  

 

Numerical modelling studies complement in situ measurements and provide full knowledge of floc 

behaviour in a natural system. Two or three-dimensional hydrodynamic and sediment transport 

models are required, coupled with a process-based flocculation model. Three main flocculation 

models of decreasing complexity are described in the literature: i) size-class based models (SCB) 

(Krishnappan, 1991; McAnally and Mehta, 2001,2002 ; Maggi et al., 2007; Xu et al., 2008), ii) 

distribution-based models (Maerz et al., submitted) and iii) a simplified model based on changes in a 

characteristic diameter over time (Winterwerp, 2002). Computation of the third model is fast (only one 

class simulated) but it only provides limited information on the floc population, and although suitable 

for operational issues, it is too simple to investigate the behaviour of the floc population. The 

distribution-based model is rapid to compute and provides more knowledge on floc size distribution but 

is limited by the assumption of a fixed distribution: bimodal populations as observed by Benson and 

French (2007) could not be computed with such distribution-based models. SCB models are the best 

way to investigate floc behaviour as they provide detailed information on floc populations. However, 

the SCB models described in the literature are limited by the large number of size classes required to 

correctly reproduce aggregation/fragmentation processes and their computation costs are thus high. 

This explains why they have not yet been coupled with hydrodynamic and sediment transport models. 

  

The objective of the present study is to investigate floc behaviour under an idealized hydrodynamic 

tidal forcing, combining laboratory experiment and SCB model simulations.  



 

The laboratory experiment provided controlled and homogeneous hydrodynamic conditions and 

observation of a population of flocs, which were then computed with a SCB model. This approach is 

based on the assumption that no flocs either settle or are advected, and that the concentration thus 

remains constant. This is a simplified approach compared with the complex 3D floc behaviour 

observed in nature but provides key information on aggregation/fragmentation processes and their 

modelling. The present study investigated the capacity of a size-class based model to reproduce 

experimental results, its possible optimization for future use in a 1DV, 2D or 3D models, and its 

sensitivity to key parameters such as structural parameters and fragmentation functions. This study 

can be considered as an intermediate step before investigating the fate of flocs populations in natural 

systems.  

 



2 Experimental setup 

 

A laboratory experiment was conducted in 2005 to investigate the behaviour of a population of flocs 

during an idealized tidal cycle considering one the main controlling parameter of flocculation 

processes, turbulence. A ‘video in lab’ (VIL) device was used in this study both to observe floc 

populations and to artificially reproduce variations in shear rate at the tidal scale, as observed in the 

field above intertidal mudflats (Van der Lee, 1998; Verney et al., 2009). This device consists of a small 

(13 cm wide, 20 cm high) cylindrical test chamber equipped with a ten-speed impeller to control 

turbulent agitation. The turbulent field generated inside the test chamber was calibrated from turbulent 

kinetic energy measurements performed with a laser Doppler velocimeter (Verney, 2006). Results 

confirmed homogeneous shear rates inside the cylinder for all impeller rotation speeds (corresponding 

to equivalent shear rates of from 0 to 12 s-1). Subsequently, aggregates within the whole test chamber 

were thus assumed to undergo a unique shear stress at a given time thus making the experiment 

suitable for 0D model comparison.  

Floc size distributions were obtained from floc image recording and post processing. The post-

processing method used to obtain floc size distribution is briefly described hereafter but a full 

description can be found in Verney et al. (2009). The ‘video in lab’ was equipped with a Sony CCD 

camera and lens that provide 8 µm pixel resolution images for the maximum enlargement. A backlight 

was placed opposite the CCD camera to provide a uniform white background upon which flocs appear 

as greyscale silhouettes. Particle separation is automatically processed by the ELLIX® software 

(Microvision®), which uses image thresholding to detect particles larger than 50 µm. Below this limit, 

the pixel resolution of the floc measurements is not consistent and hence the smallest microflocs are 

not accounted for in the description of the floc population during the experiment. Separation results 

were individually checked to remove detection errors. Floc sizes are expressed as a surface 

equivalent diameter, calculated as the diameter of the sphere with a projected area (A) equal to the 

detected particle area (Billiones et al., 1999; Flory et al., 2004; Verney et al., 2009) such as  

π
AD 4

=          (Eq. 1) 

In addition to the characteristic size, floc length (L) and circularity (C) were estimated. L is the length of 

the larger axis of the ellipse inscribing the floc area. C is computed as : 

2P
A4C π

=          (Eq. 2) 

where P is the perimeter of the detected floc. Therefore, C=1 for perfect spherical flocs and C→0 for 

string flocs.  

Further in the manuscript, floc size distributions refer to surface distributions. Finally, the characteristic 

size of a population of particles corresponds to the mean surface diameter (D(i)) weighted with the 

detected surface area of the floc (A(i)):  
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An idealized symmetric tidal cycle was reproduced within the test chamber by step-by-step matching 

of agitation-induced turbulence with field observations, from 0 (complete slack water period) to 12 s-1 

(maximum tidal current imposed in the model, corresponding to values observed above intertidal 

mudflats in the upper part of the Seine estuary (France), (Verney et al., 2009, Figure 1).  Sediments 

used during the experiment were collected in February 2005 in the upper part of the Seine estuary 

(freshwater part, muddy sediments). Their grain size distribution was analyzed with a Coulter Counter, 

and showed that the collected suspended sediments were muddy with a median size around 10 µm. 

According to measurements carried out in the area during winter by Verney et al. (2009), no peaks 

corresponding to diatom blooms were observed and the organic matter content was estimated around 

5%. Sediments were directly introduced in the test chamber without any treatment at a concentration 

of 93 mg l-1, and deflocculated by high turbulence mixing to reach the initial condition of the tidal test. 

 



3 Model description (FLOCMOD) 

 

3.1 Floc characteristics and size distribution 

 

FLOCMOD is the size-class-based (SCB) model used to reproduce the flocculation and fragmentation 

processes. The SCB model is based on the population equation system originally proposed by 

Smoluchowski (1917), which described the floc population in N discrete classes. In previous modelling 

studies, particles were assumed to behave as full spheres and were characterized by their equivalent 

diameter. In situ floc measurements demonstrated that the density of flocs is variable and floc 

structure and density have to be included in numerical approaches. In the present study, following 

Kranenburg (1994), the fractal behaviour of flocs was assumed to be the main floc characteristic sizes 

in each class i (diameter Di, mass mi and density ρf,i) and can be expressed via the fractal dimension 

nf: (Figure 2)  
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The number of size classes required for SCB models depends on their structure. Three methods are 

available. A first group of models (Lagrangian) uses as many classes as created particles (Maggi et 

al.,, 2007). This can yield hundreds of classes and may lead to high computation costs when 

integrated in 2D/3D models. A second group uses size classes defined by mean sizes (or mean 

masses) and lower and upper boundaries. This method requires to ensure particle growth continuity 

regarding the size class distribution, i.e. that the mass corresponding to the lower boundary of the size 

class i is smaller than twice the mass of the class i-1 (McAnally and Mehta, 2001). This allows the 

number of size classes to be reduced. In order to optimize the number of size classes required to 

realistically reproduce flocculation processes, a mass interpolation scheme is applied in FLOCMOD 

(Xu et al., 2008) for aggregation and fragmentation. Each class corresponds to a typical floc size, 

logarithmically distributed from the primary particle diameter Dp to the maximum floc size Dmax and 

boundaries between these classes are ignored. Therefore, the mass of each newly formed floc (from 

aggregation or fragmentation) is mass-linearly distributed into the two neighbour classes (see Fig. 3). 

This means that not as many classes have to be included as potentially newly formed flocs, and mass 

continuity is ensured. The number of size classes can be changed depending on the required size 

range [Dmin Dmax]. 

 

3.2 Flocculation processes 

 

Particle exchanges between classes are allowed through processes limited to two-body interactions 

(McAnally and Mehta, 2001) and governed by aggregation, shear breakup and collision breakup terms 



(both for gain and loss of particles) as described hereafter in the generic equation, where nk is the 

number of particles in the k class (in m-3): 

( ) ( ) ( ) ( ) ( ) ( )kLkLkLkGkGkG
dt

dn
coll_breakshear_breakaggrcoll_breakshear_breakaggr

k −−−++=  

(Eq. 6) 

 

3.2.1 Aggregation (Gaggr and Laggr) 

 

These terms correspond to the gain or loss of class k particles when i) two particles collide and ii) the 

collision is efficient, i.e. the newly formed bound between the two particles can withstand the shear 

induced by the collision. In the present study (0D), shear aggregation is assumed to be dominant and 

differential settling aggregation is neglected. Therefore, the two-body collision probability function A(i,j) 

is a function of the shear rate G and particle diameters Di and Dj (McAnally and Mehta, 2001,2002; 

Thomas et al., 1999): 
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The collision efficiency αij represents particle cohesiveness, i.e. physico-chemical forces and the 

sticking properties of organic matter. A few studies investigated flocculation efficiency and reported a 

generic mathematical description/formulation of αij (Friedlander, 1977; McAnally and Mehta, 2001; 

Maggi et al., 2007). However, few is known about the physico-chemical properties of our sediment  

Consequently in the present study, αij is set as a constant value (α) independent of the floc size and 

used as an optimization parameter in combination with the fragmentation rate βi (see below). 

 

3.2.2 Shear breakup (Gbreak_shear and Lbreak_shear) 

 

These terms represent the gain and loss of k-class particles from the fragmentation of larger flocs 

(i>=k) induced by the turbulent shear stress. The probability of a k-class floc to break up for a given G 

value is expressed by the fragmentation probability function Bi as proposed by (Winterwerp, 2002).  
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where βI is the fragmentation rate, as a function of floc yield strength, which depends on the physico-

chemical properties of the floc and on organic matter content, similarly to α. As mentioned above, αij 

and βi are used as optimization parameters, and are independent of floc size: βi=β. 

Following Winterwerp’s assumption between equilibrium floc size and the Kolmogorov microscale, β2 

is fixed to 3/2 and β3=3-nf (Winterwerp, 2002). .   

 

FDBSij is the distribution function of fragmented flocs for shear breakup. Knowledge of break-up 

modes is poor and mainly based on theoretical investigations as reported in Maggi (2005). Faced with 

this uncertainty, various fragmentation distribution functions can be tested to analyse their influence on 

floc population dynamics:  

i) Binary distribution, i.e. the fragmentation of a mi-mass particle in two particles of 

equivalent mass mi/2 
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ii) Ternary distribution, i.e. the fragmentation of a mi-mass particle in one particle of mass 

mi/2 and two particles of equivalent mass mi/4 
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iii) Erosion, i.e. the fragmentation of a mi-mass particle in one large fragment and several (k) 

small fragments of the same mass mk (Hill, 1996). 
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3.2.3 Collision-induced break-up (Gbreak_coll and Lbreak_coll) 

 



Two-floc collisions can lead to aggregation (§ 3.2.1) but also to break-up if the collision-induced shear 

stress ( collτ ) experienced by the particles exceeds the strength ( yτ ) of at least one of the two colliding 

particles. Gain and loss terms of collision-induced break-up (Gbreak_coll and Lbreak_coll) are defined as 

proposed by McAnally and Mehta (2001) similarly to the shear aggregation terms Gaggr(k) and Laggr(k):  

( ) ( )∑=
j,i

jiijcoll_break  nni,j AFDBCkG       (Eq. 16) 
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Where A(i,j) is still the collision probability function of two flocs i and j. The collision-induced 

fragmentation distribution function FDBCij determines i) if fragmentation occurs, i.e. if the collision-

induced shear stress ( collτ ) experienced by the particles exceeds the strength ( yτ ) of at least one of 

the two colliding particles and ii) how floc fragments are distributed. Calculating FDBCij requires first to 

determine collτ  and yτ . 

The collision-induced shear stress undergone by a floc i from its collision with a floc j ( coll
iij ,τ ) is 

expressed by: 
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While the strength of the floc i ( iy ,τ ) is estimated from floc density (itself related to floc size):  
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Fp represents the relative depth of interparticle penetration and is estimated to be 0.1 (Krone, 1963; 

McAnally , 1999; McAnally and Mehta, 2001). Fy represents the yield strength. Estimation of this 

parameter is highly empirical and a constant value of O{10-10} N is used hereafter as proposed by 

(Winterwerp, 2002).  

 

For two-body interactions (flocs i and j), two types of failures are likely to happen and control the 

expression of collision-induced fragmentation distribution function FDBCij (McAnally , 1999; McAnally 

and Mehta, 2001):  

i) j,y
coll

j,ij
coll

i,iji,y  and ττττ >> : The collision-induced shear stress exceeds the shear 

strength of the weakest aggregate only, consequently, during the collision, the j particle 

breaks into two fragments (Fj,1 and Fj,2) such as mFj,1=13/16mj and mFj,2=3/16mj. Fj,1 is a 

free fragment while Fj,2 is bound with the i particle.  



 

ii) j,y
coll

j,iji,y
coll

i,ij   and  ττττ >> : The shear stress is larger than shear strength of both i 

and j particles. Both particles break into two fragments (Fi,1 ; Fi,2) and (Fj,1 ; Fj,2) such as 

[mFi,1; mFj,1]=13/16 [mj ; mj] and [mFi,2; mFj,2]= 3/16 [mj ; mj]. Two particles are formed from 

the two primary particles Fi,1 and Fj,1.  A third particle is formed from the two fragments 

(Fi,2 and Fj,2) that bound during collision.  

 

3.2.4 Time step 

An explicit integration scheme was adopted to solve the aggregation/fragmentation equations such as 

Eq. 6 can be written as: 
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(Eq. 20) 

Aggregation and fragmentation occur simultaneously for all size classes and careful attention must be 

paid to the time step used to ensure mass conservation and that all classes do not receive a negative 

number of particles. In this case, two options are available: 

i) a constant time step, which must be small, i.e. equal or lower than 1 s; 

ii) a varying time step, which prevents more particles aggregating or fragmenting than exist 

in each class; 

The latter option is the most attractive as it can significantly reduce computational costs. At every time 

step, a first calculation of the mass of particles exchanged is computed with the preceding time step. If 

at least one class has a negative mass, aggregation/fragmentation are re-processed with a new time 

step that is half the previous one until all masses are positive after aggregation/fragmentation 

calculation. Similarly, if all masses are positive, calculations are made with a new time step that is 

twice the previous one, until one of the size classes have negative mass or that Δt reached a 

maximum time step fixed to 60s. 

 

4 Results 

 

4.1 Experimental results 

 

Results of the laboratory simulation of a tidal cycle are shown in Figure 4. They are represented as 

time series of i) the Kolmogorov microscale (minimum and average values), ii) the mean diameter D 

with its standard deviation (vertical bars),  iii) the maximum observed diameter Dmax, iv) the maximum 

floc length Lmax. The behaviour of the floc population was examined during different stages of the tidal 



cycle: low flood current - slack water period (low water), flood current acceleration period, flood current 

deceleration period, low flood current-slack –low ebb current period (high water), ebb current 

acceleration period, ebb current deceleration period.  

The first slack period (Figure 4 - I) corresponded to a two-hour period at low shear rate (G = 1 s-1). 

During this period, aggregation dominated and the mean floc size grew steadily from 65 µm to 266 

µm. Just before the flood (t = 120 min), the maximum floc diameter observed was 365 µm. During the 

flood current acceleration phase (Figure 4 - II), the shear rate increased and promoted fragmentation 

that induced an abrupt decrease in D and Dmax. When flood currents were the largest, D was smaller 

than 70 µm and Dmax close to 90 µm, which denotes a narrow distribution. Next shear stress 

decreased when flood currents decreased (Figure 4 - III): aggregation progressively counterbalanced 

fragmentation and D and Dmax increased to reach values of 120 µm and more than 220 µm 

respectively at t=270 min.  

Slack period corresponded to G values equal or below 1 s-1 (Figure 4 - IV). During this phase, 

aggregation was strong, and D reached values close to 250 µm at t=360 min. It should be noted that, 

just before complete slack water (Figure 4 – IV), the Dmax value was not consistent with previous 

values. This discrepancy was possibly due to an error in particle detection. During complete slack 

(Figure 4 - V), agitation was stopped, G=0 s-1, and flocs settled rapidly: D dropped from 250 µm to 170 

µm after two minutes and was 70 µm after 30 min. Next, the current slowly increased (Figure 4 - VI), 

which was simulated by a 90 min period at G=1 s-1. Agitation rerun induced floc resuspension, and D 

and Dmax increased to 220 µm and 360 µm respectively. These values were similar to the 

characteristic floc sizes observed before settling. The flocculation state was stable throughout the 

slack period: after 90 min, D was 217 µm and Dmax was 355 µm. Next, similarly to the flood phase, the 

largest flocs underwent enhanced fragmentation during the ebb acceleration phase (Figure 4 – VII), 

and D and Dmax decreased rapidly to 80 µm and 105 µm respectively for maximum tidal current. 

During the decelerating phase (Figure 4 – VIII), aggregation again dominated, and the mean and 

maximum floc size were 150 µm and 250 µm respectively, at t=660 min and G=2 s-1.  

 

Similarly to other characteristic floc sizes, maximum floc length Lmax was negatively correlated with 

shear rate, i.e. with increasing values during decreasing or low shear rate periods, and otherwise 

decreased during high shear rate periods. Comparing floc size time series and Kolmorogov microscale 

time series demonstrated the dominant influence of turbulence scales on flocculation dynamics: shear 

rate controls the balance between aggregation and fragmentation processes and therefore a variation 

in G causes an inverse change in floc population behaviour. Moreover, maximum floc length never 

exceeded the mean Kolmogorov microscale, especially during fragmentation stages, underlining the 

limitation of maximum floc length by the turbulent microscale.  

 

Examination of floc size dynamics also revealed a clockwise hysteresis (Figures 4 and 5). This is 

caused by the differences between aggregation and fragmentation time scales (time scale is defined 

as the time required for the floc population to reach a new equilibrium). Whereas shear forcing was 

exactly symmetrical during accelerating and decelerating phases, during these two stages, floc 



population behaviour differed significantly. On one hand, fragmentation dominated during flow 

acceleration periods (both ebb and flood). This is a rapid process that quasi instantaneously disrupts 

flocs due to shear fragmentation and collision between flocs. Moreover, shear fragmentation was 

complete for flocs larger than the Kolmogorov microscale. Figures 4 and 5 show this process during 

accelerating stages: every shear rate increase broke flocs and the observed maximum floc length 

rapidly dropped to the Kolmogorov microscale (in ~1 min). On the other hand, aggregation was 

promoted with decreasing shear rates, and was dominant for low G values (=<1 s-1). However, 

favourable hydrodynamic conditions do not instantaneously promote floc growth, as aggregation 

processes also depend on collision rates between different particles, and on collision efficiency. 

During all aggregation stages reproduced in the experiment, the equilibrium was only reached for G 

values of 1 s-1 after 60 to 100 min. For other shear rate conditions, equilibrium was never reached 

before the end of every step, which means that the aggregation time scale for these G values was 

longer than 20 min.  

 

The experiment simulated one tide cycle with symmetric ebb and flood stages. Hence the behaviour of 

the floc population could be compared during the two stages (Figure 5b). Results showed that D 

(mean and standard deviation values) and Dmax were correctly superimposed for both aggregation and 

fragmentation dominating periods. This illustrates the reproducibility and redundancy of floc population 

dynamics for identical shear forcing patterns.  

 

The behaviour of the floc population was also investigated in terms of mean floc circularity (Figure 6). 

Similarly to other floc characteristics, circularity was strongly dependent on turbulence and in this case 

positively correlated with shear rate. C ranged from 0.84, which corresponded to microflocs as 

observed during settling when only microflocs were in suspension and high shear rate periods; to 

0.68, which is characteristic of a macrofloc population. Contrary to floc diameter, circularity differed 

significantly before and after settling with higher values after deposition and resuspension. This result 

means that floc structure may have changed during this stage, with the formation of denser particles 

when flocs settle and collide near the bed. If confirmed by further investigations, this would induce 

changes in the fractal dimension to be accounted for. 

 

 

4.2 Model results 

 

A reference model configuration was used to compare experimental and model results: i) shear 

aggregation ii) shear fragmentation only, iii) varying time step, iv) 100 size classes, v) nf=1.9 (as 

previously estimated by Verney et al. (2009) on similar experiments) and vi) size range from 4 to 1500 

µm. The best results (compared to observation) were obtained for α=0.35 and β=0.12. Results are first 

discussed in terms of average diameter and second in terms of floc distribution. The initial model 

condition is the suspended sediment grain size distribution obtained from Coulter Counter analyses. In 

order to compare the same characteristic sizes, the mean diameter from model results Dmod was 



calculated in exactly the same way as the experimental diameter, i.e. weighted by the projected 

surface. Moreover, as the lower limit of the ‘video in lab’ floc size is 50 µm, Dmod was calculated over a 

truncated distribution, from 50 to 1500 µm. Finally, the settling period (380 min < t < 420 min) was 

excluded from the dataset for model performances analysis (root mean square error (ERMS) 

calculation), as this process is not simulated in the model.  

 

4.2.1 Average and maximum diameter 

The first level of investigation of model performance was to compare time series of experimental and 

model diameters (both average and maximum) (Figure 7). The maximum computed diameter Dmax_mod 

was evaluated as the percentile 90. Results showed that the model correctly reproduced the dynamics 

of the mean floc diameter, with a RMS value of 24 µm over the 43 experimental data points. Similarly, 

the Dmax_mod is in good agreement with the maximum diameter observed experimentally. Moreover, the 

simulated characteristic time scales of aggregation and fragmentation processes are in good 

agreement with experimental time scales, i.e. fast fragmentation and slow aggregation.   

However, three remarks can be made:  

i) The first flocculation phase (t<120 min) is not reproduced by the model, whatever the 

value given to the flocculation efficiency coefficient α, unlike the two following aggregation 

stages. This is mainly due to the initial floc size distribution. This aspect is examined in the 

discussion section. 

ii) During the two following flocculation stages, simulated aggregation starts earlier than 

observed aggregation 

iii) Settling during complete slack is not reproduced by the model, as particle deposition is not 

allowed in the 0D model. 

4.2.2 Floc size distribution 

The time series of the computed floc size distribution (Figures 8 and 9) was in good agreement with 

experimental data except during the first 120 min and during the settling phase as explained in the 

previous section. Some differences were observed in floc size distribution during intense flocculation 

phases (G=1 s-1 and 3 s-1 - Figure 9C/D and 9H). In particular, the model floc size distribution was 

more significantly widespread towards the largest size classes than in experimental results (except in 

Figure 9G). This could be explained i) by numerical diffusion, ii) by the absence of other fragmentation 

sources, such as collision-induced fragmentation, or iii) due to the parameterisation of the shear 

fragmentation. This point will be discussed in the next section. Nevertheless, the differences in terms 

of floc behaviour observed experimentally during the tidal phases are well reproduced (Figure 9):  



i) computed distributions are similar for maximum ebb and flood current (Figure 9A and 9E) when 

floc populations were mainly deflocculated as both peak diameter and distribution were in good 

agreement 

ii) differences observed for a given shear rate depending that this shear rate corresponds to an 

accelerating or decelerating periods are also correctly simulated by the model (Figure 9C and 

9G) 

iii)  the time-lag required for reaching the steady state during the slack period (G=1 s-1) is also 

reproduced by the model (Figure 9D and 9H) 

Moreover, the model correctly reproduced the clockwise hysteresis that characterised the aggregation 

and fragmentation processes during the tidal cycle (Figure 10). 

 

 

5 Discussion 

 

5.1 Experimental simulation 

 

The mean floc diameter range obtained during the laboratory experiment (Figure 4) was comparable 

to in situ measurements carried out for similar hydrodynamic conditions and sediment concentrations. 

Eisma and Li (1993) found mean floc sizes between 50 µm and 200 µm and maximum floc size from 

200 µm to 600 µm and the largest flocs were observed during slack water periods while experimental 

results showed that the maximum diameter ranged from 100 µm during high current speed periods to 

400 µm during slack water. Moreover, the good agreement of floc size time series during the two tidal 

stages confirmed the reliability of the ‘video in lab’ and the reproducibility of the experimental 

measurements. 

 

According to in situ measurements carried out by Fettweis et al. (2006), maximum and mean floc sizes 

are positively correlated with the Kolmogorov microscale (Figure 4). Our experimental results also 

highlighted different time scales for aggregation and fragmentation processes. This result confirms 

results from Winterwerp (2002). On one hand, flocs were quasi-instantaneously disrupted to reach the 

new equilibrium size when the shear rate increased (the Kolmogorov microscale decreased) because 

fragmentation is a rapid process. On the other hand, aggregation is a far slower process than 

fragmentation. Hence a decrease in the shear rate (i.e. an increase of the Kolmogorov microscale) did 

not lead to rapid particle aggregation and larger floc size and the time required to reach the new 

equilibrium size was estimated larger than 20 min. These differences in processes time scales are 

crucial when estimating settling fluxes 

 

 

5.2 Model performances and optimisation 

 



Three main model parameters can dramatically influence computation performances: the number of 

size classes (N) used to describe the floc population, the size range, and the time step (Δt). Results 

are discussed in terms of i) Dmod RMS error (ERMS) with the N = 100 (A1) test as reference case and 

ii) computation time tc for the period t > 200 min corresponding to peak flood shear rate (Table I). 

5.2.1 Number of size classes and size range 

The size range and the number of size classes are essential as they control the number of particle 

classes that will be integrated in the 1DV or 3D models. The challenge is to optimize these parameters 

without changing model results. 

 

In the first step, model results are compared for different number of size classes (N) for the constant 

size range [4 µm; 1500 µm]: 100 (considered as the reference case), 50, 20, 15, and 10 (Figure 11 

and Table I). Model results are comparable for N values from 100 to 15, with ERMS from 3 to 9µm. 

With N = 10, the size class resolution is too low to correctly reproduce the tidal dynamics (ERMS=60 

µm). Optimization of N leads to a reduction in i) calculation time of aggregation/fragmentation kernels 

and ii) model run from 257 s to 13 s for a 12-hour simulation period.  

The second optimization step consists in reducing the size range and optimizing the number of 

classes once again. Two methods were tested: recalculating a new size class distribution with different 

upper (Dmax) and lower (Dmin) limit sizes or truncating the size class distribution obtained for 15 classes 

from 4 µm to 1500 µm. In the present case, D was mainly over 50 µm throughout the tidal cycle and 

the observed maximum diameter Dmax was smaller than 800 µm.  

i) Tests were made with a new size range of [4 µm, 800 µm] for different numbers of size classes 

(Figure 11). Results are given in Table I (B.1 to B.6) and presents ERMS and computation time. 

Optimizing size range means reducing N down to 14 classes only in the range [4 µm, 800 µm].  

ii) Truncating the original size class distribution (Figure 11 and Table I, A.5.2, A.5.3, A.5.4) enabled 

reduction of the number of size classes down to 7 on the range [50 µm, 643 µm] and computation time 

to 5.6 s while ERMS remained below 5 µm.  

 

Truncating the size class distribution was shown to provide the best model performances in terms of 

the number of size classes, computation time, and RMS error compared with the reference case A1. 

This method should be preferred if advanced optimization is required.  

  

5.2.2 Time step 

Time step methods were evaluated by comparing model performances with two configurations (N=15 

and size range is [4 µm, 1500 µm]): a varying time step (over a time range) or a fixed time step (with 

different Δt values). The fixed time step Δt is related to the shear rate. In the experimental study, G 

values never exceeded 12 s-1, therefore a time step of 1 s is acceptable. In this case (Δt =1 s), 

computation time (tc) is around 95 s (12 h simulation). For a Δt value of 5 s, negative masses are 

obtained and the model is no more mass-conservative. The varying time step is in the range [0; 60s] 



and enables tc to be reduced to 17 s. However, the varying time step method can be optimized once 

again. The varying time step method consists in searching for the time step in which no classes have 

negative mass concentrations after flocculation processes. This means that a very small time step can 

be reached as few classes may have very small negative concentrations. To prevent such cases, a 

negative concentration threshold can be tolerated. The classes concerned are then forced to null 

concentrations, while all other classes compensate by lowering their concentration in order to maintain 

mass conservation. Four tests were conducted with different concentration thresholds: 0.00001, 

0.0001, 0.001, 0.01 g l-1. For thresholds smaller than 0.0001 g l-1, this method allowed tc to be reduced 

from 17 s to 11 s without changing the model results (ERMS difference was below 1 µm). In this case, 

the time step was never below 2 s while it reached 0.1 s when any negative masses were tolerated. 

For a mass threshold value of 0.001 g l-1, ERMS reached 4.8 µm but the time step was still 2 s, while 

for larger thresholds values, concentration compensations need to be high to respect mass 

conservation and significantly modified model results. 

 

5.3 Uncertainty of initial conditions, processes and sensitivity analysis  

 

Aggregation and fragmentation processes are complex and despite considerable research on these 

topics, several assumptions have to be made as some processes or parameters are still poorly 

understood. Sensitivity analyses were performed on key parameters or processes for which 

uncertainty remains: initial floc size distribution, primary particle size, fractal dimension, fragmentation 

processes, and the coupled parameters {flocculation efficiency α; fragmentation factor β}. Similarly to 

optimization analyses, sensitivity results are discussed as RMS differences over the period from the 

flood (stage III, Figure 4) to the ebb (stage VIII, Figure 4) with a reference simulation: variable time 

step, N=15, Dp=4 µm, nf=1.9, Dmin =4 µm and Dmax=1500 µm, α=0.35 and β=0.12, binary 

fragmentation. 

 

5.3.1 Initial floc size distribution 

 

Model results revealed the influence of initial distribution: large discrepancies were observed between 

model and experimental results in the first aggregation stage. The initial distribution applied was 

deduced from counter coulter measurements performed on SPM sampled for the laboratory 

experiments. However, this instrument operates with a strong stirring of the sample volume, which 

could cause more intense breakup than the largest turbulence applied in the VIL, and therefore shift 

the floc size distribution towards the smallest particles. A sensitivity analysis was performed on this 

initial condition to estimate its influence on the behaviour of the model: several distributions were 

tested by shifting the initial distribution from 1 to 4 classes towards the larger floc sizes (Figure 12). 

The sensitivity analysis clearly showed the consequences of underestimating the initial peak size of 

the distribution: for larger initial particle sizes, flocculation onset was faster, and correlated better with 

experimental data. However, sensitivity to the initial distribution disappears after the first 



flocculation/deflocculation event as model results are merged after 200 min. This means that the initial 

distribution is not crucial for modelling, except when flocculation-only laboratory experiments are 

simulated. Also, this sensitivity exercise has a physical meaning as it confirms that time scale strongly 

depends on the distance between the equilibrium state and the initial distribution.  

 

5.3.2 Floc structure: the role of primary particles and 3D fractal dimension  

 

Fragmentation kernels are controlled by floc structural features, i.e. primary particle sizes and floc 

fractal dimension, as described in Eq. 12. Hence these parameters are likely to influence flocculation 

processes and the equilibrium floc size for a given shear rate.  

 

Primary particles are defined as the basic blocks that constitute all flocs. Due to the fractal 

assumption, these primary particles are characterized by a single size. Conceptually, this size 

corresponds to clay clusters, and is often fixed at 4 µm. However, deflocculated grain size analyses 

performed on natural suspended sediments showed that primary particle size spectra can range from 

1 to 30 µm (Fettweis, 2008), especially if diatoms are present in suspension. 

Model sensitivity was tested for four typical primary particle sizes (Dp) observed in nature: 2 µm, 4 µm, 

8 µm and 15 µm. The last primary particle size generally corresponds to organic material, such as 

diatom cells, which should therefore be characterized by small densities. However in the present case, 

only grain size is investigated and a density of 2600kg m-3 is assumed for every primary particle size. 

The objective of the following tests is to examine the numerical sensitivity of the model to small 

variations of few key parameters. Investigating the influence of such variations on the global physico-

chemical processes is out of the scope of this study.   

 

The fractal behaviour of flocs is the strongest assumption made in FLOCMOD. This approach 

simplifies floc description and reduces floc characteristics as functions of two parameters: its size and 

its fractal dimension. All numerical models that are based on this assumption also consider that flocs 

are self-similar fractals, which means that the fractal dimension does not change with size. However, 

in situ and laboratory measurements did not support this assumption as results showed that floc 

densities strongly decreased with size, which is not only explained by size variations but also by a 

change in floc fractal dimension (Maggi, 2005). Moreover, floc fractal dimension calculated from in situ 

measurements varied strongly (typically from 1.6 to 2.3) and uncertainties remain on its accuracy 

(Fettweis, 2008).  

According to (Maggi, 2005; Maggi et al., 2007), four main structural behaviours exist:  

i) Euclidian growth: nf equals 3. 

ii) Fully self similar: nf is a constant over the size range.  



iii) Quasi self similar: nf equals 3 for primary particles and then decreases with floc size 

following a power law function :
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iv) Statistically self similar: nf equals 3 for very small particles up to a limit size Dl. Above this 

threshold, nf decreases with floc size following a power law function: 
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In the present study, only cases ii) and iii) are examined as they are the most likely to happen in 

nature: in-situ measurements demonstrated the impossibility of a fully fractal pattern and case iv) is 

used to describe a full range of particles from crystals to flocs. In case ii), the sensitivity is investigated 

as the influence of nf variability, i.e. 1.9 +/- 0.1 as observed in nature. 

 

Changing primary particle size and floc fractal dimension influence i) fragmentation kernels as 

observed by Xu et al. (2008) and ii) the initial floc size number distribution. First, as described in Eq. 5 

(see § 3.2.2), smaller nf values correspond to lower density flocs, that are therefore more subject to 

breakup: fragmentation is enhanced and smaller flocs are formed. In contrast, larger Dp or nf values 

yield denser flocs, more resistant to breakup. Consequently, aggregation is enhanced and larger flocs 

are created. Second, for a given mass concentration in a given class k, the number of particles Nk 

depends on the floc density ρk. Hence flocs made of smaller primary particles are characterized by 

lower densities (Eq. 5), which finally increases the number of flocs per class with a similar mass 

concentration and inversely. Similar consequences are induced by variations in fractal dimension.  

 

Therefore small variations in Dp or nf strongly influence flocculation processes as for example looser 

flocs correspond i) to more particles in suspension which promote aggregation but also ii) to fragile 

flocs more subjected to break-up. Figure 13a and figure 13b shows that the effect of {Dp;nf} on floc 

size number distribution nearly equilibrates their effect on flocculation : in all cases ERMS is below 20 

µm, except for large Dp values of 10 µm for which ERMS reached 58 µm. This is mainly because flocs 

are denser if Dp=10 µm and hence fewer flocs participate to aggregation processes. Therefore more 

time is required for flocs to aggregate and progressively reach the steady state. This explains the 

specific dynamics of the mean diameter and the mean settling velocity observed in Figure 13a and 

Figure 13c for Dp values of 10 µm. In the case of a size-dependant fractal dimension, ERMS was also 

reduced to 11 µm (Figure 13b). 

 

As a consequence, sensitivity analyses of floc structural parameters demonstrated the satisfactory 

stability of FLOCMOD under test conditions: realistic uncertainties of Dp or nf induced low variations in 

model results except for large Dp values. However, fragmentation is still a poorly known process and in 

particular uncertainty remains on the choice of the break-up function Bi. Maerz et al. (submitted) 



performed sensitivity analysis to the fractal dimension also with FLOCMOD but with a different break-

up term Bi close to the formulation proposed by Serra and Casamitjana (1998), described as follows:  

fn
iii DGB −= 4' 2ββ          (Eq. 21) 

These authors found marked differences in model results for similar low variations in fractal 

dimensions. This means that model stability is strongly dependent on the fragmentation function and 

hence careful attention must be paid to its choice (see also § 5.3.3).  

 

Consequences on floc settling velocities 

 

Floc settling velocity (ws) can be calculated from the modified Stokes Law (e.g. Van Leussen, 1988) 

out of the hindered settling domain:  
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Therefore, uncertainties concerning primary particle size or floc fractal dimension can strongly 

influence floc density and cause major variations in floc settling velocity despite the low influence on 

the average diameter. Figure 13c highlights the significant influence of small uncertainties of each of 

these two parameters on the mean settling velocity with variations up to +/- 0.2mm s-1 compared with 

the reference case (ws=0.4 mm s-1) during the periods of low or intermediate turbulence. Such 

differences could have a strong impact on settling fluxes and on the fate of SPM in natural systems.  

 

5.3.3 Fragmentation processes 

 

Major uncertainties remain concerning the mechanistic process undergone by flocs during shear 

fragmentation, and especially the size distribution of daughter flocs after fragmentation. Several 

distributions have been tested (Mietta et al., 2008), and the three main ones are tested here: binary or 

ternary distributions and floc erosion (See § 3.2.2). Moreover, a second fragmentation process can be 

added, i.e collision-induced floc fragmentation (See § 3.2.3). This section investigates the 

consequences of each of these breakup scenarios.  

 

Ternary breakup function led to the formation of smaller flocs than the binary breakup function and as 

a consequence, the computed floc size was smaller (up to 40%) than the reference case for the whole 

simulation period.  

 

The effect of floc erosion in the shear fragmentation term is examined in Figure 14 (see also Table II). 

Here shear fragmentation was assumed to produce simultaneously i) two particles of equal size 

(binary break-up - FDBS_binary, reference case) and ii) a large particle and several fragments, the 

latter corresponding to small particles  (floc erosion - FDBS_erosion). 
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FDBS_Binary and FDBS_Erosion are the floc distribution after shear break for binary breakup and floc 

erosion respectively (See §3.2.2) and Cero is the floc erosion contribution to break up, between 0 (no 

contribution of erosion) to 1 (as much as erosion as binary break-up).  

 

 For these tests, binary break up processes were calculated as previously described; floc erosion was 

considered as an additional fragmentation process. Several erosion configurations were tested where 

i) floc erosion was characterized by two numbers of fragments produced after erosion (2 or 10 

fragments),ii) two fragment sizes (Dfragm) were investigated: 4 µm (primary particle size) or 9.3 µm 

(typical of microflocs) and iii) floc erosion contribution (Cero) was calculated as 20%, 50% or 80% of the 

shear-fragmented mass (in complement of the binary breakup contribution) (see Table II) : 

 

Results showed that the influence of the number of fragments was significant only if Dfragm was 9.3 µm 

(Figure 14).  

The equilibrium between aggregation and fragmentation was weakly modified in favour of 

fragmentation when the floc erosion increased (Figure 14A): the largest mean floc size decreased 

down to 190 µm for a floc erosion contribution of 80%.  

Despite the low influence of floc erosion on mean floc size dynamics, results presented in Figures 15 

and 16 show that floc erosion also led to the formation of a bimodal distribution all along the tidal 

cycle, as observed in situ (Manning et al., 2006; Benson and French, 2007). In this case a second 

mode is observed for the class corresponding to the fragment floc size (i.e. Dfragm =9.3 µm). This 

highlights the need to simulate these two shear fragmentation mechanisms, i.e. binary or ternary 

breakup and floc erosion, in process-based flocculation models.  

 

Collision-induced breakup was the last fragmentation term investigated. Results (not shown) 

demonstrated that this process had no significant influence on floc size dynamics as all curves were 

merged together. Collisions between two flocs lead to break-up only if the collision-induced shear 

stress exceeds floc strength. The collision-induced shear stress / floc strength ratio was examined for 

three shear rate values (1, 5 and 10 s-1) (Figure 17). For G values of 1 s-1 (respectively 10 s-1) this ratio 

was greater than 1 only when particles larger than 650 µm (respectively 270 µm) collided. However, 

no flocs belonging to these classes or above were observed and computed during this period (Figure 

8) which explains why collision-induced breakup term was not significant for this test. However, as 

results could change if floc strength was overestimated, it is not possible to conclude that this 

mechanism should be neglected. Therefore, further investigations are required to conclude on the 

relative importance of all these breakup processes. 

  

5.3.4 {α;β} couples: optimal values 

 



Flocculation efficiency and fragmentation rate govern rate processes respectively for aggregation and 

break up. They are both of obvious physical significance with respect to the binding forces that can be 

created between two colliding particles or that can resist shear forces. Few parameterizations exist to 

relate these parameters to the main physical variables like salinity, organic matter content, or particle 

mineralogy. Therefore, α and β were used as calibration parameters to search for optimal calibration. 

This can be achieved by estimating the RMS error between model and experimental datasets over the 

period from the flood (stage III, Figure 4) to the ebb (stage VIII, Figure 4) for most probable { α, β } 

couples, i.e. α ranging from 0 to 1 and β ranging from 0 to 0.5 (Figure 18A). In the present study, the 

optimal couple was {0.35; 012} (Figure 18), and the fragmentation factor was close to the value used 

by Winterwerp (2002) to calibrate his model (β=0.112). However, Figure 18 showed that if flocculation 

efficiency and fragmentation rates are not explicitly calculated, a wide range { α, β }  couples may be 

chosen to calibrate model results and leading to RMS errors ranging from 20 µm to 25 µm between 

model and experimental results. As observed by Maerz et al. (submitted), α and β values control the 

kinetics of flocculation processes: larger values induce more rapid aggregation and fragmentation. The 

large range of possible { α, β } couples means that differences in model results induced by the { α, β } 

variability are smaller than the variability of the experimental measurements during aggregation and 

fragmentation stages. Therefore, complementary laboratory investigations are required to precisely 

determine the best couple. 

 

Nevertheless, the distribution of the optimal β for every possible α value (from 0 to 1) can be examined 

further (Figure 18C). Results showed that a linear relationship can be found between α and β: 

 02.0 39.0 −= αβ  (R2=0.99)        (Eq. 24)  

A positive correlation between α and β was expected as fragmentation must increase if aggregation is 

stronger in order to reach a similar steady state. Modifying the slope (ratio of α and β) will move the 

equilibrium size, i.e. increasing β/α yields smaller flocs (respectively decreasing β/α yields larger 

flocs). This is in agreement with the relationship given by Winterwerp (2002) between the equilibrium 

diameter and { α, β }. Further comparisons of model and experimental or in-situ measurements are 

required to confirm this linear pattern and to examine the variability of the slope for different kinds of 

suspended particulate matter.  



Conclusion 

 

The behaviour of a floc population during an idealized tidal cycle was investigated from laboratory 

experiments and successfully computed by numerical modelling. Experimental results confirmed the 

strong influence of turbulence on flocculation processes as already observed in situ and in particular 

the physical limit of floc size. Results also highlighted the consequences of different time scales for 

aggregation and fragmentation processes on the asymmetrical dynamics of floc populations despite 

symmetrical forcing. 

 

The model was found to be weakly sensitive to small variations in initial distribution except during the 

first aggregation stage. The fractal dimension and primary particle size did not strongly influence the 

time-evolution of floc size distribution, but significantly changed the average settling velocity with a 

difference of up to 0.2 mm s-1. The choice of the fragmentation function was found to play a significant 

role in the balance between aggregation and fragmentation but further investigations are required to 

identify the main mechanisms involved. In particular, a focus should be made on the role of the 

collision effect on floc break up as the experimented range of shear rate did not allow to conclude on 

this fragmentation process.  

 

The size-class based model correctly reproduced the experimental results both in terms of 

characteristic sizes (average diameter, maximum diameter) and floc size distribution. This model was 

successfully optimized to limit the number of size classes by adjusting the size range and reduce 

computation time with a variable time step. Only seven classes corresponding to a size range from 50 

µm to 650 µm were necessary to accurately reproduce experimental data.  

 

The next stage of the project consists in accounting for aggregation by differential settling and 

modelling floc behaviour in a 1DV and a 3D model, i.e. for a realistic case study, based on the 

development and optimization work realized in this study. 
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7 Captions of figures 

 

Figure 01: Hydrodynamic conditions during the simulation of a tidal cycle (both for laboratory 

experiments and numerical modeling): time series of Kolmogorov microscale η (µm) and shear rate G 

(s-1) and main stages 

 

Figure 02: Description of floc characteristics assuming floc fractal behaviour: expressions of diameter, 

volume, density and mass as functions of the primary particle size Dp and the fractal dimension nf 

 

Figure 03: Management of the newly formed flocs in the size class distribution: concept of continuous 

flocculation. 

 

Figure 04: Simulation of the dynamics of the floc population during one tidal cycle: experimental 

results. Mean floc diameter (D) and standard deviation, maximum floc diameter (Dmax), maximum floc 

length (Lmax) and Kolmogorov microscale (minimum ηmin and average ηmean) time series.  

 

Figure 05: Examination of the floc behaviour during the tidal experiment: A : clock-wise hysteresis of 

the aggregation/fragmentation processes; B: Comparison of the flood and ebb floc size time series 

(mean floc diameter (D), standard deviation and maximum diameter Dmax). 

 

Figure 06: Time series of floc circularity (C) and shear rate (G) during the simulated tidal cycle: 

changes in floc structure.  

 

Figure 07: Comparison between experimental data and model results during the simulated tidal cycle: 

mean floc diameter (experimental: D, model: Dmod) and maximum diameter (experimental Dmax and 

model Dmax_mod). Dmax_mod was calculated as the percentile 90.  

 

Figure 08: Floc size distributions time series during a simulated tidal cycle: comparison of model 

results (upper panel) and experimental data (lower panel). Triangles indicate selected distributions 

during the tidal cycle for detailed comparison (see Figure 9) 

 

Figure 09: Comparison between observed and computed floc size distributions at given shear rates for 

aggregation dominant phase (left panel) and fragmentation dominant phase (right panel). 

 

Figure 10: Clock-wise hysteresis of aggregation/ fragmentation processes as simulated with 

FLOCMOD 

 

Figure 11: Presentation of all size class distribution configurations tested for model optimization: 

variation of the size range and the number of size classes. The red size class distribution (A.5.4) 



corresponds to the optimized parameters, and the blue size class distribution (A.5.1) to the reference 

size class distribution.    

 

Figure 12: Model sensitivity to the initial distribution: initial distributions shifted upward by 1, 2, 3 or 4 

classes from the reference case (upper panel) and related computed mean floc size dynamics (lower 

panel). 

 

Figure 13: Model sensitivity to floc structural features, i.e. primary particles (upper panel) size and 

fractal dimension (middle panel) and consequences on mean floc settling velocity (lower panel). Tests 

with primary particle size Dp from 2 µm to 10 µm and fixed (1.8, 1.9 and 2.0) or size-dependant fractal 

dimension (nf) values values.  

 

Figure 14: Model sensitivity related to the influence of floc erosion: role of floc erosion contribution, 

influence of larger eroded fragments and the number of fragments with three configurations. A: 2 

eroded fragments of 9.3 µm, B: 10 eroded fragments of 9.3µm, C: 2 or 10 eroded fragments of 4 µm.  

 

Figure 15: Consequences of floc erosion contribution to fragmentation: floc size distribution times 

series with floc erosion contribution of 0% (reference case) (a), 20% (b), 50% (c) and 80% (d). 

Triangles represent selected periods for detailed investigations (See figure 16) 

 

Figure 16: Consequences of floc erosion contribution to fragmentation: floc size distribution (A and B 

number distributions, C and D concentration distributions) during slack period (A-C – t=400 min) and 

high shear rate (B-D – t=600 min) 

 

Figure 17: Floc sizes impacted by collision-induced fragmentation represented by the ratio between 

collision-induced shear stress and floc strength for three shear rate conditions : G=1 s-1 (upper left 

panel), G=5 s-1 (upper right panel) and G=10 s-1 (lower left panel) 

 

Figure 18: RMS error between experimental and model results : A for {α, β) couples ranging from 0 to 

1 and 0 to 0.5 respectively and B for all α values ranging from 0 to 1 and the corresponding optimal β; 

C : comparison and linear relationship between optimal α and β 

 

Table I: Model optimization: influence of the number of size classes (N), upper size limit (Dmax) on the 

RMS error and computation time tc. Cases A.5.2 to A.5.4 are all based on the same grid size as case 

A.5.1, but truncated from the corresponding upper and lower limit sizes.  

 

Table II: Floc erosion by shear: test configurations  
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