
Ocean Dynamics (2011) 61:257–271
DOI 10.1007/s10236-010-0330-2

On the behavior of mud floc size distribution: model
calibration and model behavior

Francesca Mietta · Claire Chassagne ·
Romaric Verney · Johan C. Winterwerp

Received: 15 December 2009 / Accepted: 17 August 2010 / Published online: 22 October 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In this paper, we study a population balance
equation (PBE) where flocs are distributed into classes
according to their mass. Each class i contains i primary
particles with mass mp and size Lp. All differently sized
flocs can aggregate, binary breakup into two equally
sized flocs is used, and the floc’s fractal dimension
is d0 = 2, independently of their size. The collision
efficiency is kept constant, and the collision frequency
derived by Saffman and Turner (J Fluid Mech 1:16–30,
1956) is used. For the breakup rate, the formulation
by Winterwerp (J Hydraul Eng Res 36(3):309–326,
1998), which accounts for the porosity of flocs, is used.
We show that the mean floc size computed with the
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PBE varies with the shear rate as the Kolmogorov
microscale, as observed both in laboratory and in situ.
Moreover, the equilibrium mean floc size varies linearly
with a global parameter P which is proportional to the
ratio between the rates of aggregation and breakup.
The ratio between the parameters of aggregation and
breakup can therefore be estimated analytically from
the observed equilibrium floc size. The parameter for
aggregation can be calibrated from the temporal evo-
lution of the mean floc size. We calibrate the PBE
model using mixing jar flocculation experiments, see
Mietta et al. (J Colloid Interface Sci 336(1):134–141,
2009a, Ocean Dyn 59:751–763, 2009b) for details. We
show that this model can reproduce the experimental
data fairly accurately. The collision efficiency α and the
ratio between parameters for aggregation and breakup
α and E are shown to decrease linearly with increasing
absolute value of the ζ -potential, both for mud and
kaolinite suspensions. Suspensions at high pH and dif-
ferent dissolved salt type and concentration have been
used. We show that the temporal evolution of the floc
size distribution computed with this PBE is very similar
to that computed with the PBE developed by Verney
et al. (Cont Shelf Res, 2010) where classes are distri-
buted following a geometrical series and mass con-
servation is statistically ensured. The same terms for
aggregation and breakup are used in the two PBEs.
Moreover, we argue, using both PBEs, that bimodal
distributions become monomodal in a closed system
with homogeneous sediment, even when a variable
shear rate is applied.

Keywords Flocculation · Population balance
equation · Discretization into classes · Kaolinite ·
Natural mud · ζ -Potential
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1 Introduction

An important parameter in sediment transport mod-
eling is the settling velocity. For cohesive sediment,
the settling velocity is affected in a complex way by
the sediment properties and the environmental con-
ditions through the process of flocculation (Manning
2001; Eisma 1986). Flocculation can be regarded as
a competition between aggregation and breakup. The
rate at which flocs grow and the size they attain depend
on hydrodynamic conditions, residence time, sediment
properties, and properties of the suspension.

The large variability of the floc size and therefore
settling velocity of cohesive sediments suggests the
need to use different size classes in sediment transport
modeling. This may be achieved using computation-
ally efficient flocculation models which allow for the
estimation of the temporal evolution of the floc size
distribution.

Turbulent motion, at the scale of the floc sizes, gov-
erns the collisions frequency between the various flocs
and therefore aggregation. However, turbulence also
induces pressure differences and differential velocities.
These may result in shear and normal stresses, which
may disrupt the flocs when they exceed floc strength
resulting in floc breakup. Both turbulent motion and
stresses can be conveniently quantified by the shear
rate G at these small scales (Levich 1962). The shear
rate G as defined in Tennekes and Lumley (1972)
is therefore commonly used in flocculation modeling.
Both models introduced in this paper use G to quantify
turbulent motion.

Flocs are considered as fractal objects, which frac-
tal dimension may vary with their size. Maggi (2007)
observed that the fractal dimension of kaolinite flocs
decreases with the floc size. Similar results have been
observed by Khelifa and Hill (2006) on mud flocs from
different locations. The average fractal dimension ob-
served for mud flocs is d0 = 2 (Winterwerp 1998).

Flocculation is usually modeled by either simple floc
growth equations (i.e., the Lagrangian model devel-
oped by Winterwerp 1998, 2002) or by population
balance equations (PBEs; Maggi et al. 2007; Serra and
Casamitijana 1998). In the first case, the temporal evo-
lution of a characteristic floc size is modeled, while
the PBEs model the temporal evolution of a floc size
distribution(FSD). For the PBE, we distribute the floc
population in different classes according to their size,
and the FSD is a vector which accounts for the concen-
tration of flocs in each class. A balance equation is then
written for each size class. All balance equations are
coupled to a mass conservation equation as the total
mass in the system needs to be conserved. Although

computationally more demanding, the PBE allows for
a better understanding of the processes involved, as it
describes the temporal evolution of the FSD.

One of the main differences between the PBEs pre-
sented in literature is the way flocs are divided into
classes and the method used for integration (Nopens
2005). The division into classes, in fact, affects largely
the computational time and the amount of data gener-
ated. Only if the computational time and the amount of
generated data are small, it is possible to implement the
PBE into a sediment transport model. Two different
approaches are used in PBEs to ensure mass conserva-
tion: (1) the size classes are adapted to the aggregation
and breakup mechanisms to ensure mass conserva-
tion and (2) the size classes are independent of aggre-
gation and breakup mechanisms and mass conservation
is statistically ensured. A more accurate description of
the two types of model is given below:

1. The distribution into classes is adjusted to the
mechanisms of aggregation and breakup to ensure
that there is a size class for each floc resulting from
aggregation or breakup. Some examples are the
models by Batterham et al. (1981) and Hounslow
et al. (1988) in which only aggregation is consid-
ered, and the mass of flocs is distributed into classes
according to a geometrical series with ratio 2: The
mass of each class is twice the mass of the next
smaller class. With this distribution into classes,
if only equally sized particles can aggregate, the
formed flocs belong to the next larger class and
each newly formed floc has exactly the mass of the
class to which it belongs. If both aggregation and
breakup are considered and differently sized par-
ticles can aggregate, the number of classes which
needs to be considered becomes for this type of
models very large as flocs with different sizes may
form.

2. Mass conservation is statistically ensured and
size classes are defined independently of the
mechanisms of aggregation and breakup. Verney
developed a model where classes are distributed ac-
cording to a geometrical series of the floc diameter
and mass conservation is ensured by linearly dis-
tributing the formed flocs in two neighbor classes,
such that the total mass of new flocs equals the mass
of the interacting flocs (Verney et al. 2010). Kumar
and Ramkrishna (1996) use pivotal points to ensure
mass conservation in the system and Zhang and Li
(2003) use the section approximation method. A
detailed overview of the different methods is given
in Nopens (2005).
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In this paper, we describe a PBE in which size classes
are defined on the basis of the number of primary par-
ticles in a floc, assuming that all primary particles are
solid spheres (fractal dimension d0 = 3) with the same
mass and density. We refer to this model as PBE 1 in
the remainder of this paper. This model is similar to the
PBE presented in Maggi et al. (2007) and Mietta et al.
(2007), but the algorithm for the numerical integration
and the choice of the time step have been improved.
PBE 1 follows the first of the two approaches described
above: All differently sized particles can aggregate and
different breakup distribution functions can be applied
to this model. We will show that PBE 1 requires a
large number of classes and therefore long computa-
tional times. PBE 1 can therefore hardly be used in
sediment transport models. Description and behavior
of the model are given in Section 2.

In Section 3, we present a simple and efficient al-
gorithm to calibrate the model together with some
examples using the experimental data by Mietta et al.
(2009a, b). Studies have already been done to link the
ζ -potential to the sedimentation behavior of kaolinite
(Wang and Siu 2006), or to its rheological properties
(Melton and Rand 1977). From these results, a qualita-
tive description of the flocculation behavior has been
obtained (Tombacz and Szekeres 2006). The experi-
mental data used for the calibration have been col-
lected to quantify this relation between the flocculation
behavior of a suspension and the related ζ -potential.
We also briefly observe the relation between the
ζ -potential of the suspension and the parameters of
the PBE.

We show in Section 4 how PBE 1 can be used to
investigate the effect of a reduction in the number of
classes on PBE 2. We compare PBE 1 with the PBE
by Verney et al. (2010), called PBE 2 in the remainder
of this paper, in which mass conservation is statistically
ensured, and classes are divided following to a geo-
metrical series. The same terms for aggregation and
breakup are used in PBE 1 and PBE 2. An analysis of
the stability of bimodal distributions, using both PBE
1 and PBE 2, is given in Section 5. Discussion and
conclusions are given in Section 6.

2 The population balance equation (PBE 1)

2.1 Theory

We consider a population of fractal flocs, where each
floc consists of i primary particles. Assuming that all
primary particles have the same mass mp, we discretize
the population into nc classes where the mass of flocs

in class i is mi = i mp ∀i ∈ [1, nc]. nc is the total number
of classes considered. The assumption of equally sized
primary particles is rather accurate for pure clay sus-
pensions, for which the primary particles size is rather
homogeneous. As natural mud contains both clays and
organic matter, the size distribution of mud primary
particles is more dispersed. We show later in this paper
how the use of equally sized primary particles allows
for an accurate representation of experimental data,
also for mud suspensions. For a given fractal dimension
d0, the size of flocs can be computed for each class
as Li = Lpi1/d0 , where Lp is the size of the primary
particles of mass mp. Note that the number of classes
to be considered increases sensibly with the size of the
flocs, Li, as i = (Li/Lp)

d0 .
In shear-induced flocculation, the size of flocs can

hardly exceed the Kolmogorov microscale (Jarvis et al.
2005). If we assume that the largest floc at a given shear
rate, G, equals the Kolmogorov microscale, we can
compute the minimum shear rate for given nc, Lp, and
d0. For example, if nc = 2,000, Lp = 5 μm and d0 = 2,
we can resolve all floc sizes for Glim = ν/η2 = ν/L2

nc
=

20 s−1 where ν is the kinematic viscosity of water, η is
the Kolmogorov microscale, and Lnc is the size of flocs
in class nc. Lp is the average mean value of kaolinite
primary particles distribution shown for kaolinite in
Mietta (2010). For any G > Glim, the largest possible
flocs are accounted for. We discuss later how also the
mean floc size is affected by nc. It is therefore necessary
to ensure that the solution of PBE 1 does not depend
on nc.

Considering the discretization into classes described
above, PBE 1 reads as:

�Ni

�t
= 1

2

i−1∑

j=1

α j,i− jβ j,i− jN jNi− j

︸ ︷︷ ︸
GA

− Ni

nc−i∑

j=1

αi, jβi, jN j

︸ ︷︷ ︸
LA

− si Ni︸︷︷︸
LB

+
nc∑

j=i+1

γi, js jN j

︸ ︷︷ ︸
GB

, (1)

where �t is a finite time step, αi, j is the collision ef-
ficiency, βi, j is the collision frequency, si is the breakup
rate, and γi, j is the breakup distribution function. This
equation is written for all i ∈ [1, nc]. The terms GA and
LA indicate, respectively, gain and loss by aggregation
while the terms GB and LB indicate gain and loss by
breakup, respectively.
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The mass conservation equation reads:

nc∑

i=1

mi Ni = c. (2)

In this paper, we presume that the collision efficiency
is independent of the size of the interacting particles:
αi, j = α. This dimensionless parameter is to be assessed
through calibration. The collision frequency as derived
by Saffman and Turner (1956) is taken into account:

βi, j = G
6

(
Li + L j

)3 (3)

where G is the shear rate as defined in Tennekes and
Lumley (1972). We consider the breakup rate as devel-
oped for fractal objects by Winterwerp (1998, 2002):

si = EG3/2
(

Li − Lp

Lp

)3−d0

Li. (4)

where E [s1/2/m] is a parameter for breakup to be
assessed through calibration. The breakup distribution
function, γi, j, indicates the number of flocs entering
class i as a result of breakup of flocs from class j. In
this paper, we consider binary breakup in two equally
sized flocs only.

PBE 1 is a non-linear system for which an analytical
solution cannot be derived. Numerical integration of
the system is therefore necessary. We solve the PBE
1 by direct integration: The FSD at each step depends
uniquely on the one at the previous step. The time
step �t is self-adjustable to ensure that the number of
particles leaving a class at time t does not exceed the
number of particles in that class at that time.

The numerical simulation is continued until a dy-
namic equilibrium has been reached using the following
criterion:

∣∣Lmean,k − Lmean,k−�k
∣∣ ≤ Lmean,k se, (5)

where �k and se are conditions for equilibrium, Lmean,k

is the average size of the volume-based distribution at
the k time step, and Lmean,k−�k is the average size of
the volume-based distribution at the k − �k time step.
As variations in the mean floc size may be very small,
we consider as a criterium for equilibrium the variation
of Lmean over �k time steps. This variation should be
smaller than a small percentage of the mean value at
the time k, se Łmean,k. Through trial and error, these
parameters have been set at �k = 20 and se = 10−6.

2.2 Model behavior

Here we give a concise summary of the behavior of the
model. A more detailed description is given in Mietta
(2010). All distributions are plotted as volume-based
FSD (i.e., the total volume in each class is accounted
for), and the mean floc size is computed as:

Lmean =
∑nc

i=1 LiViwi∑nc
i=1 Viwi

, (6)

where Vi = vi Ni with vi volume of flocs in class i is
the total volume in class i and wi is the width of the
size bin i. We compute here the weighted mean, where
the width of floc size bins, wi, is taken into account, to
compare the model results with the experimental data
obtained with the Malvern Mastersizer (Mietta et al.
2009a, b). The Malvern software computes a volume-
based floc size distribution where flocs are divided into
size classes according to a geometrical series. All flocs
observed within the edges of a class are grouped into
that class. We account therefore for the weighted mean
to compare with experimental data. For the comparison
between the two models, we will compute the non-
weighted mean of the mass-based FSD.

Dynamic equilibrium is reached when aggregation
and breakup are in balance. The equilibrium floc size
is therefore proportional to the ratio between the rates
of aggregation and of breakup. From Eqs. 1, 3, and 4,
we find that the rate of aggregation is proportional to:

(
dNi

dt

)

agg
∝ αGL3

i N2
i ; (7)

while the rate of breakup is proportional to:

(
dNi

dt

)

bre
∝ EG3/2

(
Li − Lp

Lp

)3−d0

Li Ni. (8)

The term
(
(Li − Lp)/Lp

)3−d0 is independent of all para-
meters with exception of the floc structure (i.e., fractal
dimension), which we assume to be invariant. As d0 is
constant, Li is proportional to Lp as Li = Lpi1/d0 ∝ Lp.
The number of flocs, Ni, is proportional to the number
of primary particles and can be expressed as Ni ∝
c/(ρsL3

p). The non-dimensional floc size is therefore
proportional to:

L∗
mean ≡ Lmean

Lp
− 1 ∝ αc

EG1/2ρsLp
≡ P, (9)
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where P is a non-dimensional global parameter propor-
tional to the rates of aggregation and breakup. We use
in this formulation a non-dimensional floc size L∗

mean,
obtained dividing the mean floc size by the size of the
primary particles. The term “−1” has been added to
ensure that Lmean equals Lp if there is no aggrega-
tion (P = 0). In Eq. 9, we observe that the mean floc
size in PBE 1 varies with the parameters and physical
conditions as the characteristic size computed with the
Lagrangian model by Winterwerp (2002). Similar terms
for aggregation and breakup have been used in the two
models.

The equilibrium L∗
mean is plotted as a function of P

in Fig. 1a for PBE 1 with different nc. All parameters
included in P have been varied independently, and
simulations have been done with constant floc structure
d0 = 2 and binary breakup. A comparative study of the
behavior of the model with constant and variable fractal
dimension is shown in Mietta (2010). The mean floc size
computed with PBE 1 when d0 = 2 is similar to the one
computed with PBE 1 and d0 varying with the floc size
as in Maggi (2007). The initial growth rate is smaller
when the variable fractal dimension is used.

L∗
mean varies linearly with P at small P. The tangent

at the origin of the graph is the same for all nc, and the
point P∗, from which the curve differs from the tangent,
increases with nc. For P > P∗, L∗

mean no longer grows
linearly with P. P∗ ≈ 7 for nc = 2,000, see Fig. 1a.

The equilibrium FSDs for different P are plotted for
nc = 2,000 in Fig. 1b. The FSDs at P > P∗ = 7 show
accumulation of particles in the last class and peaks
throughout the distribution. The peaks result from

breakup of flocs in the last class. As binary breakup is
considered, the size of each peak is 1/2 the size of the
next larger one. This explains why for P > P∗ = 7 the
relation between Lmean∗ and P is no longer linear. Then
the solution of the PBE 1 is not governed by physics
anymore, but it is influenced by the number of classes
considered as formed flocs cumulate in the largest class.

For P < P∗, the relation between L∗
mean and P

reads as:

L∗
mean = 2.567P. (10)

This relation holds for all sets of parameters, provided
that the fractal dimension, the breakup distribution
function, and the aggregation kinetics remain the same.
From Eq. 10, the value of P can be computed for each
measured equilibrium floc size.

The equilibrium floc size has been observed to vary
with the shear rate as the Kolmogorov microscale, both
in laboratory experiments (Verney et al. 2010) and in
in situ observations (Fettweis et al. 2006; van der Lee
et al. 2009). In Fig. 2, L∗

mean varies as the Kolmogorov
microscale in the range where the solution is not
affected by the number of classes considered nc (high
G or low P). At low shear rate, aggregation dominates
over breakup and the equilibrium floc size should in-
crease with decreasing shear rate. If the number of size
classes considered is not large enough, flocs cumulate
in the largest class and cannot grow further, as shown
in Fig. 1. The asymptotic value in Fig. 2 corresponds to
the size of the largest class considered.
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Fig. 2 Equilibrium L∗
mean as a function of G. The line “ref-

erence” scales with G as the Kolmogorov microscale. PBE 1
with d0 = 2 and binary breakup. Lp = 5 μm, ρs = 2,650 kg/m3,
c = 0.135 g/l, α = 0.3, and E = 0.1 s1/2/m

The breakup and aggregation rates for the PBE 1
have been set such that this ratio scales as G−1/2. It
is shown in Mietta (2010) that this is not sufficient
for the computed equilibrium L∗

mean to scale with the
Kolmogorov microscale. Both the aggregation kinetics
and the breakup distribution function influence the way
in which L∗

mean varies with G.

3 Calibration of the parameters

3.1 Approach

In this section, we calibrate the model using the exper-
imental data presented in Mietta et al. (2009a, b) for
kaolinite and mud, respectively. These data have been
obtained through mixing jar flocculation experiments
using suspensions with different dissolved salts and
various concentrations (pH > 8). The ζ -potential of all
suspensions has been measured.

To compute the size of flocs from their mass, we
use a fractal dimension d0 = 2, which is an average
value usually observed in nature (Winterwerp 1998).
Mietta (2010) verified that the calibrated parameters
vary less than 10% when the fractal dimension d0 is
decreased from 2 to 1.7. As the model proved to behave
in a similar way for d0 larger than 2 (d0 = 2.3; Mietta
2010), we expect a similar behavior when the fractal
dimension is increased to values larger than 2.

Considering that the equilibrium non-dimensional
floc size, L∗

mean, computed with the PBE varies linearly

with the parameter P (see Eqs. 6 and 9) and that the
temporal evolution depends mainly on the aggregation
parameter (Winterwerp 1998), we use the following
procedure to assess the model parameters:

– We define Lp = 5 μm as the size of the primary
particles. This value is close to the mean value of
the primary particles size distribution of kaolinite
(Mietta 2010). Lp is larger than the smallest floc
size observed in experiments; this implies that the
behavior of the smallest particles is not modeled by
PBE 1. However, only few particles have L < Lp.

– From the equilibrium Lmean, we compute the value
of the parameter P = L∗

mean/2.567 as derived from
Eq. 10.

– Given P, we verify that the number of classes
considered, nc, is large enough and that the FSD
is independent of nc. We used nc = 2,000 for the
suspensions with Lmean ≤ 90 μm and nc = 3,000 for
the other suspensions.

– The sediment concentration, c = 0.135 g/l, the sed-
iment specific weight, ρ = 2,650 g/l, and the shear
rate, G = 35 s−1, are defined by the settings of the
experiments. Moreover, we have fixed the size of
the primary particles, Lp. The ratio between the
parameters of aggregation and breakup α and E
can therefore be computed from the parameter P
as α/E = PG1/2ρLp/c.

– We impose the same initial particle size distribution
as observed in the experiments.

– We tune the aggregation parameter α to minimize
the error Et between the observed and computed
temporal evolution of Lmean. Et is defined as:

Et = 1
Ndata

Ndata∑

j=1

∣∣Lmean,data,t( j) − Lmean,PBE1,t( j)
∣∣

(Lmean,data,t( j) + Lmean,PBE1,t( j))/2
100,

(11)

where Ndata is the total number of measurements in
time during a flocculation experiment, Lmean,data,t( j)

is the mean of the measured FSD at the time t( j),
and Lmean,PBE1,t( j) is the mean of the computed FSD
at the same time. We use the Brent algorithm (Press
et al. 1989) for the tuning of α.
The temporal evolution of Lmean can be divided
in two phases (Mietta 2010). In the first phase,
aggregation dominates and the growth rate of Lmean

is large. In this phase, large flocs are formed. In the
second phase, when the size of flocs reaches its
maximum and breakup becomes increasingly more
important balancing aggregation, the growth rate
becomes smaller. This suggests that the parameter
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for aggregation α can be estimated from the
temporal evolution of Lmean in the aggregation-
dominated phase.

To quantify the error in the computed equilibrium
FSD, we compute the difference between the computed
and measured equilibrium FSDs, Ef, as:

Ef = 1
nc

nc∑

k=1

∣∣FSDdata,eq,k − FSDPBE1,eq,k
∣∣

(FSDdata,eq,k + FSDPBE1,eq,k)/2
100, (12)

where nc is the number of classes in the FSD,
FSDdata,eq,k is the equilibrium measured FSD in class
k, and FSDPBE1,eq,k is the equilibrium computed FSD
in class k.

3.2 Results of the calibration

For all suspensions considered, the calibrated parame-
ters are listed in Table 1 together with the properties of
the suspensions and the computed errors.

The collision efficiency is larger for kaolinite suspen-
sions with divalent salt (MgCl2) than for suspensions
with monovalent salt (NaCl), or sea salt. α/E varies less
than the collision efficiency with the properties of the
suspension. With exception of the kaolinite suspension
with 1,000 mM of added NaCl at pH = 9.3, Et is
below 6%. Few suspensions show high values of Ef.
An analysis of the effect of the chemical properties of
the suspension on flocculation is given in Mietta et al.
(2009a, b).

Both the collision efficiency and α/E vary little for
the mud suspensions. While the error Et is below 4%,
Ef is around 20% for all mud suspensions. The high Ef

values observed depend on the shape of the FSD and
will be discussed later.

The temporal evolution of Lmean,PBE1 and Lmean,data

is shown in Fig. 3 for a mud suspension with 100 mM
of MgCl2 and pH = 8. Lmean,data and Lmean,PBE1 vary
in time in a similar way. The equilibrium floc size is
reached after 1 to 2 h from the beginning of the exper-
iment, and the simulation with PBE 1 well reproduces
the temporal evolution of the equilibrium mean size.

Measured and computed FSDs at different times are
plotted in Fig. 4 for the suspension considered above.
The temporal evolution of the largest classes is the
same for both observed and computed FSDs, while the
two FSDs are different toward the smaller classes. This
is because the size of the primary particles used for
PBE 1 is larger than the smallest size measured by the
Malvern.

Observed FSDs at equilibrium show a small peak
around the size of the primary particles, which is not
present in the computed distributions. The shape of
the equilibrium FSD obtained through simulation with
PBE 1 varies very little with the parameters and is
always monomodal. PBE 1 with the settings used for
this calibration is therefore not able to generate an
equilibrium bimodal FSD as the one observed in the
physical experiments. This explains the large errors Ef

observed for mud suspensions and for some of the
kaolinite suspensions.

We verified in Mietta (2010) that simulations at
different shear rates with the parameters calibrated at
G = 35 s−1 reproduce the experimental data observed
for all shear rates and that the parameters α and α/E
are independent from the shear rate G.

3.3 Relation between the physicochemical properties
of the suspension and the model parameters

The aggregation parameter α and the ratio between the
aggregation and breakup parameters α and E obtained

Table 1 Parameters and errors for the data used for calibration

Sediment Salt type Salt concentration pH ζ α α/E Et Ef

mM ppt mV – s1/2/m % %

Kaolinite MgCl2 1 0.095 9.3 −17.7 0.018 0.74 3.4 8.7
Kaolinite MgCl2 100 9.5 9.3 −2.5 0.099 2.41 3.8 6.8
Kaolinite MgCl2 500 47.6 9.3 8.6 0.090 3.96 6.3 13.6
Kaolinite NaCl 100 5.8 9.3 −35 0.020 2.72 4.1 3.2
Kaolinite NaCl 1,000 58 9.3 −5.25 0.035 6.70 18.1 16.6
Kaolinite Sea salt 79 5 9.3 −18.6 0.014 1.54 3.9 5.8
Kaolinite Sea salt 315 20 1.8 −12.3 0.010 3.50 3.3 3.8
Mud MgCl2 100 9.5 8.0 −8.8 0.141 3.92 1.2 19.7
Mud MgCl2 400 38 8.0 7 0.153 4.55 1.9 20.6
Mud NaCl 500 29.2 8.0 −13.4 0.122 3.81 1.5 18.4
Mud Sea salt 315 20 8.0 −9.5 0.163 3.19 1.3 17.8
Mud Sea salt 520 33 8.0 −4.8 0.176 3.17 1.5 20
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Fig. 3 Temporal evolution of the equilibrium mean size for
experimental data Lmean,data and computed values Lmean,PBE1.
Sediment concentration c = 0.135 g/l and shear rate G = 35 s−1.
Mud suspension with 100 mM of MgCl2 and pH = 8; α = 0.141
and α/E = 3.92 s1/2/m

through calibration are plotted as a function of the ab-
solute value of the ζ -potential in Fig. 5a, c for kaolinite
and Fig. 5b, d for mud. We included for α/E more data
points than for α. These are obtained from a larger set
of data where only the equilibrium floc size has been
measured, see Mietta et al. (2009a, b) for details.

The collision efficiency of kaolinite suspensions is
always smaller than the one of mud, and it increases
little when the ζ -potential decreases in magnitude,
see Fig. 5a. The increase of the collision efficiency
associated to a decrease of the absolute value of the
ζ -potential is larger for mud suspensions than for kaoli-
nite suspensions, see Fig. 5b.

The higher collision efficiency for mud suspensions
is mainly dependent on the presence of organic matter.
Organic matter consists of differently charged polymers
which may adhere to particles and enhance flocculation
(Winterwerp and van Kesteren 2004). This also ex-
plains why the ζ -potential of mud in clear water is
smaller in absolute value than the one of kaolinite: The
charge of the clay particles may be reduced by the non-
or positively charged organic matter adhering to the
particles.

The ratio between the parameters α and E com-
puted analytically from the equilibrium floc size in-
creases when the ζ -potential decreases in magnitude,
see Fig. 5c, d. The variation of α/E with the ζ -potential
is larger for kaolinite than for mud suspensions.

Contrary to what one would expect, considering the
complex composition of the mud, both α and α/E cor-
relate better with the ζ -potential for mud suspensions
than for kaolinite suspensions. The low correlation
for the kaolinite results can be due to the complex

Fig. 4 Temporal evolution of
the measured and computed
FSD. Sediment concentration
c = 0.135 g/l and shear rate
G = 35 s−1. Mud suspension
at pH = 9.3 and 100 mM
of MgCl2, α = 0.141 and
α/E = 3.92 s1/2/m.
a t = 20 min; b t = 95 min;
c t = 3 h; d t = 5 h
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Fig. 5 Collision efficiency α and α/E obtained through calibration of the experimental data. Suspensions at pH > 8 and different added
salt type and concentration. a α, kaolinite suspensions; b α, mud suspensions; c α/E, kaolinite suspensions; d α/E, mud suspensions

behavior of this clay, which may chemically interact
with dissolved ions (Sposito 1989). Mud is composed of
different clays which may interact differently with the
dissolved ions. Moreover, organic matter may con-
tribute in smoothing the effect of particles–ions interac-
tion on the flocculation behavior (Mietta et al. 2009b).

4 Comparison with a PBE with geometrical class
division (PBE 2)

4.1 Description of PBE 2

In this section, we describe PBE 2, developed in Verney
et al. (2010) and compare it with PBE 1. PBE 2 has been
implemented in sediment transport models as it applies
a reduced number of classes and is computationally
fast.

In PBE 2 are implemented the same terms for aggre-
gation and breakup as in PBE 1. Further, the same pa-
rameters and initial distribution have been used for this
comparison. The two models differ therefore only for
the division into classes and the integration algorithm.
Classes for the two models are divided as:

⎧
⎨

⎩

Li = Lpi1/d0 , PBE 1,

Li = L
1+ i−1

nc−1

(
log Lmax

log Lp
−1

)

p , PBE 2,
(13)

where Lmax is the maximum floc size accounted for
in PBE 2. For PBE 1, the maximum floc size which
can be resolved depends on the number of classes nc,
as the bin’s width is kept constant. In PBE 2, on the
other hand, the maximum floc size is kept constant
and the bin’s size depends on the number of classes
considered nc.
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Fig. 6 Management of newly formed flocs in the size class distribution: concept of continuous flocculation (Verney et al. 2010)

Mass conservations are statistically ensured by lin-
early distributing the flocs resulting from aggregation
or breakup in two neighbor classes, see Fig. 6. A de-
tailed description of the behavior of PBE 2 is given in
Verney et al. (2010).

For this comparison, we compute for both models
the non-weighted mass-based mean value computed as:

Lmean,M =
∑nc

i=1 Li Mi∑nc
i=1 Mi

, (14)

where Mi is the total mass of particles in class i. As in
this case we do not compare with the experimental data,
we do not weight the mean with the bin’s size.

4.2 Results of the comparison

The temporal evolution of the mean floc size at G =
35 s−1 is plotted for the two models in Fig. 7. The
number of classes and the time step are varied for PBE
2 in Fig. 7a, b, respectively. Lmean,M computed with
PBE 1 is independent of both the time step and nc, if
nc is large enough. Both the equilibrium floc size and
the flocculation rate are slightly larger for PBE 2 than
for PBE 1.

The equilibrium Lmean,M computed with PBE 2 de-
creases when the number of classes considered in-
creases. As the size interval between Lp and Lmax is
divided in nc classes according to a geometrical series,
the width of the bins decreases when nc increases.
When few classes are considered (i.e., nc = 30), the
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Fig. 7 Temporal evolution of Lmean,M computed with PBE 1 and PBE 2. Lp = 10 μm, ρs = 2,650 kg/m3, c = 0.135 g/l, G = 35 s−1,
α = 0.359, and E = 9.510−2 s1/2/m. a Variation of nc2 in PBE 2; b variation of the time step in PBE 2, nc1 = 4,000 and nc2 = 200
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equilibrium Lmean,M computed with PBE 2 is larger
than the one computed with PBE 1. When the width
of the bins approaches the one of PBE 1, Lmean,M

computed with PBE 2 approaches the one computed
with PBE 1, see Fig. 7a. We also note that the temporal
evolution is independent of nc.

In Fig. 7b, the temporal evolutions of Lmean,M are
shown for PBE 1 and for PBE 2 with different time
steps. In PBE 1, an initial time step dt f ix is imposed.
This time step may be automatically reduced to en-
sure that the number of flocs leaving a class because
of aggregation and breakup is smaller or equal to
the number of flocs in that class for all classes. We
verified that the temporal evolution is independent
of the initial time step dt f ix. The same has been ob-
served for PBE 2 as shown in Fig. 7b. Flocculation is
slightly faster for PBE 2 than for PBE 1. When two
particles aggregate in PBE 2, flocs are linearly distrib-
uted in two neighbor classes. This implies that large
classes are populated rather early in the aggregation
process and may explain the larger flocculation rate for
PBE 2.

For PBE 2, we show the temporal evolution of
Lmean,M also for dtmax. This time step is computed at
each step as the value for which the number of flocs
leaving a class because of aggregation and breakup
equals the number of flocs in that class for at least
one class and is smaller than the number of flocs in
that class for all other classes. Flocculation with dtmax

is faster than with dtfix, see Fig. 7b. Although this is
the larger possible time step and allows for reduced
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Fig. 9 Lmean,M as a function of shear rate computed with PBE
1 and PBE 2. Lp = 10 μm, ρs = 2,650 kg/m3, c = 0.135 g/l,
α = 0.359, and E = 9.510−2 s1/2/m

computational times, it induces a higher flocculation
rate than all other time steps.

The FSDs computed with PBE 2 and PBE 1 have
the same shape, but the FSD computed with PBE 2
is shifted toward the larger classes, see Fig. 8. This
has also been observed for the equilibrium Lmean,M,
which is larger if computed with PBE 2 than with PBE
1. For PBE 2, the mass concentration in the larger
classes is higher when a smaller number of classes is
considered. Note that the maximum floc size Lmax is
smaller than the largest class accounted for in both
models. Therefore, the number of classes nc in PBE 1
does not affect the solution of the model.

The equilibrium Lmean,M varies with the shear rate in
the same way for the two models. The values computed
with PBE 2 are always larger than for PBE 1 as the
number of classes considered in PBE 2 is nc = 50, see
Fig. 9. Moreover, the ratio between the two Lmean,M is
independent of the shear rate G (the distance between
the points is constant in a log–log plot).

5 Stability of a bimodal distribution

A bimodal floc size distribution is often observed in
situ (Manning 2001; Eisma 1986). Different factors may
contribute to the formation of a bimodal FSD:

– The variability in time of the shear rate in relation
with different flocculation times as a function of the
floc size (Eisma 1986; Manning 2001)



268 Ocean Dynamics (2011) 61:257–271

– The composition of the sediment which may in-
clude different fractions characterized by different
flocculation behavior

– Floc erosion which induces the continuous input of
small flocs in the system

– The continuous input of sediment in the water
column due to both bed erosion and sediment
transport

– The continuous output of sediment due to both
sediment transport and deposition

In this section, we discuss the effect of variable shear
rate on the stability of a bimodal floc size distribution,
using both models introduced in this paper. The effect
of the composition of the sediment has been investi-
gated with PBE 1 in Mietta (2010) and the effect of floc
erosion, in combination with binary breakup, has been

investigated in Verney et al. (2010) with PBE 2. We will
come back to this results on the discussion.

To investigate the effect of variable shear rate, G
is varied sinusoidally between a minimum and a max-
imum value. We impose a period of 12 h, similar to
a tidal cycle. The initial floc size distribution is bi-
modal: One of the modes represents the smallest, non-
flocculated particles (peak around 15 μm) while the
second represents the larger, flocculated particles (peak
around 130 μm). The minimum and maximum shear
rates used are the ones observed in the Deurgankdok
(Western Scheldt, Antwerp, Belgium) by Manning
et al. (2007). The parameters for aggregation and
breakup are the ones assessed for Western Scheldt mud
suspension, see Section 3. The variation in time of the
shear rate used in the simulations is plotted in Fig. 10a.
The corresponding FSD at different time steps is shown
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Fig. 10 Temporal evolution of the shear rate G (a) and mass-based FSD at different time steps computed with PBE 1 (b) and PBE 2
(c). G varies sinusoidally with a period of 12 hours, Gmin = 1 s−1, Gmax = 6 s−1, c = 0.135 g/l, α = 0.14, and E = 0.046 s1/2/m
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for both models in Fig. 10b, c. Five different times have
been considered during a tidal cycle to observe the FSD
corresponding to different shear values. These times
are shown in Fig. 10a.

Both models predict that the peak corresponding to
the smaller mode decreases rapidly during the simu-
lation, disappearing within 6 h. The smaller particles
aggregate to form larger flocs for all G. The maximum
floc size and the distribution of the larger flocs vary
with the shear rate. From these simple simulations,
we may conclude that if all particles have the same
flocculation behavior and a closed system is considered,
a bimodal distribution cannot be stable. The time to
achieve monomodality depends on the parameters for
aggregation and breakup, as well as on the sediment
concentration and shear rate.

As mentioned above, bimodal distributions observed
in situ may depend on other factors. For example,
Mietta (2010) accounts for different compositions of
the sediment considering that small particles are less
likely to aggregate, and they have a smaller collision
efficiency. In this case, simulations with PBE 1 show
that a bimodal distribution can be conserved over few
tidal cycles.

Instead, Verney et al. (2010) tried to explain the
stability of bimodal distributions from a combination
of binary breakup and erosion. If part of breakup oc-
curs as erosion and part as binary breakup, two peaks
are formed in the distribution, the smaller peak is
constantly reshaped by the breaking particles, and the
initial larger peak oscillates between larger and smaller
floc sizes with shear rate.

6 Conclusions

The equilibrium mean size computed with the PBE
introduced in this paper, PBE 1, increases linearly with
the ratio between the rates of aggregation and breakup,
P. This allows for a one-dimensional calibration of the
parameters α and E, where the ratio α/E is derived
analytically from the equilibrium mean floc size. The
collision efficiency α, on the other hand, is estimated
numerically from the temporal evolution of Lmean. We
then show that PBE 1 can be successfully used to repro-
duce the results of mixing jar flocculation experiments.
The parameters calibrated for mixing jar flocculation
experiments with kaolinite and mud suspensions with
different salt type and concentration vary linearly with
the ζ -potential. Both the collision efficiency α and the
ratio α/E decrease when the ζ -potential increases in
absolute value.

The data set used for the calibration has been mea-
sured at high shear rate (G = 35 s−1). It is shown in
Mietta et al. (2009a, b) that these data can be extrapo-
lated to in situ, low shear, conditions using the variation
with G of the Kolmogorov microscale. In Mietta (2010),
it is also shown that the calibrated parameters are
independent of the shear rate G. From this, we con-
clude that this parameters estimated through calibra-
tion of data at high shear rate may also refer to in situ
conditions.

We show in this paper that two PBEs with the same
formulations for aggregation and breakup but different
discretization in size classes behave in a very similar
way. In PBE 1, each class i consists of flocs with i
primary particles, and mass conservation is straightfor-
ward. In the PBE developed by Verney et al. (2010),
PBE 2, size classes are distributed following a geo-
metrical series and mass conservation is statistically
ensured. Flocculation is slightly faster for PBE 2 than
for PBE 1. This may be explained considering that
with the mass conservation statistical algorithm in PBE
2, larger classes are occupied earlier in the aggre-
gation process. The equilibrium mean size computed
with PBE 2 is very close to that computed with PBE
1 if the number of classes considered in PBE 2 is
sufficiently large (nc = 200) and the width of the size
bins is small. When the number of classes considered in
PBE 2 decreases, the equilibrium mean value increases.
If nc = 30 is used for PBE 2, the difference between
the equilibrium Lmean computed with the two models
is 6%.

From the comparison shown in this paper, we con-
clude that both PBE 1 and PBE 2 may be used to model
flocculation. As mass conservation is straightforward
in PBE 1 and no assumption needs to be made to
model aggregation and breakup, this model can be
used as a reference to test different algorithms for
mass conservation used in models such as PBE 2. As
mentioned before, the drawbacks of this model are the
long computational times and the large amount of data
which is generated. PBE 2, on the other hand, is com-
putationally fast and generates a much smaller amount
of data. This model can therefore be successfully used
for sediment transport modeling. When the number of
classes is small, each class can be considered for the
estimation of the settling velocity and the accuracy in
the calculation of the sediment transport for cohesive
sediment is largely increased, although the use of a
small number of classes leads to a small error in the
computation of Lmean. Users should be careful, as an
excessive reduction of the number of classes considered
may reduce the accuracy of the results, as shown in this
paper.
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Simulations done with both models starting from bi-
modal distributions show that such distributions cannot
be stable and that the first mode with smaller flocs
tends to disappear in a few hours of simulation. This
suggests that bimodal distributions, usually observed in
situ, depend on other factors than variable shear rate.
We argue that a reason may be the non-homogeneous
composition of the sediment, with small, inorganic par-
ticles less likely to aggregate than larger organic flocs,
or the effect of erosion which has not been treated in
this paper. The advection of particles in the domain
as well as sediment erosion and settling may also play
an important role in the conservation of the bimodal
distribution by continuously adding small particles in
the first mode.

In this study, we assume that the fractal dimension of
flocs, d0 = 2, is independent of their size. It has been ob-
served by different authors, Maggi (2007) and Khelifa
and Hill (2006), that the fractal dimension of flocs
decreases with increasing floc size. Sonntag and Russel
(1987) argue that the strength of flocs and therefore
the breakup rate varies with their fractal dimension.
Assuming that flocs break always in two equally sized
flocs, they relate the floc yield strength to the number
of bonds passing through the median plane of the floc.
The number of bonds in the median plane of a floc
depends on their fractal dimension. These considera-
tions may affect the flocculation rate as well as the
equilibrium floc size. Further analysis is necessary on
the effect of variable fractal dimension and of fractal
dimension’s dependent breakup rate on flocculation.
Son and Hsu (2009) did a similar study, modeling the
temporal evolution of the mean flocs size and observed
a smaller flocculation rate with variable fractal dimen-
sion and variable floc strength than for constant floc
strength.
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