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[1] Breaking probabilities and breaking wave height distributions (BWHDs) in deep,
intermediate, and shallow water depth are compared, and a generic parameterization is
proposed to represent the observed variability of breaking parameters as a function of the
nondimensional water depth. In intermediate and deep water, where waves of different
scales may have markedly different breaking probabilities, a BWHD as a function of
wave frequency is proposed and validated with intermediate‐depth and deep water
observational data. The current study focuses on waves with frequencies between 0.55 and
3.45 times the peak frequency fp. For the dominant frequency, the integration of the
frequency‐dependent BWHD provides a breaking probability that reproduces the known
threshold‐type behavior of the breaking probability for dominant waves. In shallow water,
the present breaking statistics parameterization is consistent with other independent
formulations validated by shallow water‐breaking observations.

Citation: Filipot, J.‐F., F. Ardhuin, and A. V. Babanin (2010), A unified deep‐to‐shallow water wave‐breaking probability
parameterization, J. Geophys. Res., 115, C04022, doi:10.1029/2009JC005448.

1. Introduction

[2] Breaking of surface gravity waves plays a major role
in many oceanographic and air‐sea interaction processes.
Wave breaking is the main energy sink term for the wave
field [e.g., WISE Group, 2007] and strongly affects the
remote sensing of ocean properties [e.g., Reul and Chapron,
2003]. There is, hence, a need to model wave‐breaking
statistics in order to estimate parameters such as the white-
cap coverage, the surface renewal rate, or the average foam
thickness. The evolution of individual waves toward
breaking is not yet fully understood [e.g., Banner and
Peregrine, 1993], and no general consensus exists either
on a method for predicting the statistics of breaking random
waves, or on the amount of energy lost during breaking. In
numerical wave models, wave‐breaking dissipation in deep
and shallow water is parameterized by two different source
terms.
[3] In deep water, the most widely used dissipation terms

are based on generic forms proposed by Komen et al. [1984]
that have no link to wave‐breaking observations. Such
parameterizations are contradicted by experimental evidence
that the breaking probabilities of dominant deep water and
finite‐depth random waves are controlled by a threshold in
the average steepness of the dominant waves as shown by
Banner et al. [2000] and Babanin et al. [2001] and theo-
retically by Papadimitrakis [2006]. Also, the dissipation at

small scales appears to depend on the spectrum at larger
scales. This “cumulative effect” is discussed by Babanin
and Young [2005], Young and Babanin [2006], Babanin
et al. [2007b] and is likely connected with the variation
with wave age of the transition frequency between the f −4

and f −5 asymptotes, observed by Long and Resio [2007]. It
may be caused by the breaking of long waves and the
modulation of the short waves. A proper model for the
cumulative effect probably requires the parameterization of
the breaking probability of the long waves [e.g.,Ardhuin et al.,
2009]. Besides, all parameterizations of the kind proposed
by Komen et al. [1984] are unrealistically sensitive to the
presence of long‐period swells [e.g., van Vledder and Hurdle,
2002; Ardhuin et al., 2007].
[4] In shallow water, wave‐breaking dissipation is usually

parameterized following Battjes and Janssen [1978] or
Thornton and Guza [1983]. However, wave breaking in
deep, intermediate and shallow water share many common
features, and there is no obvious physical reason to formu-
late completely differently the deep and shallow water
breaking. This usual practice generally fails as wind waves
propagate in shallow water and both parameterizations may
be active at the same time. Indeed, waves start breaking
when the orbital velocity at the crest uc approaches or reaches
the wave phase speed C, i.e., a ≈ 1 with a = uc/C, which
defines the highest possible periodic wave. In the present
study, we rely on that criterion in order to parameterize the
breaking statistics.
[5] As shown, for example, by Wu and Nepf [2002], irreg-

ular waves start breaking when a ≈ 1. Other works have re-
ported smaller values, by up to 20% [Stansell andMacFarlane,
2002]. Because periodic waves of heights lower than the
highest waves have a larger energy [Cokelet, 1977], these
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almost highest waves are unstable [Tanaka, 1985] and may
break before reaching the condition a = 1 (see Banner and
Peregrine [1993] for a review). Besides, the numerical in-
vestigation of steep waves also shows that uc varies dramat-
ically aswaves approach their highest possible form, typically
increasing by 30% when the wave height only increases by
5%, as illustrated by Figure 1. As a result, a very accurate
estimation of the orbital velocity is not necessary to get a
decent approximation for the height of the incipient breaking
waves.
[6] For one‐dimensional, periodic, irrotational waves over

a flat bottom,Miche [1944a] shows that the breaking criterion
a = 1 can be conveniently converted into the condition

kHmax

�max tanhðkDÞ ¼ 1; ð1Þ

where D is the water depth, k the wave number, Hmax the
maximal wave height and bmax = 0.88, a value also consistent
with the results of Longuet‐Higgins [1975]. This condition
has inspired numerous shallow water studies where it ap-
pears under the form Hmax = ~�D, with ~� a nondimensional
parameter.
[7] As we attempt to reconcile deep and shallow water

approaches for random waves, it is important to emphasize
that investigations of deep water waves have long tried to
reveal a deterministic breaking threshold for random waves,
but only a threshold for the spectral density has been estab-
lished [Banner et al., 2000], this is thus a probabilistic
threshold. Any individual wave is given a breaking proba-

bility that smoothly varies from zero to one as a function of its
steepness.
[8] Such a probabilistic approach has also been used in

shallow water by Thornton and Guza [1983] who expressed
the breaking wave height distribution (BWHD) in terms of
H/~�D with ~� = Hrms/D. From their data, Thornton and Guza
[1983] reported that ~� = 0.42. Although a similar parameter
~� is used, this probabilistic approach to breaking is funda-
mentally different from the earlier work by Battjes and
Janssen [1978] who used a deterministic threshold for
breaking: in that model, any wave of height smaller than ~�D
does not break, and all other waves are limited to a height of
~�D and are breaking. The observed BWHD contains
breaking waves at different stages of the breaking process,
as a result, it is natural to expect a broad distribution of
the BWHD.
[9] Investigations by Battjes and Stive [1985] and Ruessink

et al. [2003], without breaking probability observations but
based on the wave energy balance of Battjes and Janssen
[1978], suggest that ~� should be a function of the non-
dimensional water depth kD where k is a representative
wave number. This approach has been extended to deep
water by Chawla and Kirby [2002] who used the non-
linearity parameter initially introduced by [Miche, 1944a]

� ¼ kH= tanhðkDÞ: ð2Þ

It is interesting to note that, for linear monochromatic waves,
b = 2uc/C.
[10] Such a generalization of shallow water parameteriza-

tions, however, does not give any information on the possible

Figure 1. Wave profiles computed with Dalrymple’s [1974] method to the 60th order. The arrows
represent orbital velocities. (a and b) Waves with a period T = 1.5 s (kD ’ 5), corresponding thus to deep
water waves. (c and d) Shallow water waves (T = 8 s, kD ’ 0.45). The waves in Figures 1a and 1c are
moderately nonlinear (uc/C ’ 0.3), whereas those in Figures 1b and 1d are nearly breaking (uc/C ’ 0.97).
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variation of the breaking probabilities as a function of fre-
quency, which may be needed to clearly separate swells
from wind seas, a problem that has not been considered in
shallow water, where it may be irrelevant. Recently, using a
joint distribution of wave frequencies and amplitudes and a
deterministic breaking threshold, Papadimitrakis [2006]
derived an analytical expression for the breaking proba-
bility in deep water as a function of frequency. Independent
analyses by Banner et al. [2000] have related observed
breaking probabilities for dominant waves, using the surface
elevation filtered around the peak frequency fp, to a steep-
ness parameter derived from a part of the spectrum. This
approach was repeated by Banner et al. [2002] for higher
frequencies. These breaking probabilities show a variation
as a function of the relative frequency f/fp, but later they
have been interpreted as an evidence for a cumulative effect.
Namely, the breaking probability of waves may be aug-
mented by the presence of longer waves [Babanin et al.,
2007b].
[11] Our intention is, thus, to reconcile all these observa-

tions and provide a practical parameterization of breaking
probabilities in terms of the wave spectrum. This work is
the first building block of a universal spectral dissipation
parameterization that is intended for the numerical wave
models, in which, so far, wave‐breaking dissipation in deep
and shallow water has been parameterized by two different
source terms. In section 2 we review the analysis of Miche
[1944b] for regular, irrotational waves over a flat bottom
in order to provide a theoretical basis for the interpretation
of wave‐breaking observations in various water depths and
define a semiempirical BWHD. This parameterization is
applied in section 3 to random waves in shallow, interme-
diate and deep water. Conclusions follow in section 4.

2. Periodic and Irrotational Waves in One
Dimension With a Flat Bottom

[12] Extending the work of Stokes, Miche [1944b] ana-
lyzed waves of finite amplitude in nondimensional depths
0.56 < kD < 2.2, where D is the mean water depth and k is
the wavenumber, providing an analytical approximate solu-
tion for the stream function and velocity potential of periodic
symmetric incipient breaking waves of permanent form.
These waves exhibit a 120 sharp angle at their crest, due to
the equality of the wave orbital velocity at the crest uc with
the phase speed C. Thanks to Froude scaling of the gravity
waves, the shape and kinematics of such incipient breaking
waves is only a function of kD. One may thus parameterize
this family of waves and the general set of two‐dimensional
periodic waves can be further defined by the two parameters
kD and 0 < uc/C < 1. Here we use numerical solutions for
nearly breaking waves, obtained with the stream function
wave theory of Dean [1965] and Dalrymple [1974] applied
to 80th order. The wave profile and kinematics were com-
puted using dimensional values, with a water depth D = 3 m,
and the acceleration of gravity g = 9.81m s−2. The wave
period T was varied from 1.8 to 35 s, and for each wave
period the wave height is progressively increased until a =
uc/C is at least 0.97. The numerical accuracy is constrained
by an error function such that the root‐mean‐square (RMS)
deviation of the surface pressure from zero is less than 1 mm
for T < 20 s and less than 1 cm for larger values of T.

Therefore this analysis improves the accuracy and extends
the range investigated by Miche to 0.06 < kD < 4.5. These
results can be converted to any water depth D′ by rescaling
the time scales and velocities to T ′ = rT and U ′ = rU with
r = (D′/D)1/2. Theoretical solutions for irrotational and
periodic waves over a flat bottom thus provide a variable
maximum wave height as a function of the nondimensional
depth kD which should correspond to the actual possible
maximum height of periodic waves (Figure 2 (top)). It is
expected that this theory can also provide some guidance
for random waves, in particular in shallow water, where
breakers take the form of quasi‐solitary waves. There are
certainly some differences between the idealized waves
studied above and the real waves observed in the field,
however we argue that there are also significant similarities
that may justify the extension of this theory to irregular,
rotational waves. Waves break when the crest orbital velocity
uc approaches or reaches the phase velocity C which leads to
the crest overturning. We therefore believe that the crucial
point in determining the breaking onset is the flow in the
vicinity of the crest [Longuet‐Higgins, 1973]. As stated
above, Miche demonstrated that for regular, irrotational
waves, the breaking criterion uc/C = 1 was equivalent to
b/bmax = 1. By assessing b/bmax for our irregular waves
we expect to obtain relevant information on the actual ratio
uc/C, a breaking parameter applicable for natural wind‐
generated waves in any water depth. Furthermore, Dalrymple
[1974] successfully applied the approach detailed above
to an irregular, asymmetric wave propagating over a linear
shear current.
[13] Observations by Thornton and Guza [1983] have

shown that broken waves in the surf zone may have a wide
distribution of heights, related to ~�. This parameter ~� also
plays a dominant role in the wave energy dissipation
parameterization by Battjes and Janssen [1978], in which the
BWHD is defined as a delta function for the value H = ~�D.
Based on the empirical adjustment of this model to the
observed energy of surf zone waves, Ruessink et al. [2003]
proposed that ~� should vary with the peak normalized
water depth kpD, in the form

~� ¼ 0:76kpDþ 0:29 ð3Þ

valid in the range 0.25 < kpD < 0.7.
[14] In Ruessink et al.’s [2003] and many other studies,

the wave height measured is not a true wave height but
rather it is Hrms,lin, a RMS wave height, estimated from
the RMS bottom pressure time series using linear theory.
Although the transformation from pressure to elevation
poses no problem, the skewed shape of the wave profile
generally gives different values for Hrms and

ffiffiffiffiffiffiffiffi
8m0

p
, with m0

the surface elevation variance. If one processes monochro-
matic waves in the same manner, the actual wave height is
strongly underestimated in shallow water due to the very
sharp crest, which, for a wave of equal potential energy, can
be twice as large as the height of an hypothetical linear wave
given by the Airy theory. When one transforms the maxi-
mum wave height given by stream function theory to an
equivalent linear wave height Hlin of equal potential energy,
the maximum height scale appears close to the form given
by Ruessink et al. [2003], for kD < 0.3 (Figure 2 (bottom)).
For this situation it is possible to provide a polynomial fit to
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the maximal value of b as a function of X = tanh(kD) (see
Figure 2 (bottom))

�max;lin ¼ 1:0314X 3 � 1:9958X 2 þ 1:5522X þ 0:1885: ð4Þ

However, for 0.3 ≤ kD ≤ 0.6 the estimation of gRWS = ~� by
Ruessink et al. [2003], corresponds to a bRWS that is larger
than that given by equation (4) (Figure 2). Because their
analysis is based on a wave energy model that combines a
breaking probability with a dissipation rate, either deep
water waves may grow to larger heights than predicted by
stream function theory, which appears unlikely, or bRWS

should be closer to bmax,lin, in which case the breaking
dissipation rate is overestimated. Namely, a high bias in the
model dissipation rate would cancel a low bias in the
modeled breaking probability. Such a decreasing dissipation
rate with increasing water depth, has been proposed by
Chawla and Kirby [2002].

3. Breaking Probabilities of Dominant Waves
in Various Environments

3.1. Data Set

[15] The data were collected during the AUSWEX (1997–
2000) experiment in Lake George, Australia [e.g., Babanin

et al., 2001]. The wind and wave conditions observed dur-
ing the experiment are reported in Table 1. The water was
approximately 1 meter deep, as kpD ’ 0.8 the dominant
waves were in finite depth. Besides, the waves were strongly
forced. Two methods were employed to detect and quantify
the breaking. Babanin et al. [2001] used spectrograms of
recorded sound to identify the breaking occurrence,
Manasseh et al. [2006] developed a method to detect bubble
formation events along with the size of the bubbles formed.
For each breaking event a brief pulse of sound was recorded
and assumed to be that of a single freshly formed bubble.
The bubbles radius was further inferred from the sound
frequency, following Rayleigh‐Plesset equation. Addition-
ally, the breaking detection was visually verified.

3.2. Wave Scales Definition

[16] In section 3.4, we propose a parameterization of the
BWHD in terms of the wave scales that we define here.
Banner et al. [2000] and Babanin et al. [2001] assumed that
the components contributing to the dominant waves (i.e., the
waves whose frequency is approximately fp) were contained
between (1 − dBBY)fp and (1 + dBBY)fp, with dBBY = 0.3.
Manasseh et al. [2006] reanalyzed the data set and found
that the dominant breaking statistics observed by Babanin
et al. [2001] were determined by the waves with d′ = 0.35.

Figure 2. (top) The steepness of nearly breaking waves Y = Hmax/L. The original breaking criterion of
Miche [1944b] is recalled. A new criterion, using a second‐order polynomial fit for H/L as a function of
X = tanh(kD) is given. (bottom) The alternative nonlinearity parameter bmax,lin. In the case of Ruessink
et al. [2003], the g parameter is interpreted as Hmax/D and transformed to bmax,lin, using the peak wave
number kp to estimate k.
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It is also interesting to remark that, for deep water waves,
adopting such a frequency interval signifies that the
dominant waves are formed from spectral components with
wave numbers ranging from 0.5kp to 1.7kp. The difficulty
is to choose d narrow enough in order to discriminate the
energy of waves with different frequencies but also large
enough so that the filtered surface has a steepness close to that
of the original surface. Banner et al. [2000] also defined a
representative wave height for the dominant waves

Hp ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ ð1þ�BBY Þfp

ð1��BBY Þfp
Eð f Þdf

s
: ð5Þ

With E( f ) the energy spectrum of the waves. Here, we pro-
pose to extend this approach below and above the peak fre-
quency to obtain a representative height, wave number and
thus steepness of waves of different scales related to fc

Hrð fcÞ ¼ 4ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
Ufcð f ÞEð f Þdf

s
: ð6Þ

The representative wave number corresponding to a given
wave scale is defined as

krð fcÞ ¼

Z 1

0
Ufcð f Þkð f ÞEð f ÞdfZ 1

0
Ufcð f ÞEð f Þdf

: ð7Þ

Where Ufc( f ) is a 2d wide Hann window, centered at fc (see
Figure 3),

Ufcð f Þ ¼ 0:5� 0:5 cos
�

�

f

fc
� 1� �

� �� �
: ð8Þ

Compared to a rectangular window (as used in equation (5))
the Hann window does not modify much the result but is
preferred because it reduces spectral leakagewhen going back
to the time domain, as we do here. Because energy is lost,
when filtering the spectrum with a Hann window instead of a
rectangular window of the same width, we chose to broaden
the Hann window by increasing the bandwidth d up to 0.6
(Figure 3). For a JONSWAP spectrum and for the peak waves
( fc = fp), this bandwidth gives the same energy as the 2dBBY
wide rectangular window. Because these windows are defined
with a nondimensional width d, the steepness kr( f )Hr( f ) is
truly nondimensional and, thus, an appropriate measure of the
wave geometry. Following Phillips [1958] and Glazman
[1986], we assume that this geometry is closely related to
breaking statistics. Obviously, wave directionality may also
be important for breaking statistics. At present it is not clear
whether the breaking probabilities, for a given wave scale, are
isotropic or not [e.g., Mironov and Dulov, 2008]. The data
used here do not, unfortunately, have directional information,
and we shall leave the question of directionality for further
studies.

Table 1. Peak Frequency, Significant Wave Height, 10 Meter
High Wind Speed, and Nondimensional Water Depth for Lake
George Measurementsa

Record fp (Hz) Hs (m) U10 (m/s) kpD

311823 0.36 0.45 19.8 0.82
311845 0.33 0.40 15.0 0.75
311908 0.35 0.37 12.9 0.72
311930 0.38 0.45 12.8 0.86
312021 0.40 0.39 13.7 0.92
312048 0.37 0.37 13.6 0.87

aHere fp is the peak frequency, Hs is the significant wave height, U10 is
the 10 meter high wind speed, and kpD is the nondimensional water depth.

Figure 3. The Hann window given by equation (8), with d = 0.6 (solid blue line), and rectangular
window used by Banner et al. [2000] (dashed black line).
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3.3. Data Analysis Method

[17] To associate a breaking event to a given wave scale,
the classical method is the zero‐crossing analysis, where the
wave period is determined by the duration between two zero
upcrossing of the elevation. In the current study, we develop
a breaking probability suitable for the parameterization of
the dissipation term in spectral models. In this context,
waves are represented by a superposition of spectral com-
ponents with several wave trains present at the same point
and time, contrary to the zero‐crossing decomposition. In
the following, we shall first apply a spectral filter in order to
discriminate different wave scales, and then apply the zero‐
crossing analysis.
3.3.1. Wave Scales Selection
[18] The spectrum is filtered with a Hann window

(equation (8)) in order to select the spectral components
contributing to the wave scales of interest. The waves of a
given scale are first reconstructed in the time domain using
the filtered spectrum. This approach is similar to a wavelet
decomposition. The scales selected in this study are 0.55 ×
fp, fp, 1.86 × fp and 3.45 × fp. With the Hann window (8), d =
0.6 gives only marginal overlap between the successive
bandwidths. Moreover, since the waves contained in the
bandwidth 3.45 fp ± d × 3.45 fp are approximately 1meter long,
and as shorter waves may not generate bubbles [Longuet‐
Higgins, 1986], we concluded that our method is not appro-
priate for higher frequencies, using acoustically determined
breaking events.
3.3.2. Suppression of Nonlinear Contributions
[19] Because waves are not linear, this decomposition

is artificial and each spectral bandwidth contains energy
associated not only with linear waves but also with nonlinear
harmonics belonging to other scales. As a consequence, the
energy of the assumed linear waves may be overestimated. To
remove the nonlinear contributions from the filtered signals,

the amplitude of harmonics is estimated using the second‐
order theory by Sharma and Dean [1979].
[20] This processing is performed in several steps. First,

for each scale, the high‐ and low‐frequency harmonics are
calculated and subtracted to the other scales. For example,
we expect that the dominant scale may be contaminated by
low‐ (respectively high) frequency harmonics of shorter
(respectively longer) scales. The nonlinear contributions due
to the other scales are filtered by the Hann window used for
selecting the dominant scale before being subtracted to that
scale. However, as the initial filtered waves contain non-
linear contributions, it is likely that the harmonics calculated
are not exact. We endeavor to bypass this difficulty by
repeating the process several times. The convergence of the
results is displayed on Figure 4 for several iterations and
shows a decrease of the RMS deviation between two suc-
cessive iterations i and i − 1 for the different wave scales fc

�fc
i ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

sifcðtnÞ � si�1
fc

ðtnÞ
� �2vuut : ð9Þ

N is the length of the time series and sfc
i is the filtered signal

corresponding to the scale fc at iteration i. Figure 4 suggests
that the contribution of the second‐order harmonics to the
filtered signals is weak, and we further assume that higher‐
order nonlinearities can be neglected. An example of the
filtering process is shown on Figure 5 where the initial and
filtered waves are displayed as well as the sum of the filtered
waves.
3.3.3. Breaking Events Assignment
[21] We now have a decomposition of the initial elevation

time series over several wave scales. We further need to
assign the breaking events to the right wave scale. For this,

Figure 4. Root mean square deviation Di
fc (equation (9)) shown for nine iterations and the four wave

scales, processed from record 312048 (Lake George observations).
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each breaking event is assigned to a wave within each
filtered signal. As our filtering analysis linearizes the waves,
the harmonics that contributed to the sharp crests disappear
which reduces the waves heights. Hence, b/bmax,lin is
assumed to provide guidance for detecting which of our
filtered waves was more likely to be breaking. Therefore,
b/bmax,lin estimated from equations (2) and (4) is calculated
for each wave, with k and H obtained from the zero up-
crossing analysis of the filtered signal and the dispersion
relationship. Finally, as shown in Figure 6, the breaking
event is attributed to the wave with the largest b/bmax,lin.
[22] Because our method implies that only one wave is

breaking at a given time, several ambiguous cases are likely
to occur. First, the ratio b/bmax,lin is estimated for waves that
are already breaking, which implies that their heights may
be already lower than just before breaking and that the
breaking could be assigned to a steeper nonbreaking wave.
Moreover, the breaking of large waves lasts a fraction of the
wave period, therefore steep enough shorter waves riding in
the vicinity of the large wave crest could, by mistake, be
regarded as breaking waves. On the contrary, a short riding
wave breaking on a longer wave could be missed if the
longer wave parameter b/bmax,lin is large enough. To reduce
the number of such ambiguous situations, we impose that
the breaking events located in the troughs of the peak waves
cannot be assigned to those waves. Besides, two crossing
wave trains may produce one single breaker and our ap-
proach is not able to deal with this situation, nor were the
preexisting methods cited above.

3.4. Parameterization of the Breaking Wave Height
Distribution

[23] The aim of the present paper is to provide a param-
eterization of the BWHD for different wave scales that will
be used to build a dissipation source term for numerical
wave forecasting models. The dissipation for the wave scale
L is assumed to be the product of a BWHD times a dissi-
pation rate, integrated over the distribution of wave heights
[Chawla and Kirby, 2002]. This energy loss could then be
distributed over the spectral wave components that form the
waves of scale L. As the dissipation rate is expected to be a
nonlinear function of wave height, possibly proportional to
H3 [Chawla and Kirby, 2002], it is necessary to have the
BWHD, not just the breaking probability. Thornton and
Guza [1983] investigated the BWHD in shallow water and
introduced a parameterization PB(H) based on the Rayleigh
distribution PR(H)

PBðHÞ ¼ PRðHÞ �W ðHÞ: ð10Þ

Where PR(H) is

PRðHÞ ¼ 2H

H2
rms

exp � H

Hrms

� �2
 !

: ð11Þ

Where Hrms is the root mean square wave height of the wave
field. The weight function W transforms the height distri-
bution of all the waves, PR, into the height distribution of the
breaking waves, PB. According to Thornton and Guza

Figure 5. The 20 seconds of record 311930 filtered around the central frequencies (b) fc = 0.55fp, (c) fp,
(d) 1.86fp, and (e) 3.45fp using a Hann window (black solid line), and the same signals corrected from
nonlinearities (red dashed line), as described in section 3.3.2. (a) The original signal (solid black line)
and the sum (dotted green line) of the filtered waves, corrected from nonlinearities s0.55(t), s1(t), s1.86(t),
and s3.45(t). The height scale is in m.
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[1983], PB should satisfy three conditions: it should fit the
observations, it should be a subset of the distribution of all
the waves, and Q =

R
0
1PB(H)dH should provide the breaking

probability for the wave field. Thornton and Guza [1983]
suggested

WTGðHÞ ¼ �rms
~�

� �2
1� exp � �

~�

� �2
" #( )

: ð12Þ

Where

�rms ¼ Hrms

D
: ð13Þ

We propose to modify this formulation by introducing our
wave scales and extending it to deep water

WFABðH ; fcÞ ¼ a
�r

~�

� �2
1� exp � �

~�

� �p� �	 

: ð14Þ

Here a and p are tunable parameters, ~� is a linear function of
bmax,lin defined further, and

�r ¼ krðfcÞHrðfcÞ
tanhðkrðfcÞDÞ

: ð15Þ

Moreover, the Rayleigh distribution for each wave scales is
given by

PRðH ; fcÞ ¼ 2H

H2
r ðfcÞ

exp � H

HrðfcÞ
� �2

 !
: ð16Þ

The form ofW in equation (14) was initially used by Chawla
and Kirby [2002] who investigated wave breaking over
currents. They defined W with Hr(fc) = Hrms, ~� = 0.6, a =
1 and p = 2. Their choice for W was motivated by the fact
that it involves a Miche‐type transition from deep to
shallow water. Additionally, it tends to the breaking weight
of Thornton and Guza [1983], that is known to agree with
shallow water observations. However, as stressed by all
authors, such a functional form for W is empirical, it is
thus likely that other functions of b/bmax,lin could also be
appropriate for parameterizing W. Additionally, it is argu-
able that wave breaking may be affect by other physical
processes such as the vertical shear of the surface current
[Papadimitrakis, 2006]. Here we shall neglect such effects.
For open ocean conditions, Banner et al. [2000] showed
that involving the drift current into their parameterization
did not significantly reduce the scatter of the observed
breaking probabilities. This may be due to the fact that
current shears are very weak in the open ocean [Santala
and Terray, 1992; Ardhuin et al., 2009].
[24] Here, we assume that ~� is linearly related to the

maximal value of b (corresponding to the breaking onset)
found in section 2. Because filtering linearizes the waves,
this yields

~� ¼ b� �max;lin: ð17Þ

Now we determine b, hence ~�, which constrains the shape
of WFAB. The parameter ~� gives the inflexion point of WFAB.
Because Thornton and Guza [1983] did not filter the dif-
ferent wave scales, their analysis corresponds to the use of

Figure 6. (top) The 12 second wave elevation for record 311908 in m (solid blue line, left axis) and
bubbles radius Fb in mm (black spikes, right axis). (b–e) Filtered waves (solid blue line) and nonlinearity
parameter Rb = b/bmax,lin (red bars (upward), see right axis). The yellow bars (downward) indicate that the
wave is breaking, the value was set arbitrarily at −0.4 for the sake of readability.
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bmax = 0.88, the value given by Miche, instead of bmax,lin.
From their observations, they found b = 0.48. We now
determine empirically ~�, using the observations collected in
Lake George. The behavior of Wobs = PB,obs/PR,obs versus b,
where PB,obs and PR,obs are the observed BWHD and wave
height distribution is shown in Figure 7 for the peak waves.
For this wave scale, the mean of bmax,lin over the different
records is 0.64. Figure 7 suggests ~� ’ 0.25–0.3 for the peak
waves, b = 0.48 is, thus, also consistent with Lake George
observations.
[25] Once b is set, WFAB, hence, PFAB and QFAB are

constrained by the free parameters a and p. As a is only a
multiplicative constant, the shape of WFAB is prescribed by
p. Several values for p (p = 2, 3, 4, 5) were tested and for
each p, a was chosen to best fit the Lake George observa-
tions, then, the corresponding parameterizations PFAB and
QFAB were investigated in deep and shallow water situa-
tions. However, only p = 4, a = 1.5 leads to satisfactory
agreement with all the different data sets, especially with
deep water observations. Besides, as a = 1 and p = 2 is the
pair used by Thornton and Guza [1983] and Chawla and
Kirby [2002], it is also interesting to examine its ability in
diverse water depths. For the sake of clarity, only the results
provided by a = 1, p = 2 and a = 1.5, p = 4 are shown in
the paper. In the following, we explore the behavior of the
BWHD, PFAB(H, fc) = WFAB(H, fc)PR(H, fc), and of the
breaking probability QFAB( fc) =

R
0
1PFAB(H, fc)dH versus

breaking observations gathered in various water depths.

3.5. Investigations in Intermediate Water Conditions

[26] The parameterizations, PFAB and QFAB are tested
versus the breaking statistics of the different wave scales for
the six records collected in Lake George. Figures 8 and 9
compare the observed and modeled breaking probability
for the different wave scales and show a reasonable agree-

ment with the data for the breaking probabilities. Deep water
dominant breaking waves statistics are displayed on the
same plot for the sake of completeness. These data were
used by Banner et al. [2000] and gathered in the Black Sea
and in the Southern Ocean. The description of these ex-
periments are detailed by Babanin et al. [1993] (Black Sea
observations) and Banner et al. [1999] (Southern Ocean
data). Yet, as the dominant mean wave number k( fp) were
not available, we made the assumption that k( fp) = 1.14fp,
which is the value given by a JONSWAP spectrum
[Hasselmann et al., 1973], with an overshoot coefficient
gJ = 1.7. Overall, the agreement with the data is satis-
factory, especially for the dominant scale. The short wave
scales (1.86 fp and 3.45 fp) exhibit, however, a larger scatter.
Especially, the shorter wave scale breaking probability is, in
average, overestimated by our formulation. To explain this
feature, one can advance that the scale 3.45 fp likely contains
waves shorter than 1 meter long that are not supposed to
produce bubbles while breaking. Our detection method is,
thus, liable to miss some short wave‐breaking events, which
could result in an underestimation of the observed breaking
probability, as shown on Figures 8 and 9. Additionally,
Figures 10 and 11 display the modeled and observed
BWHD for one of the Lake George record. For that par-
ticular record, Figure 10 supports that the formulation PFAB

with a = 1.5 and p = 4 provides the best fit to the data for the
dominant scale. From Figure 11, one can conclude that the
BWHD for the scale 0.55fp is overestimated while using
a = 1 and p = 2. Conversely, Figure 11 suggests that PFAB

with a = 1.5 and p = 4 generally underestimates the BWHD
for the low heights. As said before, wave breaking may be
influenced by a great number of other physical processes,
that are not taken into account here. For instance, as Lake
George waves are in finite water, there may exist a vertical
shear current that may influence the breaking onset [Banner

Figure 7. Breaking weights in terms of b0 = kr(fp)H/tanh(kr(fp)D) for the six Lake George records.
Black circles are observed breaking weight, Wobs, solid red line is modeled breaking weight WFAB with
a = 1, p = 2, and dotted magenta line is WFAB with a = 1.5, p = 4.
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and Phillips, 1974; Papadimitrakis, 2006], however, since
no information on the current structure was available, we shall
leave these issues for future studies. This section supports,
nevertheless, that our formulations are capable of describing
intermediate water breaking statistics, we, then, pursue our
analysis by investigating their ability in deep water.

3.6. Validation in Deep Water Conditions

[27] Here, we propose to examine the ability of our for-
mulation in deep water by comparing it to the parameteri-

zation derived by Banner et al. [2000] and to the data used in
their paper. It is important to note that Banner et al. [2000]
focused on the dominant waves, as a consequence we will
not analyze the other scales. Banner et al. [2000] combined
deep water data collected in various environments (Lake
Washington, Black Sea and Southern Ocean) and reported
that the breaking probability of the dominant waves exhibits
a threshold behavior in terms of the spectral steepness � =
kpHp/2. Namely, no dominant wave breaking was observed
for � less than 0.055. They proposed an empirical breaking

Figure 8. Modeled breaking probabilities QFAB( fc), with a = 1 and p = 2, compared to observed prob-
abilities of several wave scales Qobs( fc) =

R
0
1PB,obs(H, fc)dH. The first four symbols (see legend) display

the results for the four wave scales and the six Lake George records. The two last symbols represent the
Black Sea and Southern Ocean data sets (dominant waves only) used by Banner et al. [2000].

Figure 9. Same as Figure 8 except for a = 1.5 and p = 4.
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probability parameterization related to this behavior, which
reasonably fit the three different data sets of observed
breaking probabilities,

QBBY ðfpÞ ’ 22ð�� 0:055Þ2: ð18Þ

Where QBBY(fp) is the breaking probability of the dominant
waves. This approach can be generalized by introducing
br/bmax,lin instead of �. In deep water, since bmax,lin is
constant, a breaking threshold on � can readily be converted

Figure 10. Observed wave height distribution (light blue bars, record 311823, Lake George data set);
Rayleigh distribution (dashed blue line); observed BWHD (dark blue bars); modeled BWHD PFAB(H,
fp), with a = 1 and p = 2 (solid red line); and PFAB(H, fp), with a = 1.5 and p = 4 (dotted magenta line).
Each plot corresponds to a wave scale.

Figure 11. Same as Figure 10 but with vertical logarithmic scale.
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into a breaking threshold on br/bmax,lin, where br is given by
equation (15) with fc = fp. Namely,

Q1ðfpÞ ¼ 5ð�r=�max;lin � 0:12Þ2: ð19Þ

[28] Besides, because we need to define the BWHD, the
most simple weighting function would be

W1ðH ; fpÞ ¼ Q1ðfpÞ: ð20Þ

Since
R
0
1PR(H)dH = 1, this approach is still consistent with

the work of Banner et al. [2000], but as shown by Lake
George observations (see Figure 7), a constant W is not a
good approximation.
[29] We now examine how the breaking probability QFAB

behaves in the conditions surveyed by Banner et al. [2000].
For this purpose, a JONSWAP spectrum, EJ( f ), was used,
with fp = 0.125Hz. The spectrum EJ( f ) was multiplied by
an amplification factor, thus, providing a range of values
for � = kpHp/2 corresponding to the observations of Banner
et al. [2000]. However, the JONSWAP spectra approxi-
mation is an assumption that is important to keep in mind
while analyzing further the results. Besides, as Banner et al.
[2000] used a zero‐crossing analysis to detect the waves, it is
necessary to quantify the difference between the breaking
probabilities measured in their study and those estimated in
the present paper. We therefore explored the ratio rN =
Nfilt/Nzc, where Nzc and Nfilt are the number of dominant
waves counted with the zero‐crossing method and with the
filtering analysis, respectively, presented in this paper. For
the six records analyzed, the mean of rN is

rN ¼ 1:8 ð21Þ

and its standard deviation srN = 0.05. From this, we can
estimate the difference in the breaking probabilities pre-
sented by Banner et al. [2000] with a zero‐crossing anal-
ysis, and our filtering approach in which several waves can
be superimposed at the same time. We thus correct our
previous parameterizations, and a becomes a* = rN × a.
For this particular case, the results are presented with a* =
1.8, p = 2 and a* = 2.7, p = 4. Figure 12 shows the
comparison of our parameterization along with Banner et al.
[2000] formulation and observations. The observations in-
clude the Black Sea and Southern Ocean data sets cited
above, additionally, data from Lake Washington, described
by Katsaros and Ataktürk [1992], are presented. Here, con-
trary to the intermediate water study the results vary signifi-
cantly with p, and the combination (a* = 2.7, p = 4) clearly
provides the best fit to the data. The difference is particularly
noticeable for low values of � − 0.055 where QFAB with
a* = 1.8, p = 2 largely overestimates the breaking proba-
bility. On the other hand, QFAB with a* = 2.7, p = 4, is, on
the whole, in acceptable agreement with observations. For
� − 0.055 in the range [0.01–0.1], QFAB with a* = 2.7, p =
4 is close to QBBY. Conversely, for � − 0.055 > 0.1 the gap
between QFAB and QBBY increases significantly but no
observations are available for deciding between QBBY and
QFAB. For low dominant steepness (� − 0.055 < 0.01), a
significant difference appears between QBBY and QFAB, and
with (a* = 2.7, p = 4), QFAB is in closer agreement with
the data. Thus, our parameterization of the BWHD, with a* =
2.7 and p = 4, produces dominant breaking probabilities that
are also acceptable in deep water. We shall finally investigate
the behavior of our parameterization in shallow water.

3.7. Validation in Shallow Water Conditions

[30] TheW parameterization proposed in the present paper
is mainly based on the formulation presented by Thornton

Figure 12. Comparison of the modeled breaking probabilities. Black solid line is QBBY(fp); red circles
are QFAB(fp) with a = 1 (a* = 1.8), p = 2; and magenta triangles are a = 1.5 (a* = 2.7), p = 4. Additionally,
observations reported by Banner et al. [2000] are displayed by black points for Black Sea data, black
pluses for Lake Washington data, and black diamonds for Southern Ocean data.
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and Guza [1983]. The major difference resides in the scale
decomposition that was employed here for intermediate and
deep water waves but which may be not relevant in shallow
water. We will thus verify the influence of this modification.
[31] Thornton and Guza [1983] reported that they re-

corded low‐frequency swell with negligible wind. Conse-
quently, the frequency spectrum was probably narrow and
following our formulation, the only existing wave scale
might be the “dominant” one. Additionally, in these con-
ditions, the wave heights detected by our analysis should not
be underestimated, bmax,lin must then be replaced by bmax =
0.88. This assumption implies that b × bmax = 0.42 which is
the value employed by Thornton and Guza [1983].
[32] In sections 3.5 and 3.6, we investigated the behavior

of our breaking statistics parameterizations for a = 1, p = 2
and a = 1.5, p = 4. Although no significant difference was
noted in intermediate water, the parameterization using a =
1.5, p = 4 was clearly more appropriate in deep water. The
last step consists in examining the behavior of QFAB with
a = 1.5, p = 4, in shallow water. For this, we used a
narrow Gaussian spectrum, chosen such that the peak fre-
quency bandwidth contains all the energy. The water depth
and peak frequency were chosen in the range observed by
Thornton and Guza [1983], typically, d = 3.5 m and fp =
0.075 Hz. Along with the different parameterizations,
Figure 13 displays observations gathered on Torrey Pines
Beach, California (for more details, see Thornton and Guza
[1982] or Huntley et al. [1981]). Figure 13 unsurprisingly
suggests that QFAB with a = 1, p = 2 tends to Thornton and
Guza [1983] breaking probability. It also appears that QFAB

with a = 1.5, p = 4 is acceptable in shallow water. The three
parameterizations are in close agreement with the data. The
main difference between QFAB with (a = 1.5, p = 4) and the
other formulations is its behavior for gD/Hrms close to unity,
where it gives slightly higher values. These values are,
however, consistent with the observations reported on

Figure 13. In conclusion, under the assumptions given above,
our approach is consistent with Thornton and Guza [1983]
and with the available shallow water‐breaking observations.

4. Discussion

[33] The aim of this study was to develop a parameteri-
zation able to predict the breaking statistics in all water
depth conditions. Our analysis was guided by numerical
results for irrotational monochromatic nearly breaking waves
over a flat bottom. Additionally, an alternative method
designed for measuring the breaking probabilities of waves
of different scales has been introduced and discussed. The
different wave scales are selected by means of a Fourier
filtering. Besides, the spurious nonlinear contributions inherent
to the Fourier analysis have been estimated and removed from
the filtered signals using the second‐order theory of Sharma
and Dean [1979].
[34] Except for the nonlinear correction, our filtering

method is similar to a wavelet analysis. We could have used
other methods, such that the Riding Wave Removal method
[Schulz, 2009] or the Empirical Mode Decomposition
[Huang et al., 1998]. However, this work has been used to
build a dissipation term in a spectral wave model, that will
be exposed elsewhere, and thus, the spectral analysis pre-
sented in the paper was found more appropriate.
[35] Clearly, the fact that a common parameterization of

breaking wave height distributions (BWHD) may be used
from shallow to deep water is an indication that all forms of
wave breaking share some similarity, and that the breaking
statistics may well be parameterized from a normalized fil-
tered wave spectrum. This may be related to a dominance of
the linear modulation of waves in the generation of unstable
waves that evolve toward breaking. This relationship between
spectra and breaking statistics is still not understood in detail.
Ongoing work on the evolution of individual waves or wave

Figure 13. QFAB with a = 1 and p = 2 (solid red line) and with a = 1.5 and p = 4 (dotted magenta line)
compared to QTG (dashed black line) and to observations presented by Thornton and Guza [1983] (black
crosses).
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groups [e.g., Banner and Tian, 1998; Babanin et al., 2007a],
will likely shed some light on this question and eventually
lead to more accurate parameterizations.
[36] The present work is still very empirical in nature, and

many choices are relatively arbitrary. First, the dependence
of the breaking weight W in terms of the nonlinearity
parameter b, was chosen following the work done by
Thornton and Guza [1983] and Chawla and Kirby [2002],
who reported that this form was purely empirical. Other
functions could then also be appropriate. Second, the wave
scales selection relies on the width of the filtering window,
which was empirically set. The window width could also
depend, for instance, on the frequency and/or on the non-
dimensional depth. In deep water, only the dominant waves
have been studied, more data are then required to validate
our formulation over the different wave scales that compose
the wave field. Finally, wave breaking is likely affected by
other parameters than the shape of the frequency spectrum.
Among these, the directionality of the wave field and surface
current shears may be relevant.
[37] The proposed breaking probability and BWHD for-

mulations have been validated in intermediate water for dif-
ferent wave scales and in deep water for the dominant scale.
In shallowwater, our breaking statistics parameterization was
shown to be similar to the one proposed by Thornton and
Guza [1983] and consistent with data collected by the latter
authors. Further acquisition of BWHD data in deep and
intermediate water are planned and will be used to better
constrain the functional shape of WFAB and investigate the
effects of other parameters. Our work supports that it is
possible to obtain a unified parameterization for the break-
ing probabilities in all water depths. In particular it connects
the shallow water breaking probabilities formulated in terms
of wave height, to the deep water breaking probabilities
formulated in terms of spectral saturation.

[38] Acknowledgments. We gratefully acknowledge contributions of
the experimental group of the Australian Defence Force Academy, Canberra,
Australian Capital Territory, Australia, who participated in collecting the
original Lake George data set. A.V.B.’s research was partially supported
by LP0883888 grant of the Australian Research Council and J.F.F. acknowl-
edges the support of a CNRS‐DGA doctoral research grant.

References
Ardhuin, F., T. H. C. Herbers, K. P. Watts, G. P. van Vledder, R. Jensen,
and H. Graber (2007), Swell and slanting fetch effects on wind wave
growth, J. Phys. Oceanogr., 37(4), 908–931, doi:10.1175/JPO3039.1.

Ardhuin, F., L. Marié, N. Rascle, P. Forget, and A. Roland (2009), Obser-
vation of Lagrangian, Stokes and Eulerian currents induced by wind and
waves at the sea surface, J. Phys. Oceanogr., 39(11), 2820–2832.

Babanin, A., I. Young, and M. Banner (2001), Breaking probabilities for
dominant surface waves on water of finite depth, J. Geophys. Res., 106
(C6), 11,659–11,676.

Babanin, A., D. Chalikov, I. Young, and I. Savelyev (2007a), Predicting
the breaking onset of surface water waves, Geophys. Res. Lett., 34,
L07605, doi:10.1029/2006GL029135.

Babanin, A., R. Manasseh, I. Young, and E. Schultz (2007b), Spectral dis-
sipation term for wave forecast models, experimental study, paper pre-
sented at 10th International Workshop on Wave Hindcasting and
Forecasting and Coastal Hazards, Environ. Can., North Shore, Hawaii,
11–16 Nov.

Babanin, A. V., and I. R. Young (2005), Two‐phase behaviour of the spectral
dissipation of windwaves, paper presented at 5th International Symposium
on Ocean Wave Measurement and Analysis, Am. Soc. of Civ. Eng.,
Madrid.

Babanin, A. V., P. Verkeev, B. Krivinskii, and V. Proshchenko (1993),
Measurement of wind waves by mean of a buoy accelerometer wave
gauge, Phys. Oceanogr., 4, 387–393.

Banner, M. L., and D. H. Peregrine (1993), Wave breaking in deep water,
Annu. Rev. Fluid Mech., 25, 373–397.

Banner, M. L., and O. M. Phillips (1974), On the incipient breaking of
small scale waves, J. Fluid Mech., 65, 647–656.

Banner, M. L., and X. Tian (1998), On the determination of the onset of
breaking for modulating surface gravity water waves, J. Fluid Mech.,
367, 107–137.

Banner, M. L., W. Chen, E. J. Walsh, J. B. Jensen, S. Lee, and C. Fandry
(1999), The Southern Ocean Waves Experiment. Part I: Overview and
mean results, J. Phys. Oceanogr., 31, 2130–2145.

Banner, M. L., A. V. Babanin, and I. R. Young (2000), Breaking probabil-
ity for dominant waves on the sea surface, J. Phys. Oceanogr., 30, 3145–
3160.

Banner, M. L., J. R. Gemmrich, and D. M. Farmer (2002), Multiscale mea-
surement of ocean wave breaking probability, J. Phys. Oceanogr., 32,
3364–3374.

Battjes, J., and M. Stive (1985), Calibration and verification of a dissipation
model for random breaking waves, J. Geophys. Res., 90(C5), 9159–9167.

Battjes, J. A., and J. P. F. M. Janssen (1978), Energy loss and set‐up due to
breaking of random waves, paper presented at 16th International Confer-
ence on Coastal Engineering, Am. Soc. of Civ. Eng., Hamburg, Germany.

Chawla, A., and J. T. Kirby (2002), Monochromatic and random
wave breaking at blocking points, J. Geophys. Res., 107(C7), 3067,
doi:10.1029/2001JC001042.

Cokelet, E. D. (1977), Steep gravity waves in water of arbitrary uniform
depth, Proc. R. Soc. London A, 286, 183–230.

Dalrymple, R. A. (1974), A finite amplitude wave on a linear shear current,
J. Geophys. Res., 79, 4498–4504.

Dean, R. G. (1965), Stream function representation of nonlinear ocean
waves, J. Geophys. Res., 70, 4561–4572.

Glazman, R. E. (1986), Statistical characterization of sea surface geometry
for a wave slope field discontinuous in the mean square, J. Geophys.
Res., 91(C5), 6629–6641.

Hasselmann, K., et al. (1973), Measurements of wind‐wave growth and
swell decay during the Joint North Sea Wave Project, Dtsch. Hydrogr.
Z., 8(12), suppl. A, 1–95.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N.‐C. Yen, C. Tung, and H. H. Liu (1998), The empirical mode decompo-
sition and theHilbert spectrum for nonlinear and non‐stationary time series
analysis, Proc. R. Soc. London A, 454, 903–995.

Huntley, D. A., R. T. Guza, and E. B. Thornton (1981), Field observa-
tions of surf beat: 1. Progressive edge waves, J. Geophys. Res., 86(C7),
6451–6466.

Katsaros, K. B., and S. S. Ataktürk (1992), Dependence of wave‐breaking
statistics on wind stress and wave development, in Breaking waves, 1991
IUTAM symposium Sydney, Australia, edited by M. L. Banner and R. H.
J. Grimshaw, pp. 119–132, Springer, Berlin.

Komen, G. J., K. Hasselmann, and S. Hasselmann (1984), On the existence
of a fully developed windsea spectrum, J. Phys. Oceanogr., 14, 1271–
1285.

Long, C. E., and D. T. Resio (2007), Wind wave spectral observations in
Currituck Sound, North Carolina, J. Geophys. Res., 112, C05001,
doi:10.1029/2006JC003835.

Longuet‐Higgins, M. S. (1973), A model of flow separation at a free sur-
face, J. Fluid Mech., 57, 129–148.

Longuet‐Higgins, M. S. (1975), Integral relations of gravity waves of finite
amplitude, Proc. R. Soc. London A, 342, 157–174.

Longuet‐Higgins, M. S. (1986), Acceleration in steep gravity waves. Part
II: Subsurface accelerations, J. Phys. Oceanogr., 16, 1332–1337.

Manasseh, R., A. V. Babanin, C. Forbes, K. Rickards, I. Bobevski, and A.
Ooi (2006), Passive acoustic determination of wave‐breaking events and
their severity across the spectrum, J. Atmos. Ocean Technol., 23, 599–
618.

Miche, A. (1944a), Mouvements ondulatoires de la mer en profondeur
croissante ou décroissante. Première partie. Mouvements ondulatoires
périodiques et cylindriques en profondeur constante, Ann. Ponts Chaus-
sèes, 114, 42–78.

Miche, A. (1944b), Mouvements ondulatoires de la mer en profondeur
croissante ou décroissante. Forme limite de la houle lors de son déferlement.
Application aux digues maritimes. Troisième partie. Forme et propriétés
des houles limites lors du déferlement. Croissance des vitesses vers la rive,
Ann. Ponts Chaussées, 114, 369–406.

Mironov, A. S., and V. A. Dulov (2008), Detection of wave breaking using
sea surface video records, Meas. Sci. Technol., 19, 015405.1–015405.10,
doi:10.1088/0957-0233/19/1/015405.

FILIPOT ET AL.: WAVE‐BREAKING PROBABILITIES C04022C04022

14 of 15



Papadimitrakis, Y. A. (2006), On the probability of wave breaking in deep
waters, Deep Sea Res. Part II, 52, 1246–1269.

Phillips, O. M. (1958), The equilibrium range in the spectrum of wind‐
generated waves, J. Fluid Mech., 4, 426–433.

Reul, N., and B. Chapron (2003), A model of sea‐foam thickness distribu-
tion for passive microwave remote sensing applications, J. Geophys.
Res., 108(C10), 3321, doi:10.1029/2003JC001887.

Ruessink, B. G., D. J. R. Walstra, and H. N. Southgate (2003), Calibration
and verification of a parametric wave model on barred beaches, Coastal
Eng., 48, 139–149.

Santala, M. J., and E. A. Terray (1992), A technique for making unbiased
estimates of current shear from a wave‐follower, Deep Sea Res., 39, 607–
622.

Schulz, E. (2009), The riding wave removal technique: Recent develop-
ments, J. Atmos. Ocean Technol., 26, 135–144.

Sharma, J., and R. Dean (1979), Development and evaluation of a procedure
for simulating a random directional second order sea surface and associated
waves forces, Ocean Eng. Rep. 20, 112 pp., Univ. of Del., Newark, Del.

Stansell, P., and C. MacFarlane (2002), Experimental investigation of wave
breaking criteria based on wave phase speeds, J. Phys. Oceanogr., 32,
1269–1283.

Tanaka, M. (1985), The stability of steep gravity waves. Part 2, J. Fluid
Mech., 156, 281–289.

Thornton, E. B., and R. T. Guza (1982), Energy saturation and phase
speeds measured on a natural beach, J. Geophys. Res., 87(C12), 9499–
9508.

Thornton, E. B., and R. T. Guza (1983), Transformation of wave height dis-
tribution, J. Geophys. Res., 88(C10), 5925–5938.

van Vledder, G. P., and D. P. Hurdle (2002), Performance of formulations
for whitecapping in wave prediction models, paper presented at 21st
International Conference on Offshore Mechanics and Artic Engineering,
Am. Soc. of Mech. Eng., Oslo, Norway, 23–28 June.

WISE Group (2007), Wave modelling—The state of the art, Prog. Oceanogr.,
75, 603674, doi:10.1016/j.pocean.2007.05.005.

Wu, C. H., and H. M. Nepf (2002), Breaking criteria and energy losses for
three‐dimensional wave breaking, J. Geophys. Res., 107(C10), 3177,
doi:10.1029/2001JC001077.

Young, I. R., and A. V. Babanin (2006), Spectral distribution of energy dis-
sipation of wind‐generated waves due to dominant wave breaking, J. Phys.
Oceanogr., 36, 376–394.

F. Ardhuin and J.‐F. Filipot, Service Hydrographique et Océanographique
de la Marine, 13 Rue du Chatellier, F‐29609 Brest, France. (ardhuin@shom.
fr; jfilipot@shom.fr)
A. V. Babanin, Faculty of Engineering and Industrial Sciences, Swinburne

University of Technology, Melbourne, Vic 3122, Australia. (ababanin@
swin.edu.au)

FILIPOT ET AL.: WAVE‐BREAKING PROBABILITIES C04022C04022

15 of 15



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


