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Abstract: 

This paper addresses the inference of probabilistic classification models using weakly supervised 
learning. The main contribution of this work is the development of learning methods for training 
datasets consisting of groups of objects with known relative class priors. This can be regarded as a 
generalization of the situation addressed by Bishop and Ulusoy (2005), where training information is 
given as the presence or absence of object classes in each set. Generative and discriminative 
classification methods are conceived and compared for weakly supervised learning, as well as a non-
linear version of the probabilistic discriminative models. The considered models are evaluated on 
standard datasets and an application to fisheries acoustics is reported. The proposed proportion-
based training is demonstrated to outperform model learning based on presence/absence information 
and the potential of the non-linear discriminative model is shown. 

Research highlights 

► Weakly supervised learning deals with prior annotation of objects in images. ► Classification model 
must be assessed by using probabilities. ► Reported results promote discriminative. 

Keywords: Weakly supervised learning; Generative classification model; Discriminative classification 
model 

 

1. Introduction 
 

In object recognition and classification, most of the research effort was initially dedicated to supervised 
learning, i.e. solving classification problems for which a dataset of labelled objects exists. 
Unsupervised learning has also encountered a great interest when no prior knowledge on object 
classes 

http://dx.doi.org/10.1016/j.patrec.2010.10.001
http://archimer.ifremer.fr/
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is available in the training dataset (Hinton and Sejnowski (1999)). In a
number of applications however the training set comprises some information
on object classes but not all objects may be labelled. Typical examples, often
referred to semi-supervised or partially-supervised cases, involve training sets
in which only a subset of the objects are labelled (Chapelle et al. (2006)).10

Semi-supervised learning generally relies on an initial supervised learning
followed by a refinement of the classifiers from non-labelled samples in the
training set. Weakly-supervised learning involves a more general situation:
the prior information provided in the training set is given as a subset of
potential classes for each object. Examples of weakly-supervised learning15

can be drawn from image analysis. The training object dataset may be built
from a set of labelled images, each label corresponding to an object class,
such that a particular object in a given image may be associated with several
possible classes (Vasconcelos et al. (2006), Fergus et al. (2007), Crandall
and Huttenlocher (2006), Bishop and Ulusoy (2005)). Similar situations are20

reported in the management of large document databases, as several classes,
corresponding to different concepts, may be associated with each document
in the training dataset (Gosselin and Cord (2006)).

Figure 1: The sonar echo sounder placed under a vessel acquires echograms. In
an echogram, fish school aggregations of sardina, anchovy and horse mackerel may
be observed. Basic descriptors are extracted (length, height, depth, energy, etc, of
the school) for species discrimination. If associated with trawling, the analysis of
trawl catches provides the species proportion in the training echograms.

In this paper, contrary to previous approaches (Fergus et al. (2007), Cran-
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dall and Huttenlocher (2006), Weber et al. (2000), Xie and Perez (2004),25

Bishop and Ulusoy (2005)), we do not restrict our interest to training in-
formation given as the presence/absence of a class in an image or a set of
objects. We assume that class priors are available for each training image or
object cluster. Data labelling derives from different priors, i.e. samples are
not necessary equally fuzzy in terms of label. Furthermore, experiments are30

carried out with equal fuzzy labelling or with different fuzzy labelling, the
objective being to assess performances of classifiers given the complexity of
the training data. We consider that a label has noise when samples are nearly
equally fuzzy and that a label has few noises when one prior is dominating
among classes.35

Weakly supervised training schemes are applied to fisheries acoustics. In
fisheries acoustics, the estimation of fish stock biomass (Scalabrin and Mass
(1993)) requires to carry out a species-based classification of the fish schools
observed in the echograms acquired by an echosounder (MacLennan and Sim-
monds (1992)) (Figure 1). In this case, the training data is built by a set of40

echograms associated with trawling data. As the analysis of trawl catches
provides relative species proportions, each training image and the correspond-
ing set of segmented fish schools are assigned to this relative proportion of
each class, i.e. each species. Similar examples may be encountered in im-
age analysis applications, especially regarding remote sensing applications45

(Anderson et al. (2008), Descle et al. (2006)).
In this paper, weakly supervised learning from proportion-based infor-

mation is investigated. Following works by Bishop and Ulusoy (2005), two
categories of models are considered: generative classifier and discriminative
probabilistic classifier. In addition, a novel Fisher-based learning of the dis-50

criminative models and the introduction of non-linear conditional models
are shown to bring significant improvement in terms of classification perfor-
mances. The paper is organized as follows. Section 2 presents the problem
statement and notations while sections 3 and 4 describe the probabilistic
classification models. Experiments and performances of these models are55

tested using standard datasets and a fisheries acoustics dataset in section 5.
Concluding remarks and perspectives are given in section 6.

2. Problem statement

We assume that the training set is provided as a set of images containing
segmented objects along with the relative proportion of each class within each60
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image. Formally, let us denote by k the image index and by {xkn} the feature
vector of the object indexed by n contained in image k. For image k, the
associated global information is provided as the relative proportions of the
different classes in image k. Let us denote by πk = {πki} these relative class
proportions, i being the class. Depending on the application, proportions65

might be computed with respect to the relative occurrences of objects for each
class or with respect to physical characteristics of the objects (e.g., surface,
energy). For instance, in the considered application to fisheries acoustics,
these relative class proportions are computed as the relative acoustic energy
of each class.70

We further introduce the following notations. ykn is the class vector of
the object n in image k and ykn = i indicates that this object is associated
with class i. The aim is to evaluate the probability for object n in image k
to be assigned to class i knowing feature vector xkn and model parameters
Θ: p (ykn = i|xkn,Θ). Θ is assessed in the training step. The subsequent75

sections detail the chosen models and parameterizations for Θ as well as the
associated learning schemes.

3. Generative model (GM)

The generative model proposed by Bishop and Ulusoy (2005) that deals
with presence/absence case, is extended in this paper to the proportion-80

based case. Given Θ = {ρi1 . . . ρiM , µi1 . . . µiM ,Σ2
i1 . . .Σ

2
iM} the parameters

of a Gaussian mixture model:

p (x|y = i,Θ) =
M∑
m=1

ρimN (x|µim,Σ2
im) (1)

N (x|µim,Σ2
im) is the normal distribution with mean µim and covariance ma-

trix: Σ2
im. The learning of model parameters Θ is then stated as a probabilis-

tic inference issue. For proportion training data set of the form {xk, πk}k,85

and considering that πki = p (ykn = i), a maximum likelihood criterion can
be derived:

Θ̂ = arg max
Θ

p(π|x,Θ) = arg max
Θ

∏
k

p(πk|xk,Θ) (2)

The EM (Expectation-Maximization) (Dempster et al. (1977)) procedure is
exploited to solve for this estimation. When considering proportion-based
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training data, the proportion data is regarded as a class prior for each image,90

such that the E-step is modified to take into account this prior as follows:

p (ykn = i|xkn,Θc) =
πkip (xkn|ykn = i,Θc)∑
l

πklp (xkn|ykn = l,Θc)
(3)

Θc refers to current parameters. Given these posterior likelihoods, the M-step
is similar to the one by Bishop and Ulusoy (2005).

Let us stress that we consider diagonal covariance matrix for the multi
modal Gaussian model. Once the learning step is performed i.e. parameter95

Θ is estimated, object classification resorts to selecting the most likely class
according to posterior likelihood (3).

There are various discriminative optimizations for Gaussian mixture mod-
els such as Maximum Mutual Information (MMI). This one allows to removed
from training dataset samples that are fuzzed in terms of features by calcu-100

lating their contribution in probability density function (Yang and Zwolinski
(2001)), or it allows to estimate model parameters that maximize the mutual
information (Bahl et al. (1986)). In this work, MMI is not used because the
criterion does not take into account prior information. Nevertheless, the de-
velopment of new optimizations that mix MMI criterion and prior knowledge105

should be considered in future work.

4. Discriminative model

In this section, discriminative models, both linear and non-linear ones,
are considered.

4.1. Linear discriminative model (LDM)110

Discriminative models are stated as an explicit parameterization of the
classification likelihood:

p (y = i|x,Θ) ∝ F (〈ωi, x〉+ bi) (4)

where < ωi, x > +bi is the distance to the separation hyperplane between
class i and the other classes. The hyperplane equation is < ωi, x > +bi = 0
in the feature space. Model parameters Θ are given by ωi and bi. F is an115
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increasing function, typically an exponential or continuous stepwise function.
Hereafter, F will be chosen to be an exponential function:

p (y = i|x,Θ) =
exp(〈ωi, x〉+ bi)∑
l

exp(〈ωl, x〉+ bl)
(5)

4.2. Non linear discriminative model (NLDM)

We propose an extension to a non-linear discriminative model using a
kernel approach (Schlkopf and Smola (2002)). Prior to model training, a120

non-linear mapping of the feature space is carried out. We consider a kernel
function Ke associated with a non-linear mapping Φ of the original feature
space to a new space, such that Ke is the dot product in the mapped feature
space: Ke(x1, x2) = 〈Φ(x1),Φ(x2)〉. A non-linear discriminative model can
then be defined as a probabilistic classifier in the mapped feature space:125

p (y = i|x,Θ) ∝ exp (〈wi,Φ(x)〉+ bi) (6)

where wi is the vector normal to the separation hyperplane in the mapped
space. Depending on the chosen kernel, the direct parameterization of wi
may not be obvious. Consequently, we exploit a kernel Principal Component
Analysis (PCA) to exhibit a parameterization from the subspace, spanned
by the training data:130

wi =

NPCA∑
p=1

wI,p ∗Bp (7)

where Npca is the number of PCA basis and {Bp} the orthonormal PCA basis
in the mapped feature space. Exploiting PCA for dimensionality reduction
into the mapped space, mapped feature vector Φ(x) is approximated as:

Φ(x) =

NPCA∑
p=1

αp(x) ∗Bp (8)

where αp(x) is the projection of φ(x) onto {Bp}. Basis {Bp}, issued from
the diagonalization of the matrix {Ke(xi, xj)}i,j are determined as linear135

combinations of {Φ(xi)}, Bp =
∑

i βp,i ∗ Φ(xi), and αp(x) are given by:
αp(x) = 〈Φ(x), Bp〉 =

∑
i βp,iKe(x, xi). Considering the projection of model

parameter ωi onto the PCA basis, p (y = l|x,Θ) can be rewritten as:

log p (y = i|x,Θ) ∝
∑
p,l

ωi,p · βp,lK(x, xl) + b (9)

6



where vector {ωi,p}, such that ωi,p = 〈Φ(ωi,p), Bp〉, is the actual model pa-
rameter of dimension NPCA for each class. It should be stressed that the140

expression of the conditional likelihood for the non-linear model is similar to
the expression of the linear model: it amounts to replacing original feature
vector x by feature vector {

∑
l βp,lKe(x, xl)}p of dimension NPCA.

4.3. Training scheme

In section 4.1 and section 4.2, we present the mathematical formalization145

of the discriminative model. In this section, the learning step is introduced,
in particular, we present a criterion that learns parameters Θ = {ωi, bi}i.

Given an initialization for Θ, model parameters Θ are optimized according
to a minimization criterion based on Battacharrya divergence (Bhattacharyya
(1943)). It consists in determining parameters Θ̂ that minimize the error150

between the known proportion πk and the estimated proportion π̂k(Θ):

Θ̂ = arg min
Θ

∑
k

D(π̂k(Θ), πk) (10)

Among the different distances between likelihood functions, the Battacharrya
distance is chosen (Bhattacharyya (1943)): D(π̂k(Θ), πk) = 1

I

∑
i

√
π̂k(Θ) · πk

where I is the number of classes. The classification likelihoods (5) and (6)
give the estimated proportion π̂k(Θ).155

The general idea of the criterion (10) is that the ideal classifier, i.e. the
classifier that finds all classes of instances, will produce the same class pro-
portions as for the training dataset. If training data are good classified,
the class proportion in training images must be the same than before the
classification.160

Given an initial parameter estimate, the minimization of criterion (10)
is achieved using a gradient descent. In this paper, the initialization of the
parameters are done by setting coefficients {ωi, bi}i to 1, as a uniform initial-
ization, or by using the Fisher-based criterion introduced in the next section.

4.4. Fisher-based Model165

A Fisher-based discriminative model can be used as an initialization for
the previous model based on the optimization criterion 10. For the sake
of simplicity, we hereafter consider a two-class case. Fisher discrimination
(Fisher (1936)) amounts to maximizing ratio between inter-class and intra-
class variances:170

ω̂ = arg max
ω

{(
ωT (m1 −m2)

)
ωT
(
Σ1 + Σ2

)
ω

}
(11)
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where m1 and Σ1 are the mean and variance of the first class, and m2 and
Σ2 are the mean and variance of the second class. The estimate is given by
ω̂ = (Σ1 + Σ2)−1(m1 −m2).

Fisher discrimination is applied to weakly supervised learning based on
the estimation of class mean and variance for known object class priors.175

Formally, considering a one-versus-all strategy, for a given class i, mean m1

and variance Σ1 are estimated as:

m1 =

K∑
k

N(k)∑
n

πkixkn

K∑
k

N(k)∑
n

πki

, (12)

Σ1 =

K∑
k

N(k)∑
n

πki(xkn −m1)(xkn −m1)T

K∑
k

N(k)∑
n

πki

, (13)

m2 and Σ2 are computed replacing πk by (1−πk). This procedure is employed
as an estimation for model parameters ωi or only as an initialization of the180

gradient-based minimization of criterion (10).

5. Experiments and performances

5.1. Simulation procedure

For evaluation purposes, a groundtruthed set of objects is considered.
We apply a random sampling of this candidate object set to form training185

images as random object subsets. This random sampling procedure is carried
out according to target class proportions which determine the complexity of
the mixture. Depending on these target proportions, a given training image
may comprise objects from one (i.e. proportions equalling zero or one) to
all classes (i.e. all proportions values are non-zero). It might be noted that190

several specific cases may be encountered: supervised training sets for which
binary target relative proportions lead training images involving only one
object class, unsupervised training sets for which target relative proportions
are uniform, and semi-supervised training sets being a combination of the
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two previous situations. The overall test procedure, including the generation195

of the training and test images, the training and the evaluation of the correct
classification rate and of the proportion estimation error on the test dataset,
is repeated one hundred times to evaluate classification performance.

5.2. Data sets

Four datasets are considered. The first dataset, D1, is sampled from two-200

dimensional Gaussian mixtures. 1000 samples are generated for each class.
Each class is characterized by a mixture of two Gaussian modes N (µim,Σ

2
im)

with mode proportions ρi =
(
0.6 0.4

)
. The parameters of the Gaussian

modes are as follows:
µ11 =

(
0 1

)
,205

µ12 =
(
0 4

)
,

µ21 =
(√

3/2 −1/2
)

,

µ22 =
(
2
√

3 −2
)
,

µ31 =
(
−
√

3/2 −1/2
)
,

µ32 =
(
−2
√

3 −2
)
,210

and Σim =

(
0.9 0
0 0.9

)
.

Two other data set, D2 and D3, have been considered in numerous com-
parison. D2 comes from the Waveform Database Generator (Breiman et al.
(1984)). It contains 3 classes, each sample being characterized by 21 con-
tinuous attributes. Each class comprises 1660 samples. D3 comes from the215

UCI Repository of Machine Learning Databases (Blake and Merz (1998)).
Containing 7 classes of objects with 19 continuous attributes, it allows us
to simulate images containing 7 classes mixture. Each class comprises 330
samples.

The fourth database D4 is a set of fish schools, as described in Figure 1,220

that have been labelled by experts. The school dataset is composed of four
school classes corresponding to different fish species: sardina (179 instances),
anchovy (478 instances), horse mackerel (667 instances) and blue whiting (95
instances). It was built from schools observed in echograms corresponding
to trawl catches with only one species (Scalabrin et al. (1996)). 19 school225

features are used: solid geometry and energy for each school (Scalabrin et al.
(1996)). The estimated proportion in echogram k for a given species i is
defined as follows:
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π̂ki(Θ) =

N(k)∑
n=1

Eknp (ykn = i|xkn,Θ)

∑
i′

N(k)∑
n=1

Eknp (ykn = i′|xkn,Θ)

(14)

where Ekn is the energy of fish school n in echogram k and p (ykn = i|xkn,Θ)
the posterior classification likelihood.230

5.3. Results

Global performance. Global classification performances are shown in Table 1
for the four datasets. The following notations are used for the classification
models: GM (generative model in section 3), F-LDM (Fisher-based linear
discriminative model in section 4.4), UO-LDM (optimization procedure as235

seen in section 4.3 with a uniform initialization), FO-LDM (optimization
procedure with a Fisher-based initialization), and the non-linear version of
LDM, i.e. F-NLDM, UO-NLDM, and FO-NLDM. The mean correct classi-
fication rate is shown as a function of the complexity of the mixture from
one class per training image (supervised learning) to 3 or 4 or 7 species per240

training image respectively for datasets D1, D2, D3, and D4. We define the
classification rate as the mean of the correct classification rate over classes.
The best classification rate for each dataset is in bold. A procedure is con-
sidered as outperforming the others when it has a better classification rate
and when it is more robust with regard to the complexity of training object245

mixture. Ideal situation would lead to a steady and high classification rate
when the number of class per image increases.

Overall, the higher the number of species in the training images, the lower
the classification performance. This is expected as model training is more
difficult when training instances can be assigned to several classes, compared250

to the supervised case. Results indicate that the non-linear discriminative
Fisher-based model (F-NLDM) outperforms the other models for datasets
D2, D3, and D4 except for 7-class mixtures with D3 and 4-class mixtures
with D4. F-LDM and FO-LDM are the best models with dataset D1.

Regarding the GM, results can be compared to the other models for su-255

pervised learning situation but the performances fall down when the number
of class in the mixtures is rising. Actually, for dataset D1 it falls from 79.4%
with 2-class mixture to 57.3% with 3-class mixture, for D2 from 79.5% with
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Class number per image 1 2 3 4 5 6 7

D1

GM 81.7% 79.4% 57.3%
F-LDM 82.1% 81.8% 81.9%
FO-LDM 82.1% 81.8% 81.9%
UO-LDM 81.5% 81.3% 81.2%
F-NLDM 81.5% 80.3% 77.2%
FO-NLDM 81.7% 81.5% 81.3%
UO-NLDM 33.3% 33.3% 33.3%

D2

GM 80.8% 79.5% 58.3%
F-LDM 85.9% 85% 83.7%
FO-LDM 85.9% 85% 83.7%
UO-LDM 33.3% 33.3% 33.3%
F-NLDM 86.4% 85.5% 84.1%
FO-NLDM 85.7% 85.3% 83.9%
UO-NLDM 33.3% 33.3% 33.3%

D3

GM 83.7% 83.6% 84.4% 83.7% 83.8% 83.1% 75.1%
F-LDM 87% 83% 82% 79.5% 82.7% 76.6% 67.3%
FO-LDM 69.9% 76.1% 77.3% 77.2% 76.9% 77.5% 78%
UO-LDM 28.3% 13.2% 13.2% 13.2% 13.2% 13.2% 13.2%
F-NLDM 89.7% 89.2% 89.5% 89.1% 89.1% 89.1% 85.9%
FO-NLDM 88.3% 88.5% 88.3% 88.5% 88.7% 88.2% 86.7%
UO-NLDM 85.9% 35.3% 13.7% 14.3% 15.8% 14.6% 15%

D4

GM 66.9% 52% 51.2% 47.9%
F-LDM 67.6% 68.6% 64.2% 57.7%
FO-LDM 67.5% 68.6% 62.3% 56.9%
UO-LDM 61% 60.2% 56.3% 56.9%
F-NLDM 69.9% 71.7% 65.9% 56.2%
FO-NLDM 69.8% 70.3% 61.9% 52.9%
UO-NLDM 53.6% 52.7% 48.7% 49.9%

Table 1: Classification performance as a function of the complexity of the training
data. The rate of correct classification is reported as a function of the proportion
complexity of the training dataset, from supervised learning to 7-class mixtures. Re-
ported results include the classification performance of the generative model (GM),
the Fisher-based linear discriminative model (F-LDM), the optimization procedure
with a Fisher-based initialization (FO-LDM), the optimization procedure with a
uniform initialization (UO-LDM), and the non-linear version of LDM, i.e. F-
NLDM, UO-NLDM, and FO-NLDM.

2-class mixture to 58.3% with 3-class mixture, for D3 from 83.1% with 6-
class mixture to 75.1% with 7-class mixture, and for D4 from 66.9% with260

supervised learning to 52% with 2-class mixtures. The lack of robustness
with regard to mixture complexity can be explained by different reasons.
The high number of parameters to be assessed, compared to discriminative
models, makes the model sensitive to complex data, i.e. it is inherent to the
EM procedure when high dimensional data are considered. Besides, when265

feature distributions partially overlap classes, the unsupervised estimation of
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class models is too complex and classification performances are affected.
Discriminative models do not only outperform the GM in terms of classi-

fication rate but they are also proven robust. NLDM outperforms the LDM
for D2, D3 and D4. Among the different training methods, the Fisher-based270

procedure almost always outperform the optimization criterion (10). The
optimization-based model is strongly dependent on the initialization. This is
shown by UO-LDM and UO-NLDM results that consider coefficients that are
uniformly initialized to one. In this case, classification rate reaches 33% with
D1 and D2, and around 15% with D3 when the initialization with the Fisher275

criterion resorts to 81.3% for D1, 83.9% for D2 and 86.7% for D3. In most of
case, the gradient-based optimization of criterion 10 from the initialization
given by the Fisher procedure does not bring significant improvements.

Overall, the best trade-off between the performance and the complexity
of the training methods is the Fisher-based estimation. The choice of the280

non-linear kernel is relevant, as for datasets D2, D3, and D4, when objects
classes are poorly discriminated in the original feature space.

Proportion complexity πk

(
0.63
0.33
0.03

) (
0.53
0.33
0.2

) (
0.46
0.33
0.25

) (
0.41
0.33
0.25

) (
0.36
0.33
0.29

) (
0.33
0.33
0.33

)
Prop GM 73.2% 64.4% 52.1% 46.8% 39.6% 34.2%
Pres GM 33.1% 33.3% 33.5% 33.3% 33.3% 33.3%

Prop FO-LDM 81.3% 81.2% 80.23% 70.2% 56.2% 41.3%
Pres FO-LDM 33.3% 33.3% 33.3% 33.3% 33.3% 33.3%

Prop FO-NLDM 80.3% 79.2% 78.2% 69.2% 47% 36.9%
Pres FO-NLDM 33.3% 33.3% 33.3% 33.3% 33.3% 33.3%

Table 2: Comparison between proportion-based vs. presence/absence training for
different kinds of object mixtures in the training image set considering D1. The
mean correct classification rate is calculated for three-class mixtures in the train-
ing images. ”Prop” refers to proportion mixture while ”Pres” refers to pres-
ence/absence data. Results are reported for GM, FO-LDM and FO-NLDM.

Proportion vs Presence/absence. The improvement brought by considering
proportion-based training compared to presence/absence training (Bishop
and Ulusoy (2005)) is shown in Table 2 for D1. The correct classification rate285

is shown as a function of the complexity of the training mixtures from the
case in which one class predominates (πk =

(
0.03 0.33 0.63

)
) to the case

with equal class proportions (πk =
(
0.33 0.33 0.33

)
). Note that the latter

case corresponds to an unsupervised situation. This explains the fact that
the mean correct classification rate equals about 33% in the presence/absence290
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case whatever the proportion mixture or the model. These results show that
the knowledge of prior proportion-based information can greatly improve
object recognition compared to presence/absence data. Non-surprisingly,
the classification performances tend to decrease if the training tends to the
unsupervised case (i.e. equal relative class proportions). It should be noted295

that for real applications (dataset D4) the training dataset is expected to
contain a variety of mixture complexities among training images so that
relevant classification performances can be reached.

(a) (b)

Figure 2: Mean rate of correct classification for the synthetic object dataset D1 as
a function of both the number of training images and the number of objects per
training image. The GM (a) and the FO-LDM (b) are considered. Results are
achieved from two-class training images.

Image consistency. A key question arises regarding learning. Should there
be lots of training images containing few objects or is the number of objects300

per training image decisive to achieve a correct classification rate? Figure 2
partially addresses this issue for dataset D1 with two-class training images:
the evolution of the mean correct classification rate for the GM and the LDM
is represented as a function of the number of training images and of the
number of objects per training image. We first notice that for both models305

the maximal rate of classification is rapidly reached with the synthetic D1
data set. For the GM, the maximal correct classification rate is reached for 5
training images containing at least 5 objects. For the LDM, it is reached for

13



5 training images containing at least 20 objects. It seems that the primary
condition to learn a reliable model is that the total number of objects in all310

training images must be high enough. Two cases may be advised: either
lots of images with not many objects in the images or not many images
comprising lots of objects. For the two scenarios, if the total number of
objects is sufficient the maximal rate of classification should be reached.

5.4. Summary315

The quantitative evaluation has been carried out using four datasets: a
synthetic two-dimensional object feature dataset, two standard datasets and
a fish school dataset. These dataset have been voluntarily chosen because
they are different, so if the same trend is observed for all datasets, results
can be generalized.320

Reported results first show that the GM is outperformed by the proposed
discriminative models which are more robust when the complexity of the
training dataset increases. The proposed Fisher-based procedure for learning
discriminative models is shown to greatly improve classification performances
and robustness. We also showed the improvement brought by considering325

proportion-based training data compared to the presence/absence case, and
then, we evaluated the effects of the number of training images and the
number of the objects in training images on the classification performances.

These results were expected. Actually, last years discriminative models
have shown their abilities to outperform generative models but in a super-330

vised learning schemes (Schlkopf and Smola (2002)). In this paper, these
results are confirmed and extended to the weakly supervised learning.

6. Conclusion

The development of reliable methods for object classification and recog-
nition in images is an active area of research. In this paper, a probabilistic335

method is proposed to address weakly supervised learning with training in-
formation provided as the relative proportions of object classes in images. An
application to fisheries acoustics data has been considered to learn fish school
classifier in acoustic echograms from the estimation of the relative species
in trawl catches. Our contribution is three-fold: the extension of genera-340

tive and discriminative probabilistic models for proportion-based learning, a
non-linear extension of the discriminative model and an efficient Fisher-based
procedure for discriminative models.
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In the condition of the proposed weakly supervised learning, quantita-
tive experiments have shown that discriminative models are more robust345

and more accurate than generative model. Furthermore, regarding the ap-
plication to fisheries acoustics, reported performances are compliant with an
application to operational data.

Future work may investigate two methodological aspects: pursuing the
development of classifiers for weakly supervised learning with an emphasis350

on high-dimensional feature space, and the introduction of contextual infor-
mation in the classification of objects within a given image (Lefort et al.
(2009)). Regarding the application to fisheries acoustics, future work will
also include the use of new features issued from new multi beam sensors and
the application to operational survey data.355
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