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Abstract:  
 
Satellite remote sensing (SRS) of the marine environment has become instrumental in ecology for 
environmental monitoring and impact assessment, and it is a promising tool for conservation issues. In 
the context of an ecosystem approach to fisheries management (EAFM), global, daily, systematic, 
high-resolution images obtained from satellites provide a good data source for incorporating habitat 
considerations into marine fish population dynamics. An overview of the most common SRS datasets 
available to fishery scientists and state-of-the-art data-processing methods is presented, focusing on 
recently developed techniques for detecting mesoscale features such as eddies, fronts, filaments, and 
river plumes of major importance in productivity enhancement and associated fish aggregation. A 
comprehensive review of remotely sensed data applications in fisheries over the past three decades 
for investigating the relationships between oceanographic conditions and marine resources is 
provided, emphasizing how synoptic and information-rich SRS data have become instrumental in 
ecological analyses at community and ecosystem scales. Finally, SRS data, in conjunction with 
automated in situ data-acquisition systems, can provide the scientific community with a major source 
of information for ecosystem modelling, a key tool for implementing an EAFM.   
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1. Introduction 

 
Since the birth of the space age in the late 1950s, developments in platform and sensor 
technology, data storage and transfer, combined with an increasing demand for satellite data 
products, have all concurred to the rapid expansion of satellite remote sensing (SRS) civil 
applications: meteorology, aviation, positioning, and communication. In addition, remotely 
sensed satellite data have proven to be valuable tools in different applied fields, such as 
agriculture, land use, and hydrology. Satellites have now become instrumental in ecology for 
environmental monitoring (e.g. biogeochemistry and physical oceanography) and are 
promising tools for conservation issues (Turner et al., 2003; Mumby et al., 2004). 
 Although conventional fisheries management has mainly focused on single-species 
approaches in recent decades, the ecosystem approach to fisheries management (EAFM), 
promoted by the Food and Agriculture Organization of the United Nations (FAO), recognizes 
the importance of maintaining the complexity, structure, and function of marine ecosystems 
and of ensuring the sustainability of the fisheries and human communities they support 
(Garcia et al., 2003). In particular, a major objective of the EAFM is to expand the 
consideration of fish population dynamics to their marine habitats, to move progressively 
toward an end-to-end ecosystem approach (Cury et al., 2008). The EAFM aims to improve 
our understanding of the determinants of changes in the abundance and spatial distribution 
of exploited fish stocks, to disentangle fishing effects from environmental forcing and 
eventually to implement most-effective management systems (Botsford et al., 1997; Garcia 
et al., 2003; Cury et al., 2008). 
In this context, the availability of global, daily, systematic, high-resolution images obtained 
from satellites constitutes a major data source for elucidating the relationships between 
exploited marine organisms and their habitat (Polovina and Howell, 2005; Dulvy et al., 2009). 
Some past reviews have addressed the use of SRS of the marine environment, but mainly 
focused on specific case studies of applied fishery oceanography where short-term 
forecasting systems were developed in support of fishing activities (Tomczak, 1977; 
Yamanaka, 1988; Le Gall, 1989). Butler et al. (1988) provided a comprehensive report on the 
use of remote sensing in marine fisheries during the 1980s, which describes satellite 
platforms, sensor systems, and digital image-processing techniques and provides a 
synthesis of more than 20 case studies based on airborne and spacecraft remote-sensing 
data. Since then, considerable progress has been made in SRS data acquisition and 
processing and substantial amounts of new high-resolution datasets have become fully 
accessible for analyses in addition to in situ survey and fishery data. During the past decade, 
the application of satellite datasets has been progressively extended to encompass both 
data-driven and ecosystem-modelling approaches in marine ecology. The objectives of the 
current paper are to: (i) provide an overview of current satellite platforms and sensors, 
dataset availability/accessibility, and image-processing techniques for studying mesoscale 
features of particular relevance to EAFM (Cury et al., 2008); (ii) conduct a comprehensive 
review of satellite remotely sensed data applications by investigating the relationships 
between oceanographic conditions and marine resources, including the geolocation of 
marine species and characterization of preferred habitats along migration routes using 
satellite tags; (iii) demonstrate how synoptic and information-rich SRS data have become 
instrumental in ecological analyses at community and ecosystem scales; and (iv) discuss 
assumptions, limits, and caveats associated with the use of SRS data and challenges for the 
near future. 
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2. SRS data acquisition and products from global to mesoscale 

 
Sensors, datasets, and processing 

A large number of satellites and remote sensors provide data on oceanographic parameters 
that are now available to the scientific community as standard products. The most common 
time-series datasets and the main principles of image-processing algorithms and data 
formats are presented below. 
 In the context of SRS, a sensor is an electronic device that detects emitted or 
reflected electromagnetic radiation and converts it to a physical value that can be recorded 
and processed. With respect to the type of energy source, radiometers can be divided into 
passive sensors, which detect the reflected or emitted electromagnetic radiation from natural 
sources (temperature, ocean colour), and active sensors (radars, scatterometers, and lidars), 
which detect reflected responses from irradiated objects (Butler et al., 1988). Sensors can be 
classified into four types according to the spectral regions of solar radiation: (i) visible and 
reflective (or “near”) infrared (domain of ocean-colour radiometry), (ii) mid-infrared, (iii) 
thermal infrared, and (iv) microwave (Martin, 2004). Practically, the wavelength intervals or 
“spectral bands” are chosen according to their relatively low atmospheric absorption, which is 
spectrally highly variable. For example, the main “atmospheric windows” for the 
measurement of sea surface temperature (SST) in the mid- and far-infrared part of the solar 
spectra are ~3.7 and 11–12 micrometres, respectively. 
 SRS imaging systems are generally characterized according to spatial, temporal, and 
spectral resolutions (Campbell, 2007; Table 1). The spatial resolution specifies the nominal 
pixel size of the satellite image and the temporal resolution specifies the revisiting frequency 
of observation for a specific location. A sensor’s spectral resolution specifies the number, 
width, and position in the electromagnetic spectrum of spectral bands where it can collect 
reflected radiance. 
 An exhaustive list of the available SRS datasets is beyond the scope of this review; 
therefore, we present only the most common and useful relevant parameters: SST, sea 
surface salinity, windspeed, sea surface height (SSH), chlorophyll a (Chl a,), and Chl a-
derived primary production (Table 2). 
SRS data products are classified according to the processing level, from raw to end-user 
data (Table 3). Raw data constitute the first level, called level 0, which contain all the orbital 
telemetry information, calibration coefficients, and various ancillary data, as well as the raw 
data from the sensors, often in a complex multiplexed form. These data cannot be easily 
processed outside specialized centres. Level 1 data contain the same data as level 0, but are 
reorganized by channel and are in various sublevels, from raw measurements to geophysical 
units (top of atmosphere irradiance and brightness temperature). Data are in orbit form, i.e. 
satellite coordinates. Level 2 data are still in orbit form, but include geolocation and 
atmospheric corrections. For many scientific users, this is the first exploitable data level. 
Level 2 data contain the end-user geophysical parameters (i.e. normalized water-leaving 
radiance or reflectance, SST) and make use of meteorological information from ancillary 
sources. In addition, this level contains a number of variables of scientific interest that can be 
retrieved from various sensors on board different satellites and computed with specific 
algorithms. For SST retrieval, Figure 1 summarizes the main processing steps applied to the 
signal measured by the sensor to obtain first a measured radiance (expressed in W m–2 sr–1 
μm–1), then the top-of-atmosphere “brightness temperature” (theoretical temperature if 
atmosphere and ocean were black bodies, i.e. absorbing and re-emitting all the energy they 
receive), and finally a valid SST measurement. This last and most critical step consists of 
inverting a radiative transfer model that theoretically describes the alteration of the original 
signal through the atmosphere before it reaches the sensor. These models are complex; they 
assume a precise knowledge of the emissivity of the atmosphere and ocean, which is lower 
than from a black body. Practically, this step is generally done with empirical algorithms that 
take advantage of differences in the atmospheric alteration of the signal within two (or more) 
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distinct wavelengths. SST is computed as a sum of linear combinations of the brightness 
temperature measured in these different wavelengths. The coefficients of the relationship are 
determined by a minimization process using match-up in situ measurements from buoys. 
Similar data processing is applied to ocean-colour (OC) measurements, whose most 
important optical component is the upward water-leaving radiance just above the sea surface 
(Lw), a value that depends on the absorption and backscattering properties (referred to as 
inherent optical properties) of marine components (pure seawater, suspended, or dissolved 
constituents). The concentration of Chl a, the dominant pigment in marine phytoplankton that 
makes the sea green, is computed from specific OC algorithms, usually from the remote-
sensing reflectance (the sunlight reflected from below the sea surface, computed as the ratio 
of the normalized Lw to the solar irradiance in 3–5 wavelengths). 
 The data processing of a thermal signal for computing SST initially depends on the 
radiance measured by the sensors. Hence, different satellites and sensors will result in 
different spatial coverage and SST estimates (Figure 2). For instance, the high observation 
frequency of the geostationary METEOSAT satellite (15 min) allows better declouding 
through data processing, whereas the microwave sensor TMI is unaffected by cloud cover 
(except for heavy rain) at the cost of lower resolution (25 km), lack of coastal data, and 
narrow swathes that result in observation gaps between 50°S and 50°N. The SST product 
combining data from several sensors is fully cloud free (Figure 2), but the blending process 
could make it less useful for describing mesoscale features and for climatological studies. 
 Level 3 data are the most widely distributed to the scientific community and are 
available from various archive sources. This level may contain a large number of parameters, 
including, for example, Chl a concentration from various algorithms, chlorophyll fluorescence 
efficiency, total suspended matter, and SST with quality levels. All data are gridded using a 
cartographic projection and often are averaged temporally and spatially. Level 4 includes 
higher-level composite products that require parameters and model applications not 
necessarily extracted from SRS (e.g. primary production, composite SST). To use the most 
relevant SRS product for any scientific application, it must be emphasized that numerous 
uncertainties linked to the intrinsic nature of the physical models result in consequent 
uncertainties in the geophysical variables obtained, even more so for those derived through 
empirical algorithms. Table 3 gives an indication of the typical errors associated with the 
most common SRS geophysical parameters. For many of these, the companion information 
is often available as gridded values, in the form of either quality flags or a root-mean-square 
(RMS) error estimate associated with each value. This proviso is even more important for 
level 4 products, such as primary production, where the errors of component parameters are 
accumulated. Furthermore, many models incorporate empirical or semi-analytical 
relationships based on regional datasets that cannot be extrapolated spatially. Even 
commonly used generic models display variable errors in space and time that users might 
consider. 
 Level 2–4 processed data are sometimes still in raw binary formats that come with 
external information about the data structure, but currently they are more often available in 
self-describing machine-independent formats. The latter are in two main formats: the HDF 
(Hierarchical Data Format) from the HDF Group of the University of Illinois and the NetCDF 
(Network Common Data Form) from the University Corporation for Atmospheric Research 
(UCAR). Both are open standards and are dedicated to multidimensional gridded datasets. 
They come with their own software libraries; in their latest version (HDF5 and NetCDF4), 
they are quite similar and have been adopted by a large number of research institutions and 
space agencies. Several dedicated viewers exist for both formats and most computing 
platforms and programming languages, such as R, IDL/GDL, Matlab/Octave, and Ferret 
include libraries for reading them. Current projects in computer science aim to define 
standard formats and protocol accesses to reconcile the different SRS data formats through 
Unidata’s Common Date Model (http://www.unidata.ucar.edu/software/netcdf-java/CDM/). 
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SRS and the detection of mesoscale oceanographic features 

In this subsection, we focus on state-of-the-art methods for detecting mesoscale 
oceanographic structures, such as fronts, eddies, and filaments that span spatio–temporal 
scales from one to hundreds of kilometres and from hours to weeks. Mesoscale structures 
are important ecosystem features, often associated with enhanced productivity and fish 
aggregation (Olson et al., 1994; Bakun, 2006). They were initially studied with conductivity–
temperature–depth surveys, acoustic Doppler current profilers and ocean circulation models; 
then more directly and synoptically by SRS. SRS observations are also at the origin of 
feature-oriented regional modelling of oceanic fronts (Gangopadhyay and Robinson, 2002). 
 SRS for the detection of oceanic structures, using the thousands of easily accessible 
global, daily, satellite images, is a powerful tool for studying the spatio–temporal patterns of 
mesoscale activity in the ocean. Several objective methods have been developed for the 
automatic detection of mesoscale SST frontal activity. The two prevailing approaches 
include: (i) gradient-measurement and (ii) histogram-based methods. 
 Horizontal-gradient approaches are suited for the detection of fronts where the use of 
time- averaged data and a spatial resolution higher than 4 km are appropriate (e.g. offshore 
fronts). Typical edge-detection methods are discrete approximations of an image-intensity-
function gradient (Canny, 1986). However, gradient approximations can reveal spurious 
oceanic structures when applied to noisy, partially uncorrected data (Holyer and 
Peckinpaugh, 1989). New gradient-based algorithms have been developed to improve front 
detection and preserve frontal structure using noise-reduction filters (Oram et al., 2008; 
Belkin and O’Reilly, 2009). 
 The histogram-based method is the basis of the single-image edge-detection (SIED) 
algorithm of Cayula and Cornillon (1992), which relies on boundary detection between water 
masses. This algorithm is robust and distinguishes genuine ocean fronts from spurious 
gradients on SST images (Miller, 2009). It has been the most widely and successfully applied 
front-detection method (Kahru et al., 1995). The image is divided into independent 
subwindows and the probability of an edge occurrence is evaluated in each subwindow by 
detecting bimodality in an SST histogram. The method therefore finds the threshold 
temperature that best separates two water masses (Cayula and Cornillon, 1992; Cayula and 
Cornillon, 1995). Although the SIED algorithm performs well, Nieto (2009) improved edge 
detection by more than 100% in upwelling areas using sliding windows and an optimal 
combination of the detected segments considered as fronts, allowing the identification of 
most fronts in the Canary and Chilean Humboldt systems (Figure 3). In addition to gradient 
and histogram-based methods, other techniques, including the entropic (Gómez-Lopera et 
al., 2000), Canny edge detector (Canny, 1986; Castelao et al., 2006), and neural network 
approaches (Tejera et al., 2002) have been applied for detecting SST fronts. 
 Although research has focused on thermal fronts, the detection of ocean-colour fronts 
has been limited (Miller, 2004; Royer et al., 2004). Chlorophyll fronts arise from physical, 
chemical, and biological interactions within complex spatial patterns and features, such as 
blooms, which are more difficult to detect than SST fields (Belkin and O’Reilly, 2009); 
nevertheless, the same edge-detector methods can be applied. Thermal and ocean-colour 
fronts can also be combined into a single map for assessing biophysical interactions in 
specific ecosystems (Miller, 2004). 
 SRS data have also been used to detect mesoscale circulation features, such as 
filaments, eddies, and river plumes. Based on the SIED algorithm (Cayula and Cornillon, 
1992), Nieto (2009) recently developed a method for identifing upwelling filaments based on 
their orientation and distance from the coastline. Mesoscale indicators related to coastal 
upwelling, such as frontal intensity, filament, wind-induced turbulence, upwelling enrichment, 
and coastal retention indices allow investigation of their relationships with fish abundance 
(Faure et al., 2000). Remotely sensed SSH data provide information on sea level anomalies 
(SLA) and geostrophic currents that blend pressure-gradient forces and the Coriolis force. 
SLA and geostrophic currents allow identification of cyclonic and anticyclonic eddies (Tew-
Kai and Marsac, 2010). Several indicators, such as vorticity, stretch, shear, and deformation 
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rate (Testor and Gascard, 2005) can then be computed to describe eddies. The Okubo–
Weiss criterion has been widely used to determine the relative contribution of distortion vs. 
vorticity. Finite-size Lyapunov exponents (FSLE) permit the detection of Lagrangian coherent 
structures that cannot be detected with the Okubo-Weiss criterion (d’Ovidio et al., 2004; Tew-
Kai et al., 2009). The eddy kinetic energy (EKE) indicates the intensity of the water flow and 
can be considered a proxy for the boundary between two eddies (Heywood et al., 1994). All 
of these indicators allow the characterization of fronts or mesoscale eddies, where the 
energy of the physical system is transferred to biological processes (Olson et al., 1994; 
Bakun, 2006). Several studies have also focused on estuarine areas and associated river 
plumes, which constitute essential habitats sustaining part of the life cycle of coastal species, 
particularly nursery grounds (Beck et al., 2001). SRS data have been used to detect the 
spatial extents of plumes, either from the SST signature (Jiang et al., 2009; Otero et al., 
2009) or from ocean-colour-derived properties (Molleri et al., 2010). The November 2009 
launch of the Soil Moisture and Ocean Salinity (SMOS) satellite, which directly derives 
salinity from microwave radiometer measurements (Font et al., 2010), could be instrumental 
in detecting plume extension without using products dependent on biological processes, 
such as ocean colour. 
 In summary, recent advances in satellite sensors and technology allow the scientific 
community access to a variety of datasets from different wavelengths of the light spectrum. 
These data have a global coverage at fine spatial and temporal scales and are available in 
open-access formats that can be imported into most statistical software. Numerous products 
have been derived from the raw satellite data, including important variables, such as SST, 
SSH, and Chl a concentrations. These products are being used to improve our 
understanding of mesoscale features important in the biological and ecological functioning of 
marine ecosystems. The study of the mesoscale ocean features, such as fronts, filaments, 
eddies, Lagrangian coherent structures, and river plumes, is facilitated by a variety of 
techniques and algorithms that are available or under development. Detection, study, and 
understanding of these features is now an important component of operational oceanography 
and ecosystem modelling. 
 
 
3. Identifying habitat preferences for marine fish populations 

 
SRS measurements are the basis for a large set of indicators describing the oceanographic 
conditions that determine preferred habitats for feeding, spawning, maturation, and predator 
avoidance. The physical and biological properties of pelagic habitats affect the distribution 
and abundance of fish populations through environmental constraints on prey availability, 
larval survival, and migration (Cushing, 1982; Bakun, 1996). In addition, oceanographic 
conditions may influence accessibility and vulnerability to fishing by modifying gear 
catchability (Bertrand et al., 2002). Initially used as fishery-aid products, SRS data are now 
essential to describing and understanding the habitats of marine species and their 
relationships with oceanographic conditions. 
 

SRS and fishery-aid products 

Interest in SRS for marine fish harvesting has been recognized since the advent of satellite 
sensors measuring water temperature and colour in the early 1960s. Over the 1970s and 
1980s, several national scientific projects (reviewed by Santos, 2000) were conducted to (i) 
assess the potential of airborne and satellite oceanographic data for forecasting favourable 
fishing grounds and (ii) develop distribution services to fishing vessels for remotely sensed 
products (Montgomery, 1981; Petit, 1991; Stretta, 1991). Support of fishing activities with 
public funds was advocated to facilitate the development and optimal utilization of fishery 
resources by decreasing fuel costs, sea time, and ship maintenance costs (Santos, 2000). 
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Commercial products derived from satellite imagery as an aid to fish harvesting expanded 
rapidly and currently include SSH anomaly and ocean-colour data, in addition to 
meteorological and SST maps. SRS data are provided as processed datafiles in near real 
time (one to a few days from acquisition). The information is layered with computerized 
navigation and geographic information systems, allowing fishers to visualize maps and store 
data (including their own) in a user-friendly way (Simpson, 1992). With the recognition that 
overfishing is a global phenomenon (Pauly et al., 2003; Worm et al., 2009), applied fishery 
research has moved increasingly from fishery-aid projects toward ecological and 
conservation issues; the exception being countries with developing fisheries (Solanki et al., 
2005). 
 

SRS and the relationships between marine resources and oceanographic conditions 

The two major ecological processes underlying the relationships between oceanographic 
features and marine resources in the literature are: (i) prey availability and (ii) development, 
growth, and survival of early life-history stages. Several studies since the 1980s have 
investigated the relationships between oceanographic conditions derived from SRS data and 
fisheries for large and small pelagic fish, shrimps, cephalopods, and sharks in the world 
oceans (Maul et al., 1984; Klimley and Butler, 1988; Herron et al., 1989; Yang et al., 1995; 
Bigelow et al., 1999; Valavanis et al., 2002; Fuentes-Yaco et al., 2007; Ouellet et al., 2007; 
Kumari and Raman, 2010). A large set of SRS indicators have been used to describe the 
physical properties of water masses (e.g. SST) and dynamic oceanographic features, such 
as eddies, filaments, and upwellings, at various spatio–temporal scales (Table S1; Lasker et 
al., 1981; Saitoh et al., 1986; Fiedler and Bernard, 1987; Demarcq and Faure, 2000). Overall, 
Chl a concentration and SST have been the most frequent indicators used to explain fish 
occurrence and abundance, generally based on catch per unit effort (cpue). In all cases, Chl 
a concentration, used to describe habitat productivity, was derived from Coastal Zone Colour 
Scanner (CZCS) and SeaWiFS data for 1979–1986 and 1997–2009, respectively. SST was 
derived from the Advanced Very High Resolution Radiometer (AVHRR) data that represent 
the most consistent time-series of SST available on a long-term and global scale. AVHRR-
SST products were used to compute SST means, temporal changes, and gradients, as well 
as to detect thermal fronts (Belkin and O’Reilly, 2009). Indicators describing the occurrence 
and dynamics of oceanic structures, such as front distance and upwelling intensity, used as 
early as the 1980s, recognized the strong physical–biological interactions within mesoscale 
features that provide favourable conditions for marine organisms (Olson et al., 1994; Bakun, 
2006). Methods for analysing the functional relationship between pelagic habitats and marine 
resources have evolved from qualitative approaches consisting of overlaying cpue data on 
oceanographic maps (Laurs et al., 1984) to multiple linear and non-linear regression 
methods (Zainuddin et al., 2008). However, despite the increasing complexity of statistical 
approaches, few studies account for spatial and temporal autocorrelations when relating 
gridded (e.g. Chl a fields) and point data (e.g. cpue). Statistical tools for analysing spatial 
processes are available and should be used when possible (Royer et al., 2004). 
 Epipelagic predators, such as tuna (Thunnus spp.) and tuna-like species, are a 
particular focus of analyses involving SRS data. The strong relationship between tuna 
abundance and mesoscale structures, such as upwelling filaments, was recognized early 
and it is explained mainly by the associated enrichment and increases in tuna prey, such as 
euphausiids (Laurs et al., 1984; Maul et al., 1984; Fiedler and Bernard, 1987). Tunas are 
continuous swimmers, constantly seeking concentrated prey patches to satisfy their high 
energy requirements (Olson and Boggs, 1986). Mesoscale structures enhance productivity 
and forage opportunities through complex physical mechanisms (Olson et al., 1994). In 
particular, eddies favour the concentration and aggregation of the micronekton that 
constitutes the main prey of tunas (Young et al., 2001; Sabarros et al., 2009). Other analyses 
have focused on the influence of oceanographic conditions on larval survival based on 
recruitment indices, particularly in upwelling areas (Demarcq and Faure, 2000; Faure et al., 
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2000). In such cases, the underlying processes are described by the Bakun ocean triad, i.e. 
enrichment–retention–concentration (Bakun, 1996, 2006). Such bottom–up control might 
result in non-linear dynamics (Cury and Roy, 1989); appropriate statistical methods, such as 
generalized additive models, should be used accordingly (Faure et al., 2000). 
 

SRS and preferred habitats during migrations 

The field of biologging, i.e. the deployment of recording and transmitting tags on animals to 
study their movements, behaviour, physiology, and habitat usage, has rapidly expanded over 
the past decade, because of advances in miniaturization of electronic tags (Bograd et al., 
2010). SRS oceanographic data combined with tracking data can greatly increase our 
understanding of an animal’s habitat and behaviour. SRS data provide both the meso- and 
larger-scale oceanographic context for each available animal position and time. The types of 
SRS data most commonly used with animal tracking include SST, surface Chl a, and 
geostrophic currents. Before linking tracking and SRS data, it is preferable to estimate the 
most likely tracks using a state–space modelling approach (Patterson et al., 2008). In 
addition, improved tag position data is obtained by including satellite-derived SST in the 
estimation process (Nielsen et al., 2006). A recently developed alternative modelling 
approach validated with GPS data consists of bootstrapping random walks generated from 
the probability distributions of animal locations and trajectories for the geolocation of tagged 
animals (Tremblay et al., 2009). The method provides a flexible framework for including 
remotely sensed datasets and has the advantage of being easier to implement than state–
space models. 
 SSTs are the most commonly SRS data used in combination with tagging data. 
These can be analysed to determine whether an animal uses mesoscale features, including 
temperature fronts and cyclonic eddies, and to characterize its habitat regarding preferred 
SSTs (Polovina et al., 2000; Kobayashi et al., 2008). For loggerhead sea turtles (Caretta 
caretta), preferred habitat north of Hawaii constitutes a temperature and chlorophyll front 
delineated by a SST of 18°C. Daily maps of probable turtle habitat, defined by a narrow band 
around the 18°C SST isotherm, are distributed to longline fishers to help them avoid the area 
and reduce turtle bycatch (Howell et al., 2008). 
 SRS chlorophyll data often serve as a valuable proxy for water mass boundaries and 
may identify upwelling associated with mesoscale features (see section on detecting these 
features). The range of surface chlorophyll values used by an animal may help characterize 
its habitats (Polovina et al., 2000; Kobayashi et al., 2008). For example, by combining turtle 
tracking with SeaWiFS chlorophyll data, Polovina et al. (2001) characterized and described 
interannual changes in the position and dynamics of a North Pacific basin-wide chlorophyll 
front, the Transition Zone Chlorophyll Front (TZCF), which has proven to be an important 
migration and forage habitat for a variety of species. 
 Geostrophic currents can be estimated from satellite altimetry and are especially 
useful in identifying major ocean currents, mesoscale eddies, and meanders (Polovina et al., 
2006, see section on mesoscale structures). For example, SRS chlorophyll and altimetry 
together provided insight into the importance of the Kuroshio Extension Current as a key 
forage habitat for juvenile loggerhead turtles (Polovina et al., 2006). When sufficient tracks 
are available, SRS oceanographic and tracking data can be integrated in statistically rigorous 
ways. For example, one approach to defining an animal’s habitat begins by selecting a 
number of relevant environmental variables. Then, for each variable, statistical tests are 
conducted to determine whether the frequency distribution occupied by the animal is 
statistically different from the distribution constructed from an envelope around its track 
(Kobayashi et al., 2008). For variables with significant differences between the two 
distributions, it can be inferred that the animal is selecting a subset of the available range of 
values; that subset is then used to define its habitat (Kobayashi et al., 2008). A second 
statistical approach determines whether an animal is actively associating with an ocean 
feature, such as an eddy or front. This approach constructs the frequency distribution of the 
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distance between the animal and the feature for all available animal positions. A 
randomization test then determines whether this distance is statistically significant 
(Kobayashi et al., 2010). 
 In summary, understanding and identification of habitat preferences is crucial to 
management and conservation of marine populations. Initially used as fishery-aid products, 
SRS data provide an invaluable source of information for unveiling the relationships between 
marine resources and oceanographic conditions. Since the advent of SRS data acquisition, 
many studies have focused on the impact of the physical environment on marine species 
through the relationships between physical indicators and prey availability and the 
development, growth, or survival of early life stages. The relationship between thermal fronts 
and the location of large pelagic species has been demonstrated since the early 1980s. SRS 
data also cover a wide range of applications for improving our knowledge of marine species 
ecology, in particular their movements and migrations. The combination of data collected by 
electronic tags and SRS-derived oceanographic data has improved our understanding of the 
impact of oceanic features on marine species’ behaviours while foraging and migrating. 
 

4. Satellite remote-sensing data for ecosystem analyses and models 

 
SRS and ocean partitioning 

An ecosystem can be defined as a system of complex interactions of populations between 
themselves and their environment (Garcia et al., 2003). The first step in any ecosystem 
approach to fisheries management (EAFM) is the definition of the spatio–temporal extent of 
the system of interest. A major objective of the discipline of biogeography is to investigate the 
structure, composition, and links between different ecosystems of interest to regroup them at 
larger scales (Lomolino et al., 2005). Consequently, biogeography requires a large amount of 
data that are homogeneously distributed in space and time (Ducklow, 2003). Because of the 
dynamic nature of the oceanic realm and logistic difficulties of sampling the marine 
environment (Richardson and Poloczanska, 2008), advances in marine biogeography have 
been constrained by data availability and coverage (Longhurst, 2007). Several attempts were 
made in the past century to partition the global ocean using biological observations (Ekman, 
1953; Margalef, 1961) and physical variables (Cushing, 1989; Fanning, 1992). It was only in 
the mid-1980s that Yentsch and Garside (1986) suggested that major oceanographic 
patterns might be approximated by primary production derived from satellite observations. 
Based on this hypothesis, the CZCS dataset and parameters known to control algal blooms 
were used to implement a methodology for defining ecological units (Sathyendranath et al., 
1995). Subsequently, Longhurst et al. (1995) proposed partitioning the global ocean into four 
biomes, subdivided into approximately 50 biogeochemical provinces (BGCP), each province 
representing an ecological entity with specific and predictable environmental conditions 
 During the past decade, Longhurst-type partitioning has been the dominant paradigm 
in marine biogeography. Several analyses have questioned the relevance of BGCP 
provinces by focusing on physical conditions and particular components of the pelagic 
foodweb, i.e. in situ temperature and salinity (Hooker et al., 2000), bacterial abundance (Li et 
al., 2004), plankton abundance, composition, and diversity (Gibbons, 1997; Beaugrand et al., 
2002; Alvain et al., 2005), surface ocean Chl a (Hardman-Mountford et al., 2008), and 
distribution of top predators (Fonteneau, 1998). Overall, results revealed a good match 
between the spatio–temporal distribution and composition of marine organisms and 
Longhurst’s provinces. The emergent hypothesis was that the physiological and behavioural 
characteristics of marine organisms were adapted to their ecological provinces; the physical 
and biogeochemical environment may constrain the abundance and production of lower 
trophic levels in ways that affect the entire foodweb (Beaugrand et al., 2002). The use of 
ecological provinces has been proposed as a useful tool for time-series analysis, 
management, and conservation planning at global scales (Pauly et al., 2000). Alternative 
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partitions have also been proposed for economic and conservation applications in coastal 
regions (Spalding et al., 2007; Sherman et al., 2010). In all cases, however, static partitioning 
appears too simplistic for operational management of the dynamic marine environment, 
which can respond quickly to changes in physical forcing (Platt and Sathyendranath, 1999; 
Cullen et al., 2002). Recent work, based on SRS data in conjunction with other datasets, has 
attempted to implement dynamic biogeography at regional scales (Devred et al., 2007; G. 
Reygondeau, pers. comm.; Figure 4). These methods display promise in tracking spatial 
changes in ecosystem boundaries and might eventually be able to delineate regions 
displaying early signs of anthropogenic pressures requiring management measures. The use 
of biogeography as a spatial reference to identify and monitor specific ecosystems appears 
to be a useful tool for ecosystem management and biodiversity conservation (Pauly et al., 
2000). 
 

SRS and ecosystem carrying capacity 

The relative role of top–down (consumer-driven) and bottom–up (resource-driven) controls in 
regulating animal populations and structuring ecosystems has been a subject of debate 
among ecologists for some time. Pacific–Atlantic cross-system comparisons reveal evidence 
of bottom–up control through the dependence of long-term fishery production on SRS-
derived phytoplankton production (Ware and Thomson, 2005; Frank et al., 2006; Chassot et 
al., 2007). At global scales, i.e. across large marine ecosystems (LMEs), SRS-derived 
primary production estimates are also related to fisheries catches (Chassot et al., 2010; 
Sherman et al., 2010). The relationship between primary production and catches is complex 
and varies among LMEs; a large portion of the variance results from differences in life 
histories (and hence productivities) of fish (as indexed by maximum length), ecosystem type, 
and fishing pressures (Chassot et al., 2010). Ecosystems fished at unsustainable levels are 
less efficient at converting primary production into fisheries catches and the exploitation of 
smaller-bodied (lower trophic level) fish increases the catch per unit of primary production. 
The importance of the potential link between primary and fisheries production was realized 
more than half a century ago, but the recent detailed exploration of this issue was only made 
possible by the advent of SRS ocean-colour and primary productivity. Past large-scale 
studies relied on in situ datasets resulting from different sampling and processing methods 
and were generally characterized by low spatio–temporal sampling coverage. SRS of the 
marine environment is now fundamental to cross-trophic-level analyses of ecosystem 
production, structure, and function only because of the availability of a comprehensive, fine-
scale, and consistent sampling framework (Platt et al., 2007). 
 

SRS and ecosystem models 

Ecosystem models are considered a necessary part of EAFM implementation (Cury et al., 
2008). Estimation of primary production is common to most modelling approaches, as an 
integral part of the model or as a forcing function. Primary production is a typical level 4 SRS 
product requiring the use of non-SRS parameters, such as mixed-layer depth and 
photosynthetically active radiation, in addition to SRS Chl a (and often SST) in a model 
(Longhurst et al., 1995; Behrenfeld and Falkowski, 1997). SRS-derived primary production 
has been used as an initial forcing at the base of the modelled foodweb to investigate energy 
transfers from lower to upper trophic levels. For instance, an Ecopath with Ecosim (EwE) 
model was applied to the eastern tropical Pacific to explore the effects of climate change on 
open-sea communities (Watters et al., 2003). Size-spectrum modelling approaches have 
been used to estimate fish production and biomass in the absence of fishing, based on 
satellite-derived primary production allocated to phytoplankton weight classes, to track 
energy fluxes through marine foodwebs at global scale (Jennings et al., 2008). These size-
spectra approaches, coupled with SRS Chl a and SST data, have great power for exploring 
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the relative impacts of fishing against an unfished baseline at an ecosystem level (Jennings 
and Blanchard, 2004), as well as elucidating biogeochemical processes (Wilson et al., 2009). 
 An alternative approach is to estimate primary production using coupled physical–
biogeochemical models (for a review, see Plagányi, 2007). This has the potential for 
reconstructing past (pre-SRS) and forecasting future ocean states, in particular to address 
the potential effects of climate change. However, SRS products are again essential, either for 
model initialization, parameter estimation of the biogeochemical model from ocean colour 
data (Friedrichs, 2002; Huret et al., 2007;), or for assimilation into operational systems. So 
far, the latter has happened only with SST and SSH (Cummings et al., 2009). As 
biogeochemical and ecological considerations are incorporated into ocean data assimilation 
systems (Brasseur et al., 2009), different SRS products, allied with automated in situ data, 
will become a major source of information for these operational systems and will help meet 
the challenges of an EAFM. 
 To conclude, the complexity of marine ecosystems and the large spatio–temporal 
scales involved in their functioning are difficult to grasp using point and regional 
observations. SRS provides daily high-resolution data at global scales not feasible by any 
other means. Such a synoptic view has allowed ocean partitioning based on objective 
physical and biological criteria and specific functioning. The continuing daily production of 
satellite images can also be used to track temporal variations in the marine provinces and 
predict how their structure and spatial extent might be affected by climate change. SRS data 
and their derived products, such as temperature and primary production, are also invaluable 
sources of information as inputs for ecosystem models that are fully part of the 
implementation of an ecosystem approach to fisheries management. 
 

5. Discussion 

 
Computing SRS-derived indicators for fishery science 

SRS data have been used in fishery sciences since the availability of the first SST and colour 
datasets at the end of the 1970s. Over time, the diversity and resolution of datasets and 
SRS-derived indicators have increased, allied with our understanding of the complex spatio–
temporal relationships between oceanographic conditions and individual, population, and 
community dynamics (Polovina and Howell, 2005). However, the majority of the published 
papers reviewed here rely on short data time-series and relatively few remotely sensed 
indicators: SST and primary production derived from AVHRR and SeaWiFS sensors, 
respectively. Some recent studies included indicators derived from several SRS sources and 
used non-linear statistical models (Zainuddin et al., 2008; Tew-Kai and Marsac, 2010). New 
indicators have been proposed to characterize the oceanographic features involved in the 
ecological processes determining fish distribution and occurrence, e.g. for feeding and 
spawning; these include the duration of spring blooms, the size composition of 
phytoplankton, and the degree of persistence and recurrence of oceanic structures (Palacios 
et al., 2006; Platt and Sathyendranath, 2008). These indicators aim to describe better the 
ecological processes of interest, e.g. for northern pink shrimp (Pandalus borealis), they 
elucidate the mechanisms governing egg hatching times and recruitment in the North Atlantic 
(Koeller et al., 2009). Although the period for which SRS data are available now spans 12 
and 30 years for Chl a  and SST, respectively, few studies deal with such temporal scales. 
However, longer periods with contrasting environmental conditions and fish abundance are 
required to derive robust relationships between oceanographic features and the population 
dynamics of marine species. Future studies should also account better for the spatial 
dimension of satellite SRS data by making use of appropriate geostatistical methods. 
 Different satellites, sensors, processing techniques, and models can be used to 
compute SRS indicators. Comparative analyses of remotely sensed Chl a and depth-
integrated primary production derived from different models and sensors have revealed large 
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differences in processed data on both global and regional scales (Carr et al., 2006; 
Friedrichs et al., 2009; Djavidnia et al., 2010). However, throughout the literature reviewed, 
sensitivity analyses were never conducted to assess the robustness of the relationships 
relative to the method used to compute the various indicators. In addition, information on the 
uncertainties associated with SRS-processed data, e.g. standard deviation around Chl a 
(Mélin, 2010), was never provided and remotely sensed indicators were always treated as 
data measured without error. Although cpue was used to describe marine population 
abundance, these data are often characterized by large uncertainties and they might not 
reflect fish abundance accurately, particularly for pelagic species (Hilborn and Walters, 
1992). Future studies using SRS data should recognize all sources of uncertainty associated 
with SRS and population abundance indicators and assess the sensitivity of results to 
uncertainty in input parameters. 
 

Including the vertical dimension in SRS approaches 

SRS data have mainly been used to describe surface environmental conditions and detect 
bidimensional oceanographic structures when cloud cover and water turbidity are not 
restrictive. For large pelagic fish, direct observations using archival tagging and ultrasonic 
transmitter data have corroborated extended vertical movements in the water column that 
are mainly related to feeding behaviour (Bertrand et al., 2002). Consequently, investigations 
of SST horizontal gradients and large pelagic fish distribution could result in spurious results, 
because SST might have no direct influence on movements and aggregations (Brill and 
Lutcavage, 2001). Here, using SRS Chl a and water turbidity might be more relevant, 
because they account better for the vertical dimension of fish habitats (Brill and Lutcavage, 
2001). Takano et al. (2009) recently developed an empirical method to estimate the three-
dimensional structure of physical features in time and space based on satellite altimetry data 
and in situ temperature and salinity profiles. The method demonstrated good agreement 
between observed and estimated isothermal depths and was useful for predicting the vertical 
habitat utilization of bigeye tuna (Thunnus obesus). 
In open-ocean ecosystems, pelagic environmental conditions derived from SRS often reflect 
prey distribution and abundance that are generally poorly known and difficult to monitor. 
Information on mid-trophic-level prey in open-ocean ecosystems can be collected with (i) 
scientific trawl and acoustic surveys, (ii) diet composition of predators that can be used as 
biological samplers of micronekton, and (iii) outputs from end-to-end ecosystem models. 
Investigating the relationships between SRS-derived oceanographic conditions and prey 
might then provide useful insights into predator habitat preferences. 
 Ecosystem models that use SRS and in situ data as inputs include the vertical 
dimension and overcome the limitations of surface-restricted SRS data. SRS data have now 
become a major source of information for ocean observation programmes, such as the 
Global Ocean Observing System (GOOS), necessary for operational oceanography in an 
EAFM context. A better understanding of ocean dynamics from environment to fisheries at a 
global scale requires the ability to combine data collected with a wide range of sensors, both 
in situ and remote, deployed on both mobile and stationary platforms. The development of 
common data formats and access protocols, such as SensorML (see 
http://www.opengeospatial.org/projects/groups/sensorweb), is instrumental in addressing 
these issues. 
Studies combining SRS-detected mesoscale structures with three-dimensional ocean 
circulation models may also further understanding of the physical mechanisms involved in 
the generation of oceanographic features, such as eddies and meanders, and the associated 
enhanced productivity (Kurien et al., 2010). 
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SRS and fisheries management 

In the context of an EAFM, SRS of the marine environment provides a major source of 
information on the interactions between fish species and their environment. Including 
environmental effects on fish catchability, abundance, and distribution in the process of 
abundance index estimation would be a first step to improving scientific advice on the state 
and management of fish stocks. Identifying spawning and/or feeding grounds based on SRS 
is also a prerequisite for spatially oriented management measures, such as the 
implementation of marine protected areas (Druon, 2010). In the Pacific, the Hawaii-based 
swordfish (Xiphias gladius) longline fishery was closed in 2006, because of excessive 
loggerhead sea turtle bycatch rates. Knowledge of turtle habitats gained from tracking and 
SRS data (see above) was used to assist fishers in avoiding areas with high turtle bycatch. 
Launched in 2006, TurtleWatch provided three-day SST composite maps and weekly ocean 
currents estimated from SRS altimetry for the fishing ground and the region with the highest 
probability of loggerhead and longline gear interactions (Howell et al., 2008; Figure 5). 
TurtleWatch was revised in 2008, based on experience with the product in 2007, feedback 
from fishers, and analysis of 2007 fishery and bycatch data; revisions reflect the temporally 
dynamic feature of the high bycatch zone. 
 

 The ability to track and predict the spatial dynamics of marine species using key 
environmental parameters will likely become increasingly important as climate change alters 
phenological and geographical distribution patterns of many marine populations (Planque et 
al., 2008). Consequently, many habitat and niche models have been developed in the past 
few years to depict and predict the spatial distribution and temporal fluctuations of keystone 
species. Environmental-niche models attempt to reproduce the current distribution and 
temporal fluctuations of a given species by estimating suitable physical and biological 
conditions. SRS constitutes an essential data source for niche- and habitat-model 
implementation by providing worldwide coverage at high temporal resolutions of key 
environmental parameters (e.g. temperature) affecting marine organisms. Chl a is currently 
the only biotic parameter monitored at the macroscale; consequently, several studies have 
attempted to include it in environmental-niche models (Polovina et al., 2001). However, 
because of several inherent biases in SRS data, this remains a challenging task 
(Reygondeau and Beaugrand, 2010). Recently, Cheung et al. (2009, 2010) have used model 
outputs derived from post-processed SRS data to predict the effects of climate change on 
marine biodiversity and on maximum fisheries catch potential under some Intergovernmental 
Panel on Climate Change (IPCC) scenarios. Such approaches could help implement 
adaptive fisheries management plans that respond to predicted changes in the spatial 
distribution and productivity of fish populations. 
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Tables 

 
Table 1. Main ranges of spatial, temporal, and spectral resolutions used in terrestrial and 
global environment, including marine and atmospheric domains. 
 
 

Resolution Environment Low resolution Medium resolution High resolution 

Terrestrial 30–1000 m 4–30 m 0.4–4 m 
Spatial 

Marine 10–50 km 2–10 km ≤1 km 

Terrestrial >16 d 4–16 d 1–3 d 
Temporal 

Marine >5 d 1–5 d ≤1 d 

Spectral  - 
1 channel (e.g. 
panchromatic 

3–10 channels ≥10 channels 
(hyperspectral)  
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Table 2. Main sensors and datasets of interest for oceanographers and fishery scientists. All products are level 3 gridded, except explicit mention. 
 

Parameter Institution Sensor Platform Temporal Resolution Spatial resolution Time period
SST NASA OBPG MODIS EOS AQUA d, wk, month, Clim 9 km, 4.5 km 2002/07 →
SST NASA PO-DAAC Pathfinder V5  NOAA AVHRR d, wk, month, season, Clim. 4.5 km 1985/01 → 2005/12 
SST NASA PO-DAAC Pathfinder V4, V5 NOAA AVHRR wk, month, Clim. 9 km 1985/01 → 2003/08 
SST OSI-SAF EUMETSAT SEVIRI MSG, GOES-east 1/10°, 1/20° 2004/07 →
SST OSI-SAF EUMETSAT METOP AVHRR 1/20° 2007/07 →
SST OSI-SAF EUMETSAT METOP (Level 2) AVHRR 1 km 2009/11 →
SST NASA REMSS d, 3-d, wk, month, Clim. 1/4°
SSS ESA CNES MIRAS (Level 1/2) SMOS 10-30 d 2010/01 →

NASA OBPG MODIS EOS AQUA 4 km 2002/07 → 
NASA OBPG SeaWiFS SeaStar 8-d, month, Clim. 9 km 1997/12 →
NASA OBPG MODIS (Level2) EOS AQUA d, 5 mn orbit 250 m, 500 m, 1 km 2002/07 →

ESA GLOBCOLOR MERIS ENVISAT d, wk, month 300 m, 1 km 2002/03 →
IFREMER CERSAT 8-d, month, Clim.

NASA REMSS QuickScat Seawind d, 3-d, wk, month 1/2° 1999/12 → 2009/11 
NASA REMSS 1/4°
CLS AVISO ERS-TOPEX-JASON 1/3° 1992/10 →

PP NASA OBPG 8-d, month 9, 18 km 1997/10 → 2008/12
PP NASA OBPG 8-d, month 9, 18 km 2002/07 → 2007/12

3–12 h, hourly
d, (2 d–1: 00–12 h)  

d (2 d–1), 3-mn granule orbit
AQUA AMSR-E 2002/08 → 

50–200 km
Chl a d (1 d–1)  3-d, 8-d, month, Clim.
Chl a
Chl a
Chl a
Wind direction QuickScat Seawind 1/2° 1999/12 → 2009/11
Wind direction

AMSR-E EOS-AQUA 2002/08 →
SLA d J-1,  J-6 (real time)

Seawifs (Chl a , PAR, SST) 
MODIS (Chl a , PAR, SST) 

Table 2. Main sensors and datasets of interest for oceanographers and fisheries scientists. All products are Level-3 gridded except explicit mention.

 
Clim. = climatology; SLA = sea level anomaly; SSH = sea surface height; SST = sea surface temperature; AMI = active microwave instrument; AMSR-E = advanced microwave scanning radiometer for 
the Earth Observing System; AVHRR = advanced very high rate radiometer; AVISO = archiving, validation, and interpretation of satellite oceanographic data; CERSAT = Centre ERS d’Archivage et 
de Traitement; CLS = collecte localisation satellites; DMSP = Defense Meteorological Satellite Program; EOS = Earth Observing System; ENVISAT = ENVIronmental SATellite; ERS = European 
remote sensing; ESA = European Space Agency; IFREMER = Institut Français de REcherche pour l’exploitation de la MER; GOES = geostationary operational environmental satellite; HDF = 
hierarchical data format; MODIS = MODerate resolution Imaging Spectrometer; MSG = Meteosat second generation; NASA = National Aeronautics and Space Administration; NetCDF = network 
common data form; NOAA = National Oceanic and Atmospheric Administration; OBPG = Ocean Biology Processing Group; OSI-SAF = Ocean and Sea Ice Satellite Application Facility; PAR = 
photosynthetically active radiation; PO-DAAC = Physical Oceanography Distributed Active Archive Centre; QuickScat = quick scattermetre; REMSS = remote sensing system; SeaWiFs = Sea-viewing 
Wide Field-of-view Sensor; SEVIRI = spinning enhanced visible and infrared imager; SSM/I = special sensor microwave/imager; TMI = TRMM microwave imager; TOPEX = The Ocean Topography 
Experiment; TRMM = Tropical Rainfall Measuring Mission. 
 
→ 



Table 3. Conceptual scheme of the data processing of the most common oceanic parameters, from the raw (level 0) data to geophysical variables 
(upper part) and post-processing of variables data to compute specialized level 4 parameters (lower part). PE = photosynthetic efficiency. 
 
 

Level 0 Parameter  ──> Level 1 Parameter  ──> Level 2/3 (Geophysical variable) 

Brightness temperature for two or three 
infrared wavelengths 

Calibration, inversion of Plank’s law, cloud masking, 
atmospheric correction (split-window algorithm) 

Sea surface temperature (SST; °C) 

Normalized water-leaving radiances at 
six wavelengths 

Calibration, band combination, cloud masking 
 

Chl a (mg m–3) 

Surface backscatter coefficient (σ) Cox and Munk (1954) model (σ = aWb) Windspeed and direction (if multidirectional 
measures) 

Sea surface height (SSH) Pseudogeoid (average signal) subtraction Sea level anomaly (SLA) 

   

 Input geophysical variables  Processing scheme ──> Level 4 metavariable 

Sea surface temperature (SST) Convolution (e.g. Sobel operator) Local SST gradient (°C km–1) 

Sea surface temperature (SST) Determination of limits between water masses Frontal positions 

Chl a, photosynthetically available 
radiation PAR, P–E curve 

Equation of water attenuation and P–E relationship Primary production (mg C m–2 d–1) 

Sea level anomaly (SLA) Application of baroclinic instability Geostrophic currents 
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Figures 

 

 
 
Figure 1. Typical processing steps of a thermal signal measured by a satellite remote-
sensing sensor according to its physical transformations. Case of sea surface temperature 
(SST) measured by the AVHRR sensor. 



 
 
Figure 2. Example of daily sea surface temperature (SST) products over the Atlantic Ocean 
on 18 June 2010 from three thermal-infrared sensors: (a) MODIS/AQUA, (b) 
AVHRR/METOP, (c) SEVERI/METEOSAT-MSG, (d) a microwave sensor AMSR/ADEOS, 
and (e) a 9 km resolution level 4 blended product from remote-sensing system combining 
two microwave sensors (AMSR and TMI) and one infrared sensor (MODIS). 
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Figure 3. Example of front detection of sea surface temperature (SST) in the Chilean 
Humboldt Current System based on the (a) single-image edge detection (SIED) of Cayula 
and Cornillon (1992) and (b) its modified version using sliding windows (Nieto, 2009). The 
modified algorithm allows for improving front detection by more than 100% in upwelling 
areas. 
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Figure 4. (a) Map of Longhurst (2007) biogeochemical provinces, and (b) map of the 
dynamic biogeochemical provinces for 2005. Dynamic biogeochemical provinces were 
derived from sea surface temperature based on the AVHRR series, SeaWiFS Chl a, salinity 
(World Ocean database), and bathymetry (GEBCO) datasets (G. Reygondeau, pers. 
comm.). 
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Figure 5. Example of the TurtleWatch mapping product identifying the region with the 
highest probability of loggerhead turtle and longline gear interactions, distributed daily in near 
real time to fishers. The area with the highest probability of loggerhead bycatch that fishers 
should avoid (delineated by solid black lines) represents the area between the 63.5 and 
65.5°F SST isotherms. 
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