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Abstract: 
 

The use of marker-based pedigrees is increasing in aquaculture breeding, and obtaining high 
assignment rates is necessary for practical use of this methodology. In this paper, we used 12 real 
parentage assignment datasets from three species (European sea bass Dicentrarchus labrax, 
common carp Cyprinus carpio and rainbow trout Oncorhynchus mykiss) to investigate the 
relationships between theoretical, simulated and real assignment power. We found out that there was 
a large decrease between the theoretical and the observed values, which we modeled in four 
independent steps: 1) from theoretical values to population-wise simulations (− 2.8% on average), 2) 
from population-wise simulations to true parent set specific simulations (− 2.6% on average), 3) from 
true parent-set specific simulations to observed values in offspring with valid genotypes at all loci 
(− 0.5% on average) and 4) from observed values in offspring with valid genotypes at all loci to 
observed values in all offspring sampled (− 2.4% on average). For all steps, we provide a regression 
equation which models the loss of assignment power, or at least a maximal practical value for the loss 
of assignment power. Finally, equations are provided to model the expected true assignment rate from 
the theoretical assignment power or from the combined exclusion probability of the loci used. They 
show that the expected true assignment rates are considerably lower than the theoretical ones, for 
example achieving 99% true assignment requires a theoretical assignment power of 99.999996%, 
while 95% already requires 99.9989% theoretical assignment rate. 
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1. Introduction 
 
Efficient selective breeding and estimation of genetic parameters require the knowledge of 
pedigrees to be able to estimate genetic variation between families and to compute reliable 
breeding values. As fish are too small to be tagged at hatching, the historical method to obtain 
this pedigree information is separate rearing of full-sibs families, which has been successfully 
used for breeding programmes in many species, like salmon, rainbow trout, tilapia, rohu carp, 
and Pacific white shrimp (see review in Hulata, 2001). Nevertheless, this method requires the 
use of many tanks for separate rearing of families, which represents a high investment. This 
method also carries the risk to bias family values with tank effects if the rearing procedures are 
not standardized enough. In the 1990’s, the possibility arose to use highly variable markers 
(microsatellites) to identify the parents of an individual, provided both the candidate and its 
parents were genotyped for a number of markers (Herbinger, 1995; Estoup et al., 1998). This 
allows to get rid of the family rearing units, or even to use mass spawning events to constitute 
the family structure needed. Several softwares for parentage assignment have been developed 
(e.g. Probmax, Danzmann, 1997; FAP, Taggart, 2007; Vitassign, Vandeputte et al., 2006; 
CERVUS, Kalinowski et al., 2007, for the most used in aquaculture). The feasibility of using 
marker-based pedigrees on a large scale has been demonstrated in several species [Norris and 
Cunningham (2004) in salmon, Fishback et al. (2002) in rainbow trout, Vandeputte et al. (2004) 
in common carp, Vandeputte et al. (2007) in European sea bass, Gheyas et al. (2009) in silver 
carp], and new marker sets are continuously being optimized for virtually every aquaculture 
species targeted for selective breeding. One of the most popular parameters to evaluate the 
efficiency of a given marker for parentage assignment is the exclusion probability, which is the 
probability of a randomly chosen parent-pair being genetically excluded as parents of a 
randomly chosen offspring, in case that parent pair did not produce that offspring (Dodds et al., 
1996; Villanueva et al., 2002). The exclusion probability can easily be estimated for each locus 
using the observed frequencies of the different alleles in the population. By combining the 
exclusion probabilities of the different loci in the marker set, it is possible to compute the 
combined probability of exclusion and to predict the assignment power of the marker set in the 
population (Villanueva et al., 2002). However, this prediction tends to be overly optimistic, 
especially when parents can contribute to several full-sibs families (as in nested or factorial 
mating designs, Villanueva et al., 2002). In aquaculture breeding, this is generally the case, as 
the use of parentage assignment allows the use of factorial mating designs, which are beneficial 
for genetic gain and conservation of genetic variance (Dupont-Nivet et al., 2006; Busack and 
Knudsen, 2007). This de facto generates contributions of the same parents to many different 
full-sib families. Many other factors like relatedness of parents, unequal family sizes, selection 
(which can generate both relatedness and unequal family sizes), genotyping errors, null alleles, 
mutations, linkage of markers, random allelic associations among loci, can also contribute to 
lower the assignment success of a marker set (Villanueva et al., 2002; Jones and Ardren, 2003; 
Vandeputte et al., 2006; Matson et al., 2008 ). Therefore, it is recommended to use simulations 
to assess the assignment power of marker sets, and some softwares allow this [Vitassign, 
Vandeputte et al. (2006), Cervus, Kalinowski et al. (2007), FAP, Taggart (2007), P-Loci, 
Matson et al. (2008)]. However, these simulations do not always take into account genotyping 
errors (Vitassing, FAP), null alleles or linkage (Vitassign, Cervus, FAP), or they require an 
estimated value for null alleles and/or genotyping errors (Cervus, P-Loci) which is not always 
possible to obtain. Additionally, the assignment success may depend on the assignment method 
chosen (exclusion for Vitassign, FAP and P-Loci, maximum likelihood for Cervus). 
When using parentage assignment in selective breeding, it is extremely important to obtain high 
and reliable assignment rates, as the cost of rearing and phenotyping candidates is high and 
every non assigned fish represents a net loss. In order to lower the cost of genotyping, it is often 
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proposed to use the minimal number of loci which are able to assign a given proportion of 
individuals. This is usually done using combined probabilities of exclusion (e.g. Lemos et al., 
2006; Slabbert et al., 2009) or simulations (e.g. Jerry et al., 2004, 2006; Dong et al., 2006). In 
some cases, when tested, it appears that the observed assignment rate from real field data is 
well below the expected value (Jerry et al., 2004; Dong et al., 2006; Slabbert et al., 2009). Then, 
it would be advisable to use more reliable estimates of the real assignment power of 
microsatellites. The use of multiplexed marker sets permits a significant decrease in the cost of 
analyses, allowing the use of more markers (Renshaw et al., 2006), but on the other hand, the 
development of a multiplex for commercial use is more complex than genotyping individual loci, 
so the multiplex should give high assignment rates in all circumstances, and if possible also in 
populations other than the one used to develop it. 
In this paper, we used accumulated published and unpublished information on genotyping of 
three species (rainbow trout, common carp, European sea bass), using different marker sets, in 
different laboratories, in different populations, to empirically study the differences between 
expected and real assignment rates, with the aim to propose decision rules on the number of 
markers to use to obtain a given level of assignment in practice. We tried to relate observed 
assignment power to the probability of exclusion, which has been demonstrated to be an 
adequate measurement of the power of a marker set in parentage assignment by exclusion 
(Wang, 2007) 
 
 
2. Material and methods 

 
2.1. Animals and marker frequency data 
 
Sea bass, rainbow trout and common carp from several selection and/or genetic parameters 
estimation experiments were used (Table 1). All matings studied were full (FF) or partial (FS) 
factorial matings, with all parents known and genotyped. Depending on the experiments, 
animals were genotyped by different labs (commercial and research) for different sets of 
microsatellite markers. For each experiment, the type of broodstock (wild, domesticated, 
selected) is indicated (Table 1). 
 
2.2. Estimation of assignment power 
 
For each marker set in each population studied, allele frequencies for each marker were 
calculated from parental genotypes. These frequencies were used to compute parent 
pair exclusion probabilities at each locus, then the combined probability of exclusion 
across all loci for infinite numbers of parents and offspring, as done in Villanueva et al. 
(2002). Then, the probability Pth (theoretical assignment power) that an offspring is 
assigned to a single (exact) parent pair was computed, using Nm*Nf as the number of 
potential parent pairs (Prob(0) in Villanueva et al., 2002):  
Pth=Pexcl

(Nm*Nf-1) (Equation 1) 
Then, a simulation was run to estimate the average parentage assignment rate in a 
different way: for each simulation, the genotypes of Nm sires and Nf dams were 
randomly drawn using the observed allelic distribution (derived from parent 
frequencies). For each mating plan, 1000 offspring were randomly generated, 
considering equal probabilities to descend from any sire and dam in the mating plan. 
Due to sampling, family sizes were then not equal but had equal expectations, following 
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a Poisson distribution. For each offspring, the alleles transmitted by the sire and the 
dam were randomly chosen. Then, the offspring genotype was compared to all parental 
genotypes using the exclusion routine from VITASSIGN (Vandeputte et al., 2006) and 
the proportion of uniquely assigned offspring was computed. For each cross and marker 
set, this was repeated 100 times, so that the final assignment power estimated (Psim1) 
was the mean of 100 simulated parent sets, each with 1000 offspring. We also recorded 
the minimum (Pmin1) and maximum (Pmax1) assignment power out of 100 repetitions for 
each cross and marker set. 
Then, for each true parental set in Table 1, 2000 to 20000 randomly produced offspring 
were simulated with VITASSIGN to estimate the probability of unique assignment Psim2 
with the true parents. Finally, the true genotyped offspring (genotyped for all loci) from 
the cross were assigned to their parents using VITASSIGN, either with perfect match 
(Pexact) or with one mismatch (P1msm), to account for genotyping errors (Vandeputte et 
al., 2006; Christie, 2010). The proportion of offspring assigned to several parent pairs 
(Ppoly) or unassigned when allowing for one mismatch (Punas) were also computed, in 
order to better describe the reasons why some offspring were not assigned to a unique 
parent pair. If Ppoly is high, this is indicative of a lack of power in the marker set, while if 
Punas is high, it means that there are genotyping errors (Vandeputte et al., 2006; 
Christie, 2010). Finally, as not all offspring were genotyped for all loci due to 
amplification problems or missing samples, the proportion of assigned offspring from the 
full offspring sample (including those with incomplete genotypes) with one mismatch 
tolerated was also estimated (Pall). 
 
2.3. Statistical analyses 
 
The simulated and observed proportions of non-uniquely assigned offspring (1-Px) from 
the different studies described in Table 1 were computed, and log-transformed using a 
natural log. Then, these log-transformed proportions were compared with linear 
regression using SAS-REG (The SAS Institute, Cary, NY). Log-transformed proportions 
were used to linearize proportions in the vicinity of zero, as in most studies, due to the 
use of appropriate marker sets, the proportions of non-uniquely offspring were low to 
very low.  
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3. Results 

 

3.1. Theoretical and simulated values for each marker set 

 
The combined probabilities of exclusion were very high for all marker sets, the lowest 
being 0.999965 for cross 5 with marker set SB5, while the highest was 0.999999999986 
for cross 1b with marker set SB2 (Table2). The theoretical proportions of uniquely 
assigned offspring (Pth) were also very high, all higher than 99%. The simulated 
assignment rates (Psim1) based on the allelic frequencies in the populations were also 
high in most cases, but always lower than the theoretical assignment rates (-0.0003% to 
-13%, -2.8% on average). 
 
3.2 Observed values for realized crosses 
 
The observed exact assignment rates in the crosses studied were generally high for 
offspring with fully exploitable genotypes (>90% in nine cases out of 12) or even very 
high (>95% in six cases – Table 3). The allowance for one mismatch generally 
increased the assignment rate, but to a limited level (less than 3% increase). The 
proportion of offspring assigned to several parent pairs was highly variable, from 0.02% 
to 18.81%. The proportion of unassigned offspring was generally low (<2%). Not all 
offspring had fully exploitable genotypes, and hence the assignment power when 
considering all offspring (Pall) was lower in many cases. 
 
3.3. Comparisons between observed and predicted assignment power 
 
Although the simulated assignment power was well below the theoretical one (from -
0.0003% to -13%, -2.8% on average), the relation between both was linear (in a log-log 
plot) and highly significant (Figure 1):  
ln(1-Psim1)= 0.547 ln(1-Pth), R²adj=0.995 (Equation 2) 
Similarly, the simulated assignment power done by Vitassign from the true parental 
genotypes was generally moderately higher than the observed assignment rate in 
offspring with a valid genotype at each locus (on average -0.5%, varying from +1.6% to 
-1.6%).In this case, the observed assignment power was estimated with one mismatch 
tolerated, only in offspring with valid genotypes at all loci. Both figures were highly 
correlated (Figure 2): 
ln(1-P1msm)= 0.908 ln(1-Psim2), Radj²=0.994 (Equation 3) 
On the contrary, the simulated assignment power done on the real parents (Psim2) was 
not tightly connected (Figure 3) with the simulated assignment power done on the whole 
population (Psim1) : 
ln(1-Psim2)= 0.707 ln(1-Psim1), R²adj=0.770 (Equation 4) 
In three cases out of twelve cases Psim2 was higher than Psim1 (up to +5.1%), but it was 
generally lower (-2.6% on average, down to -11%) 
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However, in all but two cases, the minimum value simulated out of 100 replicated 
simulations (Pmin)  was close to or below the assignment power simulated from the true 
parent set (Psim2), and could be well described by a linear regression on Psim1 (Figure 3): 
ln(1-Pmin)= 0.729 ln(1-Psim1), R²adj=0.991 (Equation 5) 
It should be noted that in cases where parents had been subject to phenotypic selection 
(crosses 1a, 1b, 6, 7, 9, 10), Psim2 was close to Pmin, or even lower for crosses 1a and 
1b, while when wild parents were used (crosses 2, 3, 4, 5) Psim2 was in general much 
higher than Pmin. 
In general, more than 90% of the offspring had fully exploitable genotypes (Table 3), but 
in some cases this proportion was lower, mostly when the marker sets had numerous 
loci. The causes were missing samples, lack of amplification at one or several loci, or 
multi-allelic loci (due to spontaneous triploids or contamination of samples). Still, some 
offspring with incomplete genotypes could be assigned to a single parental pair, but 
when considering all offspring, the assignment rate Pall was lower than when 
considering only offspring with valid genotypes at all loci (-2.4% on average, from zero 
to -4.9%). The regression of ln(1-Pall) on ln(1-P1msm) was rather good but not excellent 
(Figure 4):  
ln(1-Pall)= 0.737 ln(1-P1msm), R²adj=0.932 (Equation 6) 
Except in two cases, this regression could be considered as a maximum value for ln(1-
Pall) 
 
 
4. Discussion 

 
In the cases studied, the theoretical power of the marker sets used was always very 
high (>99%), but it appeared that the simulated and true assignment rates, while in most 
cases high, could also be insufficient (<95%). The first loss of power appeared when 
moving from the theoretical assignment power (Pth) to an assignment power in 
simulated samples (Psim1) from the population. A first reason for this can be the fact that 
Pexcl and Pth are derived assuming Hardy-Weinberg equilibrium in the populations, 
which may not be the case in a real population. However, this effect is usually small 
(Wang, 2007). Differences between Pth and Psim1 were already noticed by Vilanueva et 
al (2002) mostly for nested and factorial mating designs, as opposed to single pair 
matings, and were linked to the fact that parent pairs in such designs are not 
independent samples. Here, we used only factorial mating designs, as it is de facto the 
type of mating design considered behind all assignment programs. Knowledge of an a 
priori breeding scheme can exist (and be used) in the case of controlled mating designs, 
but assignment without restriction to the full factorial between all sires and dams is the 
best way to identify potential mistakes in the planned mating scheme. Moreover, when 
family assignment is used in mass spawning events (e.g. Perez-Enriquez et al., 1999; 
Chatziplis et al., 2007; Herlin et al., 2007;), there is no planned breeding scheme and 
the factorial is the appropriate model of analysis. Factorial designs are also the best 
design to keep genetic variance and enhance genetic gain for a given number of 
parents when the number of families is not constrained (Dupont-Nivet et al., 2006). 
Then, we consider that the use of marker assisted parentage assignment should be 
planned in the case of factorial mating designs. Estimating the simulated assignment 
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power in a population, based on allelic frequencies can be done either using simulation 
programs:  the present one SimExPo (available on request from 
marc.vandeputte@jouy.inra.fr), CERVUS (Kalinowski et al., 2007), FAP (Taggart, 2007) 
or P-loci (Matson et al., 2008), or using Equation 2 to derive it from the theoretical 
assignment power calculated from Villanueva et al. (2002).  
The second stage of loss of assignment power was between the assignment power 
simulated from the allelic frequencies in the population (Psim1) and the assignment 
power simulated from the true parent set (Psim2). The loss of assignment power here can 
be linked both to sampling variance of the parents, but also to the fact that the parents 
are related and share more common alleles than independent random samples would 
do (Villanueva et al., 2002; Matson et al., 2008). Small effective population sizes and 
selection of parents can both increase this phenomenon. In order to take into account 
the sampling variance effect, we compared Psim2 with the minimum and the maximum of 
100 replicated simulations from parents randomly drawn in the population (Figure 3). In 
most cases the  values of Psim2 fell within or close to the area between by Pmin and Pmax, 
except for two points (crosses 1a and 1b) which represent two offspring samples from 
the same mating design, analyzed with two marker sets. Interestingly, in this case, three 
quarters of the male parents were potentially sibs (derived from the same parents), and 
the remaining quarter was a sub-sample of their fathers. Moreover, half of the male 
parents had been subjected to strong phenotypic selection on growth (5% pressure, see 
details in Vandeputte et al., 2009), so in this case we had all ingredients to have non-
random distribution of alleles among the true parents. Although it was not possible to 
reliably predict Psim2 from Psim1, there was a very good linear relationship between ln(1-
Psim1) and ln(1-Pmin), and except for the case of crosses 1a and 1b, Pmin was always 
close to or smaller than Psim2, and could then be used to estimate Psim2 in a conservative 
way (Equation 4). Pmin was close to Psim2 in the case of selected parents, and was 
generally much lower than Psim2 when wild parents were used. Therefore, for 
aquaculture applications where parentage assignment is used mostly for selective 
breeding programs, the prediction using Equation 4 seems appropriate, while it might be 
overly conservative for wild populations studies.  
The third stage of loss of assignment power is between the simulated assignment 
power from the real parental set (Psim2) and the realized assignment power, either 
without (Pexact) or with (P1msm) one mismatch tolerated. At this stage, the differences 
between the realized values and the simulated ones should essentially come from 
genotyping errors sensu lato (misreading of genotypes, mutations, null alleles). 
Genotyping errors are expected to 1) generate some unassigned offspring and 2) 
generate a difference between Pexact and P1msm (Vandeputte et al., 2006; Christie, 
2010). This is what we see in most cases in Table 3, with moderate increases of 
assignments from Pexact to P1msm, and small proportions of unassigned offspring. This is 
indicative of a significant, but low level of genotyping errors (Vandeputte et al., 2006; 
Christie, 2010). In the cases studied, null alleles were sometimes present but at a low 
level, as the absence of null alleles was one of the technical criteria used to select loci 
for their inclusion in the marker sets. However, this may not always be possible, as in 
some organisms (e.g. mollusks  - see Hedgecock et al., 2004) null alleles may be very 
frequent and variable among populations. In these cases, larger decreases between 
Psim2 and Pexact or P1msm could be expected. At that stage, another possible source of 
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variation in assignment rates is the uneven distribution of family sizes (Taggart, 2007). 
Simulations make the hypothesis that all parents have the same expected number of 
offspring, which is never the case in practice (see Perez-Enriquez et al., 1999; 
Chatziplis et al., 2007; Herlin et al., 2007  for examples).  
The last stage of assignment power loss is between the offspring which have complete 
genotypes at all loci and those with only partial genotypes. Amplification problems are 
quite frequent, but usually at a low rate as ease and reliability of amplification are 
selection criteria for including a locus in a parentage assignment suite.  Nevertheless, 
this problem is expected to be more frequent when many markers are included in the 
suite. Other possible causes for partial or unexploitable genotypes are missing samples, 
contamination of samples and spontaneous triploids. Adequate procedures can reduce 
contamination of samples and missing samples, but amplification problems will always 
be possible. 
Finally, we propose to combine all four sources of loss of assignment power by 
combining equations 2, 3, 5 and 6, using ln(1-Pmin) as a maximum estimate of ln(1-
Psim2), and then set up a prediction equation for a minimum value of Pall based on Pth:  
ln(1-Pall)= 0.908*0.737*0.735*0.547 ln(1-Pth)= 0.269 ln(1-Pth) 
Which is equivalent to Pall= 1-(1-Pth)

0.269
   (Equation 7)  

or  Pth= 1-(1-Pall)
3.7 (Equation 8). 

When undertaking scientific studies like heritability estimates, sub-optimal assignment 
rates can be used, as long as they do not generate biased family contributions, and are 
not too low. Some valuable results have been published with moderate assignment 
rates [e.g. 66.9% in Blonk et al. (2010), 75.7% in Kocour et al. (2007)], but in industry 
conditions, genotyping is a high operating cost and low assignment rates are not 
tolerated. In this case, more than 99% assignment should be targeted (see Navarro et 
al., 2008).  
Then, the targeted true assignment rate can be fixed, and the required theoretical 
assignment power can be computed using Equation 8. The difference between the 
theoretical and the expected true assignment rate can be considerable: according to 
this calculation, achieving 99% true assignment requires a theoretical assignment 
power of 99.999996%, while 95% already requires 99.9989% theoretical assignment 
rate. The relationship between the targeted assignment power and the combined 
exclusion probability can also be derived from Equation 8 and Equation 1, and 

approached by  (Equation 9), where Nm and Nf are the projected 
numbers of sires and dams in the matings to be analyzed. Similarly, if one considers 
that availability of samples and amplification should be technically solved, another target 

value can be  (Equation 10), ignoring coefficient 0.737 from 
Equation 6. Using this latter relationship with the data of Navarro et al (2008), which 
used fully genotyped seabream offspring, we found a predicted assignment rate of 47 % 
for Pexcl=0.9998 and 38% for Pexcl=0.9997, while the observed values were 62 and 37%, 
respectively, which is quite satisfactory. Unfortunately, it could not be tested with higher 
Pexcl values, as not enough decimals are available in the paper.  
Some cases have not been studied in this paper, like highly inbred animals in very small 
matings, but we feel the cases studied here are a good sample of what can be done in 
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fish breeding, and therefore the recommendations done in this paper should help 
designing appropriate marker sets for future parentage assignment studies. It should be 
noted that Pexcl is a population specific parameter, so if a marker set is designed to be 
used in several populations, it will be advisable to estimate Pexcl in all populations to 
choose the appropriate number of markers. Another point is that during the course of a 
breeding programme, it is expected that inbreeding will increase and genetic variability 
will decrease. Therefore, assignment power should decrease over time (Villanueva et 
al., 2002). Here, some of the cases studied involve selected populations (1a, 1b, 6, 7, 9, 
10) and do not seem to behave differently from the others. However, it cannot be 
excluded that on the long run, or in breeding programmes with low broodstock number 
and/or high selection intensities, assignment rates would progressively become lower 
than expected. 
 
 
Conclusion 

 
 The analysis proposed in the present paper showed that using theoretical assignment 
power when designing a marker set for parentage assignment leads to overly optimistic 
predictions. The equations proposed allow some corrections to use assignment power 
values more representative of what will happen in reality. Nevertheless, as genotyping 
methods and multiplexing are more and more efficient, it would be advisable to use 
these values as a baseline, and if possible to include a few excess markers to 
guarantee the highest assignment rates under all circumstances. 
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Tables 

 
Table 1: Summary of the characteristics of the populations studied. Nm = number of 
sires, Nf= number of dams. #FSF= number of expected full-sib families. Noff=number of 
offspring genotyped. Broodstock type: W=wild, D=domesticated, S= selected. #mk: 
number of microsatellite markers genotyped. Marker sets: numbers indicate different 
marker sets. All matings are full factorials except matings 3, 9 and 10 which are partial 
factorials. 1a and 1b are the same mating, but different offspring groups analyzed with 
different marker sets 

Species ID Nm Nf #FSF Noff Broodstock 
type 

#mk Marker 
set 

Reference 

European sea bass 1a 76 13 988
2760

W/D/S 8 SB1 Vandeputte 
et al., 2009 

 1b 76 13 988 954 W/D/S 12 SB2 Unpublished
 2 75 26 1950

7300
W 6 SB1a* Unpublished

 3 33 23 253

7100

W 6 SB3 Dupont-
Nivet et al., 
2008 

 4 41 8 328
1339

W 6 SB4 Grima et al., 
2010 

 5 20 2 40 587 W 5 SB5 Unpublished

Common carp 6 147 8 1176
812

D/S 8 CC1 Kocour et 
al., 2007 

 7 96 8 768
797

D/S 8 CC2 Vandeputte 
et al., 2008 

 8 24 10 240 550 D 10 CC3 Vandeputte 
et al., 2004 

Rainbow trout 9 100 82 820 2004 S 12 RT1 Unpublished
 10 100 95 950 2045 S 12 RT1 Unpublished
 11 25 9 225 2016 D 12 RT1 Unpublished

* SB1a is a subset of marker set SB1 
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Table 2: Summary of the characteristics of the marker sets used in different crosses of three species of fish for parentage 
assignment.  

Species 
Cross 

ID 
Marker 

set 
#loci

mean 
alleles/ 
locus 

Pexcl
a th

a sim1
b

 

European sea bass 1a SB1 8 20.1 0.999999998277 99.999830% 99.935%  

 1b SB2 12 17.3 0.999999999986 99.999999% 99.997%  

 2 SB1ac 6 21.7 0.999999946540 99.989581% 99.342%  

 3 SB3 6 20.8 0.999999952864 99.996272% 99.630%  
 4 SB4 6 19.3 0.999999756135 99.992026% 99.280%  

 5 SB5 5 16.3 0.999964954042 99.863411% 94.647%  

Common carp 6 CC1 8 7.5 0.999992361778 99.106521% 86.036%  

 7 CC2 8 7.6 0.999996803045 99.755000% 94.735%  

 8 CC3 10 7.8 0.999995752297 99.861196% 97.116%  

Rainbow trout 9 RT1 12 7.5 0.999999681489 99.682027% 97.080%  

 10 RT1 12 6.8 0.999999664953 99.665547% 97.262%  
 11 RT1 12 8.3 0.999999998621 99.999969% 99.966%  

a Pexcl and Pth are the combined probability of exclusion of the marker set and its exclusion power for the different crosses 
(detailed in Table 1), calculated from Villanueva et al. (2002). b Psim1 is the simulated assignment power in the same 
crosses using randomly drawn parents and the allelic frequencies in the populations. 
c SB1a is a subset of SB1 



 
Table3: Summary of the parentage assignment results in the different crosses tested, for offspring genotyped for all 
markers in the marker set.  

Species 
Cross 

ID 
Marker 

set 
Psim2

a
 Pexact

b P P P1msm
c poly

d unass 
% full 

genotypes
e
 

Pall
f 

European sea bass 1a SB1 97.52% 95.97% 96.08% 2.85% 1.07% 98.0% 94.1%
 1b SB2 96.55% 94.17% 96.53% 3.47% 0.00% 75.6% 92.5%
 2 SB1a 97.83% 97.04% 98.26% 1.71% 0.03% 99.4% 96.5%
 3 SB3 99.94% 97.92% 99.82% 0.06% 0.13% 99.5% 97.8%
 4 SB4 99.82% 99.61% 99.69% 0.31% 0.00% 96.9% 99.4%
 5 SB5 

 99.44% 98.47% 98.47% 1.53% 0.00% 100.0% 98.5%
Common carp 6 CC1 79.90% 81.19% 81.19% 18.81% 0.00% 83.1% 75.7%

 7 CC2 84.25% 82.32% 83.13% 15.38% 1.48% 93.0% 80.3%
 8 CC3 

 94.85% 94.18% 94.18% 4.55% 1.27% 100.0% 94.2%
Rainbow trout 9 RT1 93.55% 90.74% 92.24% 6.18% 1.58% 86.8% 83.9%

 10 RT1 92.00% 89.60% 90.63% 8.96% 0.41% 83.1% 86.5%
 11 RT1 99.85% 98.13% 99.78% 0.02% 0.20% 90.0% 93.4%

a Psim2 is the assignment power simulated for randomly generated offspring using the observed parental genotypes.  
b Pexact is the proportion of offspring with a valid genotype at all loci assigned to a single pair using perfect exclusion 
c P1msm is the proportion of offspring with a valid genotype at all loci assigned to a single pair when allowing for one allelic 
mismatch.  
d Ppoly is the proportion of poly-assigned offspring when one mismatch is tolerated  
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e Punass is the proportion of unassigned offspring when one mismatch is tolerated 
f. %full genotypes is  proportion of offspring with a fvalid genotype at all loci 
g Pall is the proportion of  offspring assigned to a single pair, with one mismatch 
tolerated, when all offspring (including those with a partial or unexploitable genotype) 
were included 



 
Figures 

 

 
 

Figure 1: Logarithm of simulated proportions of not uniquely assigned offspring using 
alleic frequencies in the population (1-Psim1), as a function of the logarithm of theoretical 
proportions of not uniquely assigned offspring (1-Pth) calculated after Villanueva et al. 
(2002).  
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Figure 2: Logarithm of observed proportions of not uniquely assigned offspring with one 
mismatch tolerated (1-P1msm), as a function of the logarithm of simulated proportions of 
not uniquely assigned offspring when using randomly produced offspring based on the 
true parental genotypes (1-Psim2).  
 
 

 
 

Figure 3 : Logarithms of simulated proportions of not uniquely assigned offspring, as a 
function of the simulated not uniquely assigned offspring based on randomly drawn 
parents using allelic frequencies in the population (1-Psim1). Pmin, Pmax: minimum and 
maximum proportion of uniquely assigned offspring in 100 simulated parent sets. Psim2: 
proportion of simulated uniquely assigned offspring from the real parental set described 
in Table 1, labeled with cross number. ln(1-Pmax) was not plotted for the three points 
with ln(1-Psim1)>6, as in these cases Pmax was equal to 1 and ln(1-Pmax) could not be 
computed).  
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Figure 4: Logarithm of observed proportions of not uniquely assigned offspring when 
using all offspring (1-Pall), as a function of the logarithm of observed proportions of not 
uniquely assigned offspring when using fully genotyped offspring only (1-P1msm). 
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