Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages

Franck Lartaud^{a,b,*}, Crispin T. S. Little^c, Marc de Rafelis^b, Germain Bayon^d, Jerome Dyment^e, Benoit Ildefonse^f, Vincent Gressier^b, Yves Fouquet^d, Françoise Gaill⁹, and Nadine Le Bris^{a,h}

^a Université Pierre et Marie Curie–Paris 6, Laboratoire d'Ecogéochimie des Environnements Benthiques, Centre National de la Recherche Scientifique, Laboratoire Arago, 66650 Banyuls-sur-Mer, France

^b Université Pierre et Marie Curie–Paris 6, Institut des Sciences de la Terre de Paris, Laboratoire Biominéralisations et Environnements Sédimentaires, Centre National de la Recherche Scientifique 75252 Paris Cedex 05, France

^c School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom

^d Département Géosciences Marines, Institut Français de Recherche pour l'Exploitation de la Mer, Centre de Brest, 29280 Plouzané, France

^e Institut de Physique du Globe de Paris, Centre National de la Recherche Scientifique, Equipe Géosciences Marines, 75252 Paris Cedex 05, France

^f Géosciences Montpellier, Centre National de la Recherche Scientifique, Université Montpellier 2, 34095 Montpellier Cedex 05, France

^g Centre National de la Recherche Scientifique, Institut Écologie et Environnement, Université Pierre et Marie Curie, Institut de Recherche pour le Développement, Muséum National d'Histoire Naturelle, 75252 Paris Cedex 05, France

^h Laboratoire Environnements Profonds, Institut Français de Recherche pour l'Exploitation de la Mer, Centre de Brest, 29280 Plouzané, France

*: Corresponding author : Franck Lartaud, Tel : +334 30 19 24 14 ; Fax : +334 68 88 73 95 ; email address : franck.lartaud@obs-banyuls.fr

Abstract :

Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinitehosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur onaxis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed.

Keywords : Bathymodiolus ; Ghost City ; ultramafic-hosted ; mid-ocean ridge ; ecogeochemistry

58 **body**

59

60 Introduction

61	High-temperature hydrothermal vents occur at very geographically restricted sites in the deep-
62	sea, localized on spreading ridges and arc-related volcanoes. Typically, such vent fluids are
63	metal- and H_2S -rich, and precipitate metallic sulfide chimneys on the seafloor(1, 2). These
64	vents usually support high-biomass invertebrate communities, dominated by a small number
65	of endemic species forming symbioses with diverse chemoautotrophic bacteria (e.g.
66	siboglinid tube worms, bresiliid shrimp, provaniid gastropods, vesicomyid clams and
67	bathymodiolin mussels)(1, 3). These symbioses exploit chemical energy from a variety of
68	fluids enriched in reduced compounds, mostly hydrogen sulfide and methane, to fix
69	carbon(4). Along slow and ultraslow spreading ridges, like the Mid-Atlantic Ridge (MAR),
70	ultramafic mantle rocks can be exposed on the seafloor by large offset faults(5). Seawater
71	serpentinization of these peridotites produces hydrogen, which subsequently reacts with CO ₂
72	to form methane(6, 7). Because of this, peridotite-hosted high-temperature vent sites on the
73	MAR (e.g. Rainbow and Logatchev) exhibit elevated levels of methane and hydrogen
74	contents in their fluids. Hydrothermal activity can also occur at off-axis ridge settings. A
75	unique example of this is the Lost City vent field, discovered in the year 2000 on the Atlantis
76	Massif, 30°07'N MAR, at 750-850 m(8). Here, exothermic serpentinization processes may
77	largely drive the hydrothermal convection, although a contribution of magmatic inputs is not
78	excluded(9). The main difference between this off-axis vent field and the other known vent
79	fields on the MAR-axis is that the majority of the Lost City vent fluids are metal-poor, low-
80	temperature (40-91 °C), and have high pH (9-11). Further, the Lost City fluids are also highly
81	enriched in H_2 and CH_4 and comparatively lower in $H_2S(10)$. On contact with ambient
82	seawater these alkaline fluids precipitate chimney structures up to 60 meters-high composed

of carbonates (aragonite and calcite) and brucite (Mg(OH)₂)(11-13). Sulfide minerals are
mostly absent from these chimneys, contrasting strongly with on-axis hydrothermal vent
structures(13, 14). The Lost City site has generated considerable interest because this sort of
system was likely to have been common in early Earth history and represents a plausible
geochemical environment for the emergence of life on this, and potentially other planets(15,
16).

89

90 In the context of the MAR peridotite-hosted vent fields another remarkable feature of Lost 91 City is the lack of typical high-biomass animal assemblages dominated by large 92 chemosynthetic invertebrates: there are currently no Bathymodiolus mussel beds or bresiliid 93 shrimp swarms, although the diversity of other invertebrates (particularly small gastropods 94 and polychaete worms) is described as being equivalent to that of high-temperature MAR 95 vent communities(11, 17). Only two living specimens of *Bathymodiolus* aff. azoricus have 96 been found at Lost City(18, 19), whereas hundreds of broken shell fragments downslope away 97 from the active chimney areas(19, 20) suggest that the population size might have been much 98 larger in the past and is now almost extinct(19). Dead *B. azoricus* shells have also been 99 recently reported from inactive carbonate chimneys at an inactive site near Lost City (21). 100 101 Supporting these observations, the enrichment of reduced compounds in Lost City 102 hydrothermal fluid indicates that these, and similar peridotite hosted vents, hold the energetic 103 potential to support large aggregations of *Bathymodiolus* mussels, a genus widely distributed 104 along the MAR axis(22). B. aff. azoricus at Lost City hosts the same symbiont phylotypes as 105 the methanotrophic and thiotrophic endosymbionts of both B. azoricus and B. puteoserpentis 106 from on-axis sites on the MAR(18), where the methanotrophic symbiont fixes carbon from

107 methane and the chemolithoautotroph uses sulfide to fix $CO_2(23-25)$. In addition to methane, 108 DeChaine et al.(18) suggest that B. aff. azoricus at Lost City could also be utilizing 109 hydrogen, although hydrogen-oxidizing symbionts have yet to be identified. These authors 110 further suggested that hydrogen sulfide would be poorly available for mussels at Lost 111 City(18), based on measured sulfide concentrations from Lost City end-member fluids. 112 However, this hypothesis is not supported by the comparison of the end-member total 113 dissolved sulfide versus temperature ratios between Lost City and the on-axis vent fields 114 (supporting Table S1). The maximum temperature of the habitat of *Bathymodiolus* mussels 115 lies around 15°C, and it requires significant dilution of the end-member fluids in cold 116 seawater. In this temperature range, the sulfide concentration resulting from the dilution of 117 Lost City end-member should be rather similar to the levels experienced by mussels from on-118 axis vent fields(22, 26). Recent data(27), moreover, suggest that fluids issuing from flanges 119 on the flanks of Lost City chimneys may indeed have a higher H₂S/temperature ratio than the 120 end-member fluid. Given the potential availability of these reduced compounds in the Lost 121 City vent fluids for symbionts and free-living chemotrophic microbial populations(28, 29), 122 there is therefore no reason to suppose that Lost City type fluids should exclude the formation 123 of dense chemosynthetic faunal assemblages.

124

The findings contained in this paper support the hypothesis that Lost City type fluids can sustain such communities, while providing further evidence for the suggestions of Kelley et al.(17, 30) that low-temperature hydrothermal circulation on slow-spreading ridges has a widespread distribution. We report for the first time Lost City-like carbonates containing fossil *Bathymodiolus* shells of large size at high densities, together with smaller numbers of two species of chemosynthetic bivalves and four gastropod species. This fossil assemblage is 110,000 years old (based on radiogenic isotopes) and contains similar species to the

132 Bathymodiolus mussel beds from high-temperature vents elsewhere on the MAR. Although 133 geographically close to the Rainbow hydrothermal vent field, the Ghost City carbonates and 134 fossils were clearly associated with a distinct type of environment associated with metal-poor 135 fluid venting, contrasting with all known MAR axis high-temperature vent fluids. This finding 136 not only reveals the existence of low-temperature hydrothermal circulation in serpentinized 137 systems driving substantial fluxes of reduced chemicals close to the ridge axis, but it also 138 expands the range of marine environments that can support chemosynthetic animal 139 communities.

140

141 Ghost City carbonates

142 Eight carbonate blocks were dredged during the MoMARDREAM cruise (MoMAR 08 Leg 2, 143 August-September 2008) from the north-western flank of the Rainbow massif, which is 144 situated on a non-transform offset at 36°14.15N, 33°53.50W (Figure 1 and supporting figure 145 S1). This site, which we name Ghost City, is 1200 m north-east of the Rainbow vent field at 146 around 2100 m water depth. The dredge from which the carbonates were collected sampled a 147 transect around 800 m long on the seafloor and recovered, in addition to the carbonates, three 148 shells of thyasirid bivalves, numerous pieces of serpentinized peridodite, and some troctolites 149 and gabbros. The carbonates are white to ivory in colour, ranging from 750 to 25 cm^3 in 150 volume, and most have thin (up to 1 mm) exterior ferric oxyhydroxide (ferrihydrite with Mn 151 component) black crusts upon which solitary corals have grown (Figure 2A-B and supporting 152 figure S2). The carbonate textures range from 'layered' (Figure 2C and supporting figure S3), 153 with significant porosity (close to 40%, n = 4), to 'massive'. This carbonate matrix which encrusts mussel shells with a density of up to 4 shells per 10 cm³, lacks metallic oxide or 154 155 sulfide minerals and consists of varying proportions of authigenic carbonate cements, and 156 infilling pelagic calcitic and aragonitic fossils (foraminifera, coccoliths and a few pteropods;

157	Figure 2D and supporting figures S3). The authigenic carbonate cements consist of aragonite,
158	commonly occurring as radial aggregates of acicular crystals, calcite, and sparser rosettes of
159	glendonite crystals (Figure 2E-F and supporting figure S4). The infilling pelagic sediments
160	have $\delta^{18}O$ values of 3.63 \pm 0.25‰ and $\delta^{13}C$ values of 0.93 \pm 0.17‰ (n = 4). Mixed
161	calcite/aragonite authigenic cements have $\delta^{18}O$ and $\delta^{13}C$ values of 4.88 \pm 0.19‰ and –0.66 \pm
162	1.18‰, respectively $(n = 9)$ (Table 1). The authigenic carbonates and the in-filled pelagic
163	sediment show good separation between $\delta^{13}C$ and $\delta^{18}O$ on a Canonical Discriminant Analysis
164	(CDA) scatterplot, supporting distinct mineralization process (Figure 3 and supporting table
165	S2). Isotopic measurements of a series of subsamples from one authigenic carbonate crust
166	gave U/Th ages ranging from 46 ± 0.3 kyr to 193 ± 11 kyr (n = 4) (Table 2). These samples
167	however display a wide range of initial δ^{234} U values (from ~129 to 183‰), suggesting that
168	their U/Th ages may be possibly biased due to post-formation interaction with seawater or
169	diagenesis(31). One of these subsamples is characterized by a δ^{234} U _{initial} value (150 ± 1‰,
170	Table 2) close to the modern seawater signature $(146.6 \pm 2.6\%)(31)$, which suggests that its
171	U/Th ratio may be considered as the most representative of the formation age of Ghost City
172	carbonates. The corresponding U/Th age (110 \pm 0.9 kyr) lies in the same range than the older
173	chimneys from Lost City $(122 \pm 12 \text{ kyr})(32)$, and suggests that Ghost City carbonate
174	formation is significantly older than the first evidence of Rainbow vent activity (23 ± 1.5
175	kyr)(33). Additionally, the same carbonate sample exhibits a radiogenic strontium isotopic
176	ratio (87 Sr/ 86 Sr) of 0.70916 ± 0.00006, close to seawater ratios.
177	
178	Among known authigenic carbonates from oceanic environments where ultramafic rocks are

exposed, such as vein-filling aragonites in serpentinites(34, 35), samples from Ghost City are
texturally and mineralogically most similar to those from Lost City, particularly the
carbonates of old (up to 25 kyr) inactive chimneys(12). According to these authors, the Lost

182	City inactive structures display well-defined fluid flow paths, retaining significant porosity
183	(up to ~35%) and are characterized by dark or black exteriors which contrast to white, ivory
184	or gray interiors. The outer walls of these structures become dark due to manganese
185	precipitation associated with aging, and are colonized by serpulid worms and corals(13). In
186	older inactive chimneys the internal microchannels are progressively in-filled with micritic
187	calcite; brucite, which is undersaturated in seawater, tends to disappear in these chimneys(12).
188	Another feature indicative of prolonged post-formation interaction with seawater is near
189	seawater Sr isotope values in carbonate minerals, as seen in both the Lost City inactive
190	chimneys(13) and Ghost City samples. One mineralogical distinction of Ghost City
191	carbonates is the presence of glendonite. Glendonite in Ghost City carbonate crust exhibits a
192	classical star-shape and is associated with acicular aragonite crystals surrounding the benthic
193	fossils. Glendonite is a pseudomorph after ikaite, a very unstable hydrous calcium carbonate
194	associated with cold water ($<6^{\circ}C$) depositional systems, including glaciomarine and deep
195	water settings(36, 37). Original ikaite precipitation is favoured by elevated alkalinity, high pH
196	(>10) and dissolved phosphate enrichments. Glendonite was not reported in Lost City
197	carbonates, but the presence of ikaite in the walls of active chimneys was suspected from the
198	observation of rapid dissolution of elongated carbonate crystals during sampling(13).
199	The oxygen and carbon isotope values of the Ghost City authigenic carbonates are consistent
200	with those observed in serpentinization contexts. The ¹⁸ O enrichment during fluid/rock
201	interaction results in carbonates with high δ^{18} O values (>2‰)(11, 38). The Ghost City carbon
202	isotope signatures (δ^{13} C = -2.6 to 0.7‰) are comparable to those measured in carbonates
203	from serpentinite-hosted ecosystems, like the South Chamorro Seamount ($\delta^{13}C = -2.1$ to -1.3
204	‰) and the Conical Seamount (δ^{13} C = -2.9 to -0.1 ‰) in the Mariana forearc(39-41), and lie
205	within the wide range of carbonate isotopic signatures reported for Lost City (-7 to
206	+13‰)(11). Carbonates with the lower isotopic signature reflect a mixed inorganic carbon

207	source with contributions from seawater ($\delta^{13}C_{DIC} \sim 0\%$) and an isotopically lighter-DIC
208	source. Owing to the very low concentration of inorganic carbon in serpentinization fluids,
209	the most likely origin for this ¹³ C depleted DIC is the oxidation of methane. Methane in
210	serpentinization fluids are characterized by light carbon isotopic signatures (e.g., $\delta^{13}C_{CH4}$ =
211	-7‰ in Zambales ophiolites seeps, -10.3‰ at Logatchev, -16.7‰ at Rainbow, -11.9‰ at
212	Lost City)(42-45), which can be further fractionated by methanotrophic microbes converting
213	methane into inorganic carbon. While abiotic methane oxidation is kinetically inhibited at low
214	temperature(46), microbial oxidation of methane can occur in subseafloor habitats with
215	various electron acceptors (e.g. oxygen and sulphate) during the mixing of seawater with end-
216	member fluids(47, 48). According to Proskurowski et al.(48), the fractionation factor resulting
217	of anaerobic or aerobic methane oxidation can be as high as 1.039(49, 50) and will results in
218	further depletion of the initial carbon isotopic ratio by at least -13% . Only a small fraction
219	(~5%) of this 13 C depleted methane is thus sufficient to explain the slightly negative carbon
220	isotopic signature of some Ghost City carbonates. An additional contribution from biogenic
221	methane formed during the subseafloor mixing of seawater and the end-member fluid, as
222	described in Proskurowski et al.(48) cannot be ruled out. This assumption is supported by the
223	identification of both methanogenic and anaerobic methane-oxidizing Archea at Lost City,
224	particularly in the less active chimneys where seawater mixing is occurring(28). In Lost City-
225	type conditions, seawater is the only source of HCO_3^- and mixing is required to compensate
226	the poor supply of this ion from the fluid. As a consequence, the substantial isotopic
227	fractionation resulting of biogenic methane formation that was observed at basalt-hosted
228	diffuse vents(48) may not be achieved due to limiting inorganic carbon conditions. The
229	relative importance of biogenic methane is therefore difficult to estimate from Ghost City
230	samples isotopic ratios.

The geological context, as well as petrographic and isotopic data, provides supporting evidence that the Ghost City carbonates were formed 110,000 years ago from venting of metal-poor fluids. Despite the proximity with the Rainbow high-temperature vents field, the lack of polymetallic sulfide precipitates in the Ghost City carbonate samples precludes a hightemperature metal-rich hydrothermal fluid contribution in their formation. More likely, these fluids were formed from low temperature hydrothermal circulation related to serpentinization and were probably close in composition to those currently venting at Lost City.

239

240 Ghost City fossils

241 We counted 146 specimens of the mussel Bathymodiolus aff. azoricus on the exposed 242 surfaces of the eight Ghost City carbonate blocks (Figure 4 and supporting information figure 243 S4). The shells range in length from 5 mm to 84 mm, which is comparable to living B. 244 azoricus shells from high-temperature hydrothermal vent fields on the MAR(51). Very few of 245 the Ghost City mussel shells are fragmented and quite a few specimens have articulated 246 valves, with a ratio of 3.6 disarticulated to articulated shells (n = 73). Some of the small 247 articulated mussel shells are nested within larger articulated specimens (Figure 2-D). These 248 features are indicative of in-situ growth and a lack of post mortem transport. This 249 interpretation is supported by the isotope composition of the Ghost City B. aff. azoricus shells $(\delta^{18}O = 4.93 \pm 0.40\%, \delta^{13}C = -0.30 \pm 1.99\%, n = 3$; Table 1), values which are more similar 250 251 to the Ghost City authigenic carbonates than living Bathymodiolus shells from the Rainbow 252 high-temperature hydrothermal vent site (CDA analysis, Figure 3 and supporting table S2). 253 The other benthic fossils enclosed within the Ghost City carbonate samples (Figure 4) 254 comprise serpulid tubes (> 30), the vesicomyid clam *Phreagena* sp.(n = 2), thyasirid clam 255 Thyasira sp. (n = 1), the limpet Paralepetopsis aff. ferrugivora (n = 15) and the snails

256 Protolira aff. thorvaldssoni (n = 32), Phymorhynchus sp. (n = 1), Anatoma sp. (n = 2) and

257 *Lurifax vitreus* (n = 1). These also show variable preservation, but in general the shells that 258 were originally aragonitic (the gastropods and clams) show more dissolution and 259 recrystallization than the mixed calcite/aragonite mussel shells, an observation consistent with 260 prolonged seawater interaction (Supporting figure S5). The Ghost City mollusk assemblage 261 shares five taxa with living MAR axial high-temperature vent communities(3, 52-54), 262 including two locally at Rainbow (Bathymodiolus and Protolira), and two taxa associated 263 with sedimented vent sites (supporting information table S3). The Ghost City *Phreagena* sp. 264 is also found at the recently described Clamstone site, an inactive (~25 kry BP) serpentine-265 hosted sedimented vent field near Rainbow (approximately 1.2 km east of Ghost City, at a 266 depth of 1980 m)(55). Thyasirid clams that may be conspecific with the Ghost City Thyasira 267 sp. occur at Clamstone(55), Anya's Garden, a sedimented vent site in the Logatchev area(52, 268 56, 57), and have also been reported in soft sediments at Lost City(20). Thus, the Ghost City 269 mollusk fauna is a mixture of MAR vent species from sedimented sites and more typical 270 chimney habitat mussel bed communities. Although Ghost City fauna has a higher biomass, 271 the mollusc species list is not greatly different from Lost City communities, with three 272 mollusk species shared between the two sites: B. azoricus, Thyasira species and the gastropod 273 Lurifax; see supporting information table S3). 274

275 High-biomass vent communities supported by serpentinization fluids

276 The Ghost City carbonates demonstrate that 1) high-biomass populations of *Bathymodiolus*

277 mussels, and other symbiont-hosting mollusks can be supported by metal-depleted and likely

alkaline fluids, similar to the serpentinization-related vent fluids described at Lost City, and 2)

these communities have been present on the axis of the MAR for at least 110,000 years. The

280 flexible *B. azoricus* dual symbiosis responds to variations in the methane to sulfide ratio in the

environment(24, 25) making this species particularly well adapted to the variety of fluid

282 chemistries that are found on the MAR(8, 58). The Ghost City fossil mussels might therefore 283 also have relied on methanotrophy and, potentially, on sulfide, or even hydrogen, oxidation as 284 primary energy pathways. Although the geological setting is different, there is evidence that 285 some other *Bathymodiolus* species are able to exploit diverse energy sources present in a 286 serpentinization context. At the South Chamorro serpentinite seamount in the Mariana forearc 287 mussels thrive in sedimented cracks in seafloor carbonate cement, and based on soft tissue 288 carbon and sulfur isotopic data, Yamanaka et al.(41) suggest that the mussels host both 289 methanotrophic and thiotrophic symbionts, utilizing both methane from serpentinization 290 reactions and sulfur produced by sulfate reducing bacteria in the sediment. Additionally, 291 vesicomyids(4, 59) and many of the studied large thyasirid(4, 52) species host sulfide-292 oxidizing symbionts, and the presence of representative species in the Ghost City carbonates 293 suggests that a threshold amount of sulfide was present in the Ghost City environment. 294

274

295 Implications

296 It is unclear why communities of symbiont-hosting molluscs, including high densities of large 297 Bathymodiolus mussels, do not currently persist at Lost City, when they have been present in 298 the past as shown by accumulations of dead shells. Because Bathymodiolus azoricus is able to 299 exploit variable chemical energy sources, the most likely explanation is to be searched for in 300 the ecological processes that govern community dynamics in fragmented habitats. One 301 possible cause of this extinction may be related to the dispersal potential of vent species. Lost 302 City is located further from the ridge axis than Ghost City and may have lacked of sufficient 303 larval flow from high-temperature Rainbow-like vent field communities after a major 304 disturbance event. Another explanation could be that the focused flow chimney complex at 305 Lost City lacks the mild temperature diffuse flow areas (< 15°C) with substantial 306 concentrations of electron donors like methane or sulfide, that characterize suitable habitat for

307 vent mussels(22). Further investigation of Lost City habitat conditions and population

308 genetics will help discriminating between these hypotheses.

309 The findings further support the hypothesis of a widespread occurrence of hydrothermal fluid 310 circulation hosted in exposed ultramafic rocks on the ocean floor(60). The estimated duration 311 of serpentinization-related fluid venting (over 10 kyr to 100 kyr timescales)(32) contrast 312 strongly with the geographically restricted and short-lived high-temperature vent fields known 313 to date. Our results indicate that exposed mantle rocks undergoing serpentinization could host 314 deep-sea chemosynthetic vent communities in a wide range of geological settings, including 315 slow and ultraslow spreading ridge axes, off-axis Oceanic Core Complexes(61), continental 316 margins(62) and serpentinite seamounts in forearc settings(63). The exploration of ultramafic 317 rock exposures in the deep-sea is thus a fertile area for the understanding both long-range 318 larval dispersal of vent species, and the specific requirements for settlement and growth of 319 chemosynthetic animals.

320

321 Methods

322 XRD analyses

323 Analyses of carbonate matrix, oxide crust and mussel shells were made at the ISTeP

laboratory (UPMC Univ Paris 06) on a Siemens D501. *Bathymodiolus* aff. *azoricus* mussel

325 shells were scrubbed in distilled water with a toothbrush immediately upon collection to

326 remove loosely attached biogenic and inorganic particles. Sample powders of original calcitic

327 outer layer and aragonitic inner layer of the shells were drilled from a depth of ~0.1 mm.

328 **Optical petrography**

329 Polished thin sections of carbonates were observed using a stereomicroscope Zeiss SteREO

330 Discovery V20 (Figs. 2 and S1) Porosity measurements were made using JMicrovision

331 software (<u>www.jmicrovision.com</u>).

332 Carbon and oxygen stable isotopes analyses

333 Analyses of three *Bathymodiolus* aff. *azoricus* shells and thirteen carbonate matrix (authigenic

carbonate and infilling pelagic sediments) Ghost City samples were made on a VG

335 Micromass 602 mass spectrometer. Additionally, five shells of living *B. azoricus* from the

Rainbow vent field were analyzed. Powdered samples from mussel shells for the isotopic

analyses (3-4 mg) were obtained from the cleaned outer layer using a rotary drill with a

diamond-tipped burr. The shell sample powders were pre-treated with 1.5 % NaClO for 30

339 min to remove organic contaminants, rinsed three times with distilled water following a

340 protocol modified after(64, 65). All carbonate powders were acidified in 100% phosphoric

acid at 50°C under vacuum. The produced CO₂ was collected and analysed using the mass

342 spectrometer. Isotopic data are reported in conventional delta (δ) notation relative to the

343 Vienna Pee Dee Belemnite (VPDB). The standard used for the analyses was an internal

standard calibrated on the NBS-19. Standard deviation for δ^{18} O and δ^{13} C is ± 0.10 %.

345 Uranium/Thorium and strontium analyses

346 Analyses were made in the Pôle Spectrométrie Océan (Brest) on a Neptune MC-ICPMS. For

347 uranium and thorium isotope measurements, about 2 mg of carbonate sample were dissolved

348 in 7.5M HNO₃ and spiked with a mixed 236 U/ 229 Th spike(66). U and Th were separated

349 chemically using conventional anion exchange techniques adapted from previous studies(67).

350 U and Th concentrations and isotope ratios were then measured in the MC-ICPMS. The

351 carbonate age was corrected for detrital contamination (inherited ²³⁰Th) using measured ²³²Th

352 concentrations and assuming a typical 232 Th $^{/230}$ Th ratio (150,000) for the contaminant detrital

353 phase, but this correction was insignificant on the calculated age (about 1 %)(68). Strontium

354 was isolated using Sr resin and the isotope ratios were measured using the MC-ICPMS.

355 Isotope ratios were normalised to ⁸⁶Sr/⁸⁸Sr=0.1194 and corrected from ⁸⁷Rb and ⁸⁶Kr

356 interferences on the ⁸⁷Sr and ⁸⁶Sr signal, respectively.

358 Acknowledgments

359	We thank Captain and crew of R/V L'Atalante, the ROV Victor operation group, and the						
360	MoMARDREAM scientific party for their support during the MoMARDREAM cruise.						
361	CNRS-INSU, CNRS-INEE, IFREMER and GENAVIR are gratefully acknowledged for their						
362	financ	ial and technical support. The study was part of the CHEMECO collaborative project					
363	from t	he ESF EUROCORES EURODEEP and benefited from the joint support of Fondation					
364	TOTA	L and UPMC to the chair 'Extreme environment, biodiversity and global change'. The					
365	author	s thank E. Rongemaille, NC. Chu and E. Ponzevera for analytical work, E. Krylova					
366	for ves	sicomyid and thyasirid bivalve identification, and A. Wáren for benthic gastropod					
367	identif	ication. T.M. Shank and A.L. Meistertzheim are also thanked for their helpful					
368	comments and. The manuscript also benefited from helpful comments from G. Proskurowski						
369	and one anonymous reviewer.						
370							
371	Refer	ences					
372	1.	Van Dover CL (2000) The ecology of deep-sea hydrothermal vents (Princeton					
373		University Press, Princeton).					
374	2.	Von Damm KL (1990) Seafloor hydrothermal activity: black smocker chemistry and					
375		chimneys. Annual Review of Earth and Planetary Sciences 18:173-204.					
376	3.	Desbruyères D, Segonzac M, Bright M (2006) Handbook of deep-sea hydrothermal					
377		vent fauna - Mollusca (Denisia, Linz) pp 141-172.					
378	4.	Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of					

- 379 harnessing chemosynthesis. *Nat. Rev. Microbiol.* 6:725-740.
- 380 5. Cannat M (1993) Emplacement of mantle rocks in the seafloor at mid-ocean ridges J.
- 381 *Geophys. Res.* 98:4163-4172.

382	6.	Abrajano TA, et al. (1988) Methane-hydrogen gas seeps, Zambales Ophiolite,
383		Philippines: deep or shallow origin? Chem. Geol. 71:211-222.
384	7.	Berndt ME, Allen DE, W.E. S (1996) Reduction of CO ₂ during serpentinzation of
385		olivine at 300°C and 500 bar. Geology 24:351-354.
386	8.	Kelley DS, et al. (2001) An off-axis hydrothermal vent field near the Mid-Atlantic
387		Ridge at 30°N. <i>Nature</i> 412:145-149.
388	9.	Allen DE, Seyfried Jr. WE (2004) Serpentinization and heat generation: constraints
389		from Lost City and Rainbow hydrothermal systems. Geochim. Cosmochim. Acta
390		68:1347-1354.
391	10.	Proskurowski G, Lilley MD, Kelley DS, Olson EJ (2006) Low temperature volatile
392		production at the Lost City Hydrothermal Field, evidence from a hydrogen stable
393		isotope geothermometer. Chem. Geol. 229:331-343.
394	11.	Kelley DS, et al. (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal
395		field. Science 307:1428-1434.
396	12.	Früh-Green GL, et al. (2003) 30,000 years of hydrothermal activity at the Lost City
397		vent field. Science 301:495-498.
398	13.	Ludwig KA, Kelley DS, Butterfield DA, Nelson BK, Früh-Green GL (2006)
399		Formaion and evolution of carbonate chimneys at the Lost City Hydrothermal Field.
400		Geochim. Cosmochim. Acta 70:3625-3645.
401	14.	Fouquet Y, et al. (1993) Tectonic setting and mineralogical and geochemical zonation
402		in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23°N). Econ. Geol. 88:2018-
403		2036.
404	15.	Holm NG, Charlou JL (2001) Initial indications of abiotic formation of hydrocarbons
405		in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet.
406		Sci. Lett. 191:1-8.

407	16.	Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H ₂ -rich fluids
408		from serpentinization: geochemical and biotic implications. PNAS 101:12818-12823.
409	17.	Kelley DS, Früh-Green GL, Karson JA, Ludwig KA (2007) The Lost City
410		hydrothermal field revisited. Oceanography 20:90-99.
411	18.	DeChaine EG, Bates AE, Shank TM, Cavanaugh CM (2006) Off-axis symbiosis
412		found: characterization and biogeography of bacterial symbionts of Bathymodiolus
413		mussels from Lost City hydrothermal vents. Environ. Microbiol. 8:1902-1912.
414	19.	Shank TM, Buckman KL, Butterfield D, Kelley D (2006) Macrofaunal
415		characterization of peridotite-hosted ecosystems associated with Lost City
416		hydrothermal field. Eos. Trans. AGU, Ocean Sci. Meet. Suppl. 87:OS10-35.
417	20.	Gebruk AV, Galkin SV, Krylova EM, Vereshchaka AL, Vinogradov VM (2002)
418		Hydrothermal fauna discovered at Lost City (30°N, Mid-Atlantic Ridge). InterRidge
419		News 11:18-19.
420	21.	Dara OM, Kuz'mina TG, Lein AY (2009) Mineral associations of the Lost Village and
421		Lost City hydrothermal fields in the North Atlantic. Oceanology 49:688-696.
422	22.	Le Bris N, Duperron S (2010) Chemosynthetic communities and biogeochemical
423		energy pathways along the MAR: the case of Bathymodiolus azoricus. Diversity of
424		hydrothermal systems on slow-spreading ocean ridges, eds Rona PA, Devey CW,
425		Dyment J, & Murton BJ (AGU Geophysical Monograph Series, Washington), Vol
426		188, pp 409-429.
427	23.	Fiala-Medioni A, et al. (2002) Ultrastructural, biochemical, and immunological
428		characterization of two populations of the mytilid mussels Bathymodiolus azoricus
429		from the Mid-Atlantic Ridge: evidence for a dual symbiosis. Mar. Biol. 141:1035-
430		1043.

431	24.	Duperron S, et al. (2006) A dual symbiosis shared by two mussel species,
432		Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae),
433		from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ. Microbiol.
434		8:1441-1447.
435	25.	Riou V, et al. (2008) Influence of chemosynthetic substrates availability on symbiont
436		densities, carbon assimilation and transfer in the dual symbiotic vent mussel
437		Bathymodiolus azoricus. Biogeosci. Disc. 5:2279-2304.
438	26.	Desbruyères D, et al. (2001) Variations in deep-sea hydrothermal vent communities
439		on the Mid-Atlantic Ridge near the Azores plateau. Deep Sea Res. I 48:1325-1346.
440	27.	Konn C, et al. (2009) Hydrocarbons and oxidized organic compounds in hydrothermal
441		fluids from Rainbow and Lost City ultramafic-hosted vents. Chem. Geol. 258:299-
442		314.
443	28.	Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-
444		metabolizing microbial communities dominate the Lost City hydrothermal field
445		ecosystem. Appl. Environ. Microbiol. 72:6257-6270.
446	29.	Brazelton WJ, et al. (2010) Archaea and bacteria with surprising microdiversity show
447		shifts in dominance over 1,000-year time scales in hydrothermal chimneys. PNAS.
448	30.	Cannat M, Fontaine F, Escartin J (2010) Serpentinization and associated hydrogen and
449		methane fluxes at slow spreading ridges. Diversity of hydrothermal systems on slow
450		spreading ocean ridges, eds Rona PA, Devey CW, Dyment J, & Murton BJ (AGU
451		Geophysical Monograph Series, Washington), Vol 188, pp 241-264.
452	31.	Robinson LF, Belshaw NS, Henderson GM (2004) U and Th concentrations and
453		isotope ratios in modern carbonates and waters from the Bahamas. Geochim.
454		Cosmochim. Acta 68:1777-1789.

- 455 32. Ludwig KA, Shen C, Kelley DS, Cheng H, Edwards RL (2009) U-Th isotopic
- 456 systematics and ages of carbonate chimneys at the Lost City hydrothermal field. *Eos.*457 *Trans. AGU, Fall Meet. Suppl.* 90:V31D-2007.
- 458 33. Kuznetsov K, et al. (2006) ²³⁰Th/U dating of massive sulfides from the Logatchev and
 459 Rainbow hydrothermal fields (Mid-Atlatnic Ridge). *Geochronometria* 25:51-55.
- 460 34. Eickmann B, Bach W, Peckmann J (2009) Authigenesis of carbonate minerals in
- 461 modern and Devonian ocean-floor hard rock. *The Journal of Geology* 117:307-323.
- 462 35. Ribeiro Da Costa I, Barriga FJAS, Taylor RN (2008) Late seafloor carbonate
- 463 precipitation in serpentinites from the Rainbow and Saldanha sites (Mid-Atlantic
 464 Ridge). *Eur. J. Mineral.* 20:173-181.
- 465 36. Buchardt B, et al. (1997) Submarine columns of ikaite tufa. *Nature* 390:129-130.
- 466 37. Selleck BW, Carr PF, Jones BG (2007) A review and synthesis of glendonites
- 467 (pseudomorphs after ikaite) with new data: assessing applicability as recorders of 469
- 468ancient coldwater conditions. Journal of Sedimentary Research 77:980-991.
- 469 38. Mével C (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. *C.R.*470 *Geoscience* 335:825-852.
- 471 39. Haggerty JA (1991) Evidence from fluid seeps atop serpentine seamounts in the
 472 Mariana forearc: clues for emplacement of the seamounts and their relationship to
- 473 forearc tectonics. *Mar. Geol.* 102:293-309.
- 474 40. Kato K, Wada H, Fujioka K (1998) Carbon and oxygen isotope composition of
 475 carbonate chimney from Mariana forearc seamount. *JAMSTEC J. Deep Res.* 14:213476 222.
- 477 41. Yamanaka T, et al. (2003) Stable isotope evidence for a putative endosymbiont-based
 478 lithotrophic *Bathymodiolus* sp. mussel community atop a serpentine seamount.
- 479 *Geomicrobiol. J.* 20:185-197.

480 42. Abrajano TA, et al. (1990) Geochemistry of reduced gas related to serpentinization of 481 the Zambas ophiolite, Philippines. Appl. Geochem. 5:625-630. 482 Lilley MD, et al. (1993) Anomalous CH₄ and NH₄⁺ concentrations at unsedimented 43. 483 mid-ocean-ridge hydrothermal system. Nature 364:45-47. 484 44. Charlou JL, et al. (2010) High production and fluxes of H_2 and CH_4 and evidence of 485 abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal 486 systems on the Mid-Atlantic Ridge. Diversity of hydrothermal systems on slow-487 spreading ocean ridges, eds Rona PA, Devey CW, Dyment J, & Murton BJ (AGU 488 Monograph Series, Washington), pp 265-296. 489 45. Proskurowski G, et al. (2008) Abiogenic hydrocarbon production at Lost City 490 hydrothermal field. Science 319:604-607. 491 46. Webley PA, Tester JW (1991) Fundamental kinetics of methane oxidation in 492 supercritical water. Energy and Fuels 5:411-419. 493 47. Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane 494 oxidation. Environ. Microbiol. 2:477-484. 495 48. Proskurowski G, Lilley MD, Olson EJ (2008) Stable isotopic evidence in support of 496 active microbial methane cycling in low-temperature diffuse flows vents at 9°50'N 497 East pacific Rise. Geochim. Cosmochim. Acta 72:2005-2023. 498 49. Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column 499 environments - Isotopic evidence. Org. Geochem. 10:759-768. 500 50. Templeton AS, Chu KH, Alvarez-Cohen L, Conrad ME (2006) Variable carbon 501 isotope fractionation expressed by aerobic CH₄-oxidizing bacteria. Geochim. 502 Cosmochim. Acta 70:1739-1752.

503	51.	Comtet T, Desbruyères D (1998) Population structure and recruitment in mytilid
504		bivalves from the Lucky Strike and Menez Gwen hydrothermal vent fields $(37^{\circ}17'N)$
505		and 37°50'N on the Mid-Atlantic Ridge) Mar. Ecol. Prog. Ser. 163:165-177.
506	52.	Southward EC, Gebruk AV, Kennedy H, Southward AJ, Chevaldonné P (2001)
507		Different energy sources for three symbiont-dependent bivalve molluscs at the
508		Logatchev hydrothermal site (Mid-Atlantic Ridge). J. Mar. Biol. Ass. UK 81:655-661.
509	53.	Warén A, Bouchet P (2001) Gastropoda and Monoplacophora from hydrothermal
510		vents and seeps; new taxa nd recods. The Veliger 44:116-231.
511	54.	Taylor JD, Williams ST, Glover EA (2007) Evolutionary relationships of the bivalve
512		family Thyasiridae (Mollusca: Bivalvia), monophyly and superfamily status. J. Mar.
513		Biol. Assoc. U.K. 87:565-574.
514	55.	Lartaud F, et al. (2010) Fossil clams from a serpentinite-hosted sedimented vent field
515		near the active smoker complex Rainbow (MAR, 26°13N): insight into the
516		biogeography of vent fauna. Geochem. Geophys. Geosyst. 11:Q0AE01.
517	56.	Gebruk AV, Chevaldonné P, Shank T, Lutz RA, Vrijenhoek RC (2000) Deep-sea
518		hydrothermal vent communities of the Logatchev area (14°45'N, Mid-Atlantic Ridge):
519		diverse biotopes and high biomass. J. Mar. Biol. Ass. UK 80(a):383-393.
520	57.	Oliver PG, Holmes AM (2006) New species of Thyasiridae (Bivalvia) from
521		chemosynthetic communities in the Atlantic Ocean. J. Conchol. 39:175.
522	58.	Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of
523		high H_2 and CH_4 vent fluids issuing from ultramafic rocks at the Rainbow
524		hydrothermal field (36°14'N, MAR). Chem. Geol. 191:345-359.
525	59.	Childress JJ, Fisher CR, Favuzzi JA, Sanders NK (1991) Sulfide and carbon-dioxide
526		uptake by the hydrothermal vent clam, Calyptogena magnifica, and its
527		chemoautotrophic symbionts. Physiol. Zool. 64:1444-1470.

528	60.	Früh-Green GL, Connoly JA, Plas A (2004) Serpentinization of oceanic peridotites:
529		implications for geochemical cycles and biological activity. The subsurface biosphere
530		at Mid-Ocean Ridges, eds Wilcock WSD, DeLong EF, Kelley DS, Baross JA, & Cary
531		SC (AGU Monograph), Vol 144.
532	61.	Ildefonse B, et al. (2007) Oceanic core complexes and crustal accretion at slow-
533		spreading ridges. Geology 35:623-626.
534	62.	Hopkinson L, Beard JS, Boulter CA (2004) The hydrothermal plumbing of a
535		serpentinite-hosted detachment: evidence from the West Iberia non-volcanic rifted
536		continental margin. Mar. Geol. 204:301-315.
537	63.	Alt JC, Shanks WC (2006) Stable isotope compositions of serpentinite seasounts in
538		the Mariana forearc: serpentinization processes, fluid sources and sulfur
539		metasomatism. Earth Planet. Sci. Lett. 242:272-285.
540	64.	Sponheimer M, Lee-Thorp JM (1999) Isotopic evidence for the diet of an early
541		Hominid, Australopithecus africanus. Science 283:368-370.
542	65.	Ségalen L, Lee-Thorp JM (2009) Palaeoecology of late Early Miocene fauna in the
543		Namib based on ${}^{13}C/{}^{12}C$ and ${}^{18}O/{}^{16}O$ ratios of tooth enamel and ratite eggshell
544		carbonate. Palaeogeogr., Palaeoclimatol., Palaeoecol. 277:191-198.
545	66.	Robinson LF, Henderson GM, Slowey NC (2002) U-Th dating of marine isotope stage
546		7 in Bahamas slope sediments. Earth Planet. Sci. Lett. 196:175-187.
547	67.	Edwards RL, Chen JH, Wasserburg GR (1986) 238U-234U-230Th-232Th systematics
548		and the precise measurement of time over the past 500,000 years. Earth Planet. Sci.
549		Lett. 81:175-192.
550	68.	Bayon G, Henderson GM, Bohn M (2009) U-Th stratigraphy of a cold seep carbonate
551		crust. Chem. Geol. 260:47-56.
552		

555

556	Figure 1. Location of the Ghost City fossil hydrothermal field at different scales. (A) Large
557	scale map showing hydrothermal vents hosted by volcanic rocks (red dots) and gabbros and
558	peridotites (green dots); Ghost City is in the vicinity of the Rainbow hydrothermal field. (B)
559	Standard multibeam bathymetrical map of three MAR segments between 36°00 and 36°20N.
560	These segments show a typical slow-spreading axial valley offset by two non-transform
561	discontinuities. Both Rainbow and Ghost City are located at the northern end of the segment
562	centred on 36°10N. (C) High resolution multibeam bathymetric map acquired at low ship
563	speed during cruise Flores of R/V L'Atalante showing the Rainbow vent field on the western
564	flank of the Rainbow massif; the Ghost City fossil site is located on the northwestern flank of
565	this gabbroic and peridotitic structure ~1200 m north-east of the Rainbow vent field, at a
566	depth of 2100 m.

567

568 Figure 2. Carbonate samples from Ghost City. (A) Sectioned block formed of authigenic 569 carbonate cements covered by ferric oxyhydroxide dark crust upon which (B) solitary corals 570 have grown (scale bar = 1 cm). (C) Photomicrograph showing anastomosing aragonite 571 laminae defining fluid flow channels (centre and right) and a piece of mussel shell (bottom 572 left). The channels have thin aragonite walls, some with thin collomorphic coatings, other are 573 infilled with micritic carbonate. A thin rim of aragonite acicular crystals seems to be the latest 574 cement phase, covering mussel shells, channel walls (top left) and micritic infill (centre right) 575 (scale bar = 1 mm). (D) Photomicrograph showing articulated mussel specimens and 576 gastropods enclosed within authigenic carbonate (scale bar = 1 mm). (E) and (F) SEM 577 photomicrographs of carbonates showing aragonite acicular crystals (E) and rosette of 578 glendonite crystals (F) (scale bars = $20 \mu m$).

579 580 Figure 3. Oxygen and carbon isotopic composition of Ghost City carbonates and 581 Bathymodiolus shells, and living Bathymodiolus shells from the Rainbow hydrothermal vent 582 field. Domains limited by lines represent the scatterplot of canonical scores obtained by 583 applying discriminant functions to the data. 584 585 Figure 4. Fossils from Ghost City carbonates. (A) Carbonate block with numerous specimens 586 of Bathymodiolus aff. azoricus, showing varying degrees of shell preservation. (B) Silicone 587 rubber cast of vesicomyid bivalve, right valve interior. (C) Thyasirid bivalve, left valve 588 interior. (D) Gastropod Lurifax vitreus, oblique apertural view. (E) Gastropod Anatoma sp., 589 oblique view of damaged specimen (F) Silicone rubber cast of gastropod Phymorhynchus sp., 590 side view. (G) Silicone rubber cast from carbonate containing three Protolira aff. 591 thorvaldssoni gastropod specimens (black arrows) and a single limpet (white arrow). (H) 592 Limpet Paralepetopsis aff. ferrugivora, abapertural view of slightly corroded specimen. 593

594 List of tables

- 596 Table 1: Mean, standard deviation and range of oxygen and carbon isotopic compositions of
- 597 carbonates and mussel shells collected in the Ghost City area, compared to Lost City
- 598 carbonates and living mussel shells from the Rainbow high-temperature hydrothermal vent
- 599 site.
- 600
- 601 Table 2: U-Th ages for Ghost City carbonate samples.
- 602

Table 1

		δ^{18} O ± SD		δ ¹³ C ± SD	
	(n)	(‰ VPDB)	Min / Max	(‰ VPDB)	Min / Max
GHOST CITY					
Infilled pelagic sediments	4	3.63 ± 0.25	3.27 / 3.85	0.93 ± 0.17	0.72 / 1.09
Authigenic carbonates	9	4.88 ± 0.19	4.48 / 5.09	-0.66 ± 1.18	-2.56 / 0.67
Bathymodiolus shells	3	4.93 ± 0.40	4.52 / 5.31	-0.30 ± 1.99	-2.59 / 1.08
LOST CITY					
Vent carbonates(11)	50		-6 / 5		-7 / 13
Methane(11, 44, 45)				-11.9	-13.6 / -8.8
RAINBOW					
Living Bathymodiolus shells	5	2.32 ± 0.59	1.67 / 2.99	2.78 ± 0.41	2.35 / 3.25
Methane(44)					-17.7 / -15.8

Table 2

Sample	Corrected U-Th age (kyr)	Initial δ^{234} U (‰)
	± 2σ	±2σ
S1	195 ±11	183 ±10
S2	110 ± 0.9	150 ± 1
S3	65 ±11	170 ± 1
S4	46 ± 0.3	129 ± 1