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Abstract :  
 
This paper focuses on the internal tide emitted from a continental slope in a uniformly stratified fluid. 
Results from numerical simulations using the MITgcm and from laboratory experiments performed on 
the Coriolis platform in Grenoble are compared. Due to their peculiar dispersion relation, internal 
gravity waves organize into localized beams of energy. We show that the beam structure is well-
predicted by the viscous theory of [10], assuming that the internal gravity wave field is emitted by a 
horizontally oscillating cylinder whose radius is the radius of curvature of the topography at the beam 
emission. The wave beam can bear a sub-harmonic parametric instability whose vertical scale is 
recovered from resonant interaction theory. Reflection of the wave beam on the bottom leads to the 
generation of harmonic beams, consisting of free and trapped waves.  
 
 

1. Introduction 

 
The oceanic tide can be considered as a barotropic (vertically uniform) oscillating current. In the 
presence of density stratification, the upward motion induced by bottom topography generates an 
internal tide. This mechanism is active at mid-ocean ridges and at continental slopes (such as the Bay 
of Biscay), as documented from satellite altimetry and moored current meter data. Internal tide has 
been given much 
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attention for the last ten years in relation with their role in deep ocean mixing, as
reviewed by [3]. The magnitude and distribution of mixing indeed influences the
whole process of oceanic thermohaline circulation ([2]). Mixing is produced from
the internal tide by the degradation of the internal tide into turbulence through a
sequence of instabilities, involving resonant interactions (such as parametric insta-
bility [8, 17, 4]) or shear or buoyancy induced instabilities.

Several laboratory experiments of internal wave generation by oscillating bodies
have been performed since the pioneering work of [18]. The case of a horizontally
oscillating cylinder has been recently studied by [25] as a simple model of internal
tide generation. Indeed, in a frame of reference attached to the barotropic tide, the
topography oscillates horizontally and the active part of the topography may be
modeled as a cylinder. [19] considered an isolated topography while the case of a
continental slope was addressed by [1], [6] and [21].

The numerical modelling of the internal tide first relied on the hydrostatic ap-
proximation and solved the equations of motions in an oceanic context (f.i. [9]). To
our knowledge, the first non-hydrostatic numerical simulation of internal tide emis-
sion was performed by [12] with the MITgcm, focusing upon energy transfer from
the barotropic tide to internal tides for an isolated topography. Further works were
conducted along the same lines by [13] and [14] for the same topography. The case
of a continental slope was considered by [5] and [4]. All these numerical works were
performed in a two-dimensional vertical plane and for an idealized topography. The
case of a three-dimensional realistic topography with non-hydrostatic equations was
tackled by [11].

In the present paper, the internal tide is generated by a simple two-dimensional
continental slope in a uniformly stratified ocean and modeled by joint numerical
simulations and laboratory experiments. Their set-ups are described in Sect. 2. The
internal tide emission is discussed and illustrated from our results in Sect. 3. The
main features of the internal tide are presented in the next sections: (i) its spatial
structure close to the emission region is well predicted by a viscous theoretical
model of internal wave emission by a horizontally oscillating cylinder (Sect. 4),
(ii) it can bear a sub-harmonic instability of small vertical scale (Sect. 5), (iii) har-
monic components can be generated from the bottom reflexion region (Sect. 6). We
conclude in Sect. 7.

2 Experimental set-ups

2.1 Laboratory experiments

A tidal current is forced along a channel, 4 meter wide, built inside the circular tank
of the Coriolis platform, 13 meters in diameter (see Fig. 1). The results of the present
paper are obtained in the absence of rotation. The barotropic tide is produced by the
horizontal oscillation of a piston, filling the whole section of the channel. At the
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opposite end, thechannel is open, so that the flow can escape side-way over the
topography. Letd andω be the amplitude and frequency of the motion of the piston
respectively. In the present paper, the values ford and 2π/ω are 0.6 cm and 26 s
respectively, except in Sect. 5 whered = 2 cm.

A linear density stratification is introduced by salinity while the tank is filled.
Since there is no flux of salinity through the surface and through the bottom of the
tank, the linear density profile is slowly eroded by mixed layers developing from
these boundaries. Nevertheless their thickness remains limited to a few cm during a
whole set of experiments (several weeks) with no significant evolution of the strat-
ification in the interior. The data presented here correspond to a stratification with
uniform Brunt-V̈ais̈alä frequencyNexp = 0.71± 0.2 rad/s−1, except for a bottom
mixed layer≃ 9 cm thick and a surface mixed layer≃ 3 cm thick.

The laboratory configuration is designed by similarity with a typical oceanic con-
figuration, as described in the numerical simulations of the internal tide by [5]. To
reach regimes of inertial dynamics, with weak viscous damping, we need a suffi-
ciently deep water, so we choose a total depth ofH = 90 cm, with a shelf height
equal to 76.5 cm. The topography is made of a constant slope 0.5, with inclination
angle 30o, matched with the flat continental shelf through a section with radius of
curvatureR = 180 cm. If this is assumed to represent an ocean 4.5 km deep, the
vertical scaling factor is 1/5000. At this scale, the available channel length of 10 m
represents 50 km. To simulate the process over a distance of 250 km, allowing space
for internal tide propagation, reflection and breaking, we need to apply a distortion
of aspect ratio by a factor 5. Hence, the slope is five times larger in the experiment
than in the ocean (typical value 0.1). We expect that such a distortion has only a
weak influence on the dynamics. Note that within the hydrostatic approximation,
the dynamics is strictly invariant by a change of aspect ratio in the absence of vis-
cosity effect or turbulence parameterisation.

The main measurement tool is Particle Image Velocimetry (PIV) providing ve-
locity fields in a vertical plane. Polystyrene particles (300µm in diameter) sorted
in density are used to get a uniform seeding over the fluid depth. The vertical laser
sheet is obtained by a 6 watt continuous Yag laser and an oscillating mirror while
the images are obtained by two CCD cameras looking through windows on the side
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Fig. 1 Sketch of the laboratory experiment.
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of the channel. A few velocity fields have been also obtained from a top view with
a horizontal laser plane.

2.2 Numerical simulations

The simulations are based on the numerical model developed at MIT by [16], which
we adapted to the experimental configuration. The code solves the nonlinear non-
hydrostatic Navier-Stokes equations in the Boussinesq approximation using a finite
volume method and a Cartesian coordinate system. Since the topography in the lab-
oratory experiment is two-dimensional and the Coriolis platform is non rotating, we
assume that the flow dynamics is two-dimensional in a vertical plane. The horizontal
and vertical dimensions of the numerical domain are exactly those of the laboratory
experiment as is also the topography we impose. The coordinate system(O,x,z)we
use is such thatx increases from the shelf to the piston andz= 0 at the bottom. The
position ofO along thex-axis is located at the crossing of the linez= 76.5 cm (on
the shelf) and the line of maximum slope tangent to the topography.

We performed direct numerical simulations that is, no subgrid scale modelling
is used. The value of the viscosity is set to 10−2 cm2/s, as in the laboratory experi-
ments, while the Prandtl number is set to 1 (against 700 in the experiments).

The MITgcm has an implicit free-surface formulation and no-flux boundary con-
ditions are applied to the density field at the surface and at the bottom. Free-slip
boundary conditions are applied to the velocity components.

We choseN = 0.72 rad/s in the simulation which we impose from the free surface
down to a heightz= 9 cm, below which the density is uniform. Thus, we ignored
the thin surface mixed layer of the experiments but reproduced the bottom mixed
layer.

The forcing generated by the piston is modeled by imposing a barotropic flux
at the two vertical boundaries. This flux is oscillating in time at the excitation fre-
quencyω. Measurements of the barotropic component in the experiment indicate
that it is partly blocked by the topography, so that the forcing amplitude decreases
from the piston to the shelf-break by typically 50 %. The constant barotropic flux
introduced in the computation is therefore adjusted to match the measured value
over the topography, in the region of internal tide generation. Thus, in the numerical
simulation,d = 0.24 cm except in Sect. 5 whered = 0.5 cm.

We use a resolution of 1202 grid points along the horizontal direction, with
dx= 0.91 cm. Along the vertical, the grid size is constant and equal todz= 0.28
cm, implying that the number of grid points is 320 over the plain and 48 over the
shelf. This resolution may be considered as large since, in an ocean model, it would
correspond to a horizontal resolution of 45 m and to a vertical direction of 14 m.
One tidal period is simulated by 200 time steps, withdt = 0.1305 s.

All simulations are started from rest and run over 40 forcing periods.
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3 Emission of thewave beam

Internal gravity waves are dispersive waves with an anisotropic dispersion relation
(f.i. [15]). For a plane wave in a stratified medium with constantN, the wave vector
k and frequencyω are indeed related byω2 = N2sin2θ , whereθ is the angle ofk
with the vertical. The group velocity is perpendicular tok, therefore aligned with
the fluid velocity. As a consequence, any object oscillating at a frequencyω smaller
thanN emits internal gravity waves, which carry the energy along directions with
angleθ with respect to the horizontal. Energy is concentrated along these directions
within wave beams. This striking property is nicely illustrated by the laboratory
experiments of [18]. The experiments also show that the beams are tangent to the
object as a consequence of the impermeability condition. Beams are thus emitted
from ’critical’ points, where the boundary is perpendicular tok. The slope is re-
ferred to as being ’critical’ there. In the case of a cylinder, the energy of the source
distributes among four beams, associated with upward and downward (as well as
leftward and rightward) propagation.

The theory of wave emission by a cylinder has been derived in the far-field by
[24] and later in the near-field by [10]. In the latter, the structure of the wave beam
depends both upon the ratios/R, wheres is the distance along the beam from the
object andR the radius of the cylinder, and on the ratioδ/R, whereδ =

√

ν/ω is the
thickness of the viscous boundary layer on the object. It is assumed thatδ is much
smaller thanR. In this case, near the cylinder, the energy of each beam actually
possesses two maxima, which eventually merge into a single one away from the
cylinder under the action of viscosity. For a very large cylinder, the two maxima
are well pronounced, which results in two distinct wave beams on each side of the
object.

The internal tide can be viewed as the wave emission from an horizontally oscil-
lating topography, in a frame of reference attached to the barotropic tide. In the case
of a continental slope, the energy will be able to propagate in two directions only.
This result is illustrated in Fig. 2 where color maps of the along-beam velocity are
displayed for the laboratory experiment (frame a) and for the numerical simulation
(frame b). Our study is focused on the beam propagating toward the deep ocean, and
the beam propagating leftward (toward the shelf) is not shown in these figures.

A good agreement is observed between the simulation and the experiment, the
emission location, thickness and amplitude of the wave beams being the same. Note
that, already after 8 periods, the maximum amplitude of the velocity field is 1 cm/s
that is, at least three times larger than the forcing amplitude.

Fig. 2 shows that the most active part of the topography is the region where the
beam is tangent to the slope that is at the critical point. Hence, we may compare our
results for wave emission to the theoretical predictions of [10] for a cylinder with
radius R=1.80 tangent to the slope at the critical point. Such a comparison was also
made by [25], [19] and [6] using data from their laboratory experiments.
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4 Spatial structure of the wave beam

In the theory of [10], the linear Boussinesq equations of motions are solved in a
two-dimensional vertical plane and for a constantN fluid, for a solution which is
harmonic in time. The key assumptions of the model lie in the boundary conditions
for the velocity field. This field vanishes at infinity, as expected. On the cylinder, the
thickness of the viscous boundary layerδ is assumed to be much smaller than the
cylinder radius so that free-slip boundary conditions can be set. As a result, an ana-
lytic expression for the stream function can be obtained, from which the along-beam
velocity fieldUHK can be inferred. Lets andη be the along- and cross-beam coor-
dinates respectively. Omitting time harmonic dependence,UHK(s,η) is expressed
as

UHK(s,η) = −
U0

2
e−iθ

∫ +∞

0
J1(k)exp

(

k3λ
s
R

+ ik
η
R

)

dk, (1)

whereU0 is the velocity amplitude of the cylinder,λ = (tanθ/2)(δ/R)2 and J1(k)
is the first order Bessel function.

In the present work, we compute in the absolute frame of reference the veloc-
ity filtered at the forcing frequency, which therefore involves the baroclinic and
barotropic tidal signals. The corresponding analytical expression of the along-beam
velocity component, denotedUs, is therefore (omitting again time dependence)
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Fig. 2 (a) Laboratory experiment. Spatial dis-
tribution of the amplitude of the along-beam
velocity component (in cm/s) filtered at the
tidal frequency and averaged over the 7th and
8th tidal periods; (b) Same as (a) for the numer-
ical simulation. (c) Theoretical prediction from
[10] using equation (2), for a horizontal cylin-
der oscillating horizontally with radius equal to
the radius of curvature of the topography at the
critical slope.
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Us(s,η) = −UHK(s,η)+UBT, (2)

whereUBT is the barotropic component of the velocity, which depends uponx. UBT

is computed as the vertical average of the horizontal velocity component. When
used in equation (2), the factorU0 in equation (1) is taken as the amplitude of the
barotropic velocity at the critical point.

Maps ofUs are plotted in Fig. 2c. The topography has been added to facilitate
comparison with the results from the numerical simulations and laboratory experi-
ments (but we recall that waves are emitted by a horizontally oscillating cylinder in
the theory). The agreement between the three approaches is quite good, the beam
amplitudes differing by 20% at most.

5 Parametric instability of the wave beam

It has been known since [7] and [20] that plane monochromatic internal gravity
waves may be unstable through parametric subharmonic instability (PSI). This in-
stability is a special case of resonant interactions which occur among a wave triad.
Let (k0,ω0), (k1,ω1) and(k2,ω2) denote the wave vector and frequency of each
member of the triad. Since the waves form a triad,k0 +k1 +k2 = 0. Resonance oc-
curs when a temporal resonance relation is also satisfied :ω0 +ω1 +ω2 = 0. In the
case of PSI, one wave of small amplitude, referred to as the primary wave, interacts
with two waves of much smaller amplitude such that|ω1| ≃ |ω2| ≃ |ω0|/2, where
index 0 refers to the primary wave. The instability promotes the growth of small
scale waves with respect to the primary wave scale.

As discussed above, the internal tide is emitted as a wave beam, which can be
viewed as a plane wave whose amplitude is modulated across the beam ([22]). This
implies that a wave beam of infinite extent is a solution of the Boussinesq equa-
tions in the absence of viscosity, as is a plane wave in an infinite medium. Hence,
such a wave beam could bear a PSI. This was shown indeed by [4] from numerical
simulations of internal tide emission at a continental slope in an oceanic context.

In the present case of joint numerical and laboratory experiments, no PSI was
detectable for the forcing amplitude used in Fig. 2. Since the growth rate of PSI
is proportional to the amplitude of the wave beam, we ran a computation doubling
the forcing amplitude. The result is displayed in Fig. 3a, where we plot the time
average amplitude of the horizontal velocity component filtered at half the forcing
frequency. Quasi-horizontal structures (actually whose direction makes the angle
asin(ω/2N) with the horizontal) appear. These structures are of alternate sign along
the vertical (it is not visible since the amplitude of the velocity field is plotted).
The same spatial pattern was obtained by [4]. We performed this filtering operation
on the experimental data, for the same forcing amplitude (frame 3b): similar quasi-
horizontal structures appear, with comparable amplitude, demonstrating for the first
time in a laboratory experiment that PSI can appear in a wave beam. Note that the
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maximum amplitude of the perturbation is only 4 times smaller than the maximum
amplitude of the wave beam from which the perturbation developed.

The spatial structure of this perturbation displays a well-defined vertical scale,
which can be computed from resonant interaction theory. Fig. 3c displays the growth
rate of the instability as a function of the vertical component of the wave vectorkz,
for the parameters of the computation. In the absence of viscous effects, the growth
rate saturates askz→∞ so that viscous effects, in damping the largest wavenumbers,
introduce a scale selection. The value ofkz for which the growth rate is maximum
should provide the scale of the instability visible in Fig. 3a and 3b. We find from
Fig. 3c that this vertical wavelength is about 8 cm, which compares well with that
of the quasi-horizontal structures displayed in frames a) and b). This result confirms
that the instability is of parametric sub-harmonic type.

6 Generation of harmonics

When the wave beam hits the bottom mixed layer, a reflected beam is created. While
no harmonic wave is generated by the reflection of a plane internal gravity wave on
a flat bottom, this result does not hold any longer for a wave beam ([23]). This
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Fig. 3 (a) Laboratory experiment. Amplitude
of the horizontal velocity (in cm/s) filtered at
half the forcing frequency and averaged over
forcing periods 22 to 25; (b) Same as (a) for
the numerical simulation. (c) Growth rate of
PSI predicted by resonant interaction theory for
the parameters of the simulation and experi-
ment, as a function of the vertical wavenumber
of the perturbation. The vertical wavenumber
with maximum growth rate is indicated with a
dashed line and the corresponding wave length
is drawn on frames (a) and (b) with a vertical
black line.
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theoretical prediction was verified by [5] and is also found in the present numerical
simulation, as shown in Fig. 4b. This figure displays the time average amplitude of
the horizontal velocity component filtered at twice the forcing frequency (which is
smaller thanN). The harmonic wave reflects also at the top boundary of the mixed
layer and on the piston, which accounts for the perturbed signal forx larger than
about 4 m. Fig. 4a shows that a similar harmonic wave is created in the laboratory
experiment. It is noteworthy that, both in the laboratory and numerical experiments,
a harmonic wave is also trapped in the primary reflected wave beam.

7 Conclusion

The purpose of this short paper was to provide the main characteristics of the weakly
nonlinear dynamics of the internal tide emitted at a continental slope in a uniformly
stratified non rotating fluid. These are the spatial structure of the wave beam and
two processes of energy transfer toward smaller scales. Large scale laboratory ex-
periments were performed on the Coriolis platform, so that inertial dynamics can
be reached, and compared with well-resolved numerical simulations using the non
hydrostatic MITgcm for the same sets of parameters.
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the forcing frequency and averaged over forcing periods 18 to 21; (b) Same as (a) for the numerical
simulation.
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We analysed the emission of the wave beam in light of the theory of [10], when
the oscillating source is a cylinder with radius equal to the radius of curvature of
the topography at the critical slope. A very good agreement is found between the
laboratory and numerical experiments and the theory, with differences not larger
than 20%. This shows that the radius of curvature of the topography at the critical
slope, along with viscosity, control the beam formation and possibly the beam width.
The theory of [10] should provide such dependencies.

The beam can be unstable to parametric sub-harmonic instability (PSI) if the time
scale of the instability (namely, the inverse growth rate) is smaller than the viscous
time at the scale of the instability. A PSI was observed both in the laboratory and in
the numerical experiments, associated with strikingly quasi-horizontal phase lines
of comparable amplitude. We checked that the vertical wavelength of the perturba-
tion matches the prediction from resonant interaction theory. When extrapolated to
the ocean, using a simple similarity argument, this vertical wavelength is 400 m,
associated with layers of half that height. The much higher value of the Reynolds
number in the ocean compared to the present experiments would actually select an
even smaller scale. If these layers become unstable (through buoyancy induced in-
stability), an appreciable vertical part of the ocean would be mixed.

We also showed that harmonic beams can be created when the incident wave
beam interacts with the reflected beam at the bottom mixed layer, a part of the har-
monic wave field being trapped in the reflected beam. The same behavior is ob-
served in the numerical simulation and, for the first time again, in the laboratory
experiments.
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