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Abstract :  
 
Satellites provide important information on many meteorological and oceanographic variables. 
Statespace models are commonly used to analyse such data sets with measurement errors. In this 
work, we propose to extend the usual linear and Gaussian state-space to analyse time series with 
irregular time sampling, such as the one obtained when keeping all the satellite observations available 
at some specific location. We discuss the parameter estimation using a method of moment and the 
method of maximum likelihood. Simulation results indicate that the method of moment leads to a 
computationally efficient and numerically robust estimation procedure suitable for initializing the 
Expectation–Maximisation algorithm, which is combined with a standard numerical optimization 
procedure to maximize the likelihood function. The model is validated on sea surface temperature 
(SST) data from a particular satellite. The results indicate that the proposed methodology can be used 
to reconstruct realistic SST time series at a specific location and also give useful information on the 
quality of satellite measurement and the dynamics of the SST.  
 
Keywords : State-space model - Irregular sampling - Ornstein–Uhlenbeck process - EM algorithm - 
Sea surface temperature 
 
 

1. Introduction 
 
Sea surface temperature (SST) is an important oceanographic variable for many applications (see e.g. 
[7] and references therein). Several satellites and buoy networks provide continuous observations of 
this variable, leading to a huge amount of data. Statistical methods are then needed to combine all this 
information and provide realistic SST analysis at any date and any location in the ocean. 
 
State-space models provide a �exible methodology for analysing such complex environmental data 
sets, and they have already been used in a wide range of problems (see 
 

http://dx.doi.org/10.1007/s00477-010-0442-8
http://www.springerlink.com/
http://archimer.ifremer.fr/
mailto:pierre.tandeo@ifremer.fr
mailto:pierre.ailliot@univ-brest.fr
mailto:emmanuelle.autret@ifremer.fr


e.g. [13]) including meteorological and oceanographic applications (see e.g. [1], [11], [25]
and [16]). The basic idea of these models consists in introducing the "true" value of the
physical variable of interest as a hidden variable (the "state"). Then, stochastic models
are used both to describe the dynamics of the state and to relate the observations to
the state. When linear Gaussian models are used, we get the so-called linear Gaussian
state-space model which has been extensively studied in the literature (see e.g. [8] and
references therein). Note that [14] proposed uni�ed notations for state-space models and
data assimilation in oceanography and meteorology which are partially adopted here.

In this work we analyse satellite SST data at a single location, where buoy data is available
for comparison, and we consider the time series obtained by keeping all the satellite data
available nearby this location. It leads to a time series with irregular time-step, with
generally several data each day but also sometimes gaps of several days with no data. We
adopt a continuous-time state-space model to analyse this time series in which the state
is supposed to be an Ornstein-Uhlenbeck process. It leads to a simple generalization of
the usual linear Gaussian state-space model with regular time-step.

The most usual method for estimating the parameter in models with latent variable con-
sists in computing the maximum likelihood estimates using the Expectation-Maximisation
(EM) algorithm. In this work, we propose to improve the numerical e�ciency of the EM
algorithm by combining it with a method of moment and a standard numerical optimiza-
tion procedure. The method of moment is used to provide realistic starting values to the
EM algorithm with the extra bene�t of providing graphical tools which permit to asses
the realism of the model. The standard numerical optimization procedure is used to ac-
celerate the convergence of the EM algorithm near the maxima and provide estimates of
the observed information matrix and thus important information on the variance of the
estimates.

The paper is organised as follows. The SST data and the model are introduced in Section
2. Then, the parameter estimation is discussed in Section 3: after describing the practical
implementation of the various methods, we asses the e�ciency of the whole procedure
through simulations. In Section 4, we discuss the results obtained on the data with the
proposed methodology. Conclusions are drawn in Section 5.

2 Data and model

Several instruments on-board satellites provide measurements of SST over the entire sur-
face of the ocean with di�erent spatial and temporal resolutions. In this work, we focus on
the data provided by the infrared Advanced Very High Resolution Radiometer instrument
on-board the METOP satellite (see [17] for more details). This satellite covers the global
ocean with a spatial resolution of 0.05 degree and provides two SST observations per day
at the most in optimal conditions. In this paper, we �rst consider the data available
at a given location, with geographical coordinates (00N, 230W), in the tropical region
of the Atlantic Ocean. More precisely, we consider two years of data, from 11-Jul-2007
to 18-Jun-2009, which are representative of the variability of the SST conditions at this
location. Hereafter, (t1, ..., tn) denotes the times at which the METOP satellite data are
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Figure 1: Histogram of the time lags ∆i in days (left) and of the SST anomalies {yti} in degree

Celsius (right).
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Figure 2: Raw METOP SST (in degree Celsius) time series (dotted line) and OIV2 SST analysis

(full line).

available, with n = 1087 the total number of observations. Since satellite observations
may be contaminated by atmospheric conditions (e.g. cloud coverage), some data are
missing and the time di�erence ∆i = ti − ti−1 between two consecutive observations may
vary from a half day to a few days (see Figure 1).

The resulting time-series is clearly non-stationary (see Figure 2) with in particular impor-
tant seasonal components. The non-stationary components have complex features and
we could not �nd any appropriate parametric model to describe them. We have thus
decided to use the SST analysis produced by the National Climatic Data Center (NCDC)
(daily "OIV2 analysis" with 0.25 degree spatial resolution) to remove these components.
These analysis are derived from di�erent satellite sources independent of METOP data
(see [21]) and we assume that they provide a good estimate of the low-variations of
the SST conditions. Both data sources METOP and OIV2 are available at the URL
http://www.hrdds.net.

Then we consider the time series ytn
t1 = (yt1 , ..., ytn) obtained by removing the OIV2

analysis from the METOP data (see Figure 3). We assume that this new time-series,
referred as the SST anomaly hereafter, is a discrete-time realization of a continuous-
time stationary process {Yt}. Modelling the time series {ytn

t1 } may provide important
information on the small scale variability of SST and also on the quality of METOP

3
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Figure 3: SST anomalies (in degree Celsius) obtained by removing the OIV2 analysis from

METOP data.

measurements and OIV2 analysis as it will be shown in Section 4 and �nally lead to a
better assimilation of these data into numerical models.

The model that we consider for {Yt} is introduced below. First, we assume that the
observed SST anomaly at time t, Yt, is related to the "true" SST anomaly at time t,
denoted Xt, by the measurement equation below:

Yt = HXt +
√
Rεt (1)

where {εt} is a Gaussian white noise sequence with zero mean and unit variance. In
practice R represents the variance of the observation error and H allows a transformation
between the state and the observations. For the particular METOP measurements con-
sidered in this paper (we keep only the best quality data), the standard deviation of the
observation error has been estimated globally to 0.5 degree Celsius, but it is known that it
may vary according to the retrieval algorithm (day-time and night-time), the region and
the season (see [17] for more details). The observation equation (1) could be modi�ed
to take into account these �uctuations in the accuracy of the data. In the same way, we
could include the various covariates which alter the quality of the satellite measurements
(see [24]) or assume that the parameters H and R depend on the satellite if the observed
time series was obtained by mixing data from di�erent satellites.

Then we assume that the latent process {Xt} is a simple Ornstein-Uhlenbeck process,
that is a stationary solution of the following stochastic di�erential equation:

dXt = −λXtdt+ τdWt (2)

where {Wt} denotes a standard Brownian motion. A physical justi�cation of using this
model to describe the local dynamics of the SST, when neglecting horizontal transport
and heat exchange, is given in [10]: λ > 0 is the time correlation (in day) or feedback
parameter which represents the slowly evolving transfer of heat and τ > 0 the variability
coming from weather �uctuations (see also [20], [18]).

Hereafter, we denote σ2 = V ar (Xt) = τ2

2λ
the variance of the stationary distribution.

{Xt} is a Markov process which satis�es, for i ∈ {2, ..., n},
Xti = M∆i

Xti−1
+

√
Q∆i

ηti (3)

4



Figure 4: Directed acyclic graph for the linear Gaussian state-space model with irregular time

step.

with M∆i
= exp (−λ∆i), Q∆i

= σ2
(
1 −M∆i

2
)
and {ηti}i∈{2...n} a Gaussian white noise

sequence with zero mean and unit variance independent of {εti}i∈{1...n}. In the particular
case when the temporal sampling is regular, i.e. when ∆1 = ... = ∆n, we retrieve a
standard AR(1) process and the usual linear Gaussian state-space model. Here again,
more complicated models could be considered, with for example non-linear dynamics, but
this would complicate the statistical inference methods discussed in the next Section.

Finally, the various conditional independence assumptions which imply the particular
Markovian structure of the state-space model, when observed at discrete time t1, ..., tn,
are summarized on the directed acyclic graph shown on Figure 4.

3 Parameter estimation

The estimation of the unknown parameters in Gaussian linear state-space models observed
at regular time step has been addressed by many authors and the most usual method
consists probably in computing the maximum likelihood (ML) estimates using the EM
algorithm (see e.g. [8]).

However, before computing the ML estimates, it is important to check the identi�ability
of the parameters. For the particular model under consideration, it is possible to show
that the observations follow a multivariate Gaussian distribution with an explicit covari-
ance function. Using this result, we can give conditions on the parameters which ensure
identi�ability and also propose a �rst method based on the moments to estimate the pa-
rameters. The corresponding estimates will be denoted MOM estimates hereafter. This
is discussed in Section 3.1. Then, in Section 3.2, we detail the practical implementation
of the EM algorithm for the Gaussian linear state-space model with irregular time-step.
We discuss how it can be combined with the method of moment and a more standard
numerical optimization procedure proposed in [15] to get a computationally e�cient and
numerically robust estimation procedure. Finally, this is illustrated in Section 3.3 through
simulations.
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3.1 Covariance function

With the various assumption made in the previous section, {Yt} is a stationary Gaussian
process with zeros mean and covariance function

Cov (Yt, Yt′) = H2σ2 exp (−λ |t− t′|) +R1l{0}(t− t′) (4)

We deduce that the distribution of the observed sequence (yt1 , ..., ytn) is a multivariate
Gaussian distribution with zeros mean and covariance matrix which can be expressed
from the unknown parameter H , R, σ2 and λ. According to (4), this covariance matrix
depends on the parameters H and σ2 only through the product H2σ2 and thus we need
to add a constraint in order to ensure identi�ability of the parameters. Hereafter, we �x
H = 1 and denote θ = (λ, σ2, R) ∈ (0,+∞)3 the unknown parameters.

The covariance function (4) corresponds to a classical model in spatial statistics since we
retrieve an exponential model with nugget R, sill σ2 +R and range 1/λ. Usual methods in
geostatistics permit to compute an empirical estimate of the variogram from the data (see
e.g. [3],pp.69). The variogram is directly related to the covariance function for second
order stationary processes and the empirical variogram can be used to check the realism
of the parametric model 4 and also �t it using the weighted least square method. Here
the weights depend on the number of pairs of time points which are available to estimate
the empirical variogram as discussed in [3],pp.96. The corresponding estimates will be
denoted MOM estimates hereafter.

3.2 Maximum likelihood estimation

Alternatively, the parameters can be estimated by computing the ML estimates. Ac-
cording to the conditional independence assumptions shown on Figure 4, the complete
log-likelihood, based on both the latent and observed sequences, is given by

log
(
p(xtn

t1 , y
tn
t1 ; θ)

)
= log(p(xt1)) +

n∑
i=2

log
(
p(xti |xti−1

; θ)
)

+

n∑
i=1

log (p(yti |xti ; θ))

where the conditional distributions p(xti |xti−1
; θ) and p(yti|xti ; θ) are Gaussian distribu-

tions which characteristics are given respectively by (3) and (1). Hereafter we will assume
that the initial distribution p(xt1) is a Gaussian distribution with known mean x(b) and
variance B and in practice these values will be estimated using historical data. Thus,
apart from a constant, we obtain

log
(
p(xtn

t1
, ytn

t1
; θ)

)
= −(n− 1) log(σ) − 1

2

n∑
i=2

log (1 − exp(−2λ∆i))

− 1

2σ2

n∑
i=2

(xti − exp(−λ∆i)xti−1
)2

(1 − exp(−2λ∆i))
(5)

− n

2
log(R) − 1

2R

n∑
i=1

(yti − xti)
2
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The ML estimates θ̂ is the value of θ that maximises the (incomplete) likelihood of the
observations ytn

t1 formed by integrating the complete likelihood (5) over the missing vari-
ables.

In this paper, the EM algorithm due to [4] is used to compute θ̂. This recursive algorithm
computes successive approximations θ̂k = (λk, σ

2
k, Rk) of θ̂ by cycling through the following

steps.

E-step: Compute U(θ|θ̂k) = E(log(p(X tn
t1 , y

tn
t1 ; θ))|ytn

t1 ; θ̂k) as a function of θ.

M-step: Determine the updated parameter estimate θ̂k+1 = arg max
θ
U(θ|θ̂k).

Under certain general conditions it can be shown that the sequence of estimates θ̂n yields
monotonically increasing values of the incomplete likelihood, and converges to a maximum
of this function (see [26]). Thus the EM algorithm provides an alternative method of
maximising the incomplete log-likelihood which is commonly used in models with hidden
or latent variables such as the model proposed here. The EM algorithm directly utilises
the hidden structure and, as a consequence, is often more robust in practice to the choice of
starting values than usual numerical optimization methods. Its computational e�ciency
is enhanced if the E and M steps are readily evaluated. Various authors have discussed the
practical implementation of these steps for linear Gaussian state-space models with regular
time sampling ([6], [5], [23] and [2],pp.384-388). Hereafter, we discuss the extension to
the case with irregular sampling.

E step To determine U(θ|θ̂k) as a function of θ we need to compute the following smooth-
ing probabilities, for i = 1, . . . , n:

x
(s)
ti = E(Xti |ytn

t1 ; θ̂k), x
(s)
ti,ti = E(X2

ti
|ytn

t1 ; θ̂k), x
(s)
ti−1,ti = E(Xti−1

Xti |ytn
t1 ; θ̂k) (6)

These quantities can be computed using the Kalman recursions described hereafter. This
is a particular case of the general Kalman recursions given for example in [23] and
[2],pp.127-147.

� Kalman �lter. Let us denote

x
(f)
ti = E(Xti|yti−1

t1 ; θ̂k), P
(f)
ti = V ar(Xti |yti−1

t1 ; θ̂k)

the mean and the variance of the forecast probabilities and

x
(a)
ti = E(Xti |yti

t1 ; θ̂k), P
(a)
ti = V ar(Xti |yti

t1 ; θ̂k)

the mean and the variance of the �ltering probabilities. These quantities can be
computed using the recursion below.

Initialization: compute the Kalman �lter gain Kt1 = B
B+R

and

x
(a)
t1 = x(b) +Kt1(yt1 − x(b)), P

(a)
t1 = (1 −Kt1)B

where the parameters x(b) = E[Xt1 ] and B = V ar(Xt1) of the initial distribution
are supposed to be known.

Recursion: for i = 2, ..., n

7



� Time update:

x
(f)
ti = M∆i

x
(a)
ti−1
, P

(f)
ti = M2

∆i
P

(a)
ti−1

+Q∆i

� Observation update: compute the Kalman �lter gain Kti =
P

(f)
ti

P
(f)
ti

+R
and

x
(a)
ti = x

(f)
ti +Kti

(
yti − x(f)

ti

)
, P

(a)
ti = (1 −Kti)P

(f)
ti

� Kalman smoother. Let us denote

P
(s)
ti = V ar(Xti |ytn

t1
; θ̂k)

the variance of the smoothing probabilities at time ti. These quantities and the
conditional expectation x

(s)
ti de�ne in (6) can be computed using the backward re-

cursions below.

Initialization:

x
(s)
tn = x

(a)
tn , P

(s)
tn = P

(a)
tn

Recursion: for i = n − 1, ..., 1 compute the Kalman smoother gain K
(s)
ti =

P
(a)
ti

M

P
(f)
ti+1

and

x
(s)
ti = x

(a)
ti +K

(s)
ti

(
x

(s)
ti+1

− x(f)
ti+1

)
, P

(s)
ti = P

(a)
ti +

(
K

(s)
ti

)2 (
P

(s)
ti+1

− P (f)
ti+1

)

Finally U(θ|θ̂k) can be computed from the quantities computed with the Kalman smoother
above and the relations

x
(s)
ti,ti = P

(s)
ti +

(
x

(s)
ti

)2

, x
(s)
ti−1,ti = Cov(Xti−1

, Xti|ytn
t1 ; θ̂k) + x

(s)
ti−1
x

(s)
ti

where

Cov(Xti−1
, Xti|ytn

t1
; θ̂k) = (1 −Kti)MP

(a)
ti−1

+
P

(s)
ti − P (a)

ti

P
(a)
ti−1

(1 −Kti)MP
(a)
ti

M step

The function U(θ|θ̂k) can be decomposed as

U(θ|θ̂k) = UX(λ, σ2|θ̂k) + UY |X(R|θ̂k)

where

8



UX(λ, σ2|θ̂k) = − (n− 1) log (σ) − 1

2

n∑
i=2

log (1 − exp (−2∆iλ))

− 1

2σ2

n∑
i=2

x
(s)
ti,ti − 2 exp (−∆iλ) x

(s)
ti−1,ti + exp (−2∆iλ)x

(s)
ti−1,ti−1

1 − exp (−2∆iλ)

and

UY |X(R|θ̂k) = − n

2
log (R) − 1

2R

n∑
i=1

{
y2

ti
− 2ytix

(s)
ti + x

(s)
ti,ti

}

The second term UY |X is similar to the case with regular sampling and the maximum is
obtained for R = Rk+1 with

Rk+1 =
1

n

n∑
i=1

{
y2

ti
− 2ytix

(s)
ti + x

(s)
ti,ti

}

The �rst term UX is speci�c to the case with irregular sampling and numerical optimisation
procedures have been used to compute (λk+1, σ

2
k+1) since we could not derive analytic

expressions these quantities. Here the relation

σ2
k+1 =

1

n− 1

n∑
i=2

x
(s)
ti,ti − 2 exp (−∆iλk+1)x

(s)
ti−1,ti + exp (−2∆iλk+1)x

(s)
ti−1,ti−1

1 − exp (−2∆iλk+1)

has been used to transform the initial two-dimensional optimization problem into a simple
one-dimensional optimisation problem and reduce computational time.

The EM algorithm has several well known limitations. First it may converge to a non-
interesting local maximum of the likelihood function depending on the starting value θ̂0,
and thus it is important to provide realistic initial parameter values. Here we have used
the estimates obtained using the method of moment described in Section 3.1. Indeed
the various tests that we have done indicate that this method leads to robust estimates
and generally provide a good starting value to the EM algorithm with low numerical cost
(see Section 3.3). This is particularly useful to avoid numerical problem when �tting the
model to a large number of data sets for regional studies such as the one performed in
Section 4.4.

Another limitation of the EM algorithm is its slow convergence near the maxima where
using a standard optimization algorithm is generally far more e�cient, at least when it
is possible to compute the incomplete likelihood function quickly. For the model under
consideration, the incomplete likelihood function is a sub-product of the Kalman �lter
since we have

p(ytn
t1

; θ) =
n∏

i=2

p(yti|yti−1

t1 )

9



where the conditional distribution p(yti|yti−1

t1 ) is a Gaussian distribution with meanE(Xti |yti−1

t1 )

and variance V ar(Xti |yti−1

t1 ) + R and these quantities are computed recursively in the
Kalman �lter (see Section 3.2). Eventually, the gradient of the log-likelihood function
could also be computed to accelerate the convergence of the numerical optimization pro-
cedure. In this work, we did not provide the gradient to the Matlab function used for
the numerical optimization but we did not encounter any numerical problem and the
computational e�ciency was good enough.

Another advantage of switching from the EM algorithm to a quasi-Newton algorithm
close to the maxima is that quasi-Newton algorithms provide an approximation of the
Hessian of the log-likelihood function, and thus useful information on the variance of the
ML estimates (see Section 3.3).

3.3 Simulations

In this section, the relative performances of ML and MOM estimates are assessed through
simulations. More precisely, for various values of n ∈ {200, 300, ..., 2000}, we have simu-
lated N = 1000 sequences of length n using the scheme described below:

1. Simulate the time lags (∆i)i∈{2...n} as an i.i.d. sample from the empirical distribution
of the time lags for satellite data (see Figure 1).

2. Simulate the initial state xt1 as a Gaussian variable with mean x(b) and variance B
and then recursively (xti)i∈{2...n} according to (3).

3. Simulate the observed process (yti)i∈{1...n} using (1).

The following parameters values have been chosen for the numerical experiment: λ = 0.5,
B = σ2 = 0.05, R = 0.5 and x(b) = 0. It corresponds to realistic values for the application
discussed in the next Section.

Then, for each simulated sequence the ML and MOM estimates have been computed. In
practice, ML and MOM estimates have been computed using a quasi-Newton algorithm
with the true values of the parameters as initial value. Although such initialization is not
possible for practical applications, it permits to avoid convergence to non interesting local
maxima of the likelihood function and a fair comparison of the two estimates. Figure 5
shows the empirical estimate of the bias and variance of the estimates computed from these
simulations. As expected, the ML estimates generally outperform the MOM estimates in
terms of both bias and variance. However, the MOM estimates give satisfactory results for
the di�erent values of n and have the advantage of being computed with low computational
costs and less sensitive to the choice of realistic starting values than the EM algorithm. For
comparison purpose, the variances computed from the inverse of the observed information
matrix are also shown on Figure 5. The agreement with the empirical variances of the ML
estimates is generally good, especially for large sample size as expected from the general
asymptotic theory for the ML estimates.

10
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Figure 5: Plot of the simulated bias (left) and variances (right) for the MOM (dashed-dotted

line) and ML estimates (full line) for di�erent length sequences n (x-axis). Estimate of λ (top

panel), of σ2 (middle) and R (bottom). The dotted lines on the right panel is the variance

computed from the information matrix (empirical mean over the di�erent simulations). The

simulated results are based on N = 1000 replications.
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4 Application to SST data

In this section the model is �rst �tted and validated on the SST data introduced in
Section 2. The original time series has been divided into two consecutive parts: the
�rst one (yt1 , ..., ytn1

) for estimating the parameters and second one (ytn1+1, ..., ytn) for
validating the model. In practice, we used n1 = 725 observations to �t the model, a
reasonable amount of data according to the simulation results given in Section 3.3. It
corresponds to a proportion of about two-thirds of the data (more than one year).

In Section 4.1, we �rst discuss the results obtained when �tting the model on the training
data set. Then the model is validated using cross-validation on the validation data set in
Section 4.2 and by comparison to buoy data in Section 4.3. Finally, in Section 4.4, the
methodology is applied to data at many locations on a regular grid covering the Atlantic
ocean and the spatial behaviour of the parameter estimates is discussed.

4.1 Parameter estimation

The parametric covariance model (4) has been �tted to the empirical estimate of the
autocovariance function of the SST anomaly using weighted least square method leading
to the MOM estimates (see Section 3.1). The corresponding variograms are shown in
Figure 6. The overall agreement is good, except maybe a �ve days component which is
visible on the empirical variogram function (see [12] for a discussion on the existence of
peak frequencies in SST time series). This indicates that the assumptions made on the
shape of the covariance function is realistic, at least when focussing to time lags up to 40
days. Let us remark that according to Figure 1, it seems also reasonable to assume that
the marginal distribution is approximately Gaussian except maybe the lower tail of the
distribution.

Starting from the MOM estimates obtained by �tting the covariance function, we have run
the EM algorithm. The �rst iterations are e�cient and the likelihood function increases
rapidly (see Figure 7) but after some iterations the convergence becomes rather slow, and
switching to a standard numerical optimisation procedure permits to save computational
time. According to Table 1, the ML estimate of λ is signi�cantly lower than the MOM
estimate and the ML estimates of σ2 and R2 are higher than the corresponding MOM
estimates, although the di�erences for σ2 and R2 do not seem to be statistically signi�cant
if we compare the di�erences in the parameter values to the standard deviations given in
Table 1. ML estimates identify a second-order structure with a higher sill, which better
coincides with the empirical variance of the time series (about 0.47), and also a higher
range. Despite these di�erences in the parameters values, the agreement between the
covariance functions is good for time lags less than 10 days (see Figure 6) and thus we
may expect that we would get similar results if using the model with the MOM instead
of the ML estimates for estimating the true SST in Sections 4.2 and 4.3.

The �nal parameter values are in good agreement with our knowledge of the physical
process under consideration. In particular, according to [17], the standard deviation of
the measurement error of the METOP data considered in this paper may vary between
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Figure 6: Empirical (dotted line) and �tted theoretical variogram for the MOM (dashed-dotted

line) and ML (full line) estimates. Results obtained on the training data set. The x-axis is the

time lag (in days).
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Figure 7: Evolution of the parameters values during the 100 iterations (x-axis) of the EM

algorithm: λ̂ (top-left), σ̂2 (top-right), R̂ (bottom-left). The bottom-right panel shows the

increase of the log-likelihood function.

Method of Maximum likelihood Standard
moments EM algorithm Quasi-Newton deviation

λ̂ (day−1) 0.145 0.057 0.056 0.019

σ̂2 0.184 0.329 0.330 0.094

R̂ 0.129 0.141 0.141 0.010
Log-likelihood −463.15 −450.69 −450.68

Table 1: Parameter value after the di�erent steps of the �tting procedure: method of moment
(�rst column), 100 iterations of the EM algorithm (second column) and numerical optimization of

the likelihood function with a quasi-Newton algorithm (third column). The last column gives an

estimate of the standard deviation of the ML estimates computed from the information matrix.

Results obtained on the training data set.
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0.33 and 0.51 degree Celsius depending on the conditions. This range matches with
the 95% con�dence interval for the standard deviation of the observation error (we get
approximately the interval between 0.35 and 0.40 degree Celsius). Then, the low value of
λ imply an important temporal persistence of the SST conditions and is coherent with the
climatology of the place of interest were SST anomaly is known to have a strong temporal
correlation. Finally, comparing the variance of the innovation of the dynamics for a time
lag of one day (Q̂1 = 0.04) with the one of observation error R̂ indicates that more
weights will generally be given to the previous analysis than to the current observation in
the Kalman recursions.

4.2 Cross-validation

In this section, we validate the model using cross-validation on the validation data set.
For each i ∈ {n1+1, ...n}, the observation at time ti is removed and the Kalman recursions
are used to compute

x
(s)
ti|i(θ̂) = E(Xti |yti−1

tn1+1
, ytn

ti+1
; θ̂), P

(s)
ti|i(θ̂) = V ar(Xti|yti−1

tn1+1
, ytn

ti+1
; θ̂)

If the various assumptions made in Section 2 are valid, then the conditional distribution
of Yti given the past observations y

ti−1

tn1+1
and the future observation ytn

ti+1
should be ap-

proximately Gaussian with mean x(s)
ti|i(θ̂) and variance P (s)

ti|i(θ̂) + R̂. An histogram of the
standardized residuals

yti − x(s)
ti|i(θ̂)√

P
(s)
ti|i(θ̂) + R̂

is shown on Figure 8 together with the probability density function of the standard nor-
mal distribution and a normal probability plot (formal goodness of �t test are hard to
implement since the residuals are not independent). The �t is generally good except
again for the lower part of the distribution and this indicates that there are too many
low residuals. According to Figure 9, it corresponds to breaks in the observed time series
at date when the SST anomaly suddenly drops. It is known that various factors (aerosol
optical depth, wind speed or proximity to clouds for example) may perturb the quality
of the data and a careful examination of these factors at the dates when the SST drops
has been done. We could not identify anything special at these dates and thus we believe
that the drops are due to non-linearities in the dynamics of the true SST anomaly. It
indicates that using a non-linear model instead of (2) may be more appropriate. Let us
remark that the standardized residuals may also provide useful information on outliers.

4.3 Comparison with buoy data

Using the model proposed in this work and the Kalman smoother on SST anomaly de-
rived from satellite data, we can estimate the "true" SST anomaly at any time and thus
emulate a virtual buoy. In order to check the realism of such virtual buoy, we have been
compared the result with SST buoy measurements available at high temporal resolution

14



−5 0 5
0

0.1

0.2

0.3

0.4

0.5

−2 0 2
0.001
0.003
0.01 
0.02 
0.05 
0.10 
0.25 

0.50 
0.75 
0.90 
0.95 
0.98 
0.99 

0.997
0.999

Figure 8: Left panel: histogram of the standardised residuals obtained by cross-validation on

the validation data set and probability density function of the standard Gaussian distribution

(full line). Right panel: normal quantile-quantile plot of the standardised residuals.
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Figure 9: Raw (dotted line) and interpolated (full line) satellite SST anomalies (in degree

Celsius) together with a 95% �uctuation interval for the smoothing probabilities (grey). Results

obtained by cross-validation on the validation data set.
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Figure 10: Buoy SST anomalies (dotted line) and smoothed satellite SST anomalies (full line)

in degree Celsius together with a 95% �uctuation interval for the smoothing probabilities (grey).

Results obtained on the validation data set.

Bias Standard deviation RMSE
Raw satellite data −0.22 0.47 0.52

Smoothed satellite data −0.22 0.31 0.38

Table 2: Di�erence between satellite (raw and smoothed) and buoy SST (bias, standard devi-

ation and root mean square error) computed on the validation data set.

(10 minutes) from the Pilot Research Moored Array in the Tropical Atlantic (PIRATA,
see [22]) at the same location (00N, 230W). According to Figure 10, the virtual buoy
obtained by smoothing satellite data has some similarities with buoy data, but there are
also important di�erences (only 63% of buoy measurements are contained in the 95% �uc-
tuation intervals for the smoothing probabilities). However, Table 2 indicates that using
the model proposed in this paper permits to improve the quality of the original satellite
data and decrease the standard deviation of the error but can not correct the negative
bias present in the original satellite data (underestimation of the SST measured at the
buoy).

Since the results given in the previous sections indicate that the state-space model pro-
posed in this paper is realistic for satellite data, we may conclude that the signi�cant
di�erences between the buoy and the virtual buoy are due to di�erences in the satellite
and buoy data. A �rst reason may be the well know depth-to-skin bias discussed in
[17]: METOP satellite measures the skin SST (the temperature of the sea in the �rst
µm) whereas the buoy measures the temperature at a depth of about 1 meter and the
temperature gradient evolves strongly in this surface layer. A second possible reason is
the di�erence in the scale of the measurements: buoy data are local measurements and
are able to identify small scale variation whereas METOP data describes larger scale
variations since they retrieve the mean SST over a 5 × 5 km2 surface.

Finally, these results highlight the di�culties of building a realistic SST time series from
satellite data. Possible improvements are discussed in the conclusion.
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4.4 Generalization to the Atlantic ocean

The methodology introduced above for the point with geographical coordinates (00N,
230W) has been applied to locations on a regular grid with 1° resolution in both latitude
and longitude covering the Atlantic Ocean. The state-space model is �tted at each point
on the time series of SST anomalies obtained by removing OIV2 analysis from METOP
data. The length n of the time series depends on the location of interest and varies from
100 to 900 (see Figure 11). According to the simulation results given in Section 3.3, this
may lead to estimates with high variance at locations with poor satellite coverage.
The spatial behaviour of the parameter estimates shown on Figure 11 gives important
information on the small-scale variability of SST and also on the quality of METOP data
and OIV2 analysis. First, the feedback parameter λ (expressed in day−1) informs us about
the heat transfer at the surface of the ocean. In order to facilitate the interpretation, we
have chosen to represent the spatial evolution of M1 = exp(−λ) which corresponds to
the autoregression coe�cient for a time lag of one day between two observations. The
estimate ofM1 mainly depends on the latitude with longer range temporal dependence in
the inter-tropical convergence zone (ITCZ) than in the mid-latitudes. Then, the variance
of the stationnary distribution of the state σ2 informs us about the variability of the SST
anomaly. According to Figure 11, the areas with high variability correspond to places, like
the Falkland area o� the Brazilian coast and the Gulf Stream o� the Canadian coast, with
strong sea-surface currents and wind conditions. Moreover, the more important upwelling
systems of the Atlantic ocean can also be identi�ed, e.g. the Canary and Benguela regions
which are areas with strong winds yielding to a mixing of the ocean layer. In the rest
of the Atlantic ocean, the variance is about 0.1. Finally, the value of the parameter
R is the variance of the measurement errors of the METOP sensor. Estimate of this
variance were provided in a previous study ([17]) by comparing METOP observations to
data from drifting buoys. Unfortunately, the number of buoys is limited and covers a
small part of ocean. The approach presented in this paper, based only on remotely sensed
data, presents a global view of the spatial distribution of R. According to Figure 11, the
principal sources of contamination of METOP infra-red sensor seem to be the aerosol of
the Saharan dust (see [9]) and the wild�re o� the Angola coast.

5 Conclusion and perspectives

In this paper, we propose an extension of the usual linear and Gaussian state space model
to analyse satellite data at irregular time step. We propose to combine various methods
and algorithms to estimate the parameters e�ciently. Indeed, simulation results indicate
that the method of moment leads to a computationally e�cient and numerically robust
estimation procedure suitable for initializing the EM algorithm. A standard numerical
optimization procedure is then used in the vicinity of the maximum of the likelihood
function identi�ed by the EM algorithm. It permits to accelerate the convergence of the
EM algorithm with the extra bene�t of giving as output an estimate of the information
matrix which provide an estimate of the variance of the estimates.

This paper focus on SST data from the METOP satellite and the various results given in
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Figure 11: Top-left : number of METOP data at each grid point. Top-right : spatial evolution

of the estimate of the one day autocorrelation coe�cient M̂1 = exp(−λ̂). Bottom-left : spatial
evolution of the estimate of the variance of the stationary distribution σ̂2. Bottom-right : spatial

evolution of the estimate of the variance of the measurement error R.

this paper indicate that the model is appropriate for describing some important properties
of this data set such as the temporal structure and the measurement errors. Comparison
with buoy data indicates that there is work to be done in order to estimate realistic SST
conditions from METOP data. Nevertheless, we think that the state-space formulation
adopted in this work is an appropriate method. In order to reconstruct realistic SST
maps, we plan to extend the formulation in space and time to handle SST data from
various satellites with their own accuracies and space-time resolutions. Indeed, using
such formulation has several bene�ts. First, it allows modelling �exibility. For example,
non-linear dynamics, which incorporate the e�ects of advection and di�usion (see [19] and
references therein) or non-linear evolution in the atmospheric variability can be considered.
We also plan to investigate more elaborated measurement equations and include covariates
to model the changing biases and variances of the di�erent satellites (see e.g. [24]).
Then, the Markovian structure of the model leads to e�cient methods for the statistical
inference. In particular, it allows to compute the maximum likelihood estimates and it is
shown that these estimates are more e�cient than the ones obtained using the method
of moment commonly used in geostatitics with kriging. The Kalman recursions used to
compute the smoothing probabilities take also bene�t of the Markovian properties of the
model and permit to save computational time compared to space-time kriging where high
dimensional linear systems need to be solved.
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