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Abstract  :  
 
This paper deals with the modelization of eddy-current measurements over combustion turbine blade 
coatings affected by depletion of aluminum. First, we model the response of an eddy-current coil over 
a layered metallic structure with a top over-aluminized coating by extending the analytical Uzal-Rose's 
model for one hyperbolic tangent conductivity profile to a conductivity profile using two hyperbolic 
tangents for taking inward and outward depletion of aluminum inside the coating into account. Results 
obtained with this model are similar to those obtained with a numerical multilayer model but with a 
reduced computing time.  
 
Keywords : coils, eddy current testing, electrical conductivity measurement, inverse problems, probes 
 
 
 

1. Introduction 
 
 
The modelization of the response of a sensor in the presence of conductive material of 
different geometry is of great interest as exemplified in [1] where the interaction of an Eddy-
current coil with a right-angled conductive wedge is dealt with, in [2] in which the impedance 
calculation of a bobbin coil in a conductive tube with eccentric walls is treated. Some others 
works proposed some ideas to work with arbitrary shaped coil as in [3] whereas in [4] the 
case of the inductance of a coil in a nonhomogenous surrounding is dealt with. Here the 
eddy-current modeling of the interaction of a 
coil with a continous conductivity profile resulting from a diffusion process is proposed. 
 
In the electrical industry, power production using gas turbines has to be developed in a 
significant way. In order to achieve a good economical performance, the thermal efficiency of 
gas turbines has been improved by increasing the firing temperatures. Large increase by 
hundreds of degrees of gas temperature has been made possible using high technologies 
regarding both cooling of the hot section components and protection against hot corrosion 
and high temperature oxidation of the surface of some components, like blades in 
highpressure section. 
 
This protection involves specific coatings using Nibased super-alloys where aluminum and 
chrome, contained in precise proportion, form protective Al2O3 or Cr2O3 surface oxides 
against corrosive attacks. Yet, advanced blades protected by a top over-aluminized coating 
are affected by a significant inward and outward depletion of aluminum. Inward depletion is 
due to migration of aluminum from the coating to the blade substrate, 

http://dx.doi.org/10.1109/TMAG.2011.2128877
http://archimer.ifremer.fr/
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induced by differences of conductivities between the

two layers, in order to restore the thermodynamical

equilibrium. Outward depletion is due to migration of

aluminum in the coating towards the surface to reform

the protective oxides layer which spalls off during hostile

conditions operation. Unfortunately, when losing alu-

minum, advanced top over-aluminized coating degrades

and, if not timely repaired, this might lead to blade

failure. Benefits of a higher operating temperature is

then counteracted by possible limited operating life and

high replacement cost. It is hence necessary to predict

remaining blade coating life by assessing condition and

quality of the coating. Expected reduction of shut-downs

caused by blade coating failure then should contribute to

optimize the maintenance of combustion turbines.

By providing information related to the electrical

conductivity depth profile, the multi-frequency Eddy

Current (EC) non-destructive technique can be useful for

reaching that goal. The paper is organized as follows.

The configuration at hand is described in section II.

Section III is devoted to the solution of the direct

problem which aims at modeling the response of an

EC coil above a layered metal structure protected by

a top over-aluminized coating degraded by inward and

outward diffusion of aluminum. To take such diffusion

process of aluminum inside the blade into account, we

develop a model where the conductivity profile, which

varies continuously with depth in the blade, is described

via two hyperbolic tangents. We hence extend the Uzal-

Rose’s model [5]–[7] based on one hyperbolic tangent

conductivity profile. Comparison of results obtained with

this model and with those obtained with a numerical

multi-layer model, based on discretization of the con-

ductivity profile into a number of layers of constant

conductivity are presented in section VI.

Air

Substrat

Interdiffusion zone

Coating
(reservoir of aluminum)

Protective oxide zone

z

σ
(z
)

r1

r2h2

h1

−r

Zone 1a

Zone 1b

Zone 1c

Zone 2

Zone 3

0

Fig. 1. Typical configuration of measurement with a theoretical

conductivity profile with inward and outward diffusion of aluminum

(left); example of a real diffusion process (right).

II. EDDY CURRENT MODEL FORTURBINE BLADE

COATING

Save its convex and concave parts, a blade turbine

made of a substrate and a coating is considered as

a doubly layered isotropic, linear, homogeneous, non-

magnetic and conductive half-space. The top over-

aluminized coating protects the substrate by forming a

thin adherent oxide and degrades in-service by depletion

of aluminum as commented upon before. The conductiv-

ity of the coating layer is a continuous function of depth

z while the conductivity of the substrate layer is a given

constant (cf. Fig. 1).

Above the blade, an EC probe with a circular coil of

rectangular cross-section with axis perpendicular to the

blade surface is operated at frequencies in the range of

a few hundreds of kHz to a few tens of MHz using

a scanning frequency procedure. In this section, we

aim at solving the related direct problem consisting of

modeling the EC impedance coil response over a layered

metallic blade structure and taking the double diffusion

of aluminum into account when the conductivity depth

profile is given.

Following the approach in [5]–[8], based on the

September 13, 2011 DRAFT
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Cheng-Dodd-Deeds model [9], [10], the two main steps

for establishing the model are determining the vector

potential and then calculating the coil impedance from

Z = V/I after computing the electrical field byE (r) =

−jωA (r). From the fundamental result which gives the

impedance of a coil located above a two-layer metal

whose upper layer conductivity varies continuously with

depth, one can calculate the variation of impedance for

a large number of configurations.

III. T HEORETICAL FORMULATION OF THE PROBLEM

A. General formulation for a continuous profile

The first step consists of calculating the magnetic

vector potential in air expressed asA (r) = ASource(r)+

Aec(r), whereASource(r) is the primary potential due to

the time-harmonic source current of the coilI exp(jωt)

in an unbounded space andAec(r) is the secondary

potential originated from the EC induced within the con-

ductive material. Assuming axial symmetry and choosing

the cylindrical coordinates centered on the axis of the

coil leads to a scalar problem, all vector quantities

being expressed with the only non-null component, the

azimuthal one, asA (r) = A (r, z)uθ. The expression

of the primary fieldASource(r, z) due to aNturn coil

can be found in [10] and the secondary fieldAec(r, z)

is solution of the diffusive equation (see [11] for a

justification of eddy currents model for the Maxwell

equations):

∆Aec(r, z) = jωµ0σ (z)Aec(r, z) (1)

with

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
−

1

r2
, (2)

where the continuously varying conductivity profile is

given byσ(z), µ0 being the permeability of the air and

ω = 2πf the angular frequency andf the frequency (in

Hz). Let us defined the skin depthδ (z) as

δ (z) =

√

2

ωµ0σ(z)
. (3)

Equation (1) can be solved by separation of vari-

ables lettingAec(r, z) = R(r)W (z). The two ordinary

differential equations for ther and thez dependence,

respectively, follows as:

∂2

∂r2
R(r) +

1

r

∂

∂r
R(r) +

(

a2 −
1

r2

)

R(r) = 0 (4)

∂2

∂z2
W (z) =

[

a2 + jωµ0σ(z)
]

W (z). (5)

Whilst the solution of (4) is classically obtained using

first- and second-kind Bessel functions of the first order,

the solution of (5) constitutes a more challenging task

and can be performed by an analytical method for

some particular conductivity profiles. Following the path

presented in [8] the general solution of (5) is given by

W (z) = CF1(f (z)) +BF2(f (z)) (6)

whereF1 andF2 are functions related to the choice of

the profileσ (z), f (z) originating from possible trans-

formations of the independent variable that take place

during the solution of (5). In so doing the expression of

the azimuthal component of the potential vector is given

in a general form as

A1c(r, z) =

∫ +∞

0

µNturnII (ar1, ar2) e
azJ1(ar)

2a3(h2 − h1)(r2 − r1)

×
(

e−ah1 − e−ah2
)

da+

∫ +∞

0

C1e
−azJ1(ar)da,

∀z ∈ [0; +∞[ (7)

A2(r, z) =

∫ +∞

0

[C2F1 (f (z)) +B2F2 (f (z))] J1 (ar) da

∀z ∈ [−r; 0] (8)

A3(r, z) =

∫ +∞

0

B3F3 (g (z)) J1 (ar) da ∀z ∈]−∞;−r]

(9)

September 13, 2011 DRAFT
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wheref (z) and g (z) are two different functions ofz

and whereI (x1, x2) is given by

I (ar1, ar2) =

∫ x2

x1

xJ1 (x) dx. (10)

OnceA1c(r, z) is known,Z is deduced as

Z = K

+∞
∫

0

I (ar1, ar2)
2

a6

[

2
(

e−a(h2−h1) − 1 + a(h2 − h1)
)

+
(

e−ah2 − e−ah1
)2

φ(a)
]

da

(11)

with

φ(a) =
C1

K
, (12)

K =
µNturnII (ar1, ar2)

(

e−ah1 − e−ah2

)

2a3(h2 − h1)(r2 − r1)
(13)

K =
jωπµN2

turn

(h2 − h1)2(r2 − r1)2
. (14)

The expressions ofC1, C2, B2 andB3 are obtained from

the continuity conditions of the quantities and/or their

derivatives with respect to depth and/or their cancellation

at ±∞. Denoting all such quantities as

L = F1 (f(z = 0)) ; (15)

M = F2 (f(z = 0)) ; (16)

N = F ′

1 (f(z))|z=0 ; (17)

O = F ′

2 (f(z))|z=0 (18)

P = F1 (f(z = −r)) ; (19)

Q = F2(f(z = −r)) (20)

R = F ′

1 (f(z))|z=−r ; (21)

S = F ′

2 (f(z))|z=−r (22)

T = F3 (g(z = −r)) ; (23)

U = F ′

3 (g(z))|z=−r (24)

where ′ means derivative with respect toz and solved

the corresponding linear system, the expression ofφ(a)

is obtained as

φ(a) =
(aM −O) (RT − PU) + (aL−N) (QU − ST )

(aM +O) (RT − PU) + (aL+N) (QU − ST )
(25)

Applying such an approach, analytical solutions of

(5) for a continuous conductivity functionσ(z) have

been proposed whenσ(z) varies linearly, quadratically

or exponentially [8] and whenσ(z) is varying as an

hyperbolic tangent [5]. In [12] the authors are interested

in the case of double-layer media with depth-varying

magnetic properties where the permeability is continu-

ously varying as a function of the exponential of the

depth whereas the case of a layered medium where both

the conductivity and the permeability are continuously

varying as a power of the depth is adressed in [13].

B. Series expansion of the formulation (11)

According to the method described in [14] the integral

expression of the impedance (11) can be replaced by

a series expansion (26) which allows a better control

of the convergence and a faster evaluation at least at

low frequency. This method is based on a reduction of

the solution region in the radial direction at a distance

b where a homogeneous Dirichlet condition is imposed

onto the radial component of magnetic field. The inte-

grand of (11) is slightly modified and only evaluated at

discrete valuesai of a, the latter being obtained from

J1 (aib) = 0. The numberM of ai to be taken into

account depends on the sought accuracy on the value of

Z.

ZM ≈ 2K
M
∑

i=1

I(air1, air2)
2

[aibJ0 (aib)]
2
a5i

×

[

(

e−aih2 − e−aih1
)2

φ(ai)

+ 2
(

e−ai(h2−h1) − 1 + ai (h2 − h1)
)

]

(26)

September 13, 2011 DRAFT
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(note thatZM → Z when M → +∞ for sufficiently

largeb).

C. Particular formulation for a two-tanh-continous pro-

file

For the applications which we are interested in, the in-

ward and outward diffusion are to be taken into account,

so we suggest to apply the analytical method for dealing

with (5) with a conductivity depth profile defined by two

hyperbolic tangents, one for the inward diffusion and the

other for the outward one, as follows:

σ(z) =















σ12 +∆σ

[

1 + tanh

(

z + c1
2v1

)]

∀z ∈ [−r, 0]

σ2 −∆σ

[

1 + tanh

(

z + c2
2v2

)]

∀z < −r

(27)

with ∆σ = (σ1 − σ12) /2 and whereσ1 is the conduc-

tivity limit value related to the first profile whenz tends

to +∞, σ2 is the conductivity limit value related to the

second profile whenz tends to−∞ andσ12 is the joining

conductivity limit value related to the first profile when

z tends to respectively−∞ and to the second profile

whenz tends to+∞.

The joining point between the two sub-profiles, de-

noted r, is obtained by equating expressions ofσ(z)

in (27) for z = −r. v1 and v2 can be seen as “the

transition speed” of the conductivity in the[−r, 0] and

[−∞,−r] and c1 and c2 the depth corresponding to

the inflection point. A typical profile of such a kind

is shown in Fig. 1. In fact, such a modeling allows us

to define a large class of various profiles with a small

number of parameters adequately chosen. Let us notice

that with such a formulation a continuous increasing (or

decreasing) profile cannot be easily obtained even if, at

the boundary of the two layers, the conductivity, function

of depth, is allowed to be discontinuous.

For the case of a single tanh-profile all details can

be found in [5] and in the following only the two tanh-

profiles will be dealt with. In such a case it can be shown

that the expression of the special functionsF1, F2 and

F3 are

F1(y2 (z)) = yµ2 (z) [1− y2 (z)]
ν

× 2F1(µ+ ν, µ+ ν + 1; 2µ+ 1; y2 (z))

F2(y2 (z)) = y−µ
2 (z) [1− y2 (z)]

ν

× 2F1(ν − µ+ 1, ν − µ; 1− 2µ; y2 (z))

F3(y3 (z)) = yλ3 (z) [1− y3 (z)]
τ

× 2F1(λ+ τ, λ+ τ + 1; 2λ+ 1; y3 (z))

(28)

with

y2 (z) =
(

1 + e−
z+c1
v1

)−1

,

y3 (z) =
(

1 + e−
z+c2
v2

)−1

,

µ = v1
√

a2 + jωµ0σ12,

ν = v1
√

a2 + jωµ0σ1,

λ = v2
√

a2 + jωµ0σ2,

τ = v2
√

a2 + jωµ0σ12.

(29)

2F1(α, β; γ;x) is the Gauss hypergeometric function

defined as [15]

2F1(α, β; γ;x) =

+∞
∑

k=0

(α)k(β)k
(γ)k

xk

k!
(30)

where(α)k is the Pochhammer symbol given by

(α)k = α(α+ 1)(α+ 2) · · · (α+ k − 1). (31)

Let us define the derivative of2F1(α, β; γ;x) with

respect tox as [15]

∂

∂x
2F1(α, β; γ;x) =

αβ

γ
2F1(α+1, β+1; γ+1;x) (32)

Introducing the expressions of (28) in (24) and

using the derivative’s rules (32) allows to ex-

press the analytical formulation of the functions

L,M,N,O, P,Q,R, S, T, U (see§ A for their analytical

September 13, 2011 DRAFT
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expressions) and then to obtain the expression ofφ (a)

through (25).

IV. B RIEF DESCRIPTION OF THE MULTI-LAYER

MODEL

Proper results for numerically validating our approach

in the two-tanh profile configuration do not appear

in the literature. A classical scheme consisting in the

approximation of the continuously varying conductivity

profile by slicing the coating layer into a sufficiently

high number of planar homogeneous layers of given

thickness and constant conductivity is considered. It can

be sketched as follows

1) the lower half-space (z < 0 in Fig. 1) is divided

in two parts:

• the upper one (zone 2 in Fig. 1) is a non-

homogeneous slab of thicknessd. It is divided

into N homogeneous sub-layers of constant

thickness∆(= d/ (N − 1)) and conductivity

σi, i = 1 . . . , N−1, such as to provide a good

discretized description ofσ (z);

• the lower one (zone 3 in Fig. 1) is taken as a

half-space of constant conductivityσ (z = d);

2) the Fresnel reflection coefficient for a TE-polarized

electromagnetic wave of the multi-layer structure

is computed using the algorithm proposed in [10].

It can be shown (no detail is provided here) that

such a coefficient is nothing butφ (a) in (11) or

in (26);

3) for each frequencyf , a givenN and a givend

are chosen and the corresponding impedanceZ is

computed using either (11) or (26);

This method should ensure, in theory, high accuracy of

the solution. In practice, the high number of discretiza-

tion layers requested leads to a method which might

be unsuitable, despite its generality, due to increase of

computing time with respect to the number of layers

considered.

For our purpose and for sake of simplicity, let us

consider a configuration for which we would like to

compute the impedanceZ for a range of frequencies

from fmin to fmax. Then d is chosen large enough to

entirely include the varying part ofσ (z) and is kept

constant for all frequencies. Hered has been arbitrarily

chosen as:

d =

√

2

ωminµ0σmin
(33)

with σmin = min (σ1, σ12, σ2) andωmin = 2πfmin, fmin

being the smallest frequency which we are interested in.

Onced has been fixed thenN is chosen large enough by

trial-error scheme so that the corresponding impedance

ZN –obtained forN layers– tends to the true impedance

Z at the higher frequencyfmax.

Such a choice is clearly not optimal and could be

efficiently improved.

1) The thickness∆i of the ith sub-layer should be

adapted to the local curvature of the profileσ (z)

–small whenσ (z) is rapidly varying, large when

σ (z) is almost constant.

2) Only theM first sub-layers, those which are able

to correctly describe the attenuation phenomena,

have to be taken into account. As a matter of

fact, knowing that eddy currents only penetrate at

few skin depths in a metal plate and that the skin

depth varies with respect to frequency (see (3))

the higher the frequency the smaller the number

of sub-layers to take into account.

However for shake of simplicity such an adaptive scheme

has not been applied in the following.

V. NUMERICAL TREATMENT

Numerically speaking the computation of (11) is dif-

ficult. As a matter of fact, even if we know that such

September 13, 2011 DRAFT
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an integral is convergent, —I(r1, r2) is decreasing and

φ (a) plays the role of a reflection coefficient and then

is bounded by1 whena goes to+∞— the theoretical

formulation of φ (a) (25) involves the hypergeometric

function (30) or its derivative (32) in its numerator and

denominator.

The fast computation of the Gauss hypergeometric

function 2F1 with complex parameters is a difficult task

and is still the subject of significant research as exem-

plified in [16] and [17] with two different approaches.

Both of them provide Fortran subroutines which have

been used in our numerical simulations, [16] proposed

a very general approach to compute all hypergeometric

functionspFq (subroutine PFQ) whereas [17] focuses on

the computation of the Gauss hypergeometric function

2F1 (subroutine HYP2F1) we are interested in.

The numerical integration of (11) is performed using

the DQAGI subroutine provided by IMSL.

VI. N UMERICAL VALIDATION

A. A single tanh profile [5]

The validation of our approach is made by compar-

ison with the results given in [5] for a single tanh

profile. With reference to Fig. 1 the parameters of the

measurement configuration are taken as:r1 = 1.3mm,

r2 = 3.3mm, h1 = 0.5mm, h2 = 7.8mm and

Nturn = 580. According to (27) the conductivity profile

has the following parameters:σ1 = 1.509× 107 Sm−1,

σ12 = 3.766× 107 Sm−1, c1 = 0.3mm and v1 =

0.1857mm.

A comparison of the results at three frequencies is

shown in Table I for different values ofb. A brief study

of the convergence of the results with respect of the

choice of the hyper-parameterb is presented. A very

good agreement is observed with [5].

(a) Real part of∆Z

1 kHz 10 kHz 100 kHz

[5] 0.008 17 0.025 83 −0.688 36

Numerical Integration 0.008 165 0.025 809−0.688 31

N = 10 0.008 169 0.025 85 −0.687 99

N = 20 0.008 165 0.025 823−0.688 20

(b) Imaginary part of∆Z

1 kHz 10 kHz 100 kHz

[5] −0.008 28 −0.225 71 −1.497 19

Numerical Integration−0.008 28 −0.225 65 −1.496 37

N = 10 −0.008 267−0.225 57 −1.496 45

N = 20 −0.008 28 −0.225 66 −1.496 77

TABLE I

COMPARISON OF THE RESULTS FROM[5] AND THE ONES OBTAINED

USING THE NUMERICAL INTEGRATION AND THE SERIES EXPANSION

WITH b = NR2, N = 10, 20 USING HYP 2F1.

Numerical Series expansion

integration N = 10 N = 20

PFQ – 37.41 66.22

HYP 2F1 1.36 0.06 0.11

TABLE II

COMPARISON OF THECPUTIMES (IN SECOND) NEEDED TO

COMPUTEZ FOR 100FREQUENCIES BETWEEN1 kHz TO 100 kHz

FOR THE TWO FORMULATIONS(INTEGRAL EQUATION (11) AND

SERIES EXPANSION(26)) USING DIFFERENT SUBROUTINES TO

COMPUTE2F1 .

To illustrate the ability of the series expansion to

provide good results at a lower computional cost than

the numerical integration a comparison of the CPU times

needed to compute the impedance for 100 frequencies

between1 kHz to 100kHz every1 kHz is proposed. As

exemplified in Table II the subroutine HYP2F1 seems

to be much more efficient than PFQ for our application.

September 13, 2011 DRAFT
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B. A two-tanh profile case

As already said (§ IV), in the two-tanh profile con-

figuration we have not been able to find proper results

in the literature to numerically validate our theoretical

approach. A multi-layer model (described§ IV) have

then been developped and numerical results compared.

Again with reference to Fig. 1 the parameters of the

measurement configuration are:r1 = 2mm, r2 = 4mm,

h1 = 0.5mm h2 = 7.3mm andNturn = 200. According

to (27) the conductivity profile has the following param-

eters:σ1 = 7× 105 Sm−1, σ12 = 5× 105 Sm−1, σ2 =

8× 105 Sm−1, c1 = 0.2mm, v1 = 0.03mm, c2 =

0.8mm and v2 = 0.1mm. The variation of impedance

∆Zi is computed atNfreq frequencies equally distributed

betweenfmin = 100 kHz and fmax = 10MHz every

100kHz.

Let us define the discrepency between a reference

∆Zi, i = 1, . . . , Nfreq and an approximated value∆Zi

taken as

Err =
1

Nfreq

Nfreq
∑

i=1

|∆Zi −∆Zi|

|∆Zi|
(34)

Comparison of variations of impedance obtained with

the analytical model and those obtained with a numerical

multi-layer model using the numerical integration is very

good as reported in Fig. 3, corresponding CPU time

and error being given in Table 3. Let us emphasize

that best matching with the multi-layer model requires a

number of, at least,N = 100 000 layers, which can be

explained by the fact that, as described in§ IV, the two

multi-layer model parametersd andN are kept constant

for all frequencies and whatever the variation of the

conductivity profile.

The analytical formulation and numerical integration

being validated let us now focus on the series expansion

approach and its advantages. In the following only the

analytical formulation using the subroutine HYP2F1 to

4 5 6 7 8 9 10

x 10
5

−14

−12

−10

−8

−6

−4

−2

0

x 10
−4

D
ep

th
z
(m

)

σ (z)

Fig. 2. Conductivity Profile.

CPU Time (s) Err (%)

HYP 2F1 6.63 –

Multi-layer

M = 1000 24.48 795.0324

M = 10 000 247.58 78.1864

M = 100 000 2506.05 7.8057

M = 1000 000 25 087.74 0.7805

TABLE III

COMPARISON OF THECPUTIMES (IN SECOND) AND THE ERROR

(IN %) FOR THE COMPUTATION OFZ USING A NUMERICAL

INTEGRATION OF (11) WITH THE ANALYTICAL AND THE

MULTI -LAYER MODELS.

compute2F1 will be used and a comparison between

the results using the numerical integration and the series

expansion approach is provided in Fig. 4 and the corre-

sponding CPU times and errors are reported in Table IV.

It can be seen thatb –which has been chosen as an

integer multiple ofR2 asb = NR2– should be carefully

chosen and a too small value, hereN = 2, leads to a

large error whereas a higher value,N = 10, gives very

good results. As expected whenN increases the error

between numerical integration and the series expansion

decreases and tends to0 which is paid for by an increase

in computing time even if the “series” CPU time is

still ten times lower (forN = 20) than the “numerical
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Fig. 3. Comparison of results obtained with analytical and multi-layer models for different number of layersN .
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Fig. 4. Comparison of the results obtained with analytical using a numerical integration and the series expansion withb = NR2, N = 2, 10, 20

with HYP 2F1.

integration” one.

VII. C ONCLUSION

In the context of development of decentralized power

generation, it is of economical importance to improve the

thermal efficiency of gas turbine by increasing the firing

temperature. To optimize the maintenance cost of such

advanced gas turbine, it is crucial to predict remaining

coating life for reducing unexpected shut-downs caused

by blade coating failure due to depletion of aluminum.

Eddy Current Non-Destructive Evaluation can play a key

role in assessing the conditions of turbine blade coating

by estimating conductivity depth profiles. In this paper,

we have reported on efforts towards that goal. We have

developed the direct model of the impedance of an EC

coil above a metal structure protected by a top over-

aluminized coating degraded by inward and outward

diffusion of aluminum, assuming that the conductivity
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CPU Time (in s) Err (in %)

Numerical integration 6.63 –

Serie expansion

N = 2 0.11 15.3062

N = 10 0.40 0.0126

N = 20 0.67 0.0011

TABLE IV

COMPARISON OF THECPUTIMES (IN SECOND) AND THE ERROR

(IN %) FOR THE TWO FORMULATIONS OFZ (INTEGRAL EQUATION

(11) AND SERIES EXPANSION(26)) USING DIFFERENT VALUES

b = NR2 , N = 2, 10, 20, 2F1 BEING COMPUTED WITHHYP 2F1.

profile follows a two-hyperbolic-tangent law. The anal-

ysis of the approach as suggested is quite interesting,

since the results obtained with this model are similar to

those obtained with a numerical multi-layer model with

a significant reduction of computing time.
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APPENDIX

In the following and in the case of the two tanh-

profil the analytical expressions of the general functions

presented in (24) are given.

L =
[1− y2 (0)]

ν

y−µ
2 (0)

2F1 (µ+ ν, µ+ ν + 1; 2µ+ 1; y2 (0))

M =
[1− y2 (0)]

ν

yµ2 (0)
2F1 (ν − µ+ 1, ν − µ; 1− 2µ; y2 (0))

N =

[

y2 (0)− y22 (0)
]

v1

[

[µ− (µ+ ν) y2 (0)]

y1−µ
2 (0) [1− y2 (0)]

1−ν

× 2F1 (µ+ ν, µ+ ν + 1; 2µ+ 1; y2 (0))

+ yµ2 (0) [1− y2 (0)]
ν (µ+ ν)(µ+ ν + 1)

2µ+ 1

× 2F1 (µ+ ν + 1, µ+ ν + 2; 2µ+ 2; y2 (0))

]

O =

[

y2 (0)− y22 (0)
]

v1

[

(ν + 1− µ)(ν − µ)

yµ2 (0) (1− 2µ) (1− y2 (0))ν

× 2F1(ν − µ+ 2, ν − µ+ 1; 2− 2µ; y2 (0))

[1− y2 (0)]
ν−1

yµ+1
2 (0)

[µ− (µ+ ν) y2 (0)]

× 2F1(ν−µ+1, ν−µ; 1− 2µ; y2 (0))

]

P =
[1− y2 (−r)]ν

y−µ
2 (−r)

2F1(µ+ ν, µ+ ν + 1; 2µ+ 1; y2 (−r))

Q =
[1− y2 (−r)]

ν

yµ2 (−r)
2F1(ν − µ+ 1, ν − µ; 1− 2µ; y2 (−r))

R =

[

y2 (−r)− y22 (−r)
]

v1

[

[µ− (µ+ ν) y2 (−r)]

× 2F1(µ+ ν, µ+ ν + 1, 2µ+ 1; y2 (−r))

+
[1− y2 (−r)]ν

y−µ
2 (−r)

(µ+ ν)(µ + ν + 1)

2µ+ 1

× 2F1(µ+ ν + 1, µ+ ν + 2; 2µ+ 2; y2 (−r))

]

S =

[

y2 (−r)− y22 (−r)
]

v1

[

[1− y2 (−r)]
ν

yµ2 (−r)

(ν + 1− µ)(ν − µ)

−2µ+ 1

× 2F1(ν − µ+ 2, ν − µ+ 1; 2− 2µ; y2 (−r))

−
[1− y2 (−r)]

ν−1

yµ+1
2 (−r)

[µ− (µ− ν) y2 (−r)]

× 2F1(ν−µ+1, ν−µ; 1− 2µ; y2 (−r))

]

T =
(−r) [1− y3 (−r)]

τ

y−λ
3

× 2F1(λ + τ, λ+ τ + 1; 2λ+ 1; y3 (−r))

U =

[

y3 (−r)− y23 (−r)
]

v2

[

[1− y3 (−r)]
τ−1

y1−λ
3 (−r)

× [λ− (λ+ τ) y3 (−r)]

× 2F1(λ + τ, λ+ τ + 1; 2λ+ 1; y3 (−r))

+
[1− y3 (−r)]

τ

y−λ
3 (−r)

(λ+ τ)(λ + τ + 1)

2λ+ 1

× 2F1(λ + τ + 1, λ+ τ + 2; 2λ+ 2; y3 (−r))

]

µ, ν, y2, y3 are defined in (29).
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