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Abstract :  

Aim  The aims of this study were: (1) to identify global communities of tuna and billfish species through 
quantitative statistical analyses of global fisheries data; (2) to describe the spatial distribution, main environmental 
drivers and species composition of each community detected; and (3) to determine whether the spatial distribution 
of each community could be linked to the environmental conditions that affect lower trophic levels by comparing 
the partitions identified in this study with Longhurst’s biogeochemical provinces. 

Location  The global ocean from 60° S to 65° N. 

Methods  We implemented a new numerical procedure based on a hierarchical clustering method and a 
nonparametric probabilistic test to divide the oceanic biosphere into biomes and ecoregions. This procedure was 
applied to a database that comprised standardized data on commercial longline catches for 15 different species of 
tuna and billfish over a period of more than 50 years (i.e. 1953–2007). For each ecoregion identified (i.e. 
characteristic tuna and billfish community), we analysed the relationships between species composition and 
environmental factors. Finally, we compared the biogeochemical provinces of Longhurst with the ecoregions that 
we identified. 

Results  Tuna and billfish species form nine well-defined communities across the global ocean. Each community 
occurs in regions with specific environmental conditions and shows a distinctive species composition. High 
similarity (68.8% homogeneity) between the spatial distribution of the communities of tuna and billfish and the 
biogeochemical provinces suggests a strong relationship between these species and the physical and chemical 
characteristics of the global ocean. 

Main conclusions  Despite their high tolerance for a wide range of environmental conditions, these highly 
migratory species are partitioned into clear geographical communities in the ocean at a global scale. The 
similarity between biogeochemical and biotic divisions in the ocean suggests that the global ocean is a mosaic of 
large biogeographical ecosystems, each characterized by specific environmental conditions that have a strong 
effect on the composition of the trophic web.  
 

Keywords : Biogeochemical provinces ; global ocean ; Istiophorus ; Katsuwonus ; Macroecology ; Makaira ; 
marine biogeography ; Tetrapturus ; Thunnus ; Xiphias 
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INTRODUCTION 1 
 2 
At the macroscale, one of the main goals of marine biogeography is to identify the spatial 3 

distribution of marine organisms and biodiversity and explain it by elucidating the 4 

relationship of abundance or species diversity with the environment (Lomolino et al., 2006). 5 

Of the many types of classifications that have been proposed, almost all are based on either 6 

the physical structure of the global ocean, with respect to such parameters as temperature, 7 

stratification and circulation (Emery & Meincke, 1986; Cushing, 1989), or the spatial 8 

distribution of marine organisms (Beklemishev, 1961; McGowan, 1971). A distinctive 9 

approach was developed by Platt et al. (1991) who proposed classifying ecosystems in both 10 

the open ocean and continental shelves on the basis of the concentration of surface 11 

chlorophyll a, which is determined using the Continental Zone Colour Scanner (CZCS). The 12 

last approach was developed and refined by Longhurst (1998) at the global scale by the 13 

addition of remote sensing and in situ measurements of environmental parameters that affect 14 

phytoplankton growth and production (e.g., currents, nutrient concentrations, and 15 

stratification index). He used these data to partition the global ocean into what he called 16 

biogeochemical provinces (BGCPs) (Longhurst, 1998). The Longhurst scheme has been used 17 

as the basis for an atlas of oceanic ecosystems and has provided data on the specific 18 

conditions and fluctuations of environmental parameters that drive biogeochemical processes 19 

and affect the dynamics of marine species in each province. BGCPs have been used by the 20 

oceanographic community in ecological studies as a source of geographical data on the 21 

different types of environmental conditions found in oceans. 22 

At a regional or basin scale, several studies have investigated the relevance of BGCPs 23 

by analysing the spatial distribution of marine species at different low trophic levels, from 24 

bacteria (Li et al., 2004) to plankton (Gibbons, 1997; Beaugrand et al., 2002; Woodd-Walker 25 

et al., 2002; Alvain et al., 2005). All of these studies indicated a significant match between 26 
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the BGCPs and the abundance of species, associations among species, or biodiversity. It was 1 

concluded that BGCPs represent specific environmental conditions that directly affect the 2 

abundance of species at lower trophic levels, due to their low physiological tolerance to 3 

variations in abiotic parameters (Richardson & Schoeman, 2004; IOCCG, 2009). Tuna and 4 

billfish species are oceanic top predators that are important for both ecological and economic 5 

reasons. They migrate over long distances during their biological cycle, with the result that 6 

they are widely distributed over the global ocean. However, previous analyses of data from 7 

commercial fisheries have consistently revealed differences in the spatial distribution between 8 

each tuna and billfish species (Fonteneau, 1998; Worm et al., 2005). These results suggest 9 

that characteristic tuna and billfish species communities may be detected over the global 10 

ocean and relied to distinct oceanic biotopes. Nevertheless, no studies have investigated the 11 

appropriateness of using BGCPs to study the spatial distribution of these species and 12 

communities at higher trophic levels, which have physiologies that allow them to survive in a 13 

wider range of environmental conditions than lower trophic species. 14 

The aims of this study were as follows: (1) to identify global communities of tuna and 15 

billfish species through quantitative statistical analyses of global fisheries data, (2) to describe 16 

the spatial distribution, main environmental drivers, and composition of species of each 17 

community detected, and (3) to determine whether the spatial distribution of each community 18 

detected could be linked to the environmental conditions that affect lower trophic levels. To 19 

achieve these goals, we investigated the biogeography of tuna and billfish species by applying 20 

a recently developed nonparametric methodology, using a dataset that comprised fisheries 21 

data on 15 species of tuna of the genera Thunnus and Katsuwonus and billfish of the genera 22 

Xiphias, Makaira, Tetrapturus and Istiophorus, obtained at a global scale (from 60° S to 65° 23 

N) over a period of 50 years. Using the results, we discuss the latitudinal division of the 24 

ecoregions that were detected by matching to specific environmental conditions the 25 
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physiological and behavioural characteristics of each tuna and billfish species used in the 1 

study. Furthermore, the model for partitioning the global ocean implemented using tuna and 2 

billfish was compared to the BGCPs of Longhurst (1998) to determine whether environmental 3 

conditions affect not only planktonic communities (Beaugrand et al., 2002), but also the 4 

spatial distribution of communities at higher trophic levels. 5 

 6 

MATERIALS AND METHODS 7 
 8 

Biological data 9 

Fisheries data were used to determine the spatial distribution of 15 species of tuna and billfish 10 

(Table 1). The data used were obtained from 180°W to 180°E and from 60°S to 65°N at a 11 

spatial resolution of 5° by 5°, and from 1953 to 2007, at monthly intervals. For each 12 

geographical cell and for each month, data on longline catches (number of fish) and fishing 13 

effort (number of hooks) were gathered for Taiwanese and Japanese fleets. These fleets were 14 

selected because each has a long fishing history and because they fish over a wider area than 15 

the fleets of other countries. The data on Japanese and Taiwanese fleets represent nearly 70% 16 

of the total catch of longline fisheries world-wide over the period from 1953 to 2007 17 

(Fonteneau, 1998). Data were obtained from four Regional Fisheries Management 18 

Organizations (RFMOs; namely, the Indian Ocean Tuna Commission, International 19 

Commission for the Conservation of Atlantic Tunas, Inter-American Tropical Tuna 20 

Commission, and Western and Central Pacific Fisheries Commission) in a standardized form 21 

and are available on the Climate Impact on Oceanic Top Predators (CLIOTOP) website 22 

(http://vmmdst-proto.mpl.ird.fr/MDST/).  23 

Given that only data on fish catches by the longline fishing technique (in which hooks 24 

are deployed on lines over a wide vertical range) were used in the study, not all 25 

http://www.iattc.org/
http://www.iattc.org/
http://www.ccsbt.org/
http://vmmdst-proto.mpl.ird.fr/MDST/
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developmental stages of each species were sampled. Longline fisheries catch mostly adult fish 1 

(potential spawners). On the other hand, small tuna are less able to migrate than adults (Gunn 2 

& Block, 2001), so it is likely that any bias that exists is minor. Furthermore, due to confusion 3 

in the naming of some species in the RFMO database during the 1950s and 1960s, several 4 

comparable species (bluefin tuna, sailfish and blue marlin) were grouped together; these 5 

species are characterized by having similar levels of tolerance to environmental conditions, 6 

similar prey, and a rather low phylogenetic differentiation (Block & Stevens, 2001). This 7 

grouping reduced the number of species from 15 species (Table 1, name) to 11 grouped 8 

species (Table 1, code) and so also reduced the variance of the species matrix and anomalies 9 

in the spatial distribution of species, which could influence the numerical procedure described 10 

below (i.e. clustering analysis). 11 

To infer the biogeography of the tuna and billfish community, the average abundance 12 

index of each of these species at a global scale has to be estimated from fisheries data. As a 13 

consequence, variations in the monthly average catches were not taken into account. The 14 

catch rate, measured by catch per unit of effort (CPUE), was calculated by dividing the sum 15 

of the annual catches by the sum of the annual efforts for each geographical area cell. The 16 

above-mentioned CPUE index is more accurate than the mean value of the standard CPUE 17 

index, which is calculated as the annual average catch divided by the associated effort and can 18 

be biased markedly by large changes in the catch of different species during the period 19 

studied. Due to the dense distribution of tuna populations (Sibert & Hampton, 2003) and the 20 

high mobility of longline fleets (Fonteneau, 1998), fleets tend to concentrate their efforts on 21 

patches with a high concentration of biomass until the yield decreases. Thereafter, fleets move 22 

to another region with a high concentration of biomass. As a consequence, the CPUE tends to 23 

remain spatially constant in different regions (Maury & Gascuel, 1999). This effect creates 24 

bias when the standard CPUE index (Polacheck, 2006) is used to estimate the spatial 25 
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distribution of fish by leading to an overestimation of the number of fish in regions with low 1 

densities and underestimation in regions with high densities, which in turn results in flat 2 

estimates of species distribution that vary little from place to place (Maury & Gascuel, 1999; 3 

Walters, 2003).  4 

To avoid this bias and maintain a contrast among the spatially distributed mean 5 

estimates for the catch, we calculated the nominal CPUE (catch for 1000 hooks) over the 6 

entire study period as follows: 7 






t E

t C
CPUE

tsfji

tsfji

sfji

,,,,

,,,,
,,, , (1) 8 

where C is the catch data accumulated for each geographical cell of longitude i and latitude j, 9 

for each time t, each species s, and each fleet f, and E is the number of hooks deployed in each 10 

geographical cell of longitude i and latitude j for each time t, species s, and fleet f. Visual 11 

inspection of the data and reference to the literature (Rouyer et al., 2008) revealed that the 12 

patterns of variation in time series for tuna and billfish catches and CPUEs are affected 13 

strongly by the fishing method and fisheries, because of differences in the spatial movement 14 

of the fisheries and in the targeting of species. To avoid bias in the methodology, we 15 

considered the catches of the 11 grouped species separately from the Taiwanese and Japanese 16 

fleets, as suggested by Rouyer et al. (2008). 17 

 18 

Environmental data  19 

On the basis of the literature on the biogeography and ecology of tuna and billfish species 20 

(Longhurst, 1995; Block & Stevens, 2001), 12 environmental variables were selected and 21 

used in the study to characterize each region (see Appendix S1 in the Supporting 22 

Information). 23 
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The average annual data for sea surface temperature and selected biogeochemical 1 

variables (nitrate, silicate, phosphorus and salinity) were retrieved from the World Ocean 2 

Atlas 2005 (WOA05) (Antonov et al., 2005; Boyer et al., 2006; Rombouts et al., 2009). The 3 

level of dissolved oxygen at the sea surface and at a depth of 100 metres was used as a proxy 4 

for the vertical distribution of this parameter (Prince & Goodyear, 2006). Mean annual values 5 

and standard deviations for the concentration of chlorophyll a were calculated using yearly 6 

averages derived from remote sensing data (SeaWiFS) for the period 1997 to 2007, inclusive. 7 

Data on sea surface currents were obtained from the OSCAR data access system of the 8 

National Oceanic and Atmospheric Administration (NOAA), from 60° S to 65° N (Rombouts 9 

et al., 2009). The mean annual mixed layer depth was obtained from de Boyer Montégut et al. 10 

(2004) and bathymetry data from the General Bathymetric Chart of the Oceans (GEBCO) 11 

(Smith & Sandwell, 1997). The intensity and depth of thermoclines were taken from 12 

Reygondeau & Beaugrand (2011). The entire environmental dataset was aggregated on a 5° 13 

longitude by 5° latitude grid that extended from 180°W to 180°E and from 60°S to 65°N. 14 

 15 

Analysis 1: Division of the oceanic biosphere into ecoregions  16 

We identified ecoregions, defined here as subdivisions of the global ocean, on the basis of 17 

tuna and billfish CPUE using a procedure based on the methodology developed by Souissi et 18 

al. (2001) and Beaugrand et al. (2002) (Fig. 1). The procedure comprises five main steps: 19 

 20 

Step 1: Mathematical transformation of the data and numerical criteria for species selection 21 

CPUE data were log-transformed (i.e. log10 (CPUE+1)) to account for the heteroscedasticity 22 

of the data (Legendre & Legendre, 1998). Species that are harvested commonly by longline 23 

vessels [yellowfin tuna (YFT), bluefin tuna (BFT), bigeye tuna (BET), albacore tuna (ALB), 24 

swordfish (SWO), and striped marlin (MLS); see Table 1] were caught more frequently than 25 
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species that can be considered as longliner by-catch [skipjack tuna (SKJ), sailfish (SFA), 1 

black marlin (BLM), blue marlin (BUM), and short-billed spearfish (SSP); see Table 1]. With 2 

regard to species that were sampled less frequently, the spatial distribution derived from the 3 

longline CPUE might be biased and might affect the next step of the numerical procedure (i.e. 4 

the clustering method). In light of this possible bias, the spatial coverage of each species and 5 

its contribution to the total CPUE were computed (Appendix S2) for each of the 11 grouped 6 

species, taking into account the fact that Japanese and Taiwanese catches were analysed 7 

separately. The species caught were ranked on the basis of their number as a proportion of the 8 

total from matrix X (Fig. 1). A level of 0.5% of the total CPUE (as in Soussi et al., 2001) was 9 

used to separate the species into two groups (Appendix S2): (1) the dominant species, whose 10 

relative contribution was greater than 0.5% and were found in more than 50% of the cells 11 

(Fig. 1, step 1, matrix I, 1183 geographic cells, seven species caught by the Japanese fleet and 12 

six by the Taiwanese fleet), and (2) secondary species, whose relative contribution was less 13 

than 0.5% and were found in less than 50% of the cells (Fig. 1, step 1, matrix II, 1183 14 

geographic cells, four species caught by the Japanese fleet and five by the Taiwanese fleet).  15 

 16 

Step 2: Clustering of ecoregions that are based on tuna and billfish data 17 

The general hierarchical agglomerative clustering model of Lance & Williams (1967; β=-18 

0.25, see Legendre & Legendre, 1998) was used on matrix I, which was composed of the data 19 

for the 13 dominant tuna and billfish species (Fig. 1, matrix I; 1183 geographic cells), to 20 

identify ecoregions on the basis of the CPUE within each geographical cell (Q mode) (Fig. 1, 21 

step 2). The clustering model was applied by computing a distance matrix from matrix I using 22 

the Bray–Curtis coefficient (Bray & Curtis, 1957). Hence, the geographical cells were 23 

agglomerated according to their Bray–Curtis distance computed over matrix I. The resulting 24 

dendrogram is presented in Fig. 2.  25 
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None of the numerical indices that have been proposed previously to determine an 1 

optimal cut-off level on such a dendrogram (Hardman-Mountford et al., 2008; Guidi et al., 2 

2009) were appropriate for our methodology. Hence, different cut-off levels (Fig. 2, cut-off 3 

levels I to VI) were tested by a nonparametric methodology and examined visually as 4 

recommended by Legendre & Legendre (1998). After careful examination, we decided to use 5 

six cut-off levels at a Bray–Curtis distance of 9.5, 8.5, 5.7, 4.3, 3.8 and 3.2, respectively (Fig. 6 

2), because the resulting maps of the spatial distribution of ecoregions detected at each cut-off 7 

levels provided a good compromise between global and local biogeochemical features. 8 

 9 

Step 3: Probabilities that a geographical cell belongs to a given ecoregion 10 

The probability that a given geographical cell (5° longitude × 5° latitude) belonged to a 11 

particular ecoregion was computed using a simplified version of the multiple response 12 

permutation procedure (MRPP, Mielke et al., 1981) that was implemented recently in the 13 

nonparametric probabilistic ecological niche model (NPPEN; Beaugrand & Helaouët, 2008; 14 

Beaugrand et al., 2011; Lenoir et al., 2011). Mathematically, the NPPEN determines the 15 

probability that an observation that is composed of p variables (p, CPUE of the 13 dominant 16 

species of tuna and billfish in matrix I) belongs to a group Gm,p detected on the dendrogram at 17 

a given cut-off level (m, the number of geographical cells that vary between groups; p, the 18 

associated CPUE of the dominant species in matrix I), using the generalized Mahalanobis 19 

distance (Mahalanobis, 1936). The generalized Mahalanobis distance enables the correlation 20 

between variables (here the abundance of each species) to be taken into account (Ibañez, 21 

1981): 22 

   GxGx RD Gx


1'2
, , (2) 23 

 24 
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where x is the vector of length p and represents the CPUE of the dominant species, Rp,p is the 1 

correlation matrix of the group Gm,p (where m varies between groups), and G  is the average 2 

cluster condition inferred from Gm,p (with m < n). The probability that a given geographical 3 

cell belongs to each group Gm,p, detected at each of the six cut-off levels according to the 4 

spatial distribution of the CPUE of the matrix I, was calculated for each geographical cell (n = 5 

1188) (see Fig. 3, for cut-off level VI). Then, for each of the six cut-off levels, each 6 

geographical cell was assigned to the group, or ecoregion, to which it has the greatest 7 

likelihood of belonging at a given cut-off level (Fig. 1, step 4). The results for each cut-off 8 

level are mapped in Appendix S3, and summarized in Fig. 2 (cut-off levels II, V and VI) and 9 

Fig. 4 (cut-off level VI). 10 

 11 

Step 4: Calculation of the indicator value of each species and each group 12 

Indicator species that characterized each ecoregion were determined using the indicator value 13 

of Dufrêne & Legendre (1997) (Fig. 1, step 5). The indicator value is calculated by combining 14 

measures of specificity and fidelity. The specificity Ai,j is the ratio of the mean abundance of 15 

species i in the geographical cells of group j (Ni,j) to the sum of the mean abundance of 16 

species i in all the groups (Ni): 17 

i

ji

ji
N

N
A

,
,   (3) 18 

The fidelity Bi,j is the ratio of the number of geographical cells in group j where species i is 19 

present (Si,j) to the total number of pixels in this group (Sj):  20 

j

ji

ji
S

S
B

,
,    (4) 21 

The indicator value (Vi,j) is calculated by multiplying the specificity and fidelity indices, 22 

because these two quantities represent independent information:  23 
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100,,,  jijiji BAV  (5) 1 

According to Rouyer et al. (2008), the clustering of ecoregions must take into account the 2 

differences in the behaviour of each fleet. In light of this recommendation, the species were 3 

divided into two groups to account for differences in fishing techniques between the Japanese 4 

and Taiwanese fleets. However, differences between fleets with respect to the distribution of 5 

species are not consistent in the case of the analysis of species composition (Rouyer et al., 6 

2008); hence, in our analysis, we considered information on both dominant and secondary 7 

species for both Japanese and Taiwanese fleets (see Table 1). As a consequence, we 8 

calculated the indicator value of Dufrêne & Legendre (1998) for 11 grouped species (see 9 

Table 1, code) and nine groups detected at cut-off level VI of the dendrogram. The results are 10 

presented in Fig. 3 as radar plots.  11 

 12 

Analysis 2: Characterization of the environment in each ecoregion 13 

We used principal components analysis (PCA; Jolliffe, 1986) to characterize the 14 

environmental conditions in all the ecoregions that were identified at the cut-off level VI of 15 

the dendrogram (see Step 2). The values of the 12 selected environmental factors (see 16 

Environmental data) were assigned to every geographical cell in each ecoregion and PCA 17 

were performed on these 12 variables (see Appendix S1) for each ecoregion separately. The 18 

environmental factors that contributed most to the first three principal components (PC) were 19 

identified for each ecoregion and are shown in Fig. 4.  20 

 21 

Analysis 3: Comparison between the identified ecoregions and BGCP 22 

 23 

Due to the fact that the separation of the oceans into BGCPs or ecoregions is semiquantitative 24 

and given the differences in the spatial resolution of the two methods of partitioning, 25 
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inferential or exploratory statistical tests were not used. Instead, a homogeneity analysis was 1 

conducted to compare the partitioning of the global ocean at cut-off level VI (Fig. 4) with the 2 

BGCP described by Longhurst (1995). The analysis quantifies the average homogeneity of a 3 

referential partition (i.e. BGCPs) with respect to that of another one (i.e. detected ecoregions). 4 

Here, the BGCPs determined by Longhurst were selected as reference partitions. Then, the 5 

average homogeneity of each ecoregion was quantified relative to each province.  6 

For each BGCP, the total number of geographical cells in the BGCP (at a resolution of 7 

5° × 5°) was calculated first (Table 2, number of cells). Then, the total number of 8 

geographical cells for each ecoregion in each BGCP was calculated. The percentage of each 9 

ecoregion that corresponded spatially to each BGCP was then determined [Table 2, ecoregion 10 

(%)]. To quantify the global similarity between the two types of biogeographical partition, the 11 

geographical cells in each ecoregion that were dominant in each BGCP were summed, then 12 

divided by the total number of geographical cells studied (n = 1188). The resulting number 13 

represents the average homogeneity of all the BGCPs represented in Fig. 4. 14 

 15 

 RESULTS 16 
 17 
Ecological partitioning of the world’s oceans on the basis of tuna and billfish catches  18 

The ecoregions defined at each of the six cut-off levels are presented in Fig. 2 (cut-off levels 19 

II, V and VI) and Appendix S3. At cut-off levels I and II (distances of 9.5 and 8.5, 20 

respectively), three biomes (sensu Longhurst, 1998) were identified: those of subpolar and 21 

temperate, trade winds (or tropical), and westerly winds (or westerlies). At the next level (III, 22 

5.7), a cluster that comprised the coastal group of geographical cells was detected. At the 23 

fourth level (at a distance of 4.3), the tropical ocean was shown to be composed of three 24 

ecoregions (tropical I and II and coastal tropics). Tropical I was the tropical open ocean, 25 

whereas tropical II was closer to the continental shelf. The coastal tropical ecoregion included 26 
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the Mexican, Indo-Pacific and Arabian seas, and areas located in the North Pacific from the 1 

Kurushio Current to the North Pacific transitional area. The Mexican, Indo-Pacific and 2 

Arabian seas were distinguished separately from the North Pacific areas at cut-off level V 3 

(3.8) and the Mexican seas (in the Tropical eastern Pacific) were detected separately from 4 

Arabian and Indo-Pacific seas at cut-off level VI (at a distance of 3.2). Cut-off level VI also 5 

showed that the oceanic subtropical gyres comprised two groups: one representing the 6 

seasonal extension of the gyres and the other their core areas. The temperate ecoregion was 7 

also identified at this level and comprised a cluster of cells that matched a small area in the 8 

Western Australian continental shelf in addition to the temperate ecoregions of the ocean.  9 

 10 

Probability of ecoregions identified at cut-off level VI and associated indicator species  11 

Ecoregions 1 (Mexican coast), 5 (Temperate), 6 (Western Australian continental shelf), and 7 12 

(Transition zone) showed monospecific dominance (Fig. 3). In ecoregion 1 (Mexican coast), 13 

the sailfish was the predominant species. This region was identified most clearly on the 14 

Central Pacific-American continental shelf (Fig. 3). Bluefin species dominated ecoregion 5 15 

(Temperate), which was located from the temperate to the subpolar areas of the open ocean 16 

and in some specific seas (the Java Sea, the Mediterranean Sea, and the Gulf of Mexico) (Fig. 17 

3). Bluefin species also dominated ecoregion 6, which was located mainly over the Western 18 

Australian continental shelf. Swordfish dominated ecoregion 7. This region extended over a 19 

large area; it included the North Pacific transition zone and specific upwelling systems 20 

(Humboldt, California). 21 

The ecoregions that represented oceanic gyres and tropical oceans were characterized 22 

by a more diverse group of species in which one or two species dominated (Fig. 3). Ecoregion 23 

3 corresponded to the extension zones of oceanic gyres and was dominated by albacore tuna 24 

and swordfish. In contrast, ecoregion 4 was located in the core of the gyres, where albacore 25 
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tuna, together with striped marlin and swordfish, dominated. Ecoregion 8 (Tropical I) 1 

corresponded to cells in which bigeye tuna and striped marlin were present, whereas 2 

ecoregion 9 was dominated by yellowfin tuna, blue marlin, and, to a lesser extent, bigeye 3 

tuna. The spatial distribution of ecoregion 2 (Indo-Pacific and Arabian Seas) was located 4 

mainly in the Arabian Sea and Indo-Pacific seas (Fig. 3). A highly diversified fish community 5 

characterized this group and no single species was clearly predominant (Fig. 3). 6 

 7 

Environmental factors that characterized the identified regions 8 

PCA was used to identify the main environmental factors (see Appendix S1) that 9 

characterized each ecoregion at cut-off level VI (distance = 3.2). These factors are 10 

summarized in Fig. 4.  11 

 In the temperate ecoregion 5, the main characteristic environmental conditions were a 12 

low sea surface temperature and a high concentration of oxygen at the surface, and, to a lesser 13 

extent, a high concentration of chlorophyll a. The low sea surface temperature and high 14 

concentration of oxygen at the surface contributed to PC1, which explained 45.65% of the 15 

variance of the environmental matrix computed on the spatial distribution of ecoregion 5. The 16 

mean chlorophyll a concentration and standard deviation contributed to PC2, which explained 17 

13.92% of the total variance of the environmental matrix. These same main environmental 18 

conditions were also detected in the transition zone ecoregion 7, which was located between 19 

the temperate and gyre biomes (PC1: 46.45% and PC2: 16.33% of the total variance). 20 

However, PC3 (12.86% of the total variance) showed a notable difference in that the standard 21 

deviation of the chlorophyll concentration contributed more to PC3, due to there being a 22 

greater degree of seasonal variation of the chlorophyll a concentration in this ecoregion than 23 

in the temperate one.  24 
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The environmental conditions of the two ecoregions that were associated with tropical 1 

oceanic gyres (ecoregions 3 and 4; Fig. 4) were characterized by: (1) intermediate values of 2 

sea surface temperature, which contributed to PC1 for both ecoregions; (2) high salinity, 3 

which contributed to PC1 for ecoregion 3 and PC3 for ecoregion 4; and (3) weak and deep 4 

stratification of the water column, which contributed to PC2 for both ecoregions. In 5 

ecoregions 3 and 4, PC1 contributed 32% and 33.7 % of the total variance, respectively; PC2 6 

contributed 21.06% and 15.07% of the variance, respectively; and PC3 contributed 15.6% and 7 

12.5% of the total variance, respectively. The analysis revealed that these two ecoregions 8 

were differentiated by the fact that the seasonal extension regions of the gyres contained 9 

higher concentrations of chlorophyll a than the core regions (chlorophyll a concentration 10 

contributed to PC2 for both ecoregions). 11 

The tropical ecoregions (ecoregions 8 and 9, Fig. 4) were both characterized by warm 12 

sea surface temperatures, which contributed to PC3. PC3 accounted for 15.03% and 15.32% 13 

of the total variance in ecoregions 8 and 9, respectively. However, ecoregion 8 (Tropical I) 14 

was characterized mainly by strong stratification and a high velocity of oceanic currents 15 

(PC1: 30.52% of the total variance), and a low concentration of dissolved oxygen at 100 m 16 

(PC2: 22% of the total variance). In contrast, ecoregion 9 (Tropical II) was characterized 17 

strongly by a high mean concentration of chlorophyll a and shallow thermocline (PC1: 18 

36.56% of the total variance).  19 

The three coastal ecoregions (i.e. the Mexican coast, the Indonesian and Arabian seas, 20 

and the Western Australian continental shelf; ecoregions 1, 2, and 6, respectively) were 21 

characterized mostly by sea surface temperature, nutrient concentration, and bathymetry. 22 

Ecoregion 1 was characterized by shallow stratification (in terms of mixed layer depth and 23 

depth of the thermocline; PC1: 74.92% of the total variance) whereas the concentrations of 24 

silicate and nitrate, respectively, contributed more to PC2 and PC3 (11.9% and 9.72% of the 25 
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total variance, respectively). In ecoregion 2, a warm sea surface temperature and a high level 1 

of surface oxygen contributed to PC1 (33.42% of the total variance), whereas a high 2 

concentration of oxygen at 100 m and high mean chlorophyll a contributed to PC2 (25.2% of 3 

the total variance). In ecoregion 6, PC1 was explained mainly by the nutrient concentration 4 

(51.42% of the total variance) and PC2 by the bathymetry and the intensity of the thermocline 5 

(16.12% of the total variance). 6 

 7 

 DISCUSSION 8 
 9 
One of the main goals of marine biogeography is to identify how the environment influences 10 

the spatial distribution of marine organisms and thus patterns of biodiversity. Achieving such 11 

a grand goal requires the integration of many very large datasets. The commercial fisheries 12 

dataset studied herein is one of the most exhaustive sets of observations on marine species at a 13 

global scale. Nevertheless, the fact that certain species are targeted and sampled non-14 

homogeneously, as a result of the commercial interests of fleets, makes it difficult to interpret 15 

such a dataset for ecological purposes. Thus, we investigated the average biogeographical 16 

distribution of tuna and billfish species over the period from 1953 to 2007 using a newly 17 

developed methodology that enables the global ocean to be partitioned on the basis of the 18 

distribution of top predators. Specific environmental conditions and the community 19 

composition of each identified ecoregion were estimated. The results revealed latitudinal 20 

divisions among communities related to the physiological and behavioural capacities of 21 

species to cope with regional environmental conditions. Comparison of these biogeographical 22 

regions with BGCPs identified previously on the basis of environmental parameters revealed 23 

spatial overlap of 68.8% on average, which suggested that environmental conditions affect 24 

both the spatial distribution and the species composition of marine ecosystems from low to 25 

high trophic levels.  26 
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 1 

Issues related to fisheries data 2 

The longline catches that we analysed in the study cover an area from 60° S to 65° N and 3 

yield the most exhaustive dataset available with respect to the spatial distribution of species of 4 

tuna and billfish that are exploited commercially (Fonteneau, 1998). However, as a result of 5 

the specificity of the longline method, only large individuals are caught; hence, the dataset 6 

does not cover the entire population of a given species, because individuals at the earlier 7 

stages of biological development will not be caught by the large hook. Indeed, the 8 

appropriateness and utility of using fisheries statistics for scientific purposes is debatable, for 9 

various reasons.  10 

First, the data for some species may introduce bias, in that the species are considered 11 

to be by-catch or reported in the category of ‘others’. In the present study, to address this 12 

problem, the contribution to the total CPUE and the spatial distribution of each species were 13 

examined (Appendix S2). Only dominant species, which showed the highest spatial coverage 14 

and contributed most to the CPUE, were used in the numerical procedure. 15 

Second, fisheries statistics are often biased due to changes in the spatial distribution of 16 

the fishing, as well as temporal variation. Given that fishing fleets usually explore the regions 17 

with the highest abundance of targeted fish and, once a given region has been exploited 18 

sufficiently, move quickly to another region to maintain optimal productivity, CPUE series 19 

often show little variation between different areas and do not reflect the heterogeneity of the 20 

resource (Fonteneau & Richard, 2003). Furthermore, studies that focused on global or local 21 

variations in catch rates over time (Myers & Worm, 2003) have been criticized strongly due 22 

to the large amount of variation in commercial fisheries statistics (Polacheck, 2006). Indeed, 23 

Polacheck (2006) stressed the difficulty in using CPUE indices due to the fluctuations in the 24 

relationship between fishing effort and abundance of the targeted fish populations over time, 25 



 

20 
 

especially for longline fisheries. Furthermore, Rouyer et al. (2008) showed that the patterns of 1 

variation in fisheries time series for catches of tuna and billfish varied primarily in terms of 2 

the spatial distribution of the species and secondarily in relation to the fishing equipment 3 

used. The authors concluded that the patterns of variation in fisheries time series fail to 4 

represent accurately the underlying dynamics of populations of large pelagic fish. 5 

Consequently, the fisheries data used in the present study cannot be used readily for 6 

ecological purposes.  7 

To characterize the biogeography of large pelagic species, we have proposed a new 8 

CPUE index that captures the spatial distribution of the species studied over the entire period 9 

of study. Over the period studied, these species were under- or fully exploited, but not 10 

overexploited, and so their spatial distributions arguably were not affected by the increase in 11 

pressure from fisheries. Only bluefin tuna is classified as having been overexploited: this is 12 

the case for the southern bluefin tuna and the West Atlantic bluefin tuna since the late 1970s 13 

and for the East Atlantic and possibly the Pacific bluefin tuna since the 1990s. Furthermore, 14 

Rouyer et al. (2008) observed that the effect of changes in environmental conditions on the 15 

spatial distribution of large pelagic species is detected predominantly on a time scale of 16 

decades, rather than a shorter time scale; hence, long time series are required to detect long-17 

term variations. The combined use of a long time period and the CPUE index allowed us to 18 

estimate the complete average spatial distribution of each species over the period studied in 19 

accordance with previous findings (Fonteneau, 1998). 20 

Third, commercial longline fleets from different countries do not always target the 21 

same species and do not cover the same spatial area and period. To reduce this bias, only data 22 

from Taiwanese and Japanese fleets were used and they were analysed separately, as 23 

recommended by Rouyer et al. (2008). In addition, both fleets were observed to change the 24 

depth at which longline hooks were deployed to catch different species at the same location 25 
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(Maunder et al., 2006). These changes in fishing strategy might bias the dataset by altering 1 

the spatial distribution of some species and thereby affecting the outputs of the clustering 2 

analysis. To minimize the effects of this potential bias, only data for the cumulative catch per 3 

geographical cell for well-sampled species (dominant species, see Fig. S1) were considered 4 

for the cluster analysis. 5 

Finally, the longline dataset used in this study has a low spatial resolution (5° × 5° 6 

geographical cells) and provides data on tuna and billfish which are found only rarely on 7 

continental shelves. As a consequence, the results for ecoregions near coasts need to be 8 

interpreted with caution.  9 

 10 

Biogeography of tuna and billfish 11 

On the basis of the results, the tropical ocean can be divided into two ecoregions (Figs 4 & 5, 12 

tropical I and II). Tropical I corresponded to areas that are dominated by bigeye tuna, which is 13 

a warm-water fish but has a much better ability to thermoregulate (both physiologically and 14 

behaviourally) than yellowfin tuna, especially with respect to the large adults targeted by 15 

longline fleets (Brill et al., 2005). This capacity, combined with the ability to hunt in dark 16 

waters (Nicol & Somiya, 1989; Somiya et al., 2000) and a tolerance to relatively anoxic 17 

waters, extends their feeding grounds well below the thermocline (from 300 to 500 m), where 18 

abundant mesopelagic organisms are concentrated by advection away from upwelling regions 19 

(Musyl et al., 2003). The second ecoregion (Tropical II) corresponded to the reproduction and 20 

nursery areas of yellowfin tuna in three oceans (Maury et al., 2001). This species, which uses 21 

its eyesight to detect prey, is also in general distributed in warm tropical waters where a 22 

shallow thermocline enhances phytoplankton production and concentrates epipelagic prey in 23 

euphotic surface waters (Kirby, 2001) (Fig. 5).  24 
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Albacore tuna prefer temperate waters (Laurs et al., 1984), which restricts their range 1 

to oceanic gyres and adjacent regions (Penney et al., 1998). As adults, this smaller species 2 

generally feeds in gyres (Bertrand et al., 2002) where the mixed layer depth is deep, and 3 

where the temperature falls gradually as the water depth increases (Tomczak & Godfrey, 4 

2003). Our classification split the gyres into two regions: (1) ecoregion 3, which corresponded 5 

to the feeding areas of juvenile albacore tuna (seasonal extent of gyres), and (2) ecoregion 4, 6 

which corresponded to the core of the gyres and was inhabited by adult albacore tuna (Bard et 7 

al., 1998). The swordfish occurred in more temperate regions than bigeye and yellowfin tuna 8 

(transition zone in Figs 4 & 5). Although it cannot thermoregulate well, the swordfish has 9 

high thermal inertia and can see well in dark waters. These characteristics allow this species 10 

to dominate productive areas (i.e. areas of high primary and secondary production), such as 11 

the transition zone ecoregion (Longhurst, 1995) that exists between subpolar regions and the 12 

margins of oceanic gyres (Kurushio and Gulf Stream currents). 13 

The temperate ecoregion (ecoregion 5) was dominated by bluefin tuna. Bluefin tuna 14 

have the highest thermoregulatory capacity of all tuna and billfish species and inhabit 15 

temperate (and even subpolar) waters where they can find plentiful food resources. Atlantic 16 

bluefin tuna (Thunnus thynnus) also migrate to the Mediterranean Sea and the Gulf of Mexico 17 

to reproduce, which explains the extension of the temperate ecoregion (Fig. 4). 18 

The last three proposed ecoregions may be found in coastal areas. The putative 19 

Western Australian continental shelf ecoregion matched the Japanese fishing grounds during 20 

the feeding migrations of southern bluefin tuna from the area in which they reproduce in the 21 

Java Sea to the south subpolar convergence in the Indian Ocean where they feed (Proctor et 22 

al., 1995). The shelves of the putative Indo-Pacific and Arabian Seas ecoregion show high 23 

phytoplankton productivity, which results in a high availability of food for forage species and 24 

hence many tuna and billfish species feed in these regions (Price, 2002). Moreover, it is easier 25 
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to catch fish in these regions, thanks to a shallow oxycline that pushes predatory fish near the 1 

surface (Prince & Goodyear, 2006). The last proposed ecoregion, located along the Pacific 2 

Mexican coast, was dominated by sailfish, which are known to reside in this area, close to the 3 

site at which they reproduce on the continental shelf. Particular caution is warranted when 4 

considering the validity of this ecoregion due to the low quality of the fisheries statistics 5 

describing sailfish.  6 

 7 

Tuna and billfish communities  8 

Nine major ecoregions, characterized by specific assemblages of species, were detected (Figs 9 

3 & 4, radar plot). Analysis of the species composition of each ecoregion (Fig. 3) revealed 10 

three types of pattern: (1) single-species dominance, (2) multispecies dominance, and (3) a 11 

diversified community without clear dominance. The last of these, with no apparent 12 

competitive exclusion, can be related to the ecological characteristics of tuna and billfish 13 

species that may share the same area by occupying different depths (Young et al., 2010). 14 

These specific characteristics are exploited by different longline fleets, which target different 15 

species in the same region by changing the depth to which the hooks are lowered (Yang & 16 

Gong, 1987; Nakano et al., 1997). As a consequence, each ecoregion that represents a specific 17 

community needs to be considered in three dimensions to understand fully the assemblage of 18 

species. For this purpose, we propose a conceptual scheme that is based on the ecoregion that 19 

predominates at each latitude (Fig. 4) and is refined using the available literature on the 20 

vertical division and movement of tuna and billfish species (Block & Stevens, 2001; Fig. 5).  21 

Furthermore, the migratory behaviour of large pelagic fish can affect the composition 22 

of each community directly. In fact, some of the species studied show a clear pattern of 23 

migration between feeding grounds and breeding grounds (Walli et al., 2009). As a 24 

consequence, the species assemblages in a given area might vary in a seasonal manner, 25 
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depending on whether migrant reproductive adults are present (Fromentin & Powers, 2005). 1 

The biogeographical partitioning proposed herein (Fig. 4) does not fully take into account the 2 

seasonal migration of the species because some data are limited due to restrictions on the 3 

access of longliners to certain areas, such as the western spawning ground of the Atlantic 4 

bluefin tuna since the early 1980s. Therefore, the biogeography of large pelagic fish proposed 5 

here has to be considered as an average condition over the period studied. 6 

 7 

Comparison of the described ecoregions with the BGCPs 8 

The importance of BGCPs (Longhurst, 1995) for research in ecology has already been 9 

supported by several studies (Beaugrand et al., 2002; Woodd-Walker et al., 2002; Li et al., 10 

2004). However, all these studies were performed on stenoecious species, which are sensitive 11 

to small changes in the environment and for which fluctuations in abundance can be attributed 12 

directly to such changes (Reygondeau & Beaugrand, 2011). The partitioning of the global 13 

ocean that we report herein, which is based on the distribution of large pelagic fish, were 14 

compared with the BGCPs (Longhurst, 1995) to determine the ability of the BGCPs to 15 

discriminate between the spatial distributions of species at high trophic levels at the global 16 

oceanic scale. The homogeneity between the spatial distribution of the BGCPs and the 17 

ecoregions that we identified reached 68.8% on average (Table 2). This result indicates that 18 

specific environmental conditions, captured by the BGCPs, partially control the spatial 19 

distribution and co-presence among species of large pelagic fish. 20 

The level of homogeneity between our proposed ecoregions and Longhurst’s BGCPs 21 

was lower in coastal provinces and higher in open ocean provinces (Table 2). Furthermore, 22 

the mean level of mismatch of 30% detected between these two schemes might be related to 23 

the fact that the BGCPs have a geographical resolution of 1° × 1° whereas our ecoregions are 24 

resolved at only 5° × 5°. As a consequence, many geographical cells of the ecoregions 25 
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identified herein might belong to two or three different BGCPs, which would lead to some 1 

biogeographical boundaries being missed, moved, or diluted. The numerous biases that affect 2 

commercial fisheries data might also contribute to imprecise boundaries between ecoregions, 3 

for example because the longline data may lead to the spatial distribution of some species 4 

being underestimated. In addition, even if Longhurst’s BGCPs remain the most accepted 5 

scheme of partitioning in marine biogeography, some of the boundaries that it draws may be 6 

open to revision, in light of new observations made since the BGCPs model of partitioning 7 

was developed (Longhurst, 1995). More recent observations might explain some of the 8 

differences between our partitioning results for top predators and the BGCP, for example, in 9 

the Caribbean Sea, the South Pacific subtropical gyre, the North Atlantic subtropical gyre, and 10 

the monsoon band. Finally, the patterns of migration of these top predators and their 11 

physiology (specifically, their capacity to thermoregulate) make them less dependent on, or 12 

sensitive to, environmental variations than species at lower trophic levels. Given these 13 

considerations, the strong overlap between BGCPs and the spatial distributions of large 14 

pelagic fish is rather surprising. 15 

According to the general definition of the BGCPs, each partition represents specific 16 

environmental conditions that differ from those of the adjacent province, and within a given 17 

province the pattern of variation of key biogeochemical parameters can be predicted 18 

(Longhurst, 2005). As a consequence, each BGCP can be considered to reflect a characteristic 19 

habitat to which species have adapted and the environment in which the species can develop 20 

and maintain populations (cf. Hutchinson, 1957). This assumption is used generally to explain 21 

the appropriateness of using the BGCPs for ecological studies of species at lower trophic 22 

levels and stenoecious species (from bacteria to mesozooplankton; see Beaugrand et al., 2002; 23 

Woodd-Walker et al., 2002; Li et al., 2004). Our results revealed a high degree of similarity 24 

between Longhurst’s BGCPs and the spatial distribution of species at high trophic levels (i.e. 25 
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large pelagic species), even though these organisms are thought in general to be affected less 1 

by variation in environmental conditions than species at lower levels (Block & Stevens, 2 

2001). Thus, we infer that this relative match between BGCPs and the spatial distribution of 3 

communities of large pelagic species may result from bottom-up processes (Cury et al., 4 

2008). First, the main biological processes (e.g. survival of larvae) and life history traits of 5 

large pelagic fish are affected directly by environmental parameters, such as temperature 6 

(Block & Stevens, 2001). Second, the abundance of top predators depends strongly on the 7 

presence of foraging species, which in turn are linked closely to environmental conditions 8 

(Lehodey et al. 1998; Beaugrand et al., 2002). As a consequence, each BGCP may represent 9 

specific environmental envelopes (i.e. characteristic intervals of variation in environmental 10 

conditions that affect the dynamics of marine species) in which adapted species at lower 11 

trophic levels are present. Thus, the BGCPs can also be related to the spatial distribution of 12 

top predator species that in turn reflect their varied feeding preferences and differences in 13 

tolerance to their environment. 14 

 15 

CONCLUSIONS 16 

The use of an extensive commercial fisheries dataset on tuna and billfish characterized by a 17 

wide range of environmental tolerance has revealed clear spatial partitioning of the global 18 

ocean into well-defined communities (i.e. ecoregions). We suggest that this spatial division of 19 

the oceans results from the spatial distribution of the species on the basis of their different 20 

physiological and behavioural adaptations to the environment. Although previous studies 21 

have already demonstrated a match between the distribution of other taxa and the BGCPs of 22 

Longhurst (1995), the species studied were generally ectothermal and thus were affected more 23 

directly by the local environment. In our study, the similarities identified between the 24 

partitioning of the ocean with respect to top predators and the BGCP shows the strong 25 
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influence of the environment on the species composition and spatial distribution of apical 1 

species. Therefore, BGCPs correspond to certain physical conditions (biotopes) in which 2 

marine species can maintain their populations and constitute specific trophic webs. Thus, the 3 

BGCPs seem to provide a geographical framework that is relevant when studying the possible 4 

effects of climate change on the abundance of top predators and which will enable better 5 

management and improved conservation of marine resources. 6 
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Figure Captions 1 

 2 

Figure 1 Schematic representation of the numerical procedures used in this study (see 3 

Materials and Methods for details). The clustering analysis (step 2) is shown in detail in Fig. 4 

2. A map of the probability of occurrence of each group cited in step 3 is shown in Fig. 3 for 5 

all groups at cut-off level VI. A map of the ecoregions obtained with the maximal probability 6 

(step 4) is shown in Fig. 2 (cut-off levels II, V, and VI), Fig. 4 (cut-off level VI), and 7 

Appendix S3 (all cut-off levels). The radar plots that indicate the species composition of each 8 

group are shown in Fig. 3 and Fig. 4. 9 

 10 
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 1 
Figure 2 Identification of ecoregions on the basis of tuna and billfish data. The Dendrogram 2 

derived from the cluster analysis performed on the matrix (I, 1189 geographical cells and 13 3 

species) showing the cut-offs at the six different levels that were tested (dashed lines). The 4 

names of each cut-off level are only qualitative and do not refer to the number of groups 5 

detected in the resulting partitioning. The projection used is Eckert IV. 6 
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 1 
 2 

Figure 3 Maps of the probabilities that each group of geographical cells identified for cut-off 3 

level VI is in a given ecoregion. The corresponding radar plot shows the indicator species of 4 

tuna and billfish for the ecoregion. All radar plots are constricted between 0 and 50% with 5 

lines at 10% intervals. Each species code corresponds to a species name that can be retrieved 6 

from Table 1. The projection used for each map is Eckert IV. 7 
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 1 
Figure 4 Proposed ecological partitioning of the global ocean based on the distribution of 2 

tuna and billfish species (with an Eckert IV projection). Each community is associated with a 3 

specific colour on the map and a descriptive box. For each ecoregion, the name, species 4 

association, and main environmental driver factors are provided in the corresponding box. 5 

The annotation ‘+’ denotes a high value and ‘-’ a low value of the environmental parameter. 6 

The radar plots are on a log10 scale. The dominant species and secondary species of each 7 

community detected are annotated on the plot. Each species code corresponds to a species 8 

name in Table 1. The environmental factors are annotated on the figure using acronyms (see 9 

Appendix S1): SST= sea surface temperature; SSS = sea surface salinity; MLD= mixed layer 10 

depth; IT= intensity of the thermocline; ZT= depth of the thermocline; std= standard 11 

deviation; Oxygen 100m = Oxygen at 100m. 12 



 

41 
 

 1 
Figure 5 Conceptual scheme of the spatial distribution of each ecoregion as a function of 2 

latitude and depth. The figure was produced using the ecoregion that predominates at each 3 

latitude (Fig. 4) and refined (vertically) using established knowledge on the spatial 4 

distribution of the species studied (see e.g. Block & Stevens, 2001). Oceanic ecoregions are 5 

represented by dashed black lines. The spatial distributions of the five dominant species are 6 

each represented by a specific colour (YFT, yellowfin tuna; BET, bigeye tuna; ALB, albacore 7 

tuna; SWO, swordfish; BFT, all bluefin tuna species). Depth is divided into epipelagic (water 8 

mass from the surface to the mixed layer depth) and mesopelagic (from the mixed layer depth 9 

to 1000 m) zones.  10 

 11 

12 
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Table 1 The common name, Latin name, spatial distribution, and code name for each species 1 

of tuna and billfish in the study.  2 

 3 
Name Latin name Taxonomic authority Ocean Code 

Northern bluefin Thunnus thynnus Linnaeus, 1758 Atlantic 

BFT Southern bluefin Thunnus maccoyii Castelnau, 1872 Atlantic, Pacific, Indian 

Pacific bluefin Thunnus orientalis Temminck & Schlegel, 1844 Pacific 

Bigeye tuna Thunnus obesus Lowe, 1839 Atlantic, Pacific, Indian BET 

Yellowfin tuna Thunnus albacares Bonnaterre, 1788 Atlantic, Pacific, Indian YFT 

Albacore tuna Thunnus alalunga Bonnaterre, 1788 Atlantic, Pacific, Indian ALB 

Skipjack tuna Katsuwonus pelamis Linnaeus, 1758 Atlantic, Pacific, Indian SKJ 

Swordfish Xiphias gladius Linnaeus, 1758 Atlantic, Pacific, Indian SWO 

Indo-Pacific blue marlin Makaira mazara Lacepedein 1802 Pacific, Indian 
BUM 

Atlantic blue marlin Makaira nigricans Lacepède, 1801 Atlantic 

Black marlin Makaira indica Cuvier, 1832 Atlantic, Pacific, Indian BLM 

Striped marlin Tetrapturus audax Philippi, 1887 Atlantic, Pacific, Indian MLS 

Atlantic sailfish Istiophorus albicans Latreille, 1804 Atlantic 
SFA 

Pacific sailfish Istiophorus platypterus Shaw, 1792 Pacific, Indian 

Short-billed spearfish Tetrapturus angustirostris Tanaka, 1914 Pacific, Indian SSP 

4 
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Table 2 Homogeneity index between each biogeochemical province (BGCP; Longhurst, 1 

1998) and the nine ecoregions identified using the CPUEs of 13 dominant tuna and billfish 2 

species. The percentage of geographical cells represented by each ecoregion was calculated. 3 

The total percentage homogeneity was computed from the sum of the geographical cells of 4 

the dominant ecoregion in each province divided by the total geographical cells considered in 5 

the study.  6 

 7 
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          Ecoregion (%) 

Province name Code Biome  Ocean Number 
of cells 1 2 3 4 5 6 7 8 9 

Brazilian current coast BRAZ Coastal Atlantic 8 0.0 0.0 0.0 50.0 0.0 0.0 50.0 0.0 0.0 

Benguela current coast BENG Coastal Atlantic 5 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 

Guinea current coast GUIN Coastal Atlantic 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 88.9 

Canary current coast CNRY Coastal Atlantic 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 

Guianas coast GUIA Coastal Atlantic 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 

Northeast Atlantic shelves NECS Coastal Atlantic 2 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 

Northwest Atlantic shelves NWCS Coastal Atlantic 8 0.0 0.0 12.5 12.5 25.0 37.5 0.0 0.0 12.5 

Eastern India coast EAFR Coastal Indian 15 0.0 13.3 0.0 26.7 0.0 0.0 0.0 0.0 60.0 
Western Australian and 

Indonesian coast AUSW Coastal Indian 25 0.0 13.3 0.0 0.0 6.7 26.7 0.0 46.7 6.7 

Eastern India coast INDE Coastal Indian 8 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 87.5 

Western India coast INDW Coastal Indian 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 

Humboldt current coast HUMB Coastal Pacific 8 0.0 0.0 0.0 0.0 25.0 0.0 25.0 50.0 0.0 

East Australian coast AUSE Coastal Pacific 6 0.0 0.0 66.7 0.0 33.3 0.0 33.3 0.0 0.0 

Sunda-Arafura shelves SUND Coastal Pacific 17 0.0 5.9 0.0 0.0 41.2 0.0 0.0 17.6 35.3 

China Sea CHIN Coastal Pacific 4 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 

Central American coast CAMR Coastal Pacific 9 77.8 0.0 0.0 0.0 0.0 0.0 22.2 0.0 0.0 

Alaska Coastal downwelling ALSK Coastal Pacific 1 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 

New Zealand coast NEWZ Coastal Pacific 7 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 

Coastal Californian current CCAL Coastal Pacific 14 0.0 0.0 0.0 0.0 27.3 0.0 27.3 45.5 0.0 

Antarctic ANTA Polar Antarctic 16 0.0 0.0 10.0 0.0 90.0 0.0 0.0 0.0 0.0 

Atlantic Arctic ARCT Polar Atlantic 8 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 

Atlantic subArctic SARC Polar Atlantic 9 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 

South Atlantic gyral SATL Trade wind Atlantic 68 0.0 0.0 10.3 76.5 1.5 0.0 0.0 11.8 0.0 

Eastern tropical Atlantic ETRA Trade wind Atlantic 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.2 30.8 

Western tropical Atlantic WTRA Trade wind Atlantic 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 62.5 37.5 

Caribbean CARB Trade wind Atlantic 16 0.0 0.0 6.3 0.0 0.0 37.5 0.0 0.0 56.3 

North Atlantic tropical gyral NATR Trade wind Atlantic 27 0.0 0.0 18.5 40.7 0.0 0.0 0.0 29.6 11.1 

Indian south subtropical gyre ISSG Trade wind Indian 66 0.0 0.0 30.3 51.5 12.1 6.1 0.0 0.0 0.0 

Indian monsoon gyre MONS Trade wind Indian 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.8 52.2 

Archipelagic deep basins ARCH Trade wind Pacific 31 0.0 32.3 32.3 16.1 0.0 0.0 0.0 0.0 19.4 

Pacific equatorial divergence PEQD Trade wind Pacific 68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 91.4 8.6 
North Pacific equatorial 

countercurrent PNEC Trade wind Pacific 25 0.0 0.0 0.0 0.0 12.0 0.0 0.0 84.0 4.0 

North Pacific Tropical gyre NPTG Trade wind Pacific 135 0.0 4.3 39.1 11.3 6.1 0.0 9.6 29.6 0.0 

South Pacific gyre SPSG Trade wind Pacific 151 0.0 0.0 13.2 80.2 0.0 0.0 1.7 18.2 0.0 

Western Pacific warm pool  WARM Trade wind Pacific 42 0.0 4.8 9.5 16.7 0.0 0.0 0.0 16.7 52.4 
South subtropical 

convergence SSTC Westerly wind Antarctic 65 0.0 0.0 15.4 4.6 80.0 0.0 0.0 0.0 0.0 

SubAntarctic water ring SANT Westerly wind Antarctic 72 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 
Northeast Atlantic 
subtropical gyral NAST E Westerly wind Atlantic 21 0.0 0.0 38.1 61.9 0.0 0.0 0.0 0.0 0.0 

Mediterranean Sea MEDI Westerly wind Atlantic 13 0.0 0.0 0.0 0.0 92.3 0.0 7.7 0.0 0.0 
Northwest Atlantic 
subtropical gyral NAST W Westerly wind Atlantic 19 0.0 0.0 47.4 0.0 26.3 0.0 0.0 26.3 0.0 

Gulf Stream GFST Westerly wind Atlantic 8 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 
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North Atlantic Drift NADR Westerly wind Atlantic 14 0.0 0.0 7.1 0.0 92.9 0.0 0.0 0.0 0.0 
Northwest Arabian Sea 

upwelling ARAB Westerly wind Indian 12 0.0 0.0 0.0 0.0 0.0 0.0 58.3 25.0 16.7 

Tasman Sea TASM Westerly wind Pacific 6 0.0 0.0 83.3 0.0 16.7 0.0 0.0 0.0 0.0 

Kuroshio Current  KURO Westerly wind Pacific 18 0.0 0.0 0.0 14.3 64.3 0.0 21.4 0.0 0.0 
Eastern Pacific subArctic 

gyres  PSAE Westerly wind Pacific 2 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 

Western Pacific subArctic 
gyres  PSAW Westerly wind Pacific 9 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 

North Pacific polar front NPPF Westerly wind Pacific 26 0.0 0.0 26.9 0.0 19.2 0.0 53.8 0.0 0.0 

Total        1188 68.8 

 1 


