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Abstract

This paper develops an axiomatic approach of vector field orienta-
tion, seen as angles on the unit circle. Two operators will be singled out:
the curvature operator, appearing in total variation minimisation for im-
age restoration and inpainting/disocclusion, as a direct solution and the
Absolutely Minimizing Lipschitz Extension (AMLE), already known as
a robust and coherent scalar image interpolation technique, if we relax
slightly the axioms. Numerical results are presented on real and artificial
images using a multiresolution finite differences scheme. The computed
field is shown to be able to extend geometrical information from images
in accordance with the human perception of edges. First applications
are shown, including a Fast Marching contour extraction algorithm and a
LIC-based smoothing method.

1 Introduction

The strength of human vision is known to be its ability to work with hetero-
geneous visual cues and combine them to reconstruct a global organisation of
the visual stimuli out of local features. The long term goal of Computer vision
is to achieve the same degree of integration and robustness. If the local/global
interaction has gathered much work, the heterogeneous visual cues part of that
program, however, has seldom been emphasised upon. It is as problematic: how
to go beyond purely contrast-based imaging to include geometrical information?
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Detecting what we intuitively call ”edges” is a first step towards low level fea-
ture extraction and integration and has been the focus of a lot of work since the
beginning of computer vision ([6, 11, 12] etc...). But as noted by psycho-visual
experiments and models [16], that concept has appeared to be more difficult
to define than simply ”contrasted image part”. Psychovision experiments by
the Gestaltists [16, 33] has given us an acute and unified framework to anal-
yse those effects, and many grouping laws are often involved in the recognition
of what we call an edge. The so-called subjective contour effect in particular
let us see edges which are strictly speaking not even actually present. It uses
amodal completion (reconstruction of occluded edges due to the 2D projection
of a 3D world) and modal completion (leading to illusory contour, where the
object and the background have the same color). In both cases it rely on a
curve interpolation process of unknown data according to the input.

The main origin for those subjective contours is the good continuation prin-
ciple, which states that if two edgels (edge elements, i.e. points together with
the orientation of the curve which should pass through it) are not too far apart
and have compatible directions, we tend to see the curve to which they are both
tangent as an edge. Many studies have aimed at computationally implementing
this phenomenon. To this end, it is generally assumed that a filter has given us
an image of edgels from which we want to extract the curves. Two classical ap-
proaches are the curve detector of Parent and Zucker [25], which uses a discrete
co-circularity measure to extract potentially interesting point, and Sha’ashua
and Ullman saliency network [29], where dynamic programming is used to ex-
haustively search for the “best” curves under curvature minimisation and length
maximisation constraints. More recently, interesting approaches are Medioni’s
tensor voting [19, 20], where curves emerge from votes of sparse edgels, and
Zweck and al. stochastic completion fields [34], an Euclidean group invariant
implementation of the advection-diffusion model of Mumford [21].

The good continuation principle states conditions on tangent vectors, and
most of the approaches mentioned earlier rely, explicitly or not, on vector or
orientation fields. The present work aims at finding out the most invariant
interpolation methods based on partial differential equations (PDEs).

Given a set of edgels, what are the most invariant and stable ways to re-
construct an orientation field in the whole plan? Because orientations live on
the unit circle, an everywhere smooth interpolation is not always possible, due
to global topological arguments. However, if we now use local arguments, a
analysis similar to [1, 7] is possible and leads also to similar necessary condi-
tions, showing that only very few differential operators have good properties.
Since the functions which will be considered in this paper are vector valued or
have values in the unit circle, only little is known about existence, uniqueness
or classification of the singularities of the solutions to equations we single out.
This contribution is an insight of what could be those results and their interest
from a low-level vision point of view.

Related problems include image inpainting and restoration, and the oper-
ators described here are also applied in those cases. In particular, recent de-
velopment extended them to the case of non-scalar images (vector or tensor
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valued images) [4, 17, 23]. The aim however is different, as this work does not
seek to recover the image itself, but an orientation field that would capture its
geometrical features.

Section 2 states some generalities about interpolating angle, and in partic-
ular that singularities are often unavoidable. Section 3 is devoted to the actual
axiomatic approach. The next section presents in more details the two singled
out operators. The numerical implementation is described in Section 5, along
with the multiresolution algorithm used for initialisation. Section 6 present nu-
merical experiments on natural and artificial images. Two basic applications of
such a dense geometry driven orientation field are shown in the last section.

2 Interpolating Angles

Let Ω ⊂ R
2 and ∂Ω its boundary. Let S1 be the unit circle of R

2. We consider
the extension problem: knowing I : ∂Ω → S1 ⊂ R

2, how to extend I to the
whole domain Ω? To work in S1 we need a parameterisation, in order to handle
numerically geometrical data. Let the bijective function φ : U ⊂ S1 → V ⊂ R

be such a parameterisation. The circle S1 represents angular data modulo 2π.
In addition, we may also consider the directions of unoriented lines (i.e. angles
modulo π). All the argumentation below will apply to both cases.

2.1 Topological Restriction

The first problem we encounter when extending vectors as opposed to scalars,
is that singularities in the field may be unavoidable. Given a data to be inter-
polated when can we hope for a singularity free extension? A necessary and
sufficient condition is the following.

Proposition 1. Let f be a continuous vector field over ∂Ω. There exists a
continuous extension of f to Ω if and only if f satisfies condition C,

∃α ∈ S1, α /∈ f(∂Ω), (C)

that is to say only if f is not surjective.

These topological results mean that a singularity free extension is impossible
for orientation field when the bounding data cover the whole unit circle. This
classical result is equivalent to the Brouwer fixed point theorem [14]. In all the
following theoretical consideration, condition (C) is assumed to be true.

2.2 A Fundamental Ambiguity

The parameterisation φ is not unique and an extension method has to be as
independent from it as possible. Unfortunately, the periodicity of S1 leads to
an unavoidable ambiguity in interpolation. Let ψ be another parameterisation
ψ : U ′ ⊂ S1 → V ′ ⊂ R. In the axiomatic developed in Section 3, the case of
a parameterisation change g = ψ ◦ φ−1 will be handled. But this assumes that
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U ∩ U ′ is a compact, that the two parameterisation have compatible domains
in S1.

Let f be a continuous vector field over ∂Ω. If f(∂Ω) ⊂ S1 have n > 1 con-
nected components, due to the periodicity of S1 there exists n ways of choosing
the compact U in which the interpolation is done (see Fig 1 left). This choice is
equivalent to choosing the point left out of the parameterisation, thus it gives
rise to non-equivalent extension. For example Fig. 1 right, the extension can
either go through zero or π

2 .

Figure 1: Ambiguity of interpolation of angle. Left: there are two ways of going
from u to v, one in U , the other in U ′ (modulo 2π). Right: example when
u− v = π/2 (modulo π for clarity)

In the following theoretical consideration, such a choice is implicitly assumed
once and for all. Numerically however, iterative scheme are used and they
may yield different final result depending on the initialisation. Moreover, the
topological condition (C) might not be fulfilled in practice for the whole domain
but only in sub-domains. In that case, the choice of the parameterisation at a
point depends on its neighbourhood. A possible workaround is a multiresolution
scheme, as detailed in Section 5.

3 Axiomatic Approach

This section details the axiomatic approach exploited to define operators for the
interpolation of orientation field.

Let Γ be a continuous Jordan curve bounding a simply connected domain
Ω. We look for an extension operator E, which associates with each directional
data θ0 : Γ → S1 a unique extension E(Γ, θ0). Throughout all the discussion
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to follow, it is assumed that θ0 satisfies global condition (C). The set of all
those functions will be denoted by F(Γ). As previously stressed, it is necessary
to parameterise S1 to deal with numerical functions. A slight difficulty arises,
since it is not possible to describe the whole circle by a unique chart. Let φ be
such a local parameterisation, that is to say, a bijective function U → V , where
U is an open subset strictly included in S1 and V an open subset of R. Let
us now consider the extension operator Eφ interpolating real valued boundary
data u, defined by Eφ(Γ, u) = φ ◦ E(Γ, φ−1 ◦ u). Since Eφ(Γ, u) is a numerical
function, it is easier to formulate conditions on the operator Eφ. However, since
the parameterisation φ is arbitrary, the result should be independent on the
parameterisation and condition on Eφ should stand for any φ.
Following [7], Eφis required to satisfies the following axioms:

Axiom (A1): Comparison principle Let θ1, θ2 ∈ F(Γ) such that they can
be described by a common chart φ. Then φ(θ1) ≥ φ(θ2) implies

Eφ(Γ, φ(θ1)) ≥ Eφ(Γ, φ(θ2)). (1)

Axiom (A2): Stability principle Let Γ ∈ C, θ0 ∈ F(Γ), and Γ′ ∈ C such
that D(Γ′) ⊆ D(Γ). Then,

E(Γ′, E(Γ, θ0)|Γ′) = E(Γ, θ0)|D(Γ′) (2)

Axiom (A3): Regularity principle Let us denote by D(x, r) the disc with
center x and radius r. Let Q : R

2 → S1 such that there exists a parameterisation
φ such that

φ(Q)(y) =
1

2
Aφ(y − x, y − x) + (pφ, y − x) + cφ

with Aφ ∈ SM(2) the set of two dimensional symmetric matrices, pφ ∈ R
2, x ∈

R
2 and cφ ∈ R. Then there exists a continuous function F : SM(2)×R

2×R×R
2,

independent of φ such that

lim
r→0+

φ(E(∂D(x, r), Q|∂D(x,r)))(x) − φ(Q)(x)

r2/2
→ F (Aφ, pφ, cφ, x). (3)

Axiom (A4): Translation invariance Let τhθ0(x) = θ0(x − h), θ0 : R
2 →

S1, h ∈ R
2. Then for all h,

E(Γ − h, τhθ0) = τhE(Γ, θ0). (4)

Axiom (A5): Domain rotation invariance For any planar rotation R,

E(RΓ, θ0 ◦R−1) = E(Γ, θ0) ◦R−1. (5)
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Axiom (A6): Zoom invariance Let Hλθ0(x) = θ0(λx), for λ > 0. Then,

E(λ−1Γ, Hλθ0) = HλE(Γ, θ0). (6)

Once the parameterisation is taken care of, all the results obtained in the
scalar case are extended to orientation fields. This extension is nearly straight-
forward, complete proof can be found in [7].

Theorem 1. Assume that the interpolation operator E satisfies (A1)-(A3).
Then F (A, p, x, c) does not depend on c. Moreover, if θ0 ∈ F(Γ), then φ(E(Γ, θ0))
is a viscosity solution of

{

F (D2u,Du, x) = 0 in D(Γ)

u = φ(θ0) on Γ.
(7)

Remark 1. In the scalar case [7], grey scale shift invariance is assumed to prove
this result. Of course, it does not make sense for orientation fields since angles
do not add. However, since the result must be invariant with respect to (w.r.t.)
the parameterisation, we get an equivalent property for free.

Theorem 2. Assume that E satisfies axioms (1)-(6) and that F is differentiable
at 0. Then, for all parameterisation φ, φ(E(Γ, θ0)) is solution of

{

D2u(Du⊥, Du⊥) = 0 in D(Γ).

u = φ(θ0) on Γ.
(8)

Remark that this operator is the curvature of the level lines of u, up to a
|Du|3 factor. These level lines are independent of the parameterisation, which
makes the result possible. Indeed, the independence w.r.t. the parameterisation
implies that, for all admissible φ and ψ,

E(Γ, θ0) = φ−1 ◦Eφ(Γ, φ ◦ θ0) = ψ−1 ◦Eψ(Γ, ψ ◦ θ0).

By noting u = φ ◦ θ0 and g = ψ ◦ φ−1, this equation becomes

g ◦Eφ(Γ, u) = Eψ(Γ, g ◦ u).

This condition is closely related to invariance with respect to contrast change
for scalar data, and the arguments developed in [1] indeed apply.

As noted in disocclusion experiments [18], this operator interpolates the level
lines of the data with straight lines. A well known problem is that the solution
of this equation may not be unique, and as shown in Section 6 that if it manages
to keep the discontinuities structuring the image, it fails to give a field smooth
enough to recover subjective contours. Thus we may drop the full independence
w.r.t the parameterisation and slightly relax Axioms (1) and (3).
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Proposition 2. Assume that Axioms (1) and (3) only holds for parameteri-
sation that are Euclidean, up to a multiplicative factor. Then φ(E(Γ, θ0)) is
solution of

aD2u(Du,Du) + bD2u(Du,Du⊥) + cD2u(Du⊥, Du⊥) = 0, (9)

where ac− b2 ≥ 0.

Condition ac−b2 ≥ 0 ensures that the equation is elliptic, and that the max-
imum principle holds. As expected, a solution of (9) is invariant with respect
to an affine reparameterisation of the circle, but not to any general parameter-
isation.

Among all those operators, the case b = c = 0 is the Absolutely Minimizing
Lipschitz Extension (AMLE)

{

D2u(Du,Du) = 0 in D(Γ),

u|Γ = φ(θ0) on Γ,
(10)

for which existence and uniqueness of viscosity solution are known. It gives
continuous oscillation free solution. It is studied in more detail in Sect. 4.2.

4 Two Interpolation Operators

4.1 Angle Interpolation with the Curvature Operator

As a result of the previous section, the only operator satisfying the given axioms
is the curvature operator. It is well known in the computer vision community
as a scalar restoration operator via total variation minimisation and has been
used for scalar interpolation to solve the disocclusion problem [9, 18, 27].

The argumentation above gives the equation which is locally satisfied by the
orientation of the vector field. An alternate formulation [30] is to consider the
variational problem

min
W 1,p(Ω)

∫

‖DI‖p,

under the constraint |I | = 1. In this case I = (I1, I2) and |I | is the Euclidean
norm |I | =

√

I2
1 + I2

2 and ‖DI‖ =
√

|DI1|2 + |DI2|2. Inspired by the scalar
case, we can compute the Euler-Lagrange equations for the energy above by
setting I = u

|u| so that the constraint is automatically satisfied. Careful calcu-

lations lead to a system of the two coupled PDEs

div
(

‖DI‖p−2DIi
)

+ Ii‖DI‖p = 0, 1 ≤ i ≤ 2. (11)

It is worth noticing that ‖DI‖p may be interpreted as the Lagrange multiplier
of the constraint |I | = 1. The case p = 1, corresponding to the total variation,
leads to

div

(

DIi
‖DI‖

)

+ Ii‖DI‖ = 0, 1 ≤ i ≤ 2. (12)
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As a sanity check, elementary calculations lead to the following result, which
holds thanks to the particular choice of norm ‖DI‖.
Proposition 3. Let I = (I1, I2) ∈ C2(Ω,R2) with |I | = 1 everywhere. Let θ
such that I = (cos(θ), sin(θ)). Then

div

(

DIi
‖DI‖

)

+ Ii‖DI‖ = 0, 1 ≤ i ≤ 2. ⇐⇒ 1

|Dθ|D
2θ

(

Dθ⊥

|Dθ| ,
Dθ⊥

|Dθ|

)

= 0.

(13)

Thus minimizing the L1 norm of the gradient of a vector field of R
2 con-

strained on the unit circle is equivalent to solving the unconstrained intrinsic
equation on angle.

4.2 AMLE on angle

In this section, more insight on the AMLE extension is provided. A more
detailed presentation can be found in [3, 7, 15] We know that a non surjective
data can be smoothly interpolated inside a single parameterisation, and that
AMLE is independent of affine change of parameterisation.

AMLE was introduced in [2]. It was proved (see [3, 15] and references
therein) that it can be equivalently defined, in the scalar case, as

• the extension in Ω of a data defined on ∂Ω whose Lipschitz constant is
minimal in any Ω′ ⊂ Ω.

• the viscosity solution of the PDE D2u(Du,Du) = 0.

• the limit for p → ∞ of p-harmonic maps, defined as the minimization of
the p-harmonic energy

min
W 1,p(Ω)

∫

|Du|p.

Those results heavily rely on a maximum principle (eventually proved by Jensen
[15]), which guarantees that the solution has no oscillation inside the domain.
More importantly, it yields the existence and uniqueness of the solution.

Again, the intrinsic formulation on angle used until now and the R
2 restricted

to S1 onecan bi linked. Let us consider (11) again and let p go to +∞. We
formally obtain the two coupled equations

2
∑

i=1

D2Ii(DIi, DIj) = 0 j = 1, 2. (14)

The definition of a solution of this system is, to the best of our knowledge, an
open problem. However, we point out the two following interesting facts.

Proposition 4. Let I = (I1, I2) ∈ C2(Ω,R2) with |I | = 1 everywhere. Let θ
such that I = (cos(θ), sin(θ)). Then

2
∑

i=1

D2Ii(DIi, DIj) = 0 j = 1, 2 ⇐⇒ D2θ(Dθ,Dθ) = 0. (15)
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This means that I is a vector AMLE on the circle if its argument is a scalar
AMLE. As the solution of the scalar equation is unique, we can say that if a C2

solution of the vector equation exist, it is unique.
The second point is that the term corresponding to the constraint |I | = 1 has

vanished from (11) to (14). Now, a method to solve the stationary problem (14)
is to solve the corresponding evolution system

∂Ij
∂t

=

2
∑

i=1

D2Ii(DIi, DIj) j = 1, 2. (16)

In the scalar case, it is known that it converges as t→ ∞ to the unique solution
of the stationary problem. Thanks to Proposition 4, this result is still valid for
C2 solution of the vector problem (14).

If I is a solution of (16) such that |I | = 1 everywhere at time t = 0, does it
remain true for t > 0? At this step, we cannot tell, but we have the following
hint.

Lemma 1. Let I be a a C2 vector field with |I | = 1 everywhere. Then the

vector with coordinates
∑2

i=1D
2Ii(DIi, DIj) is everywhere normal to I.

Proof. Let Fj =
∑2
i=1 D

2Ii(DIi, DIj), j = 1, 2.
We can write Fj = DIj .D(|DI |2), j = 1, 2. Thus,

I.F = (I1DI1 + I2DI2).D(|DI |2) = ItDI.D(|DI |2),

with DI the 2x2 matrix defined by the column (DI1, DI2). On the other hand,
by derivation of the constraint |I |2 = 1, we have D(|I2|) = 0, and we can write:

D(|I |2) = D(I.I) = D(ItI) = 2ItDI

Thus ItDI = 0, and I.F = 0.

5 Numerical resolution

The numerical implementation of the two singled out operator is carried out
using their time dependent gradient flow equation:

du

dt
= F (Du,D2u), (17)

letting t → ∞. In the standard scalar cases, it is known that it converges as
t → ∞ to the solution of the stationary equation. There is no such result in
our case, but the experiments show that it is a reasonable assumption. We
solved numerically the intrinsic scalar equations, the implementation were done
using the Megawave2 software [13]. The equivalences with vector formulation we
stated earlier are indeed experimentally verified by numerical result not shown
here.
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A numerical analysis of scalar AMLE showing a convergent difference scheme
is available in [22]. It is based on the maximum principle, hence it works well
if the data verifies the condition (C) but fails completely in the general case.
Indeed S1 lacks a global order relation and a scheme based on a global max-
imality principle is bound to fail. In [7], a had-hoc non-linear over relaxation
scheme (NLOR) to solve scalar AMLE is used. A similar scheme is exploited
here.

In addition, due to the intrinsic periodicity of angular data, specific issues
have to be dealt with: some numerical attention have to be taken, and as
underlined in Section 2, a multiresolution scheme is needed to solve the problem
of initialisation.

5.1 Finite Differences Schemes

5.1.1 Numerical Scheme

The non-linear over relaxation scheme (NLOR) we present here is essentially
similar to [7]. Equation system 17 is discretized by an Euler implicit scheme

un+1
i,j = uni,j + ∆t(F (D2un+1

i,j , Dun+1
i,j )), (18)

Let xi, i = 1, k be the k = 2N2 unknown (un+1
i,j , vn+1

i,j )i,j∈[1...N ] of that system
of k equations. It can be written as

fp(x1, x2, ...xk) = 0 p = 1, ..., k. (19)

The idea of NLOR is to introduce a parameter ω and to iteratively compute, at
each time step

xn+1
i = xni − ω

fi(x
n+1
1 , xn+1

2 , ..., xn+1
i−1 , x

n
1 , x

n
2 , ...x

n
k )

fii(x
n+1
1 , xn+1

2 , ..., xn+1
i−1 , x

n
1 , x

n
2 , ...x

n
k )

= 0 i = 1, ..., k, (20)

with fii = ∂fi

xi
.

As stressed in Section 4.2, this equation preserves the norm. However, due
to the addition of numerical approximation at each time step, that condition
is not actually fulfilled. Consequently, as in [30] a projection on S1 step have
been added at each iteration : the correction is always very small and it ensure
convergence.

5.1.2 Numerical problem constrained in S1

As noted in [26], working with angle modulo 2π demands special numerical
attention to circumvent the problem caused by the discontinuities at 2kπ, k ∈ N.
In [26] it has been proposed to approximate θ by sin(θ), thanks to the Taylor
formula sin(θ) = θ + O(θ3); however, this method looses accuracy when |Dθ|
is high. These problems have also been investigated in [8], in which the two
following workarounds are proposed.
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The first is the adaptive Riemann surface method, in which one chooses at
each stencil point the value of k minimizing |(θi−1,j + 2kπ) − θi,j | (for example
for a two points first order finite difference in R

2) . The second method is a
multiple parameterisation method, in which at each point the data is rotated
such that there is no discontinuity in the region where the finite difference is
being computed. In the following a variant of the adaptive Riemann surface
method is used, replacing θ − θ̃ in R by θ − (θ̃ + kπ), k = argmin(θ̃ − kπ) in
R/2πZ.

5.2 A Multiresolution Initialisation Method

As stated in Section 2.2, due to a fundamental ambiguity in angle interpolation
and the iterative nature of the numerical scheme, initialisation plays an impor-
tant part. Its importance is even greater in the curvature case, as no unicity re-
sult is available even in the scalar case. The chosen solution is a multi-resolution
scheme, with a bottom-up data construction part, and a top-down computation
part as illustrated Fig. 2.

The aim of the bottom-up step is to compute an initialisation value for each
point to be interpolated: from a given resolution to the next, the number of lines
and columns of the initial data image are divided by two, and each pixel of the
coarser superior resolution is filled with the average of the four corresponding
pixels of the inferior resolution. Thus even if three of those four points are
unknown, the corresponding pixel of the next resolution will be set, so that at
the last resolution all the pixels are known.

From there begins the top-down calculus part, which computes the AMLE at
each resolution beginning from the top. The coarser resolution is by construction
fully known, and from there on the computations at a given resolution are
initialised with the projection from the resolution above it. So in the end a
given unknown point is initialised the first time it appear in the pyramid by the
average of the nearest known points.

6 Numerical Experiments

6.1 Experiments on the curvature operator

Geometrically, the curvature extension operator tries to extend the level lines of
the boundary data by straight lines. Obviously, there are cases for which that
approach does not apply [18]. In particular it fails to compute any solution for
the simple artificial cases presented in the next section (see figure 4).

However, experiments carried out for larger images with a larger set of
boundary points yields interesting results. Figure 3 displays an example with
the Lena image. The field is visualised via its field line, using Line Integral Con-
volution (LIC) [5]. The initial field is given by the orientation of the tangents
to the level lines (the orthogonal to the gradient) decimated with a thresholded
Canny-Deriche edge filter [11] (Megawave2 implementation [13]). As expected,
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NLOR scheme

AMLE or curvature computation

Initialisation
by projection

Down to the next resolution

Bottom−up data construction Top−down computation

by averaging initialised by projection

Figure 2: Multiscale scheme: a given point to be interpolated is initialised with the average of it’s nearest neighbour.
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the curvature operator keeps discontinuities, as at the top of Lena’s hat. In-
terestingly, it also manages to keep singularities adequately. In particular, T-
junctions are preserved, which is particularly relevant from a perceptual point
of view. Not only singularities that are present on the boundary data are pre-
served, but they can also be created in the interpolated area in a suitable way
(see for instance at the interface of the cheek and the hair).

To sum up, the curvature operator is (as in the scalar case) able to preserve
singularities when necessary. It may be considered as a drawback when the
smoothest solution is sought. Moreover, there is no existence and uniqueness
result in the general case.

6.2 Experiments on the AMLE Operator

Figure 4 shows numerical results on artificial data. The first one simply consists
of two vectors. The interpolated vector field is as expected tangent to the curve
with which we would like to connect the two vectors, something close to Euler
elastica [21]. The next two figures show the same mechanism with more complex
curves: a circle and a tube. The interpolated field is perceptually sound.

As asserted by Prop. 1, we do find singularities in the center of the circle
and the extension is there somewhat chaotic, as we are looking for a Lipschitz
function where it cannot even be continuous. The situation below the tube
(Fig. 4, last experiment) is interesting as it is an example of the ambiguity of
Sect. 2.2: a smooth extension does exist, but due to the lack of information
the algorithm extends the orientation field the other way round and puts a
singularity.

An experiment on Lena is reported Fig. 5. The initial field is again the
orientation of the tangents to the level lines (the orthogonal to the gradient)
decimated with a thresholded Canny-Deriche edge filter [11]. The interpolation
field is again tangent to the edges as requested. On the other hand, there is no
control on the position of the unavoidable singularities. Moreover, singularities
are smoothed out, which can be expected, regarding the properties of the AMLE
in the scalar case.

Nonetheless, the AMLE is a good candidate for an interpolation operator as
we have a complete theory in the scalar case stating existence and uniqueness of
solution. Moreover, it gives smooth solution from which extracting subjective
contour as curves is possible. Compared to the curvature however, it tend to
lack the ability to keep discontinuities in the fields it produce.

7 Applications

This section present two applications of the AMLE interpolation operator. Its
faculty of continuously extending extracted geometrical information in images
is used to find edge curves and smooth highly structured images.
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Figure 3: Interpolation with the curvature operator on Lena. The initialization
is orthogonal to the gradient orientation field decimated using a Canny-Deriche
filter. A general observation is that T-junctions are preserved.
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Figure 4: Three artificial geometric tests, initial orientation field on the left,
AMLE extension visualised with LIC on the right. The computed field reccover
the curves from which the inital data where extracted. Outside of them its
behaviour is less predictable.
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Figure 5: Test with the Lena image, initialised with the orthogonal to the
gradient orientation field decimated using a Canny-Deriche filter. Notice that
the recovered field is tangent to the edges, in particular at the top of the hat,
on the strands of hair around the face and on Lena’s jaw and chin.
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Figure 6: A detail of a Henri Cartier-Bresson photo (in Srinagar, Kashmir,
1948). Left: original and extracted point to be interpolated. Right: up AMLE
extension and down curvature extension.
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7.1 Extracting Curves from Orientation Field as Geodesics

We now are provided with a smooth orientation field θ, extending some extracted
data. Let us assume that those initial orientations can be considered as edgels,
i.e. they are tangent to an edge. The continuous field computed by AMLE is
then assumed to be tangent to the full edge the initial edgels are part of. Thus,
given two points linked by a geometrical structure in the original image, that
structure can be looked for as the line as tangent as possible to θ that joins
them.

Using minimal path formulation [10], given two point M0 and M1 and vector
field u the extraction of the looked after curve ΓM0,M1

is stated as minimiz-

ing a given metric F (u,Γ). Let us set EF (u,Γ)(M0,M1) =
∫M1

M0
F (u,Γ). The

curve ΓM0,M1
is defined by ΓM0,M1

= argminΓ̃∈C(M0,M1)EF (u,Γ̃)(M0,M1), with

C(M0,M1) the set of continuous curves from M0 to M1. To solve for it, we
compute

EM0
(x) = min

Γ̃∈C(M0,x)
EF (u,Γ̃)(M0, x)

for all x ∈ Ω. EM0
(x) is a convex function whose only minimum is in M0, thus

it leads to ΓM0,M1
by a simple gradient descent on EM0

from M1 to M0. To
actually compute EM0

, the Fast Marching algorithm [28] is used. It is based on
a front propagation of equation

∂C

∂t
(λ, t) =

1

F (u,ΓM0,C(λ,t))
n(C(λ, t)), (21)

with C the front, initially an infinitesimal circle around M0, λ an euclidean
parameterisation of C and n the outward normal to the front. EM0

(x) is then
defined as the arrival time of the front at each point. Thus at any given time,
minimal paths have been computed from M0 to all the points already visited
by the front at that time, they can then be used to further propagate it.

The proposed function F is

F (u,Γ)(y) =

(

∂Γ(λ)

∂λ
(y), u⊥(y)

)2

,

with λ an Euclidean parameterisation of Γ, u⊥ the orthogonal of u and (., .)
the usual scalar product of R

2. It is by definition null if u is tangent to Γ and
maximum if it is orthogonal. This function F can be considered as the only
parameter for the edge extraction.

In Figures 7(a) and 7(b), the results for real images are displayed. On the
Lena image (Fig. 7(a)), using the field computed as per section 4.2, we have
recovered the top of the hat and the left jaw, which both were not contrasted
enough to be extracted by our point-wise thresholded edge extraction filter.
This is a typical case of modal completion, also called illusory contour, where
the background and the edge have in part the same color. Figure 7(b) shows two
examples of images with low contrast: in both cases the presence of a structure
is clearly recognized while continuous contours or edges are either very faint or
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not actually present. Thus the use of orientation informations allow us to tackle
problem on which method purely based on image intensity would encounter
difficulties.

7.2 Smoothing Along Orientation

In [31] is described an anisotropic smoothing algorithm based on the Line In-
tegral Convolution (LIC) of Cabral and Leedom [5]. Given an image I0 and a
vector field u, if Γx is the integral line of u going through x with λ an euclidean
parameterisation of Γx, the unidimensional heat equation constrained on the
integral curves of u,

∀x ∈ Ω
∂I(Γx(λ))

∂t
(x) =

∂2I(Γx(λ))

∂λ2
(x), (22)

is equivalent to a trace based differential operator on the full image. As it is
well known that heat equation is equivalent to a Gaussian convolution, (22) is
in turn equivalent to

∀x ∈ Ω I(t)(x) =

∫ +∞

−∞
I0(Γx(λ))Gt(λ)dλ, (23)

with Gt the Gauss function of standard deviation
√
t: Gt(x) = 1√

4πt
exp(−x2

4t ).

This is the continuous formulation of the LIC visualization algorithm [5], which
is used to visualize the vector fields in this paper.

In [31], the local geometrical information of the image was captured into a
diffusion tensor based on the structure tensor [32] which was decomposed into
vectors to apply the described LIC-based regularisation. While in the general
case a vector field would be an appropriate description of an image only on
edges (see section 7.1), in some particular cases it might describe the whole
image. Images displayed in Fig. 7(c) are accurately described by a set of linear
or curvilinear parallel lines. In those cases, an orientation field computed by the
AMLE operator over suitably extracted point might be an accurate description
of the image. Such a field is computed and used to implement the LIC-based
regularization defined by Eq. 23.

The image in the left part of Figure 7(c) is a patch of sand. This is a natural
image with no artificial noise, and the geometry of the image underlying its
grainy natural aspect is recovered. On the right is a wood texture image with
Gaussian noise of standard deviation 20 added. It exhibits vertical cracks, which
are captured in the computed orientation field. As illustrated, the orientation
based filtering leads to an efficient restoration. Thus, when strong geometrical
structures are available, the use of such orientation fields is an elegant and
intuitive alternative to the diffusion tensor [31].
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(a) Edge extraction on the lena image (detail). For both curves: the computed AMLE along with
the initialisation points visualised with LIC, and the same extracted point with the extracted
curve on top.

(b) Two example of curve extraction in poorly contrasted image part, left Da Vinci’s Mona Lisa
scarf, right a detail of the baboon image.

(c) Left: sand patch, left original image (no noise added), right LIC-smoothed version using the
orientation field computed as per Sec. 4.2 (not shown), right: wood texture image, left original
(with Gaussian noise σ = 20) and right LIC-smoothed.
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8 Conclusion

An axiomatic approach of orientation field interpolation has been presented to
define extension operators. There is a unique operator satisfying a small set of
axioms including geometrical invariance and stability: the curvature operator.
This operator is able to preserve singularities. On the other hand, one may
require a smoother solution. Moreover, existence and uniqueness of a solution
are not well established. If the independence of the interpolation with respect
to reparameterisation of the unit circle is relaxed, another operator becomes
interesting: the AMLE. Existence and uniqueness holds in the scalar case. The
AMLE is, to some extent, dual to the curvature operator (it minimizes the L∞

norm of the gradient, while the curvature minimizes the norm L1), and somehow
smoothes out the singularities.

Those operators are the more natural popping out from the required axioms.
However, if some of them are relaxed or more prior knowledge from the image
is introduced, some variations of these operators may lead to new types of
interpolation model.

Two applications of the AMLE operator were shown, which take advantage
of its faithful and continuous interpolation of edgels to extract curves in poorly
contrasted image part and drive a purely geometric smoothing method. The
curvature operator, while being more pleasant to the human eyes because of
its ability to keep structuring discontinuity has proved harder to use in such
relatively simple method. This is due to the lack of uniqueness, which allow
for very different solution according to the initialisation. The presented multi-
resolution initialisation process is a fist step towards a solution to that problem.

Beyond more advanced edge extraction algorithm, practical use of the pre-
sented algorithm include processing and analysis of strongly organised images.
These include biological images like fish otoliths (small stones used for spatial-
isation), shells of seashells, or corals, that show peculiar seasonal concentric
structures. They are of importance because of their use in ecological studies
[24], e.g. age-based fish stock assesment or paleoclimatology.
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