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Modelling Fish Habitat Suitability in the Eastern English Channel.  
Application to community habitat level. 
 
S. Vaz, A. Carpentier, C. Loots and P. Koubbi. 
 
Valuable marine habitats and living resources can be found in the Eastern English Channel 
and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine 
Resource Management’ (CHARM), was initiated to support decision-making for management 
of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of 
environmental factors define the presence of a particular species. Habitat Suitability index 
(HSI) modelling was used to relate fish geographic distribution and their relation towards 
environmental factors and to delineate their optimum habitat. This study was based on data 
obtained from 1988-2003 IFREMER’s Channel Ground Fish Surveys, including both species 
abundance and environmental data. Suitability index (SI) functions based on generalised 
additive models were used to relate depth, temperature, salinity and sediment to sub-
community assemblage probability of occurrence. As a result, SI values were positively 
related to assemblage affinity along the gradient of the environmental variables. The resulting 
HSI models were used to map, using GIS, the optimum habitats of communities ;  sensible 
habitats such as spawning grounds, nurseries or areas carrying bio-diverse fish community 
were also defined. The information obtained will help to elaborate guidelines for the 
conservation and protection of natural habitats in the face of climate change and 
anthropogenic disturbances.  
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Introduction 
 
In the Eastern English Channel, an important area for small fisheries with strong 
hydrodynamic features, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas 
for Marine Resource Management’ (CHARM), was initiated to support decision-making for 
management of essential fish habitats. The principal aim of the project is to better understand 
the marine environment of the Dover Strait region in terms of its biological resources by 
simulating scenarios for impacts to marine habitats and changes in levels of exploitation that 
can influence marine living resources (Carpentier et al., 2004) 
 
The Eastern English Channel is a shallow sea (40-100m depth) separated from the Western 
English Channel by a vast area of pebbly seabed. The temperature is homogeneous across the 
water column as a result of strong seabed currents inducing a permanent bracing. Abundant 
and numerous fish species may be found and this richness is linked to the abundance of 
benthic animals that constitute a food source (Nival, 1991). The benthic communities 
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distribution is linked to the tidal currents intensity occurring in the Eastern English Channel 
(Pingree & Maddock, 1977), which is also characterized by an unbalanced salinity pattern 
between France and England. Lower salinity concentrations result from the Seine and Somme 
river waters pouring along the coast, from the Seine estuary to the Dover strait. As a result the 
species and community assemblages present in this part of the Channel were suspected to be 
strongly affected by such heterogeneous environment. 
 
IFREMER (French Research Institute for Exploitation of the Sea) has been carrying out since 
1988 an essential ground fish survey enabling ICES to produce annual evaluations of major 
commercial fish stocks. Based on collected biological data on all demersal, benthic and 
pelagic species captured, it was possible to identify and describe the existing communities in 
the Eastern Channel and relate them with physical and hydrological features. Four sub-
communities were defined by the TWINSPAN classification (Fig.1) and seemed to reflect an 
inshore to offshore gradient in its assemblages (Fig.2) (Vaz et al., 2004). The community in 
the Eastern English Channel was found to be strongly structured spatially and clearly resulted 
from important community response to the environment. 
 
It may therefore be possible to model and predict sub-community distribution from 
environmental parameters. Habitat Suitability Index approach, linking statistical modelling to 
GIS mapping, could be used to model the fish community and to verify whether the 
environmental descriptors available here can provide on their own (without any information 
of the trophic relationships or biotic interaction) an acceptable prediction of the community 
type. 
 
With the development of new statistical techniques and GIS tools, predictive habitat 
distribution models are increasingly used to relate the geographical distribution of species or 
communities to their environment (Guisan and Zimmermann, 2000, Eastwood et. al, 2003). 
Fish habitat corresponds to geographic areas within which ranges of environmental factors 
define the presence of a particular species. Habitat modelling may also be used to relate 
community assemblage geographic distribution and their relation to environmental factors and 
to delineate their optimum habitat (Franklin, 1995). However, this relationship is likely to be 
complex and may not be linear. Generalised additive models (GAM) represent a method of 
fitting a smooth relationship between two or more variables through data points. They are 
useful where the relationship between variables is expected to be of a complex form, not 
easily fitted by standard linear or non-linear models. They do not involve strong assumptions 
about the relationship that is implicit in standard parametric regression. Such assumptions 
may force the fitted relationship away from its natural shape and as a result GAM are 
increasingly used in ecology.  
 
 
Methods 
 
Survey design and data available 
Since 1988, the CGFS survey has been taking place every year in October in the Eastern 
English Channel and the southern North Sea. During each fishing operation, bottom depth at 
each station and hydrological parameters (bottom temperature and salinity) were recorded. 
The abundance indices of the encountered species were standardised into density per km² at 
each station. Ninety observed species and 1326 stations were used in this study. The sediment 
type was obtained from the Larsonneur et al. (1979) map by re-sampling it at trawl haul 
locations using the GIS Arcmap software. The original sediment types have been simplified 
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into 5 classes and include by decreasing order of size, pebbles, gravels, biolithoclastic sand, 
lithoclastic sand and muds. Survey design and environmental parameters have been described 
in a precedent paper (Vaz et al. 2004) and will not be further detailed here. 
 
Spatial analyses and GIS 
Interpolation is required for estimating the values of a property of interest at non sampled 
locations from sparse and irregularly spaced samples. Kriging is a geostatistical estimation 
different from other interpolators because it uses a model of the spatial variation – the 
variogram which is the central tool of geostatistics (Webster and Oliver, 2001). Geostatistical 
analyses were used extensively to produce environmental maps in particular temperature and 
salinity maps obtained during the surveys. These were averaged over all the available years. It 
was also applied to community type data to illustrate the assemblages geographic distribution 
and extent. These analyses will not be detailed in this paper but the resulting results and maps 
were used to predict the Community Habitat maps and to compare predicted community to 
observed community types.  
Grids obtained through kriging were imported into ArcGIS (ESRI, ArcGIS version 8.2), 
plotted and projected to a common reference system ( Transverse Mercator projection ). Care 
was taken to limit the spatial extent of the interpolated maps so as to avoid keeping data 
resulting from extrapolation (i.e. in areas where no sampling had taken place). The created 
shapes were joined to resample predicted maps at station position and enable the comparison 
of predicted and observed value. The original sediment layer was used for model predictions. 
Mean sea level at mid-tide (coefficient of 70) was obtained from a hydrodynamic model of 
IFREMER labs in the form of a 4 square km grid, which was then combined to a classical 
bathymetric map (Martin et al. 2004). The resulting depth layer was thought more 
ecologically relevant and comparable to observed depth and were used for community 
predictions 
 
TWINSPAN Classification 
Classification techniques can describe and recognise patterns in species distribution and 
define communities. The method TWINSPAN (Two-Way INdicator SPecies ANalysis) (Hill 
et al., 1975) combines ordination and clustering and it is widely used in vegetation science to 
classify species-by-sample data. This analysis results in both a classification and an ordination 
of the data, from which a dendrogram can be constructed (Legendre and Legendre, 1998). The 
TWNSPAN procedure was used to define different sub-communities based on the species 
data collected during the CGFS surveys from 1988 to 2003 (Vaz et al., 2004). 
 
Habitat Modelling 
The depth, bottom salinity and bottom temperature observed at each station were used for 
model calibration and all available data were used. This implied that the same data set was 
used to calibrate and evaluate the model which was not to be validated outside of its 
calibration range. However, the depth layer resulting from the superposition of bathymetry 
and mean sea level was used as the reference grid for model prediction. At each grid nods, 
sediment type map and kriged bottom salinity and temperature maps were resampled to 
produce a regular predictor data set used for model prediction.  
 
GAM 
Locally weighted approaches, such as generalised additive modelling (GAM) have already 
been used to predict species abundance based on maps of environmental predictors of suitable 
habitats (Guisan and Zimmermann, 2000). GAM models are a flexible class of models that 
are commonly used to implement non-parametric smoothers in regression models. The 
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smoothers are applied independently to each predictor and additively calculate the component 
response. GAMs have the following general form : 
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Where xi is the ith predictor, y is the response of interest (here community type), which has 
some specified statistical distribution whose expectation, E(y) is a function, f( ), of the 
explanatory variables. The function f is the inverse of the link function (same as those 
available in generalised linear models). β0 is a parameter to be estimated, and the functions   
si( ) are smoothing functions for the explanatory variables.  
 
Community data are composed of binary data for each sub-community type. The logistic 
regression for the Bernouilli component of the model was chosen and the logit link function 
was used: 
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The resulting estimation is a probability of occurrence (likelihood) ranging from 0 to 1. Only 
smoothing splines for si were used although other functions were available. The flexibility of 
the smoothing splines is summarised in their associated degree of freedom. A degree of 
freedom approximatively equal to 4 was used and compared to linear or quadratic predictors 
(df = 1 or 2). Spline functions could only be applied to temperature, salinity and depth 
predictors as the sediment predictors were categorical variables. Only the linear interaction 
between temperature and salinity was considered to reduce model selection to manageable 
proportion. The model selection was performed by comparing the full model (equation 3) to 
every possible reduced model 
 
E(x) =  s(temperature) + s(salinity) + s(depth) + gravels + pebbles + biolithoclastic 

sands + lithoclastic sands + muds + (temperature:salinity)  (3) 

Each predictor were removed in turn and the resulting model was compared to the full model 
following a process of backward elimination. The interaction term was first excluded, then 
each sediment types in turn, then the smooth function for each continuous variables, then the 
continuous variables themselves. Model comparison and testing against the full model was 
used at each step and made possible by ANOVA (indicated by the t statistics). This enable the 
choice which of several statistical models most appropriately reflects the relationship between 
the response and the predictor variables. Such test is appropriate for determining whether to 
select a more complex model with many predictors or a simpler model with a subset of the 
predictors. The models in this paper have been implemented within the S-PLUS software 
using the existing GAM technology and algorithms. 

Model validation 
 
Spearman's Rank Correlation Coefficient 
Spearman's Rank Correlation Coefficient is a measure of association between the rankings of 
two variables measured on n individuals (i.e. two vectors of length n). The correlation 
coefficient is calculated from the two vectors of ranks for the samples: let {xi ; i=1...n} and 
{yi ; i=1...n} be the vectors of ranks for sample 1 and sample 2 respectively, then the 
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coefficient r is based on the vector of differences between ranks: {di = xi - yi ; i=1...n} and is 
calculated by : 
 









−−= ∑
= ni

i
nn
dr

...1
2

2

)1(61  

 
If ties are present, then the statistic will be biased, and must be recalculated taking account of 
ties by : 
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and tj is the number of observations in the group with rank j. 
The t-approximation for this statistic, T, is valid for samples of size 8 upwards, and is 
calculated by : 
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It has approximately a t-distribution on n-2 degrees of freedom, and can be used for a test of 
the null hypothesis of independence between samples. This test was used to compare and 
validate estimated community type from GAM and observed values. 
 
Results 
 
Model selection  
 
Each community type was modelled in the way described earlier and the resulting models 
were summarised in Table 1. Each reduced models were tested against the full model (eq. 4) 
and were found to be statistically similar to the full model thus validating the exclusion of 
some irrelevant predictors (Table 2). The number and complexity of predictors increased from 
group 1 to 4 revealing the increasing complexity of the community relationship to the 
environment.  
 
Although temperature and depth descriptors were significant for all community types, salinity 
was found to be of lesser importance for the first two groups. It was used as linear predictor in 
group one and was excluded from the group 2 model. Similarly, the first two groups were 
significantly related to coarse sediment types (gravel, pebbles and bio-lithoclastic sands) 
while muds was relevant only to the group 3 and 4 predictive models. Lithoclastic sands were 
never found useful to model building. Finally, for the group 4 the interaction between salinity 
and temperature was found to act significantly on the sub-community repartition. 
 
Four probability maps were created from the predicted values from each model (Fig.4). These 
likelihood maps reflected the differences of spatial distribution between each classes. The 
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occurrence probability of the group 1 (Fig. 4a) was higher offshore and in the Dover Strait 
area. The predicted group 2 was likely to occur closer to the coast in area where the group 1 
has less than 50% chance of occurring (Fig. 4b). The group 3 was likely to occur in coastal 
areas (Fig. 4c). Finally the group 4 occurrence probability was higher on very coastal areas, in 
particular the Seine bay and the English coast of the Dover Strait. This result was particularly 
interesting since group 3 and 4 were found to be the most diverse assemblage types and may 
reflect the occurrence of many species juveniles (Vaz et al., 2004). 
 
These probability maps were produced on the same prediction grid and were merged by 
selecting for each grid cell the most probable predicted group (the selected group probability 
of occurrence was never less than 0.3). The resulting predicted community distribution (Fig. 
5) illustrated the most likely community habitats distribution for all 4 types. The distribution 
patterns displayed on this map closely resembled those of the original community 
classification (Fig. 3a) and seemed more realistic than the produced interpolated map (Fig. 3b) 
 
Model Validation 
 
For each sub-community type a Spearman correlation coefficient was computed between the 
predicted most probable group and the observed group membership. This was done by joining 
observation locations to the closest predicted values in ArcGis. The predicted data grid had a 
much lower resolution than the discrete and irregular stations position and joined values 
distant from over 0.05° were removed. Spearman’s Rank correlation coefficient between 
observed and predicted group membership was computed for each group and was found to be 
significant (Table 3). Within each group, observed and predicted values are significantly 
correlated. 
 
The study of the occurrence frequency of misclassified community types revealed that the 
right community type was the most likely to be predicted and that misclassification is more 
likely to occur in immediate neighbouring groups than other groups (Table 4). For example 
group 1 is more likely to be misclassified in group 2 than in group 3 and is never misclassified 
in group 4. This result illustrated the ecological continuum already observed between the four 
community types (Vaz et al., 2004). 
  
Discussion 
 
For each community type a different model, including a different set of predictors, was 
selected. Each assemblage reflected a different set of environmental condition which 
determined its habitat distribution. Depth and temperature were found of paramount 
importance to predict any community type and spline smoothers were often required to take 
into account the complex relationship among them. Group 1 and 2 were found in the deepest 
and warmest areas (corresponding to offshore oceanic waters) while group 3 and 4 were 
restricted to shallower coastal areas, for which the temperature is cooler at that time of the 
year (October). Salinity was found to be more relevant to coastal sub-communities (group 3 
and 4) and to exhibit in these instances complex relationships to the community requiring 
spline smoothers. The occurrence of the first two groups were linked to the distribution of 
coarse sediment types (gravels, pebbles and biolithoclastic sand), which increased their 
likelihood. This was particularly true for group one, for which high likelihood was predicted 
in the Dover Strait: this was certainly linked to its high affinity to the coarse sediments 
present there. On the contrary, groups 3 and 4 responded positively to the occurrence of 
muddy sediments and negatively to coarser sediments. Lithoclastic sand were representing a 

 6



broad range of sands including coarser and finer types (Larsonneur et al., 1979) and were not 
found to be indicative of the community type.  
 
These predicted patterns were very similar to those observed from the survey data (Vaz et al., 
2004) and the model predictions were remarkably consistent with the original data although 
they were obtained using a different set of environmental predictors (depth, temperature and 
salinity). The distribution patterns of the community types predicted by the combination of 
the four models is remarkably close to the observed community geographic distribution and 
gave more realistic patterns than those from interpolated maps. Not only did this approach 
constituted a good way of predicting community distribution but it also had a clear explicative 
power as too what parameter is responsible for the delineation of the different sub-community 
habitats. The predicted coastal distribution of group 3 and 4, linked not only to depth but also 
to complex temperature and salinity interaction and soft sediment occurrence may constitute a 
useful information to delineate the probable suitable habitat for many species nursery 
grounds. These groups were also found to be the most diverse and even ones  (Vaz et al. 
2004) and the knowledge of their potential area of distribution is of premium importance to 
aid decision-making and planning in the marine environment of the Dover Strait and adjacent 
waters. 
 
The strong effect of the environment of the community structure implied that there was little 
biotic interaction occurring at this level of community division. This certainly resulted from 
the strong environmental heterogeneity of the area as well as important sources of habitat 
disturbances (currents, tides, fishery pressure). The species constituting the sub-communities 
described here seemed to coexist on the same habitat but not to interact strongly as they 
appeared to respond almost exclusively to their environment. This certainly resulted from the 
fact that these sub-communities included species that seldom met in their natural environment 
(eg. Crustacean and small pelagic species) and were far apart on trophic network. This 
community definition, however, may reveal itself a useful indicator of climatic change 
(implying a change on its structuring environmental factors) and would probably not reflect so 
clearly other anthropic impacts in the area.  
 
Conclusion 
 
This study confirmed that the fish communities distribution found in the Eastern English 
Channel resulted from the heterogeneous environmental patterns in the area. The habitat 
distribution of the observed community may therefore be deduced from specific 
environmental predictors depending on the community type investigated.  
 
This modelling methodology enable both the identification the environmental condition 
suitable for each community type but also the prediction of their likely geographic limits in 
unexplored areas. The result of this study may therefore be useful for the purpose of 
management decision-making when knowledge of the community type is required in a 
particular area of interest.  
 
Such community habitat modelling approach could enable the simulation of environmental 
change scenarios and the study of their likely effect on the distribution of species assemblages 
in the Eastern English Channel. 
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Tables 
 
Table 1 : Summary of selected model predictors for each sub-community types 
 
Predictors Full Response 
 model Group 1 Group 2 Group 3 Group 4
Btemp S S + S S 
Bsal S + - S S 
Depth S S S S S 
P + + + + - 
G + + + + + 
BS + - + + + 
LS + - - - - 
M + - - + + 
Btemp:Bsal + - - - + 
S: spline smoother, +: linear, -: not included. Btemp : Bottom temperature, Bsal : bottom 
salinity, Depth : measured bottom depth, P : pebbles, G : gravels, BS : bio-lithoclastic sand, 
LS : lithoclastic sand, M : muds, Btemp:Bsal : interaction term between temperature and 
salinity. 
 
 
Table 2 : Summary ANOVA table comparing and testing the selected reduced model 
against the full model 
 
 Full Model Reduced Model Comparison Test 
 Resid. Df Resid. Dev Resid. Df Resid. Dev F Value Pr(F) 
Group 1 630.1002    427.4204       637.0160 436.7603 1.537535 0.1525356 
Group 2 630.5014 504.8808 640.1597 516.0072 0.9159484 0.515439 
Group 3 630.1339 533.5285 632.1417 534.6039 0.6432443 0.5265149 
Group 4 630.1247 358.4993 632.2952 361.3442 1.584135 0.2038579 
 
 
Table 3 Spearman’s Rank Correlation Coefficient testing the independence between 
observed and predicted community classes 
 
 Group 1 Group 2 Group 3 Group 4 
Sample size 1268 1268 1268 1268 
Correlation 0.7659 0.6906 0.6990 0.8440 
Adjusted for ties   0.6742 0.4293 0.4844 0.4384 
t Approximation     32.48 16.91 19.70 17.35 
Degrees of freedom 1266 1266 1266 1266 
P-value             0.000 0.000 0.000 0.000 
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Table 4 Misclassification frequency of predicted vs observed community types  
 

predicted  observed classes  
classes 1 2 3 4 

1 0.76 0.16 0.04 0.04 
2 0.21 0.61 0.15 0.03 
3 0.04 0.17 0.52 0.26 
4 0.00 0.02 0.17 0.81 

 
 
 
 
Figures 
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Figure 1 Eastern English Channel physical and hydrological features: Bathymetric depth 
and simplified sediment types representation. Survey bottom temperature and bottom salinity 
(averaged for 1997 to 2003) obtained by kriging. 
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Figure 2 TWINSPAN Classification of Fish Community : the dendrogram represents the 
first two levels of division. DCA first axis eigen-values are represented for each division and 
for each group, the corresponding indicator species are given. The number of samples in each 
sub-group is indicated in the boxes. The preferential species of the four sub-communities are 
listed at the bottom of the dendrogram. 
 
 

ba 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Spatial distribution of Fish Subcommunities in the Eastern Channel from 1988 
to 2003. (a) observed assemblage type at each station, (b) kriged interpolation of assemblage 
type in the prospected area. These illustrate the gradation from open sea community to coastal 
and estuarine communities. 
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Figure 4 Predicted probability of occurrence of each community type based on habitat 
modelling (a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4. The suitable habitats of each 
community type were clearly separated in space and comfirmed the inshore – offshore 
structure gradient of the fish community. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Predicted community distribution. In each prediction cell, the community type 
with the highest occurrence probability was chosen. This map displayed the same distribution 
patterns as those observed in Fig. 3. 
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