
P
le

a
s
e

 n
o
te

 t
h
a

t 
th

is
 i
s
 a

n
 a

u
th

o
r-

p
ro

d
u

c
e

d
 P

D
F

 o
f 

a
n
 a

rt
ic

le
 a

c
c
e

p
te

d
 f
o

r 
p

u
b

lic
a

ti
o

n
 f
o

llo
w

in
g

 p
e

e
r 

re
v
ie

w
. 

T
h

e
 d

e
fi
n

it
iv

e
 p

u
b
lis

h
e

r-
a
u

th
e

n
ti
c
a

te
d

 v
e

rs
io

n
 i
s
 a

v
a

ila
b

le
 o

n
 t

h
e
 p

u
b
lis

h
e
r 

W
e

b
 s

it
e
 

 1 

  

Regular and Chaotic Dynamics 
December 2011, Vol. 16 (6), pp 577-601 
http://dx.doi.org/10.1134/S1560354711060037  
© Pleiades Publishing, Ltd., 2011. 
 
The original publication is available at http://www.springerlink.com 
 

Archimer 
http://archimer.ifremer.fr 

 
 

 

 

Trapped instability and vortex formation by an unstable coastal current  

 
 

Rui Duarte
1
, Xavier Carton

1
, Xavier Capet

1
 and Laurent Chérubin

2 

 
 
 
1 

LPO, UBO/CNRS, Brest, France 
2 

RSMAS, Univ. Miami, USA 
 

*: Corresponding authors : Rui Duarte : Rui.Duarte@univ-brest.fr ; Xavier Carton : Xavier.Carton@univ-brest.fr ; 
Xavier Capet : Xavier.Capet@ifremer.fr ; Laurent Chérubin : lcherubin@rsmas.miami.edu 
 
 

 
 
 
Abstract :  
 
This paper addresses the instability of a two-layer coastal current in a quasigeostrophic model; the 
potential vorticity (PV) structure of this current consists in two uniform cores, located at different 
depths, with finite width and horizontally shifted. This shift allows both barotropic and baroclinic 
instability for this current. The PV cores can be like-signed or opposite-signed, leading to their vertical 
alignment or to their hetonic coupling. These two aspects are novel compared to previous studies. For 
narrow vorticity cores, short waves dominate, associated with barotropic instability; for wider cores, 
longer waves are more unstable and are associated with baroclinic processes. Numerical experiments 
were performed on the f-plane with a finite-difference model. When both cores have like-signed PV, 
trapped instability develops during the nonlinear evolution: vertical alignment of the structures is 
observed. For narrow cores, short wave breaking occurs close to the coast; for wider cores, 
substantial turbulence results from the entrainment of ambient fluid into the coastal jet. When the two 
cores have opposite-signed PV, the nonlinear regimes range from short wave breaking to the ejection 
of dipoles or tripoles, via a regime of dipole oscillation near the wall. The Fourier analysis of the 
perturbed flow is appropriate to distinguish the regimes of short wave breaking, of dipole formation, 
and of turbulence, but not the differences between regimes involving only vortex pairs. To explain 
more precisely the regimes where two vortices (and their wall images) interact, a point vortex model is 
appropriate. 
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1. INTRODUCTION

Planetary fluids, strongly constrained by rotation and stratification, are a favorable

medium for the birth, growth and interaction of intense vortices. In the ocean in partic-

ular, such vortices can be generated by the instability of intense, sheared currents. If intense

vortices are often found in the upper layers of the ocean, others can grow and live for hun-

dreds of turnover periods in the ocean depths.

A well-known example of surface current is the Kuroshio, which is the western boundary

current of the North Pacific Ocean. South of Japan, the Kuroshio is a fast and narrow current

flowing north-eastward along the continental slope, and making a deflection at about 138oE,

giving rise to the Kuroshio extension (KE) east of Japan. The instability of this current

produces many vortices, and indeed, this region has the highest turbulent kinetic energy in

the North Pacific ([16]).

From the WOCE database, we selected section P10 with CTD/LADCP stations across

the path of the Kuroshio. We used temperature and salinity data to calculate the density.

From the velocity, we computed the relative vorticity and finally we obtained Ertel potential

vorticity (PV)1. Here, we present the Ertel PV anomalies (PV of the current minus PV of

the environment), which characterise the structure of the Kuroshio. We obtain a two-layer

distribution with nearly uniform cores, laterally shifted, with opposite signs, and thickness

of about 200 m (see figure 1).

A famous example of a deep coastal current is the Mediterranean Water undercurrent,

which exits from the Mediterranean Sea through the Straits of Gibraltar, and then follows

the Portuguese continental slope. South of Portugal, this current is composed of two cores,

near 800 and 1200 m depths. It is known to produce many vortices, called meddies. These

two cores have negative anomalies of Ertel PV compared to their environment ([5]). Mea-

surements at sea show several configurations for the position of these PV cores: they can be

vertically aligned or laterally shifted (see figure 5 of [6]).

The baroclinic instability of a coastal current, constituted of two PV cores vertically

aligned, has been addressed previously ([2]; [1]; [7]). For vertically shifted cores, both

barotropic and baroclinic instabilities are possible, whatever the sign of each PV anomaly.

1 Ertel potential vorticity was computed here as the product of absolute vorticity by the vertical density

gradient. Absolute vorticity is the sum of the Coriolis parameter and of relative vorticity.
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The objective of the present paper is to determine the conditions of prevalence of either type

of instability (barotropic or baroclinic), the ensuing nonlinear regimes in parameter space,

and to quantify them with simple models. In section 2, we present the model and physical

configuration for this problem. In section 3, we provide the mathematical analysis of linear

stability of the current. In section 4, we classify and describe the nonlinear regimes of the

unstable current, for both like-signed and opposite-signed PV cores. Finally, in section 5,

we discuss more completely the regimes of vortex dipole oscillation or ejection.

2. MODEL AND CONFIGURATION

We consider a two-layer quasi-geostrophic model for ocean currents. This model assumes

that the Rossby number of the flow Ro = U/fL is small, and that its Burger number

Bu = (NH/fL)2 is of order unity. U is a characteristic velocity magnitude, L a characteristic

width, H a characteristic thickness, f is the Coriolis parameter (twice the rotation rate of

the Earth, times the sine of the latitude), and N is the buoyancy frequency. Here, we neglect

the variations of the Coriolis parameter with latitude, which are small compared with the

PV of the flow.

The evolution of the fluid flow in this model is governed by the following equation

∂tqk + J(ψk, qk) = Dk (k = 1, 2) (1)

which describes the advection and dissipation of quasi-geostrophic potential vorticity. Quasi-

geostrophic potential vorticity is the equivalent of Ertel potential vorticity anomalies under

the conditions Ro � 1, Bu ∼ 1. In the upper and lower layers, quasi-geostrophic potential

vorticity is defined by

q1 = ∇2ψ1 − F1(ψ1 − ψ2)

q2 = ∇2ψ2 − F2(ψ1 − ψ2) (2)

We also define J(a, b) = ∂xa∂yb − ∂xb∂ya, the Jacobian of a and b, and ψk is the stream

function in layer k. The Froude numbers are Fn = f 2
0L

2/(g′Hn) for each layer (j = 1, 2),

Hn is the nth layer depth at rest, f0 is the Coriolis parameter and g′ = g(ρ2 − ρ1)/ρ1 is the

reduced gravity between the layers. The dissipation terms Dn exist only in the nonlinear

numerical model (see below).
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To follow the example of the Kuroshio, we set H1 = H2 = 200 m, f0 = 10−4 s−1, and

g′ = 9 × 10−2 ms−2, which corresponds to a typical ocean stratification in the Kuroshio

region. The Rossby deformation radius is defined by

Rd =

√
g′H1H2

f 2
0 (H1 +H2)

(3)

In our configuration the value of the Rossby radius is Rd = 30 km.

For nonlinear evolutions, equations 1 and 2 are solved using a finite-difference code which

uses an Arakawa energy and enstrophy conserving scheme. The model domain is a flat

bottom periodic channel, with along-shore x and cross-shore y coordinates. The horizontal

resolution is ∆x = ∆y = 5 × 103 m on a 200 × 100 grid. In the numerical model, the

dissipation terms Dn represent bi-harmonic diffusion which suppressed the accumulation of

grid scale vorticity features; specifically,

Dn = ν∇4(∇2ψn) (4)

where ν = 108 m4s−1 is the bi-harmonic diffusion coefficient. This model is initialised with

the mean flow (the equivalent of the Kuroshio current) slightly perturbed with a sinusoidal

wave.

The mean flow has a piecewise-constant PV distribution in both layers, with values Q1

and Q2, respectively. The lower PV core lies against the coast and the upper PV core is

offshore. The current width is L1 in the lower layer and L = L2−L1 in the upper layer (see

figure 2).

q1(y) =

 Q1 if y ∈ [L1, L2]

0 otherwise
q2(y) =

 Q2 if y ∈ [0, L1]

0 otherwise
(5)

In summary, there are two PV fronts in the upper layer (at y = L1 and y = L2) with

jumps ±Q1 and one in the lower layer (at y = L1) with jump −Q2. The corresponding

streamfunction field and velocity profiles are shown in figure 3 for particular values of Q1,

Q2, L1 and L2.

3. LINEAR STABILITY ANALYSIS

To study the stability of the mean flow, we consider its perturbation by a weak normal

mode associated with the streamfunction

ψ′j = φj(j) e
ik(x−ct) (6)
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It is associated with meridional displacements of the PV fronts of the mean flow; these

displacements are called (η1, η2, η3) = (η01, η
0
2, η

0
3) eik(x−ct) in the upper and lower layers re-

spectively. To solve the linear stability problem, three conditions are used:

1. the perturbation has vanishing potential vorticity;

2. the perturbation streamfunction is continuous at each PV front of the mean flow;

3. the perturbation streamfunction is related to the PV front displacements via the con-

tinuity of the total zonal velocity (mean flow + perturbation).

4. the Lagrangian derivative of the PV front displacement is equal to the meridional

perturbation velocity at the PV front

Finally, these equations are linearised around the zonal mean flow with the normal mode per-

turbation (or, in an equivalent manner,the dynamical equations 1 and 2 are linearised). The

mathematical details of this procedure (the form of the mean flow and of the perturbation,

that of the linearised conditions, the resulting matrices) are given in the appendix.

These conditions lead to a 3x3 generalized eigenvalue problem DX = cAX, where the

matrices D and A depend on the mean flow and on the physical parameters of the problem,

and where the vector X contains the coefficients of the perturbation streamfunction (see

Appendix). This problem is solved numerically for our purposes. The eigenvalues c are the

solution of a cubic equation

(c− C11)(c− C12)(c− C21) = 0 (7)

The phase speeds C11, C12, C21 correspond to Rossby waves propagating on the PV fronts;

they depend, in a complex manner, on the PV jumps across the fronts, on the width of the

PV cores, of the wavenumber, layer thicknesses and on the deformation radius. When any

of the phase speeds is complex (in fact, when two of them become conjugate) for a given

wavenumber k, the flow becomes unstable with growth rate kImag(c)max and associated

wavenumber k.

Linear barotropic and baroclinic instability can be analysed and explained both with

instability criteria and from the point of view of Rossby wave resonance.

1. The Rayleigh-Kuo criterion for barotropic instability of parallel flows ([12]), and the

Charney-Stern criterion for baroclinic instability ([4]), state that the potential vorticity
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gradient of the mean flow must vanish and reverse, respectively on the horizontal, and

in or between layers. Clearly, both criteria will be satisfied, whatever the sign of the

PV cores. Indeed, the upper layer PV core has opposite-signed jumps at its two fronts,

and one of these PV jumps will be of opposite sign to that in the lower layer, whatever

Q2/Q1 6= 0.

2. Rossby wave resonance is the basis for these instabilities. These waves are due to the

PV jumps across the fronts. Barotropic instability is favored when the waves in the

same layer of the fluid are close to each other, that is, for narrow PV cores. Baroclinic

instability is favored for cores of width comparable with the deformation radius. For

like-signed PV cores, the baroclinic resonance occurs between the internal upper front

and the lower front. But for opposite-signed PV cores, baroclinic instability involves

the resonance of the lower PV front with the external upper PV front, a process which

is clearly damped by too wide PV cores. To palliate this, longer waves, which can

allow larger meridional displacements of the PV fronts, are needed.

Now we examine the maximum growth rates kImag(c)max and the associated wavenum-

bers k in the (L1/Rd, Q2/Q1) parameter plane with L2 = 2L1 (see figure 4). Clearly, the

instability characteristics differ from like-signed to opposite-signed PV cores. When Q1 and

Q2 are like-signed, both the growth rates and the most unstable wavenumbers decrease with

increasing L1/Rd. Barotropic instability is favored by narrow cores and is associated with

short waves; baroclinic instability is favored by wide cores and is associated with long waves.

But overall, barotropic instability is more efficient. When Q1 and Q2 have opposite signs,

the variation in growth rate is not monotonic as L1/Rd increases from 0.5 to 2.0. After

an initial decay, there is a secondary growth, e.g. for L1/Rd ≥ 1.5 when Q2/Q1 ∼ −2.0.

Indeed, narrow cores favor barotropic instability. But here, baroclinic instability is most ef-

ficient for a finite width of the PV cores. Indeed, a narrow core has a small potential energy

reservoir for a given stratification and thus baroclinic instability is damped. But for a very

wide core, the lower PV front and the external upper layer PV front are far away, and the

resonance of Rossby waves on these two fronts is damped. Therefore the maximal growth

rates for baroclinic instability are found at finite L1/Rd. For large L1/Rd, long waves are

necessary to couple the fronts. This is why the most unstable wavenumber is about 3 for

L1/Rd = 2, Q2/Q1 ∼ −3 and about 1 for L1/Rd = 2, Q2/Q1 ∼ 3. Thus, for opposite-signed
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PV fronts, barotropic instability is favored for narrow PV cores. As the cores become wider,

this type of instability is damped, and for a finite width of the cores, baroclinic instability

becomes dominant.

Finally, for very wide PV cores, both types of instabilities are damped. Thus we should

expect the existence of two families of unstable modes.

This is confirmed by figure 5, which displays the growth rates of normal mode pertur-

bations versus wavenumber for various values of Q2/Q1, when L1/Rd = 1.5. These plots

confirm the existence of two families of unstable modes, each one associated to a relative

maximum of growth rate, and corresponding respectively to short and to long waves, when

the PV cores are opposite signed. It also shows that only one family of unstable modes

exists when the PV cores are like-signed, which confirms our previous analysis. Finally,

for oceanographic applications, we find that the growth periods are about 10 − 20 days,

and the unstable wavelengths of the order of 150 to 300 km, which correspond to oceanic

observations of the meanders on such currents.

4. NONLINEAR REGIMES: CLASSIFICATION AND PHYSICAL MECHANISMS

We performed experiments with a finite-difference code of the two-layer quasi-geostrophic

equations. This numerical model and its initial conditions were described above. The values

of the physical parameters, normalised core width L1/Rd and PV ratio Q2/Q1 were varied.

The mean flow was initially perturbed by the most unstable wave computed in the previous

section. In each case, the model was run for one year of simulated time, and we analysed

the evolution of the PV field in the domain.

Firstly, one can recall the results of linear instability: for narrow PV cores, barotropic

instability is expected to prevail, since this flow has strong horizontal velocity shears. On

the contrary, for wide cores, baroclinic instability will dominate, if the layerwise PV’s are

like-signed. Indeed, in this case, the two PV fronts with opposite-signed PV jumps lie on

top of each other. If the layerwise PV’s are opposite-signed, the resonance of Rossby waves

on the lower layer PV front with those on the external upper layer PV front will be rendered

all the more difficult as the distance between these fronts increases.

The flow evolution displays different regimes depending on the relative values of the

parameters L1/Rd and Q2/Q1 (see figure 6). Four main regimes (A,C,D,E) and three variants
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(B,F,G) were observed:

Regime A is characterised by the breaking of short waves, leading to the formation of small

vortices near the coast. This regime is called trapped instability at the coast. It occurs

for both signs of Q2/Q1 and for narrow PV cores. Therefore, barotropic instability is

expected to be favored, but baroclinic instability may be also strong when the layerwise

PV’s are like-signed. The strength of the instability leads to the irreversible evolution

of the instability, manifested in physical space by wave breaking. The case of narrow

PV cores also corresponds to the domain where short wavelengths are most unstable,

hence the observed evolution.

Regime B is a variant of regime (A), where the like-signed PV cores align along the coast;

this regime occurs for Q2/Q1 > 0 and for PV core widths comparable with the defor-

mation radius; in this case, mixed barotropic-baroclinic instability is expected. This

instability produces shoreward and offshore displacements of the PV cores. Since these

cores are like-signed, the vertical alignment process ([14]; [8]) will take place and the

cores will finally be superimposed.

Regime C corresponds to the formation of baroclinic dipoles near the coast and to their

oscillatory evolution with the mirror images. This regime occurs for Q2/Q1 < 0, a

necessary condition for the formation of baroclinic dipoles, and for PV core widths

comparable with the deformation radius; it is expected that baroclinic instability will

be most efficient then. In this case, a vertical phase shift of λ/4 between meanders

in the two layers will favor the coupling of these meanders to form baroclinic dipoles

(here λ is the wavelength of the perturbation). The closeness of the coast leads to a

strong interaction of these dipoles with their mirror images.

Regime D is the formation and ejection of baroclinic dipoles; this regime occurs for

Q2/Q1 < 0; the same remarks hold as for regime (C), but now, the upper layer vortices

will be formed farther away from the coast. This will diminish the interaction of these

vortices with their mirror images, thus allowing the ejection of the dipoles.

Regime E occurs when potential vorticity is present in the upper layer only. It shows the

formation of a vortex street along the coast in this layer. In this case, barotropic
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instability acts alone. This evolution is the classical roll-up of a vorticity strip, slightly

modified by stratification.

Regime F is a variant of regime (B) with a turbulent evolution near the coast. This regime

occurs for Q2/Q1 > 0 and for wide PV cores. Since long waves are most unstable

linearly in this case (see figure 4), they can interact nonlinearly to form multiple

shorter waves, leading thus to a turbulent end-state (see also, e.g., [10]).

Regime G is a variant of regime (D) with the splitting of the lower layer vortices and the

formation of baroclinic tripoles; this regime occurs for Q2/Q1 < 0 and also for wide

PV cores (and thus for fairly large vortices).

Secondly, after relating the various regimes to the properties of linear instability, we can

also state how, in the long run, the nonlinear effects may strongly modify the initial flow

situation and properties.

In regimes (A) and (B), the vertical alignment of the PV cores will lead to the disappear-

ance of the null vorticity core along the coast in the upper layer. As a consequence, the inner

PV front of the upper layer will tend to disappear, a process which will damp barotropic

instability.

In regimes (C) and (D), the formation of baroclinic dipoles completely disrupts the zonal

mean flow. Regime (C) is a (nearly) time-periodic state, while regime (D) corresponds

to an irreversible evolution where the coastal waters are expelled offshore. Regime (G)

also possesses the character of irreversibility. Note that on very long time scales (on many

oscillation periods), regime (C) finally destabilises and an evolution similar to that of regime

(D) (dipole expulsion) is attained. This shows that a secondary instability, related to the

oscillating state, and acting on much longer time-scales, is at work.

Finally, regime (F) also shows multiple stages in the instability where many harmonics

successively grow via nonlinear interactions and modify the flow state. Contrary to regime

(C), many harmonics grow so that no low-order system is established.
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5. NONLINEAR REGIMES: INDIVIDUAL DESCRIPTION

5.1. Potential vorticity evolution and Fourier analysis of the perturbation

For each regime, the time series of potential vorticity maps is shown, and Fourier analyses

of the flow along the zonal axis complement the characterisation of the regimes. For each

mode in x, the Fourier analysis provides meridionally varying amplitudes Ampk(y, t); the

quadratic norm of these functions is computed for their y dependence. This provides a

time-dependent (only) amplitude Ak(t) for each zonal mode k.

Figure 7 displays the time evolution of potential vorticity in the two layers for regime

A with opposite signed potential vorticity in the two layers (Q2/Q1 = −1, L1/Rd = 0.6).

At t = 50, the breaking of the barotropically unstable short waves has produced a row of

vortices in the upper layer. The lower layer PV front is perturbed by meanders. At t = 100,

vortices have clearly formed along the coast in the lower layer. At t = 150 all vortices have

grown to their final size and the configuration remains steady at t = 200. The vortices do

not pair vertically as baroclinic dipoles because (a) they are small and their area-integral of

PV is weak, (b) the vertical coupling between layers is weak. Clearly here, the dominant

mechanism is barotropic instability. We also notice that, though the layerwise vortices are

opposite-signed here, they finally tend to align vertically. This is related to the dominance

of horizontal interactions on vertical coupling here.

The time evolution of potential vorticity in regime A with like signed potential vorticity

in the two layers, is shown in figure 8. The main difference with the previous regime is the

absence of vortices in the lower layer, in the final stages, and the vertical alignment of the

PV cores along the coast. This latter process is characteristic of like-signed PV anomalies.

The Fourier analysis of potential vorticity in the upper layer shows that, for about

300 days, the most unstable mode k = 10 is dominant (see figure 9); but this mode grows

only for 15− 20 days, and then stagnates and finally decreases. Its growth must be halted

by nonlinear mechanisms. The observation of graver modes (k = 5, 6) allow us to identify

this mechanism. Indeed, these longer waves grow from small amplitude, both via linear

instability, and by feeding on the energy of mode 10. Modes 4, 5, 6 and 10 attain the same

amplitude only after a year of simulation. Thus, for the time shown in the simulation, mode

10 remains the strongest by far.

Such a long-term bifurcation towards longer waves is characteristic of the presence of
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multiple linearly unstable waves, the shorter ones being only slightly more unstable than the

longer ones.

Regime B is shown in figure 10. Longer waves are unstable here, and, at t = 50, the upper

layer core undergoes a classical roll-up into a vortex street, with little influence of the lower

layer which displays only a few weak meanders. Again, this evolution indicates a dominant

barotropic instability. Once vortices are formed in the upper layer, they remain attached

to the coast and propagate eastward via mirror effect (see t = 100). In the lower layer, the

meanders shed filaments, which roll-up under the upper layer vortices. This roll-up amplifies

the formation of identifiable, separate vortices in the lower layer (see t = 150, 200), which

align vertically with the upper layer vortices.

Figure 11 illustrates this vertical alignment process by showing the meridional profile of

the zonally averaged PV. Clearly, the two PV cores have widened due to the formation of

vortices, but their maxima and their front are now aligned vertically.

Figure 12 shows the time evolution in regime C. Again, long waves are unstable, and the

initial evolution of the flow (until t = 100) is similar to that in the case of like-signed PV

cores. Nevertheless, once the vortices have formed in both layers (at about t = 125), they

undergo two influences. Firstly they couple with their mirror image across the coast, and

secondly they couple vertically.

The coupling with their mirror images advects them in opposite directions zonally (east-

ward for the upper layer vortices, westward for the lower layer ones). This advection brings

upper and lower layer vortices closer to each other, by pairs, thereby increasing their vertical

interaction. But since the horizontal interaction with the mirror images is stronger than the

vertical one, the vortices do not leave the coast as hetons. They rotate around each other

and then they continue drifting westward until they encounter with the following upper layer

vortex in the row, and the whole process starts again. We call this periodic evolution an

“oscillatory regime” because the layer wise vortices propagate zonally and oscillate merid-

ionally periodically (when they are close to the opposite layer vortices). This regime will be

studied in more details with point vortices in the following section.

The Fourier analysis of the upper layer potential vorticity (see figure 13) indicates that

the linearly most unstable wave (”the fundamental”, k = 4) generates its first and second

harmonics (k = 8, 12) rapidly, while the other waves (initially weak) grow more slowly, and

also interact nonlinearly (this is attested by the presence of many wavenumbers). The same
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waves (k = 4, 8, 12) emerge in the lower layer (not shown here). In the long-run, the funda-

mental remains of constant amplitude; this reflects the persistence of four distinct vortices.

On the contrary, the first and second harmonics oscillate in relation with the periodic vor-

tex evolution, also associated with the periodic production of smaller-scale filaments. The

dominance of a small number of harmonics usually allows the simulation of the evolution via

a low-order system of coupled ordinary differential equations, obtained by truncation of the

full nonlinear system (e.g. [3]); but this is beyond the scope of the present paper.

In regime D (see figure 14), waves appear on all PV fronts, with a meridional phase tilt in

the upper layer, and between the internal front in this layer and the lower front, indicating

mixed barotropic-baroclinic instability. The roll-up of the upper layer PV core is now only

slightly faster than that of the lower core, so that at t = 100, opposite-signed vortices

are formed in the two layers and pair baroclinically. This pairing of asymmetric vortices

is accompanied by filamentation, and by curved trajectories of the baroclinic dipoles (or

”hetons”). Finally, the vortices form a staggered vortex street with similar vortex sizes; this

configuration attains a near steady state (see t = 225 and t = 250). This regime will also be

studied with point vortices. The Fourier analysis of regime D is similar to that of regime C.

In both layers, the same waves grow.

Regime E corresponds to the case where the lower layer has zero potential vorticity. The

nonlinear evolution corresponds to a rapid roll-up of the PV core into a symmetric vortex

street (see figure 15).

Regime F differs from regime B in that several wavenumbers are linearly unstable. This

leads to an asymmetric vortex street along the coast (see t = 150 in figure 16). The vertical

interaction between these vortices of different sizes leads to much filamentation and roll-up

(t = 175 and t = 225), and to a turbulent state along the coast (t = 250).

The Fourier analysis of the flow confirms that all waves with even wavenumbers have

a much larger amplitude than those with odd wavenumbers. Indeed, the most unstable

wave is k = 2 and all its harmonics grow after a larger delay as k increases. The irregular

growth of waves beyond k = 4 as well as the stabilisation of all waves at finite amplitude, is

indicative of intense nonlinear interactions. Nevertheless, the multiplicity of wavenumbers

finally involved in the perturbation renders a low-order model inoperative here.

Finally, regime G is a variant of regime D where vortices in the lower layer pair baro-

clinically (as hetons) with the upper layer vortices. But since the area-integral of potential
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vorticity in the upper layer vortices is large, it creates an intense shear on the lower layer vor-

tices. The latter are strongly elongated and break into two parts. The association between

each upper layer vortex and each pair of lower layer vortices forms a baroclinic tripole.

5.2. Summary

Essentially four regimes were obtained with variants:

1. (A,B,F) trapped instability along the coast, either with the formation of a vortex

street, of a current with meanders or of a turbulent flow. Regime A occurs for the

most unstable waves which are short, and for both like-signed and opposite-signed PV

cores. Regimes B and F occur for long waves and like-signed PV cores. In these cases,

the baroclinic coupling of the PV anomalies in the two layers either leads to vertical

alignment, or is not sufficient to create strong dipoles, which can leave the coast.

2. (C) The periodic oscillation of baroclinic vortices, under their mutual influence and

under the influence of the mirror vortices. It occurs for intermediate-size waves and

opposite-signed PV cores. In this case, the vortices interact predominantly with their

mirror images across the wall.

3. (D,G) A dominant baroclinic instability with the formation of baroclinic dipoles (het-

ons) and of baroclinic tripoles, when the lower layer vortices split. These regimes

dominate for long waves, and for opposite-signed PV cores. Then, the vertical cou-

pling of opposite-signed vortices is strong enough to advect them away from the coast.

4. (E) the roll-up of the upper layer current into a vortex street as a consequence of

pure barotropic instability. This regime is specific of upper-layer confined PV and of

horizontal processes. Furthermore, it appears that barotropic instability dominates

with short waves when the PV cores are narrow, and conversely baroclinic instability

leads to long meanders on wide PV cores.

The Fourier analysis has shown that, for regime A, short waves emerge but due to linear

growth and to nonlinear interactions, longer waves grow (these latter being about twice as

long as the main wave). For regime C and D, a main long wave grows to the largest amplitude,
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and feeds its first two harmonics. Finally, regime F is characterised by a multiplicity of (here,

even) waves.

Applying these results to the Kuroshio, we have Q2/Q1 ∼ −2, L1/Rd ∼ 1.5 so that

regime D would be favored. Nevertheless, beta effect has not been included up to here. We

performed twenty more numerical simulations, now including beta effect in the nonlinear

dynamics. The results are shown on figure 18. Comparing it with figure 6, one notices

that like-signed PV cores evolve according to the same regimes as on the f-plane. This can

be understood since beta effect tends to favor zonal flows, which are the end-state of the

alignment process. The most important modification occurs for opposite signed PV cores

for which regime D has vanished. Again, beta-induced zonalisation of the flow acts against

the meridional ejection of vortices.

Therefore, on the beta-plane, we would expect the existence of eddies (or meanders)

close to the coast, travelling in opposite directions in the two layers, for a current such as the

Kuroshio. Altimetric sea-surface height maps show the westward propagation of anticyclonic

eddies along the Kuroshio ([9]), but no data are available for the deeper flow, so that it is

not presently possible to check if such a regime effectively occurs.

6. STUDY OF THE DIPOLAR REGIMES WITH POINT VORTICES

The purpose of the present section is to characterise the possible trajectories of the vor-

tices, once they have detached from the coastal flow. In particular, we wish to discriminate

the two regimes that correspond to the dipoles leaving the coast (D) and the dipole oscilla-

tion at the coast (C). Indeed, we have seen that the Fourier analysis is not able to distinguish

these two regimes. Therefore, we consider a stage where the unstable zonal currents have

evolved into a double row of vortices that we model with point vortices. For simplicity we

make several additional assumptions. Firstly, we assume that all the potential vorticity con-

tained in an unstable wavelength λ of the PV core has simply concentrated into one vortex,

that is, the vortex strengths are

Γ1 = Q1(L2 − L1)λ

Γ2 = Q2L1λ (8)

For our applications, we have again chosen L2 = 2L1 here. Note that λ is given for each

couple (L1/Rd, Q2/Q1).
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Secondly, we also assume that each vortex is located meridionally in the middle of its respec-

tive PV core, that is the vortices are located at distances d1 = (L1 + L2)/2 and d2 = L1/2

from the coast.

Finally, we assume that the vortices have moved zonally to concentrate into vortex pairs, and

thus we neglect the interaction between vortex pairs themselves. For instance, for baroclinic

instability, the vortices inside a pair would be separated by λ/4 which corresponds to the

maximum efficiency of baroclinic instability. Then, each pair would be separated from the

following pair by 3λ/4.

Vortex 1 has strength Γ1 and is located in x1, y1 = d1, vortex 2 has strength Γ2 and is

located in x2, y2 = d2 and their mirror images have opposite strengths and are located in

x1,−y1 and x2,−y2.

The Hamiltonian of the system is therefore

H = Γ1ψ(x1, y1) + Γ2ψ(x2, y2) (9)

where

ψ(x1, y1) = Γ2G21(r12)− Γ2G21(r1−2)− Γ1G11(r1−1)

ψ(x2, y2) = Γ1G12(r12)− Γ2G22(r2−2)− Γ1G12(r2−1) (10)

The Gij are the Green’s functions between layers i and j which are written

G11(r) = h1G
0(r)− h2G1(r)

G12(r) = h2G
0(r) + h2G

1(r)

G21(r) = h1G
0(r) + h1G

1(r)

G22(r) = h2G
0(r)− h1G1(r) (11)

with G0(r) = 1
2π
ln(r), G1(r) = − 1

2π
K0(γr), K0 the modified Bessel function of second kind

of order zero, and γ = 1/Rd. The distances rij between the point vortices are

r212 = r221 = (x1 − x2)2 + (y1 − y2)2

r21−2 = r22−1 = (x1 − x2)2 + (y1 + y2)
2

r1−1 = 2y1

r2−2 = 2y2 (12)
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Figure 19 shows the isolines of the Hamiltonian in the (x2−x1, L1/Rd) plane, for Q2/Q1 =

±2. x2 − x1 is the zonal distance between the two vortices inside a pair, L1/Rd is the

normalised width of the PV cores, which is related to the meridional position of the vortices.

For positive Q2/Q1, the isolines of H show that two vortices, initially distant from each

other (large values of x2−x1) can come close to each other and to the coast; this corresponds

to regime B where like-signed vortices can align vertically and come close to the coast.

For negative Q2/Q1, the isolines of H show two separate domains:

1. for vortices close to each other and to the coast, the isolines are curved in a bounded

domain in L1/Rd when x2−x1 is small. This corresponds to motions where the vortices

can rotate around each other when they come in close vicinity. This is the case for

L1/Rd ∼ 1, where we observed regime C.

2. for vortices more distant from the coast, the isolines of H are deflected towards larger

values of L1/Rd as x2 − x1 decreases. As L1 increases, so do d1 and d2. Thus, as two

vortices move towards each other (as they pair to form a baroclinic dipole), the two

vortices tend to move away from the coast. This corresponds to regime D.

In a second stage, we could consider the Hamiltonian for a baroclinic, staggered, von

Kàrman street, in relation with regimes (C) and (D) which form double rows of vortices

along the coast. Most of the calculations are detailed in [13], and in [11], so that they are

not repeated here. In short, we use Gryanik’s results that we restrict to the f−plane. We

also assume that h1 = h2 = 1/2.

The Hamiltonian of the regular von Kármán street shows few differences between regimes

B, C and D, contrary to the four vortex model. This is due in particular to the absence of

isolation of vortex dipoles in this model. Indeed each vortex in a zonal row of the street

is equally distant to his left and right neighbours in the other row, and thus their mutual

influences on shoreward or offshore advection, cancel out.

7. SUMMARY, CONCLUSION

The linear stability and the nonlinear evolution of a coastal current composed of two

cores of uniform potential vorticity, vertically shifted, were studied in a two-layer quasi-

geostrophic model. The cases of like-signed and of opposite-signed cores were addressed.
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The co-existence of barotropic and baroclinic instabilities is a novelty of the present study.

Indeed, this flow configuration, though idealised, contains an ingredient observed at sea but

never studied specifically: the shift between two cores of PV in the two different layers of

water. Such a configuration may be relevant for the Kuroshio off the coast of Japan and also

for the Mediterranean Water undercurrents off Portugal.

The linear stability analysis indicates that, for narrow vorticity cores, short waves domi-

nate, associated with barotropic instability; for wider cores, longer waves are more unstable

and are associated with baroclinic processes. The transition between these families of modes

is smooth for like-signed cores and discontinuous for opposite-signed cores. The linear insta-

bility characteristics were interpreted in terms of the resonance of Rossby waves on the PV

fronts.

Numerical simulations of the nonlinear evolutions of the coastal current were then per-

formed with a two-layer quasi-geostrophic finite-difference code in a zonal channel configura-

tion, firstly on the f-plane. These experiments showed that, when both cores have like-signed

PV, trapped instability develops during the nonlinear evolution: vertical alignment of the

PV cores is observed. For narrow cores, short wave breaking occurs close to the coast; for

wider cores, substantial turbulence results from the entrainment of ambient fluid into the

coastal jet.

When the two cores have opposite-signed PV, the nonlinear regimes range from short

wave breaking to the ejection of dipoles or tripoles, via a regime of dipole oscillation near

the wall.

These regimes were explained in terms of the properties of linear instability, but also

in terms of interactions of PV anomalies, either for quasi-zonal flows along the coast, or

once the meanders of the layerwise currents have occluded as vortices. In particular, three

important aspects must be underlined:

1. the vertical alignment of the like-signed PV cores along the coast is the manifestation

of a well-known process, but it has here the supplementary effect of closing off the

source for barotropic instability;

2. there is a competition between inter-layer vortex interaction, which results in the

ejection of baroclinic dipoles, and intra-layer vortex interactions, whereby each vortex

couples with its mirror image and propagates along the coast;
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3. for large enough detached vortices, the inter-layer interaction can result in vortex

breaking; this is due to the shear exerted by the upper on the lower layer vortices.

Therefore, the efficiency of the instability in exporting coastal waters offshore and in mixing

it there, depends on a sequence of nonlinear processes, starting with the instability of the

coastal current itself.

The addition of beta effect acts against the ejection of baroclinic dipoles and, as expected,

tends to stabilise the flow in a zonal configuration. An application of these model results to

the Kuroshio indicates that eddies can form and travel along the coast, a situation a priori

observed.

The Fourier analysis of the perturbed flow was able to distinguish the regimes of short

wave breaking, of dipole formation, and of turbulence, but not the differences between

regimes involving only vortex pairs. To explain more precisely the regimes where two vor-

tices (and their wall images) interact, a point vortex model is appropriate. This model was

successful when only two vortices were considered, with their wall images. This situation

accounts for the isolation of vortex pairs from their neighbours in the last stage of the in-

stability. On the contrary, a regular point vortex street was not appropriate to distinguish

the nonlinear evolutions identified in the numerical simulations.

To add realism to this configuration, bottom topography should be added; its expected

influence would be towards the trapping of the lower PV core near the coast. A finer strati-

fication would allow the representation of smaller-scale features in the horizontal plane, and

vertical splitting effects of each PV core, which are not possible in our model. Nevertheless,

an on-going study shows that the basic mechanism of PV front interaction is similar in a

four-layer configuration.

8. APPENDIX: MATHEMATICAL DETAILS OF THE LINEAR STABILITY

ANALYSIS

Here we provide the form of the velocity profile for the mean flow; we detail the kinematic

and dynamical conditions bearing on the perturbation, and we provide the form of the

linear stability matrix G.
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Firstly the mean flow is computed by inverting the unperturbed potential vorticity dis-

tribution. This is achieved by projecting the layerwise components onto vertical modes via

the formulae:

Xt = h1X1 + h2X2, Xc = X1 −X2

where hj = Hj/(H1 + H2), j = 1, 2, with subscripts (1,2) for the upper and lower lay-

ers respectively. The subscripts ”t” and ”c” denote the barotropic and baroclinic modes

respectively. The inverse formula is

X1 = Xt + h2Xc, X2 = Xt − h1Xc

Using this, we have

q̄t(y) = −dŪt
dy

, q̄c(y) =
d2ψ̄c
dy2
− ψ̄c
R2
d

and we apply the boundary conditions that Ūt must vanish at infinity in y and be continuous

at each potential vorticity jump (y = L1, y = L2), and that ψ̄c must vanish at the origin

(y = 0) and at infinity in y and must also be continuous at each potential vorticity jump.

Thus we have

Ūt(y) = h2Q2(L1 − y) + h1Q1(L2 − L1), 0 ≤ y ≤ L1

Ūt(y) = h1Q1(L2 − y), L1 ≤ y ≤ L2

Ūt(y) = 0, L2 ≤ y

ψ̄c = Q2R
2
d + Aac e

y/Rd +Ba
c e
−y/Rd , 0 ≤ y ≤ L1

ψ̄c = −Q1R
2
d + Abc e

y/Rd +Bb
c e
−y/Rd , L1 ≤ y ≤ L2

ψ̄c = Bc
c e
−y/Rd , L2 ≤ y

with the following relations

Abc =
Q1

2
R2
d e
−L2/Rd , Ba

c = −Q2R
2
d +

Q1 +Q2

2
R2
d e
−L1/Rd − Q1

2
e−L1/Rd

Aac = −Q2R
2
d −Ba

c , B
b
c = Ba

c +
Q1 +Q2

2
R2
d e

L1/Rd , Bc
c = Bb

c −
Q1

2
R2
d e

L2/Rd .

Then we write the perturbation streamfunction in vertical modes for each region of the

flow by enforcing the condition that the perturbation has zero potential vorticity

ψ′t = αat e
ky + βat e

−ky, 0 ≤ y ≤ L1
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ψ′t = αbt e
ky + βbt e

−ky, L1 ≤ y ≤ L2

ψ′t = βct e
−ky, L2 ≤ y

ψ′c = αac e
Kγy + βac e

−Kγy, 0 ≤ y ≤ L1

ψ′c = αbc e
Kγy + βbc e

−Kγy, L1 ≤ y ≤ L2

ψ′c = βcc e
−Kγy, L2 ≤ y

where K2
γ = k2 + 1/R2

d. Thus we have ten unknowns for the linear instability problem.

Firstly, two relations are obtained by imposing that the meridional perturbation velocity

must vanish at y = 0.

αat + βat = 0, αac + βac = 0

Secondly, the continuity of the perturbation streamfunction at the PV jumps leads to four

relations

2αat sinh(kL1) = αbt e
kL1 + βbt e

−kL1

2αat sinh(KγL1) = αbt e
KγL1 + βbt e

−KγL1

βct = βbt + αbt e
2kL2

βcc = βbc + αbc e
2KγL2

Thirdly, u′2 is continuous in y = L2 (in the absence of any PV jump there); thus, using

previous relations, we obtain a supplementary relation

k ekL2 αbt = h1 Kγ e
KγL2 αbc

Therefore, we are left with only three unknowns.

Finally, we implement the linearised potential vorticity equation around each PV front as

(Uj(Lk)− c) [u′j]
Lk+ε
Lk−ε = ψ′j(Lk) [q̄j]

Lk+ε
Lk−ε

where [X]ba denotes the jump of the quantity X between a and b, and we let ε tend to zero.

This provides three equations for the remaining three unknowns, after elimination of the

previous seven unknowns using the seven relations above. These three equations involve c

which contains the phase speed and the growth rate of the perturbation.
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Setting U1 = Ū1(L1), U2 = Ū1(L2), U3 = Ū2(L1), λt = k/ sinh(kL1), λc = Kγ/ sinh(KγL1),

µt = −2kekL2 , µc = −2Kγe
KγL2 , we write the following terms of 3x3 matrices

a11 = λt +
h2
h1

µt
µc
λc, a12 = λt, a13 = h2λc

a21 =
µt
h1
, a22 = 0, a23 = 0

a31 = −λt + λc
µt
µc
, a32 = −λt, a33 = h1λc

and

b11 = Q1 (ekL1 +
h2
h1

µt
µc
eKγL1), b12 = Q1 e

−kL1 , b13 = h2Q1e
−KγL1

b21 = Q1 (ekL2 +
h2
h1

µt
µc
eKγL2), b22 = Q1 e

−kL2 , b13 = h2Q1e
−KγL2

b31 = Q2 (ekL1 − µt
µc
eKγL1), b32 = Q2 e

−kL1 , b33 = −Q2h1e
−KγL1

Finally, we defined djk = Ujajk − bjk so that C11, C12, C21 (mentioned in section 3 in the

main text) are the values of c in the generalised eigenvalue/eigenvector problem

djkXk = c ajkXk

We chose to solve this problem numerically, for our purposes, and we varied the physical

parameters of the problem.

This problem could be solved analytically, but to the expense of long calculations. Define

matrix D(djk), matrix A(ajk) and matrix G as the product G = A−1 D. The eigenvalue

problem is then GX = cX, and the cubic equation in c mentioned in the main text is

obtained by canceling the 3x3 determinant of G− c I where I is the identity matrix. We do

not provide an explicit expression of C11, C12, C21 in terms of the parameters of the problem

due to the complexity of the formulae. These three values are the (complex) Rossby phase

speeds associated to the three PV jumps (this can be shown simply in the case of a single

PV jump where the phase speed is real).
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Figure 1. (Top) Mean sea surface dynamic topography relative to 1000 dbar, in centimeters. Line

P10 denotes the CTD and lowered ADCP section of the WOCE P10 cruise. Adapted from [15].

(Bottom) Vertical section of the PV anomalies of the Kuroshio along P10 - the coast of Japan is on

the right of the picture.
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L1L2

H1

H2

Figure 2. Two core structure of the potential vorticity distribution; the coast is on the right.
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Figure 3. Meridional profile of the mean flow streamfunction (above) and velocity(below). Solid

line corresponds to the upper layer and the dashed line to the lower layer.
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Figure 4. (a) Maximum growth rate as a function of the lower to upper layer PV ratio Q2/Q1 and

of the normalised width of the upper layer PV core L1/Rd; (b) most unstable wavenumber k in the

same parameter plane.
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Figure 5. Growth rates of the normal modes versus wavenumber for several values of Q2/Q1 and

L1/Rd = 1.5
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Figure 7. Non-linear evolution of the potential vorticity in the upper layer (above) and in the

lower layer (below) for regime A with Q2/Q1 = −1 and L1/Rd = 0.6. Positive/negative values of PV

are represented by solid/dashed lines. From this figure, to figure 13, the computational domain is

measured with grid numbers; these numbers must be multiplied by 5 km to give physical dimensions

(length, width).
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Figure 8. Non-linear evolution of the potential vorticity in the upper layer (above) and in the

lower layer (below) for regime A with Q2/Q1 = 1 and L1/Rd = 0.6. Positive/negative values of PV

are represented by solid/dashed lines.
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Figure 9. Fourier analysis along the zonal axis, of potential vorticity in the upper layer for regime

A with Q2/Q1 = 1 and L1/Rd = 0.6; the numbers next to each line are the wavenumbers.
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Figure 10. Non-linear evolution of the potential vorticity in the upper layer (above) and in the

lower layer (below) for regime B with Q2/Q1 = 1 and L1/Rd = 1.0. Positive/negative values of PV

are represented by solid/dashed lines.
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Figure 11. Zonal average of layerwise potential vorticity at the beginning and at 250 days in the

simulation with Q2/Q1 = 1 and L1/Rd = 1.0; the solid (dashed) line corresponds to the upper

(lower) layer. The widening of the PV profile corresponds to the effect of vortices. The deepening or

the shallowing of the maxima is due to the zonal averaging process.
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Figure 12. Non-linear evolution of the potential vorticity in the upper layer (above) and in the

lower layer (below) for regime C with Q2/Q1 = −1 and L1/Rd = 1.0. Positive/negative values of PV

are represented by solid/dashed lines.
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Figure 13. Fourier analysis along the zonal axis, of potential vorticity in the upper layer for

regime C with Q2/Q1 = −1 and L1/Rd = 1; the numbers next to each line are the wavenumbers.
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Figure 14. Non-linear evolution of the potential vorticity in the upper layer (above) and in the

lower layer (below) for regime D with Q2/Q1 = −1 and L1/Rd = 1.5. Positive/negative values of PV

are represented by solid/dashed lines.
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Figure 15. Non-linear evolution of the potential vorticity in the upper layer (above) and in the

lower layer (below) for regime E with Q2/Q1 = 0 and L1/Rd = 0.6. Positive/negative values of PV

are represented by solid/dashed lines.
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Figure 16. Non-linear evolution of the potential vorticity in the upper layer (above) and in the

lower layer (below) for regime F with Q2/Q1 = 1 and L1/Rd = 2. Positive/negative values of PV are

represented by solid/dashed lines.
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Figure 17. Fourier analysis along the zonal axis, of potential vorticity in the upper layer for

regime F with Q2/Q1 = 1 and L1/Rd = 2; the numbers next to each line are the wavenumbers.
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Figure 18. Classification of nonlinear regimes of flow with beta effect, in the L1/Rd, Q2/Q1 plane.
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Figure 19. (a) Isolines of the Hamiltonian H in the (x2 − x1, L1/Rd) plane for Q2/Q1 = 2; (b)

same as (a), now for Q2/Q1 = −2. The dashed line is the local maximum of H, which separates the

isolines of H which close on themselves, at small L1/Rd, from those which do not, at large L1/Rd




