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Abstract :

This paper addresses the instability of a two-layer coastal current in a quasigeostrophic model; the
potential vorticity (PV) structure of this current consists in two uniform cores, located at different
depths, with finite width and horizontally shifted. This shift allows both barotropic and baroclinic
instability for this current. The PV cores can be like-signed or opposite-signed, leading to their vertical
alignment or to their hetonic coupling. These two aspects are novel compared to previous studies. For
narrow vorticity cores, short waves dominate, associated with barotropic instability; for wider cores,
longer waves are more unstable and are associated with baroclinic processes. Numerical experiments
were performed on the f-plane with a finite-difference model. When both cores have like-signed PV,
trapped instability develops during the nonlinear evolution: vertical alignment of the structures is
observed. For narrow cores, short wave breaking occurs close to the coast; for wider cores,
substantial turbulence results from the entrainment of ambient fluid into the coastal jet. When the two
cores have opposite-signed PV, the nonlinear regimes range from short wave breaking to the ejection
of dipoles or tripoles, via a regime of dipole oscillation near the wall. The Fourier analysis of the
perturbed flow is appropriate to distinguish the regimes of short wave breaking, of dipole formation,
and of turbulence, but not the differences between regimes involving only vortex pairs. To explain
more precisely the regimes where two vortices (and their wall images) interact, a point vortex model is
appropriate.
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1. INTRODUCTION

Planetary fluids, strongly constrained by rotation and stratification, are a favorable
medium for the birth, growth and interaction of intense vortices. In the ocean in partic-
ular, such vortices can be generated by the instability of intense, sheared currents. If intense
vortices are often found in the upper layers of the ocean, others can grow and live for hun-
dreds of turnover periods in the ocean depths.

A well-known example of surface current is the Kuroshio, which is the western boundary
current of the North Pacific Ocean. South of Japan, the Kuroshio is a fast and narrow current
flowing north-eastward along the continental slope, and making a deflection at about 138°F,
giving rise to the Kuroshio extension (KE) east of Japan. The instability of this current
produces many vortices, and indeed, this region has the highest turbulent kinetic energy in
the North Pacific ([16]).

From the WOCE database, we selected section P10 with CTD/LADCP stations across
the path of the Kuroshio. We used temperature and salinity data to calculate the density.
From the velocity, we computed the relative vorticity and finally we obtained Ertel potential
vorticity (PV)!. Here, we present the Ertel PV anomalies (PV of the current minus PV of
the environment), which characterise the structure of the Kuroshio. We obtain a two-layer
distribution with nearly uniform cores, laterally shifted, with opposite signs, and thickness
of about 200 m (see figure 1).

A famous example of a deep coastal current is the Mediterranean Water undercurrent,
which exits from the Mediterranean Sea through the Straits of Gibraltar, and then follows
the Portuguese continental slope. South of Portugal, this current is composed of two cores,
near 800 and 1200 m depths. It is known to produce many vortices, called meddies. These
two cores have negative anomalies of Ertel PV compared to their environment ([5]). Mea-
surements at sea show several configurations for the position of these PV cores: they can be
vertically aligned or laterally shifted (see figure 5 of [6]).

The baroclinic instability of a coastal current, constituted of two PV cores vertically
aligned, has been addressed previously ([2]; [1]; [7]). For vertically shifted cores, both

barotropic and baroclinic instabilities are possible, whatever the sign of each PV anomaly.

! Ertel potential vorticity was computed here as the product of absolute vorticity by the vertical density

gradient. Absolute vorticity is the sum of the Coriolis parameter and of relative vorticity.



The objective of the present paper is to determine the conditions of prevalence of either type
of instability (barotropic or baroclinic), the ensuing nonlinear regimes in parameter space,
and to quantify them with simple models. In section 2, we present the model and physical
configuration for this problem. In section 3, we provide the mathematical analysis of linear
stability of the current. In section 4, we classify and describe the nonlinear regimes of the
unstable current, for both like-signed and opposite-signed PV cores. Finally, in section 5,

we discuss more completely the regimes of vortex dipole oscillation or ejection.

2. MODEL AND CONFIGURATION

We consider a two-layer quasi-geostrophic model for ocean currents. This model assumes
that the Rossby number of the flow Ro = U/fL is small, and that its Burger number
Bu = (NH/fL)?is of order unity. U is a characteristic velocity magnitude, L a characteristic
width, H a characteristic thickness, f is the Coriolis parameter (twice the rotation rate of
the Earth, times the sine of the latitude), and N is the buoyancy frequency. Here, we neglect
the variations of the Coriolis parameter with latitude, which are small compared with the
PV of the flow.

The evolution of the fluid flow in this model is governed by the following equation

Owq + J (Vi ) = Dy, (k=1,2) (1)

which describes the advection and dissipation of quasi-geostrophic potential vorticity. Quasi-
geostrophic potential vorticity is the equivalent of Ertel potential vorticity anomalies under
the conditions Ro < 1, Bu ~ 1. In the upper and lower layers, quasi-geostrophic potential
vorticity is defined by

Q1 = V2¢1 — Fi(¢ — %)
G2 = Vg — Fy(1hy — 92) (2)

We also define J(a,b) = 0,a0,b — 0,b0,a, the Jacobian of a and b, and 1), is the stream
function in layer k. The Froude numbers are F,, = f2L?/(g'H,) for each layer (j = 1,2),
H,, is the nth layer depth at rest, fy is the Coriolis parameter and ¢' = g(p2 — p1)/p1 is the
reduced gravity between the layers. The dissipation terms D,, exist only in the nonlinear

numerical model (see below).



To follow the example of the Kuroshio, we set H; = Hy = 200 m, f; = 107* s~ !, and
¢ = 9 x 1072 ms~2, which corresponds to a typical ocean stratification in the Kuroshio

region. The Rossby deformation radius is defined by

_ g'H1H
Ha = \ f&(Hi+ H2) ®)

In our configuration the value of the Rossby radius is Ry = 30 km.

For nonlinear evolutions, equations 1 and 2 are solved using a finite-difference code which
uses an Arakawa energy and enstrophy conserving scheme. The model domain is a flat
bottom periodic channel, with along-shore x and cross-shore y coordinates. The horizontal
resolution is Az = Ay = 5 x 10®> m on a 200 x 100 grid. In the numerical model, the
dissipation terms D,, represent bi-harmonic diffusion which suppressed the accumulation of

grid scale vorticity features; specifically,
D, = vV*(V?y,) (4)

where v = 108 m*s~! is the bi-harmonic diffusion coefficient. This model is initialised with
the mean flow (the equivalent of the Kuroshio current) slightly perturbed with a sinusoidal
wave.

The mean flow has a piecewise-constant PV distribution in both layers, with values @,
and @2, respectively. The lower PV core lies against the coast and the upper PV core is
offshore. The current width is L; in the lower layer and L = Ly — L; in the upper layer (see
figure 2).

aly) = vl ) @ tve DL 5)

0 otherwise 0 otherwise
In summary, there are two PV fronts in the upper layer (at y = L; and y = Ls) with
jumps +£@Q; and one in the lower layer (at y = L;) with jump —@. The corresponding

streamfunction field and velocity profiles are shown in figure 3 for particular values of (),

Qg, L1 and Lz.

3. LINEAR STABILITY ANALYSIS

To study the stability of the mean flow, we consider its perturbation by a weak normal

mode associated with the streamfunction

U= ¢;(5) e* (6)



It is associated with meridional displacements of the PV fronts of the mean flow; these
displacements are called (11,72,73) = (1, 79,19) e*@=) in the upper and lower layers re-

spectively. To solve the linear stability problem, three conditions are used:

1. the perturbation has vanishing potential vorticity;
2. the perturbation streamfunction is continuous at each PV front of the mean flow;

3. the perturbation streamfunction is related to the PV front displacements via the con-

tinuity of the total zonal velocity (mean flow + perturbation).

4. the Lagrangian derivative of the PV front displacement is equal to the meridional

perturbation velocity at the PV front

Finally, these equations are linearised around the zonal mean flow with the normal mode per-
turbation (or, in an equivalent manner,the dynamical equations 1 and 2 are linearised). The
mathematical details of this procedure (the form of the mean flow and of the perturbation,
that of the linearised conditions, the resulting matrices) are given in the appendix.

These conditions lead to a 3x3 generalized eigenvalue problem DX = cAX, where the
matrices D and A depend on the mean flow and on the physical parameters of the problem,
and where the vector X contains the coefficients of the perturbation streamfunction (see
Appendix). This problem is solved numerically for our purposes. The eigenvalues ¢ are the

solution of a cubic equation
(C — CH)(C — 012)(0 - 021) =0 (7)

The phase speeds C11, C1a, Cs; correspond to Rossby waves propagating on the PV fronts;
they depend, in a complex manner, on the PV jumps across the fronts, on the width of the
PV cores, of the wavenumber, layer thicknesses and on the deformation radius. When any
of the phase speeds is complex (in fact, when two of them become conjugate) for a given
wavenumber k, the flow becomes unstable with growth rate kImag(c)mq. and associated
wavenumber .

Linear barotropic and baroclinic instability can be analysed and explained both with

instability criteria and from the point of view of Rossby wave resonance.

1. The Rayleigh-Kuo criterion for barotropic instability of parallel flows ([12]), and the
Charney-Stern criterion for baroclinic instability ([4]), state that the potential vorticity



gradient of the mean flow must vanish and reverse, respectively on the horizontal, and
in or between layers. Clearly, both criteria will be satisfied, whatever the sign of the
PV cores. Indeed, the upper layer PV core has opposite-signed jumps at its two fronts,

and one of these PV jumps will be of opposite sign to that in the lower layer, whatever

Q2/Q1 # 0.

2. Rossby wave resonance is the basis for these instabilities. These waves are due to the
PV jumps across the fronts. Barotropic instability is favored when the waves in the
same layer of the fluid are close to each other, that is, for narrow PV cores. Baroclinic
instability is favored for cores of width comparable with the deformation radius. For
like-signed PV cores, the baroclinic resonance occurs between the internal upper front
and the lower front. But for opposite-signed PV cores, baroclinic instability involves
the resonance of the lower PV front with the external upper PV front, a process which
is clearly damped by too wide PV cores. To palliate this, longer waves, which can

allow larger meridional displacements of the PV fronts, are needed.

Now we examine the maximum growth rates kImag(c)mq and the associated wavenum-
bers k in the (Li/Rd, Q2/Q1) parameter plane with Ly = 2L, (see figure 4). Clearly, the
instability characteristics differ from like-signed to opposite-signed PV cores. When ); and
(- are like-signed, both the growth rates and the most unstable wavenumbers decrease with
increasing L;/Ry. Barotropic instability is favored by narrow cores and is associated with
short waves; baroclinic instability is favored by wide cores and is associated with long waves.
But overall, barotropic instability is more efficient. When ); and )2 have opposite signs,
the variation in growth rate is not monotonic as L;/R, increases from 0.5 to 2.0. After
an initial decay, there is a secondary growth, e.g. for L;/Rq > 1.5 when Q2/Q; ~ —2.0.
Indeed, narrow cores favor barotropic instability. But here, baroclinic instability is most ef-
ficient for a finite width of the PV cores. Indeed, a narrow core has a small potential energy
reservoir for a given stratification and thus baroclinic instability is damped. But for a very
wide core, the lower PV front and the external upper layer PV front are far away, and the
resonance of Rossby waves on these two fronts is damped. Therefore the maximal growth
rates for baroclinic instability are found at finite L;/Ry. For large L1/ Ry, long waves are
necessary to couple the fronts. This is why the most unstable wavenumber is about 3 for

Li/R; =2,Q2/Q1 ~ —3 and about 1 for Li/R; = 2,Q2/Q1 ~ 3. Thus, for opposite-signed



PV fronts, barotropic instability is favored for narrow PV cores. As the cores become wider,
this type of instability is damped, and for a finite width of the cores, baroclinic instability
becomes dominant.

Finally, for very wide PV cores, both types of instabilities are damped. Thus we should
expect the existence of two families of unstable modes.

This is confirmed by figure 5, which displays the growth rates of normal mode pertur-
bations versus wavenumber for various values of (Q3/Q, when Li/R; = 1.5. These plots
confirm the existence of two families of unstable modes, each one associated to a relative
maximum of growth rate, and corresponding respectively to short and to long waves, when
the PV cores are opposite signed. It also shows that only one family of unstable modes
exists when the PV cores are like-signed, which confirms our previous analysis. Finally,
for oceanographic applications, we find that the growth periods are about 10 — 20 days,
and the unstable wavelengths of the order of 150 to 300 km, which correspond to oceanic

observations of the meanders on such currents.

4. NONLINEAR REGIMES: CLASSIFICATION AND PHYSICAL MECHANISMS

We performed experiments with a finite-difference code of the two-layer quasi-geostrophic
equations. This numerical model and its initial conditions were described above. The values
of the physical parameters, normalised core width L;/R; and PV ratio ()3/Q; were varied.
The mean flow was initially perturbed by the most unstable wave computed in the previous
section. In each case, the model was run for one year of simulated time, and we analysed
the evolution of the PV field in the domain.

Firstly, one can recall the results of linear instability: for narrow PV cores, barotropic
instability is expected to prevail, since this flow has strong horizontal velocity shears. On
the contrary, for wide cores, baroclinic instability will dominate, if the layerwise PV’s are
like-signed. Indeed, in this case, the two PV fronts with opposite-signed PV jumps lie on
top of each other. If the layerwise PV’s are opposite-signed, the resonance of Rossby waves
on the lower layer PV front with those on the external upper layer PV front will be rendered
all the more difficult as the distance between these fronts increases.

The flow evolution displays different regimes depending on the relative values of the

parameters L1 /Ry and QQ2/Q) (see figure 6). Four main regimes (A,C,D,E) and three variants



(B,F,G) were observed:

Regime A is characterised by the breaking of short waves, leading to the formation of small
vortices near the coast. This regime is called trapped instability at the coast. It occurs
for both signs of @)2/Q; and for narrow PV cores. Therefore, barotropic instability is
expected to be favored, but baroclinic instability may be also strong when the layerwise
PV’s are like-signed. The strength of the instability leads to the irreversible evolution
of the instability, manifested in physical space by wave breaking. The case of narrow
PV cores also corresponds to the domain where short wavelengths are most unstable,

hence the observed evolution.

Regime B is a variant of regime (A), where the like-signed PV cores align along the coast;
this regime occurs for Q2/@Q1 > 0 and for PV core widths comparable with the defor-
mation radius; in this case, mixed barotropic-baroclinic instability is expected. This
instability produces shoreward and offshore displacements of the PV cores. Since these
cores are like-signed, the vertical alignment process ([14]; [8]) will take place and the

cores will finally be superimposed.

Regime C corresponds to the formation of baroclinic dipoles near the coast and to their
oscillatory evolution with the mirror images. This regime occurs for Q2/Q; < 0, a
necessary condition for the formation of baroclinic dipoles, and for PV core widths
comparable with the deformation radius; it is expected that baroclinic instability will
be most efficient then. In this case, a vertical phase shift of A/4 between meanders
in the two layers will favor the coupling of these meanders to form baroclinic dipoles
(here A is the wavelength of the perturbation). The closeness of the coast leads to a

strong interaction of these dipoles with their mirror images.

Regime D is the formation and ejection of baroclinic dipoles; this regime occurs for
(Q)2/Q1 < 0; the same remarks hold as for regime (C), but now, the upper layer vortices
will be formed farther away from the coast. This will diminish the interaction of these

vortices with their mirror images, thus allowing the ejection of the dipoles.

Regime E occurs when potential vorticity is present in the upper layer only. It shows the

formation of a vortex street along the coast in this layer. In this case, barotropic



instability acts alone. This evolution is the classical roll-up of a vorticity strip, slightly

modified by stratification.

Regime F is a variant of regime (B) with a turbulent evolution near the coast. This regime
occurs for Q3/Q1 > 0 and for wide PV cores. Since long waves are most unstable
linearly in this case (see figure 4), they can interact nonlinearly to form multiple

shorter waves, leading thus to a turbulent end-state (see also, e.g., [10]).

Regime G is a variant of regime (D) with the splitting of the lower layer vortices and the
formation of baroclinic tripoles; this regime occurs for @5/ < 0 and also for wide

PV cores (and thus for fairly large vortices).

Secondly, after relating the various regimes to the properties of linear instability, we can
also state how, in the long run, the nonlinear effects may strongly modify the initial flow
situation and properties.

In regimes (A) and (B), the vertical alignment of the PV cores will lead to the disappear-
ance of the null vorticity core along the coast in the upper layer. As a consequence, the inner
PV front of the upper layer will tend to disappear, a process which will damp barotropic
instability.

In regimes (C) and (D), the formation of baroclinic dipoles completely disrupts the zonal
mean flow. Regime (C) is a (nearly) time-periodic state, while regime (D) corresponds
to an irreversible evolution where the coastal waters are expelled offshore. Regime (G)
also possesses the character of irreversibility. Note that on very long time scales (on many
oscillation periods), regime (C) finally destabilises and an evolution similar to that of regime
(D) (dipole expulsion) is attained. This shows that a secondary instability, related to the
oscillating state, and acting on much longer time-scales, is at work.

Finally, regime (F) also shows multiple stages in the instability where many harmonics
successively grow via nonlinear interactions and modify the flow state. Contrary to regime

(C), many harmonics grow so that no low-order system is established.
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5. NONLINEAR REGIMES: INDIVIDUAL DESCRIPTION
5.1.  Potential vorticity evolution and Fourier analysis of the perturbation

For each regime, the time series of potential vorticity maps is shown, and Fourier analyses
of the flow along the zonal axis complement the characterisation of the regimes. For each
mode in z, the Fourier analysis provides meridionally varying amplitudes Ampy(y,t); the
quadratic norm of these functions is computed for their y dependence. This provides a
time-dependent (only) amplitude Ag(t) for each zonal mode k.

Figure 7 displays the time evolution of potential vorticity in the two layers for regime
A with opposite signed potential vorticity in the two layers (Q2/@Q1 = —1, Li/Rq = 0.6).
At t = 50, the breaking of the barotropically unstable short waves has produced a row of
vortices in the upper layer. The lower layer PV front is perturbed by meanders. At ¢t = 100,
vortices have clearly formed along the coast in the lower layer. At ¢t = 150 all vortices have
grown to their final size and the configuration remains steady at ¢ = 200. The vortices do
not pair vertically as baroclinic dipoles because (a) they are small and their area-integral of
PV is weak, (b) the vertical coupling between layers is weak. Clearly here, the dominant
mechanism is barotropic instability. We also notice that, though the layerwise vortices are
opposite-signed here, they finally tend to align vertically. This is related to the dominance
of horizontal interactions on vertical coupling here.

The time evolution of potential vorticity in regime A with like signed potential vorticity
in the two layers, is shown in figure 8. The main difference with the previous regime is the
absence of vortices in the lower layer, in the final stages, and the vertical alignment of the
PV cores along the coast. This latter process is characteristic of like-signed PV anomalies.

The Fourier analysis of potential vorticity in the upper layer shows that, for about
300 days, the most unstable mode k = 10 is dominant (see figure 9); but this mode grows
only for 15 — 20 days, and then stagnates and finally decreases. Its growth must be halted
by nonlinear mechanisms. The observation of graver modes (k = 5,6) allow us to identify
this mechanism. Indeed, these longer waves grow from small amplitude, both via linear
instability, and by feeding on the energy of mode 10. Modes 4, 5, 6 and 10 attain the same
amplitude only after a year of simulation. Thus, for the time shown in the simulation, mode
10 remains the strongest by far.

Such a long-term bifurcation towards longer waves is characteristic of the presence of
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multiple linearly unstable waves, the shorter ones being only slightly more unstable than the
longer ones.

Regime B is shown in figure 10. Longer waves are unstable here, and, at t = 50, the upper
layer core undergoes a classical roll-up into a vortex street, with little influence of the lower
layer which displays only a few weak meanders. Again, this evolution indicates a dominant
barotropic instability. Once vortices are formed in the upper layer, they remain attached
to the coast and propagate eastward via mirror effect (see t = 100). In the lower layer, the
meanders shed filaments, which roll-up under the upper layer vortices. This roll-up amplifies
the formation of identifiable, separate vortices in the lower layer (see t = 150, 200), which
align vertically with the upper layer vortices.

Figure 11 illustrates this vertical alignment process by showing the meridional profile of
the zonally averaged PV. Clearly, the two PV cores have widened due to the formation of
vortices, but their maxima and their front are now aligned vertically.

Figure 12 shows the time evolution in regime C. Again, long waves are unstable, and the
initial evolution of the flow (until ¢ = 100) is similar to that in the case of like-signed PV
cores. Nevertheless, once the vortices have formed in both layers (at about ¢t = 125), they
undergo two influences. Firstly they couple with their mirror image across the coast, and
secondly they couple vertically.

The coupling with their mirror images advects them in opposite directions zonally (east-
ward for the upper layer vortices, westward for the lower layer ones). This advection brings
upper and lower layer vortices closer to each other, by pairs, thereby increasing their vertical
interaction. But since the horizontal interaction with the mirror images is stronger than the
vertical one, the vortices do not leave the coast as hetons. They rotate around each other
and then they continue drifting westward until they encounter with the following upper layer
vortex in the row, and the whole process starts again. We call this periodic evolution an
“oscillatory regime” because the layer wise vortices propagate zonally and oscillate merid-
ionally periodically (when they are close to the opposite layer vortices). This regime will be
studied in more details with point vortices in the following section.

The Fourier analysis of the upper layer potential vorticity (see figure 13) indicates that
the linearly most unstable wave ("the fundamental”, k = 4) generates its first and second
harmonics (k = 8, 12) rapidly, while the other waves (initially weak) grow more slowly, and

also interact nonlinearly (this is attested by the presence of many wavenumbers). The same
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waves (k = 4,8,12) emerge in the lower layer (not shown here). In the long-run, the funda-
mental remains of constant amplitude; this reflects the persistence of four distinct vortices.
On the contrary, the first and second harmonics oscillate in relation with the periodic vor-
tex evolution, also associated with the periodic production of smaller-scale filaments. The
dominance of a small number of harmonics usually allows the simulation of the evolution via
a low-order system of coupled ordinary differential equations, obtained by truncation of the
full nonlinear system (e.g. [3]); but this is beyond the scope of the present paper.

In regime D (see figure 14), waves appear on all PV fronts, with a meridional phase tilt in
the upper layer, and between the internal front in this layer and the lower front, indicating
mixed barotropic-baroclinic instability. The roll-up of the upper layer PV core is now only
slightly faster than that of the lower core, so that at ¢ = 100, opposite-signed vortices
are formed in the two layers and pair baroclinically. This pairing of asymmetric vortices
is accompanied by filamentation, and by curved trajectories of the baroclinic dipoles (or
"hetons”). Finally, the vortices form a staggered vortex street with similar vortex sizes; this
configuration attains a near steady state (see t = 225 and ¢t = 250). This regime will also be
studied with point vortices. The Fourier analysis of regime D is similar to that of regime C.
In both layers, the same waves grow.

Regime E corresponds to the case where the lower layer has zero potential vorticity. The
nonlinear evolution corresponds to a rapid roll-up of the PV core into a symmetric vortex
street (see figure 15).

Regime F differs from regime B in that several wavenumbers are linearly unstable. This
leads to an asymmetric vortex street along the coast (see t = 150 in figure 16). The vertical
interaction between these vortices of different sizes leads to much filamentation and roll-up
(t =175 and t = 225), and to a turbulent state along the coast (t = 250).

The Fourier analysis of the flow confirms that all waves with even wavenumbers have
a much larger amplitude than those with odd wavenumbers. Indeed, the most unstable
wave is kK = 2 and all its harmonics grow after a larger delay as k increases. The irregular
growth of waves beyond k = 4 as well as the stabilisation of all waves at finite amplitude, is
indicative of intense nonlinear interactions. Nevertheless, the multiplicity of wavenumbers
finally involved in the perturbation renders a low-order model inoperative here.

Finally, regime G is a variant of regime D where vortices in the lower layer pair baro-

clinically (as hetons) with the upper layer vortices. But since the area-integral of potential
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vorticity in the upper layer vortices is large, it creates an intense shear on the lower layer vor-

tices. The latter are strongly elongated and break into two parts. The association between

each upper layer vortex and each pair of lower layer vortices forms a baroclinic tripole.

5.2.  Summary

Essentially four regimes were obtained with variants:

1. (AB,F) trapped instability along the coast, either with the formation of a vortex

street, of a current with meanders or of a turbulent flow. Regime A occurs for the

most unstable waves which are short, and for both like-signed and opposite-signed PV

cores. Regimes B and F occur for long waves and like-signed PV cores. In these cases,

the baroclinic coupling of the PV anomalies in the two layers either leads to vertical

alignment, or is not sufficient to create strong dipoles, which can leave the coast.

2. (C) The periodic oscillation of baroclinic vortices, under their mutual influence and

under the influence of the mirror vortices. It occurs for intermediate-size waves and

opposite-signed PV cores. In this case, the vortices interact predominantly with their

mirror images across the wall.

3. (D,G) A dominant baroclinic instability with the formation of baroclinic dipoles (het-
ons) and of baroclinic tripoles, when the lower layer vortices split. These regimes

dominate for long waves, and for opposite-signed PV cores. Then, the vertical cou-

pling of opposite-signed vortices is strong enough to advect them away from the coast.

4. (E) the roll-up of the upper layer current into a vortex street as a consequence of

pure barotropic instability. This regime is specific of upper-layer confined PV and of

horizontal processes. Furthermore, it appears that barotropic instability dominates

with short waves when the PV cores are narrow, and conversely baroclinic instability

leads to long meanders on wide PV cores.

The Fourier analysis has shown that, for regime A, short waves emerge but due to linear

growth and to nonlinear interactions, longer waves grow (these latter being about twice as

long as the main wave). For regime C and D, a main long wave grows to the largest amplitude,
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and feeds its first two harmonics. Finally, regime F is characterised by a multiplicity of (here,
even) waves.

Applying these results to the Kuroshio, we have Q2/Qy ~ —2,L/R; ~ 1.5 so that
regime D would be favored. Nevertheless, beta effect has not been included up to here. We
performed twenty more numerical simulations, now including beta effect in the nonlinear
dynamics. The results are shown on figure 18. Comparing it with figure 6, one notices
that like-signed PV cores evolve according to the same regimes as on the f-plane. This can
be understood since beta effect tends to favor zonal flows, which are the end-state of the
alignment process. The most important modification occurs for opposite signed PV cores
for which regime D has vanished. Again, beta-induced zonalisation of the flow acts against
the meridional ejection of vortices.

Therefore, on the beta-plane, we would expect the existence of eddies (or meanders)
close to the coast, travelling in opposite directions in the two layers, for a current such as the
Kuroshio. Altimetric sea-surface height maps show the westward propagation of anticyclonic
eddies along the Kuroshio ([9]), but no data are available for the deeper flow, so that it is

not presently possible to check if such a regime effectively occurs.

6. STUDY OF THE DIPOLAR REGIMES WITH POINT VORTICES

The purpose of the present section is to characterise the possible trajectories of the vor-
tices, once they have detached from the coastal flow. In particular, we wish to discriminate
the two regimes that correspond to the dipoles leaving the coast (D) and the dipole oscilla-
tion at the coast (C). Indeed, we have seen that the Fourier analysis is not able to distinguish
these two regimes. Therefore, we consider a stage where the unstable zonal currents have
evolved into a double row of vortices that we model with point vortices. For simplicity we
make several additional assumptions. Firstly, we assume that all the potential vorticity con-
tained in an unstable wavelength X\ of the PV core has simply concentrated into one vortex,

that is, the vortex strengths are
[y = Qi(Ly— L)X
Ty = Quly) (8)

For our applications, we have again chosen L, = 2L; here. Note that ) is given for each

couple (Ly/ R4, Q2/C1).
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Secondly, we also assume that each vortex is located meridionally in the middle of its respec-
tive PV core, that is the vortices are located at distances d; = (L1 + L2)/2 and dy = L1/2
from the coast.
Finally, we assume that the vortices have moved zonally to concentrate into vortex pairs, and
thus we neglect the interaction between vortex pairs themselves. For instance, for baroclinic
instability, the vortices inside a pair would be separated by A/4 which corresponds to the
maximum efficiency of baroclinic instability. Then, each pair would be separated from the
following pair by 3\ /4.

Vortex 1 has strength I'; and is located in x1,y; = dy, vortex 2 has strength I'y and is
located in s,y = do and their mirror images have opposite strengths and are located in
x1, —y; and xo, —Yo.

The Hamiltonian of the system is therefore

H =T19¢(x1,y1) + Datp(xa, yo) (9)

where

w(xlayl) = F2G21(7"12) - F2G21(7ﬂ172) - F1Gn(7’171)
(22, 12) = T1Gra(r12) — ToGaa(ra—2) — I'iGia(ra—1) (10)

The G;; are the Green’s functions between layers 7 and j which are written

Gui(r) = MG (r) — heG'(r)
Gia(r) = haG(r) + haG(r)
Gai(r) = mG°(r) + G (r)

(r) (r) (r)

(11)

with G°(r) = 5=in(r), G'(r) = —5=Ko(yr), Ko the modified Bessel function of second kind

— or
of order zero, and v = 1/R,;. The distances r;; between the point vortices are
7”%2 = 7”%1 = (21 — $2)2 + (1 — 92)2
riy =154 = (1 —22)" + (1 + 1)’
-1 = 2y

To_o = 2y2 (12)
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Figure 19 shows the isolines of the Hamiltonian in the (25—, L1/ Ry) plane, for Q2/Q =
+2. x5 — x7 is the zonal distance between the two vortices inside a pair, L;/Ry is the
normalised width of the PV cores, which is related to the meridional position of the vortices.

For positive (J2/@Q1, the isolines of H show that two vortices, initially distant from each
other (large values of xo — 1) can come close to each other and to the coast; this corresponds
to regime B where like-signed vortices can align vertically and come close to the coast.

For negative 2/Q1, the isolines of H show two separate domains:

1. for vortices close to each other and to the coast, the isolines are curved in a bounded
domain in L; /R, when xo — 27 is small. This corresponds to motions where the vortices
can rotate around each other when they come in close vicinity. This is the case for

Li/R; ~ 1, where we observed regime C.

2. for vortices more distant from the coast, the isolines of H are deflected towards larger
values of Li/R,; as xo — 1 decreases. As L; increases, so do d; and dy. Thus, as two
vortices move towards each other (as they pair to form a baroclinic dipole), the two

vortices tend to move away from the coast. This corresponds to regime D.

In a second stage, we could consider the Hamiltonian for a baroclinic, staggered, von
Karman street, in relation with regimes (C) and (D) which form double rows of vortices
along the coast. Most of the calculations are detailed in [13], and in [11], so that they are
not repeated here. In short, we use Gryanik’s results that we restrict to the f—plane. We
also assume that hy = hy = 1/2.

The Hamiltonian of the regular von Karman street shows few differences between regimes
B, C and D, contrary to the four vortex model. This is due in particular to the absence of
isolation of vortex dipoles in this model. Indeed each vortex in a zonal row of the street
is equally distant to his left and right neighbours in the other row, and thus their mutual

influences on shoreward or offshore advection, cancel out.

7. SUMMARY, CONCLUSION

The linear stability and the nonlinear evolution of a coastal current composed of two
cores of uniform potential vorticity, vertically shifted, were studied in a two-layer quasi-

geostrophic model. The cases of like-signed and of opposite-signed cores were addressed.
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The co-existence of barotropic and baroclinic instabilities is a novelty of the present study.
Indeed, this flow configuration, though idealised, contains an ingredient observed at sea but
never studied specifically: the shift between two cores of PV in the two different layers of
water. Such a configuration may be relevant for the Kuroshio off the coast of Japan and also
for the Mediterranean Water undercurrents off Portugal.

The linear stability analysis indicates that, for narrow vorticity cores, short waves domi-
nate, associated with barotropic instability; for wider cores, longer waves are more unstable
and are associated with baroclinic processes. The transition between these families of modes
is smooth for like-signed cores and discontinuous for opposite-signed cores. The linear insta-
bility characteristics were interpreted in terms of the resonance of Rossby waves on the PV
fronts.

Numerical simulations of the nonlinear evolutions of the coastal current were then per-
formed with a two-layer quasi-geostrophic finite-difference code in a zonal channel configura-
tion, firstly on the f-plane. These experiments showed that, when both cores have like-signed
PV, trapped instability develops during the nonlinear evolution: vertical alignment of the
PV cores is observed. For narrow cores, short wave breaking occurs close to the coast; for
wider cores, substantial turbulence results from the entrainment of ambient fluid into the
coastal jet.

When the two cores have opposite-signed PV, the nonlinear regimes range from short
wave breaking to the ejection of dipoles or tripoles, via a regime of dipole oscillation near
the wall.

These regimes were explained in terms of the properties of linear instability, but also
in terms of interactions of PV anomalies, either for quasi-zonal flows along the coast, or
once the meanders of the layerwise currents have occluded as vortices. In particular, three

important aspects must be underlined:

1. the vertical alignment of the like-signed PV cores along the coast is the manifestation
of a well-known process, but it has here the supplementary effect of closing off the

source for barotropic instability;

2. there is a competition between inter-layer vortex interaction, which results in the
ejection of baroclinic dipoles, and intra-layer vortex interactions, whereby each vortex

couples with its mirror image and propagates along the coast;
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3. for large enough detached vortices, the inter-layer interaction can result in vortex

breaking; this is due to the shear exerted by the upper on the lower layer vortices.

Therefore, the efficiency of the instability in exporting coastal waters offshore and in mixing
it there, depends on a sequence of nonlinear processes, starting with the instability of the
coastal current itself.

The addition of beta effect acts against the ejection of baroclinic dipoles and, as expected,
tends to stabilise the flow in a zonal configuration. An application of these model results to
the Kuroshio indicates that eddies can form and travel along the coast, a situation a priori
observed.

The Fourier analysis of the perturbed flow was able to distinguish the regimes of short
wave breaking, of dipole formation, and of turbulence, but not the differences between
regimes involving only vortex pairs. To explain more precisely the regimes where two vor-
tices (and their wall images) interact, a point vortex model is appropriate. This model was
successful when only two vortices were considered, with their wall images. This situation
accounts for the isolation of vortex pairs from their neighbours in the last stage of the in-
stability. On the contrary, a regular point vortex street was not appropriate to distinguish
the nonlinear evolutions identified in the numerical simulations.

To add realism to this configuration, bottom topography should be added; its expected
influence would be towards the trapping of the lower PV core near the coast. A finer strati-
fication would allow the representation of smaller-scale features in the horizontal plane, and
vertical splitting effects of each PV core, which are not possible in our model. Nevertheless,
an on-going study shows that the basic mechanism of PV front interaction is similar in a

four-layer configuration.

8. APPENDIX: MATHEMATICAL DETAILS OF THE LINEAR STABILITY
ANALYSIS

Here we provide the form of the velocity profile for the mean flow; we detail the kinematic
and dynamical conditions bearing on the perturbation, and we provide the form of the

linear stability matrix G.
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Firstly the mean flow is computed by inverting the unperturbed potential vorticity dis-
tribution. This is achieved by projecting the layerwise components onto vertical modes via
the formulae:

Xi =Xy +he Xy, X=X —Xo

where h; = H;/(Hy + Hy), j = 1,2, with subscripts (1,2) for the upper and lower lay-
ers respectively. The subscripts "t” and ”"c¢” denote the barotropic and baroclinic modes

respectively. The inverse formula is
X1 =Xi+he X, Xo=X; — X,

Using this, we have B _ _
= B0 e
qt y - dy ) QC y -

dy> R?

and we apply the boundary conditions that U, must vanish at infinity in y and be continuous
at each potential vorticity jump (y = L1, ¥ = L), and that 1), must vanish at the origin
(y = 0) and at infinity in y and must also be continuous at each potential vorticity jump.

Thus we have

Up(y) = hoQa(Ly — y) + mQ1(Ly — Ly), 0<y <Ly
U(y) = mQi(La —y), L1 <y < Lo
Uly) =0, Ly <y
Yo = QuR2 4 A% e¥/fa f Bo e7¥/Fa 0 <y < I,
Vo= —QiRE+ Al ev/Fa 4 BY emv/Ma | [, <y < L,
Y= Bl eV, Ly <y
with the following relations

—L1/Rq

Ab = %Rfl e l2/Ra B — _Q,R% + MRﬁ e T1/Ra % e

¢ 2
A" = —QyR%— B, B®= B+ @Rfl elr/Ra pe— pb %RZ el2/Ra,

Then we write the perturbation streamfunction in vertical modes for each region of the

flow by enforcing the condition that the perturbation has zero potential vorticity

w;:age’“uﬁfe*’fy, 0<y<I,
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Uy = 04? et +ﬂf e L1 <y<lL
Yr=07e ™, Ly<y
Yp=ag eV Gl e 0<y <,
Y=ol e 4 8 e Y L <y < Ly
Y, = f; e F Ly<y

where K2 = k* + 1/Rj. Thus we have ten unknowns for the linear instability problem.
Firstly, two relations are obtained by imposing that the meridional perturbation velocity
must vanish at y = 0.

of + 41 =0, al+pr=0

Secondly, the continuity of the perturbation streamfunction at the PV jumps leads to four
relations

20 sinh(kL,) = a? e 4 gb e~F
2a¢ sinh(K, L) = a? efbr 4 gh e~ F01n
5 = B0 + b 21
Be = ﬁi’ + Ozg 2K L2

Thirdly, u) is continuous in y = Lo (in the absence of any PV jump there); thus, using

previous relations, we obtain a supplementary relation
kLy b _ KyLy b
ke™ o) =hy K, e a,

Therefore, we are left with only three unknowns.

Finally, we implement the linearised potential vorticity equation around each PV front as
Li+e — 1Li+e
(U;(Lx) =€) ] pite = ¥y(Ly) [g5] 57

where [X]% denotes the jump of the quantity X between a and b, and we let ¢ tend to zero.
This provides three equations for the remaining three unknowns, after elimination of the
previous seven unknowns using the seven relations above. These three equations involve ¢

which contains the phase speed and the growth rate of the perturbation.
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Settlng U1 = Ul(Ll), U2 = Ul(LQ), U3 = Ug(Ll), >\t = /{3/ Sil’lh(kLl), >\c = K,y/ Sil’lh(K,yLl),

e = —2kefr2 p, = —2K efv12 we write the following terms of 3x3 matrices
h
apn = A+ h—Qﬂ)\c, aiz = A, a1z = hal,
1 Mc

Mt
ag = —, aga =0, a3 =0

hi
et
asi = — A+ Ae—, a2 = =N, asz3 = i

[

and

h
by = Q1 (M + —Z&GK”Ll)y bio = Q1 e 1 b3 = hyQre 1

h'l He
h
bor = Q1 (ekLQ + h—2&€K”L2)> by = Q1 e *2, by = hoQre K12
1 He
bs1 = Q2 (ekLl - ﬂeKle)a b3z = Q2 eikLla b3z = —QthefK”Ll

C

Finally, we defined dj; = Ujaj, — bj, so that Ciq,Ci2, Co; (mentioned in section 3 in the

main text) are the values of ¢ in the generalised eigenvalue/eigenvector problem
dijk =C aijk

We chose to solve this problem numerically, for our purposes, and we varied the physical

parameters of the problem.

This problem could be solved analytically, but to the expense of long calculations. Define
matrix D(d;;), matrix A(aj,) and matrix G as the product G = A™' D. The eigenvalue
problem is then GX = cX, and the cubic equation in ¢ mentioned in the main text is
obtained by canceling the 3x3 determinant of G — ¢ I where [ is the identity matrix. We do
not provide an explicit expression of Cy, C}a, Cy; in terms of the parameters of the problem
due to the complexity of the formulae. These three values are the (complex) Rossby phase
speeds associated to the three PV jumps (this can be shown simply in the case of a single

PV jump where the phase speed is real).
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Figure 7. Non-linear evolution of the potential vorticity in the upper layer (above) and in the
lower layer (below) for regime A with Q2/Q1 = —1 and L1/R; = 0.6. Positive/negative values of PV
are represented by solid/dashed lines. From this figure, to figure 13, the computational domain is
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(length, width).
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Figure 9. Fourier analysis along the zonal axis, of potential vorticity in the upper layer for regime

A with Q2/Q1 =1 and L1 /Ry = 0.6; the numbers next to each line are the wavenumbers.
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Figure 13. Fourier analysis along the zonal axis, of potential vorticity in the upper layer for

regime C with Q2/Q1 = —1 and L;/R4 = 1; the numbers next to each line are the wavenumbers.
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Figure 14. Non-linear evolution of the potential vorticity in the upper layer (above) and in the
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Figure 18. Classification of nonlinear regimes of flow with beta effect, in the Ly /R4, Q2/Q1 plane.
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Figure 19. (a) Isolines of the Hamiltonian H in the (xo — 1, L1/Rq) plane for Q2/Q1 = 2; (b)

same as (a), now for Q2/Q1 = —2. The dashed line is the local maximum of H, which separates the

isolines of H which close on themselves, at small L; /Ry, from those which do not, at large L1 /Ry





