FN Archimer Export Format PT J TI Overview of the First SMOS Sea Surface Salinity Products. Part I: Quality Assessment for the Second Half of 2010 BT AF REUL, Nicolas TENERELLI, Joseph BOUTIN, Jaqueline CHAPRON, Bertrand PAUL, Frederic BRION, Emilie GAILLARD, Fabienne ARCHER, Olivier AS 1:1;2:2;3:3;4:1;5:1;6:4;7:1,5;8:1; FF 1:PDG-ODE-LOS;2:;3:;4:PDG-ODE-LOS;5:PDG-ODE-LOS;6:;7:PDG-ODE-LPO;8:PDG-ODE-LOS; C1 IFREMER, Lab Oceanog Spatiale, F-29280 Plouzane, France. Collect Localisat Satellite, Div Radar, Plouzane, France. Univ Paris 06, Ctr Natl Rech Sci, Inst Rech Dev,LOCEAN,Unite Mixte Rech, Museum Natl Hist Nat,Inst Pierre Simon Laplace, F-75252 Paris, France. Atlantide Altran Ouest, F-29238 Brest 3, France. IFREMER, Lab Phys Oceans, F-29280 Plouzane, France. C2 IFREMER, FRANCE CLS, FRANCE IPSL, FRANCE ATLANTIDE ALTRAN OUEST, FRANCE IFREMER, FRANCE SI BREST SE PDG-ODE-LOS PDG-IMN-IDM-SISMER PDG-ODE-LPO IN WOS Ifremer jusqu'en 2018 copubli-france copubli-univ-france IF 3.47 TC 62 UR https://archimer.ifremer.fr/doc/00072/18313/16109.pdf LA English DT Article DE ;L-band;microwave radiometry;ocean salinity;sea surface AB Multi-angular images of the brightness temperature (TB) of the Earth at 1.4 GHz are reconstructed from the Soil Moisture and Ocean Salinity (SMOS) satellite sensor data since end 2009. Sea surface salinity (SSS) products remote sensing from space is being attempted using these data over the world oceans. The quality of the first version of the European Space Agency operational Level 2 (L2) SSS swath products is assessed in this paper, using satellite/in situ SSS data match-ups that were collected over the second half of 2010. This database reveals that 95% of the SMOS L2 products show a global error standard deviation on the order of ∼1.3 practical salinity scale. Simple spatiotemporal aggregation of the L2 products to generate monthly SSS maps at 1◦ × 1◦ spatial resolution reduces the error down to about 0.6 globally and 0.4 in the tropics for 90% of the data. Several major problems are, however, detected in the products. Systematically, SMOS SSS data are biased within a ∼1500 km wide belt along the world coasts and sea ice edges, with a contamination intensity and spread varying from ascending to descending passes. Numerous world ocean areas are permanently or intermittently contaminated by radio-frequency interferences, particularly in the northern high latitudes and following Asia coastlines. Moreover, temporal drifts in the retrieved SSS fields are found with varying signatures in ascending and descending passes. In descending passes, a time-dependent strong latitudinal bias is found, with maximum amplitude reached at the end of the year. Errors in the forward modeling of the wind-induced emissivity and of the sea surface scattered galactic sources are as well identified, biasing the sss retrievals at high and low winds and when the galactic equator sources are reflected toward the sensor. PY 2012 PD MAY SO Ieee Transactions On Geoscience And Remote Sensing SN 0196-2892 PU Ieee-inst Electrical Electronics Engineers Inc VL 50 IS 5 UT 000303205200024 BP 1636 EP 1647 DI 10.1109/TGRS.2012.2188408 ID 18313 ER EF