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Abstract:  
 
This work addresses the linear dynamics underlying the formation of density interfaces at the 
periphery of energetic vortices, well outside the vortex core, both in the radial and axial directions. We 
compute numerically the unstable modes of an anticyclonic Gaussian vortex lens in a continuously 
stratified rotating fluid. The most unstable mode is a slow mode, associated with a critical layer 
instability located at the vortex periphery. Although the most unstable disturbance has a characteristic 
vertical scale which is comparable to the vortex height, interestingly, the critical levels of the 
successively fastest growing modes are closely spaced at intervals along the axial direction that are 
much smaller than the vortex height. 
  
Keywords: Quasigeostrophic model ; Vortices ; Stratified flow ; Critical level ; Flow instability 
 
 
1. Introduction 

 
Persistent layering, defined here as the vertical stacking of sharp interfaces in temperature and 
density, has been recently evidenced at the periphery of energetic oceanic vortices using seismic 
imaging of the water column (Biescas et al. 2008, Menesguen et al. 2009a, Papenberg et al. 2010, 
Quentel et al. 2010). Typical values of the observed vertical scales involved in the layering is in the 
range of a few meters up to about 100 meters. What is novel is the documentation that such long-lived 
layering is abundant not only at the lateral periphery of vortices, as emphasized in early observational 
work (Armi et al. 1989), but is even stronger both aloft and below the eddy core, at the vertical 
periphery of the vortex. Another striking observation is the lateral spatial coherence of the layering 
which can extend over distances comparable to the vortex horizontal size for several tens of 
kilometers. These two characteristic properties of the layering, its localization at the periphery of 
oceanic intra-thermocline vortices and its large lateral coherence, are the focus of the present study. 
Here, we present adiabatic dynamical arguments for sharp interfaces formation that depart from 
previously invoked rationales for layering that invoke, either different diffusive properties of 
temperature and salt in the ocean(e.g. Ruddick and Richards 2003), or which require an inertial 
instability of the flow (e.g. Menesguen et al. 2009b). 
We build on the study by Benilov (2003) which dealt with the possibility of a slow destabilization of 
oceanic vortices through critical level instabilities at the lateral periphery of vortices based on an 
asymptotic analysis of a thin vortex in a two-layer configuration. In the present paper we explore 
numerically how his results on critical level instabilities can generalize to the case of an intra-
thermocline vortex lens in a continuously stratified fluid. 
The above cited work is part of an abundant litterature on oceanic vortices stability which started with 
Gent and McWilliams (1986), Flierl (1988), and Helfrich and Send (1988), and were motivated 
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by observational data such as the one of Armi et al. (1989). Other observations concerned the surface-
intensified Gulf Stream Ring vortices Olson (1991), whose longevity, and thus robustness to splitting
mechanisms by baroclinic or barotropic instability, have been studied by Dewar and Killworth (1995),
Dewar et al. (1999), Dritschel and de la Torre Juarez (1996), Drijfhout (2003), Katsman et al. (2003),
Reinaud and Carton (2009).

We shall restrict ourselves here to the case of quasigeostrophic dynamics (Pedlosky 1996), the roles of
ageostrophic and divergent waves dynamics on vortex stability have been discussed in the two-layer shallow
water studies of Baey and Carton (2002) and Benilov and Flanagan (2008) and will also be addressed in
forthcoming numerical studies using continuous primitive and also Boussinesq equations.

2 The governing equations

The conservation of quasigeostrophic potential vorticity (Pedlosky 1996) reads

∂Q

∂t
+ J(Ψ, Q) = 0, (1)

where Ψ is the streamfunction, J the horizontal Jacobian operator and Q the potential vorticity defined
as

Q ≡ ∇2Ψ + f2
( Ψz

N2

)

z
+ f, (2)

where z is the vertical coordinate, f is the constant Coriolis parameter and N is the Brunt-Väisälä profile.
Denoting by (ψ′,Q′) perturbations of the streamfunction and potential vorticity around the base state

ψ̄, Q̄, the linearization of equation (1) yields

∂Q′

∂t
+ J(ψ̄, Q′) + J(ψ′, Q̄) = 0. (3)

Henceforth, we restrict the work to axisymmetric mean flows, with ψ̄ a function of the radial and vertical
coordinates r and z only. ψ̄ is assumed to be three-dimensionally compact and → 0 as r → ∞ or |z| → ∞.
The perturbations are assumed to be normal modes of the form

ψ′ = ψ(r, z)eim(θ−ct), (4)

where m and c are the azimuthal wavenumber and angular phase speed. Equation (3) leads to

(

c − ψ̄r

r

)[1

r
(rψr)r −

m2

r2
ψ +

f2

N2
ψzz

]

+
1

r
ψQ̄r = 0, (5)

as here N is assumed to be constant.
The base state is chosen to represent a lens-like vortex, whose lateral and vertical scales are respectively

denoted as L and H and are used as length scales for the nondimensionalization :

r −→ r/L, z −→ z/H, ψ −→ ψ/fL2. (6)

Specifically, the generic shape which is used corresponds to an anticyclonic vortex lens

ψ̄(r, z) =
Ro

4
(1 − bz2) e−(r2+z2). (7)

In (7), when parameter b = 0 the lens has a simple Gaussian shape, while b 6= 0 corresponds to a case with
counterrotating flows above and below the vortex core. The flow amplitude is set by the Rossby number
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Ro (≡ |ζ0|/f , where ζ0 is the relative vorticity of the vortex at its center). Introducing the Burger number
of the base state

Bu ≡ N2H2

f2L2
, (8)

the ambiant potential vorticity Q̄ is

Q̄(r, z) = (rψ̄)r/r + Bu−1 ψ̄zz + 1. (9)

The boundary conditions (see Appendix A) are

ψ ∝
{

r|m| as r −→ 0,

r−|m| as r −→ ∞,
ψz = 0 at

{

z = ztop,

z = zbottom.
(10)

We thus need to solve

[

− 1

r
Q̄r +

1

r
ψ̄r

(1

r
∂r + ∂rr − m2/r2 + Bu−1∂zz

)]

ψ = c
(1

r
∂r + ∂rr − m2/r2 + Bu−1∂zz

)

ψ (11)

with the boundary conditions (10), which correspond to a generalized eigenvalue problem of the form
AΨ = cBΨ , where A and B are differential operators.

3 Stability results

Equation (11) and the associated boundary conditions (10) have been discretized horizontally and ver-
tically using a resolution of 100 × 100 grid points for r = 0, .., rmax = 6 and z = 0, .., ztop, using centered
finite differences and symmetric (resp. antisymmetic) conditions at z = 0. The system has been solved by
a direct generalized eigenvalue so lver QZ method.

3.1 Counter- and co-rotating lens

Previous studies, e.g. Baey and Carton (2002), Benilov (2003), have demonstrated the dominance of
low azimuthal modes in the destabilization of baroclinic vortices. The results of the stability analysis as
a function of the Burger number of the lens are displayed for azimuthal modes m = 1 and m = 2 in
figure 1, for lenses with only co-rotating flow (a) for b = 0, and with counter-rotating flows along the
vertical direction for (b) and (c), corresponding respectively to b = 0.7, and b = 1.4. Since equation (5)
is invariant for z −→ −z, solutions can be either symmetric or antisymmetric with respect to z = 0
and both cases have been considered for m = 1 (see also the discussion in Gent and McWilliams 1986).
Figure 1(a) for a Gaussian lens with only co-rotating flow confirms published results for the lens stability,
namely that wider lenses (small Bu) are more unstable and that, in general, the most unstable mode for
baroclinic instability corresponds to an azimuthal mode m = 2. For tall lenses (Bu > 1), i.e. lenses whose
height exceeds the rescaled length scale (f/N)L, the most unstable mode corresponds to an antisymmetric
m = 1 mode, thus recovering the results that barotropic instability prevails for tall columnar vortices
embedded in a rotating stratified flow, established by Gent and McWilliams (1986) (see also Dritschel
and de la Torre Juarez 1996). Growth rates differ by an order of magnitude between co- and counter-
rotating flows (compare figures 1(a) and 1(b)), as initially recognized by Dewar and Killworth (1995) and
the destabilizing influence of counter-rotating flows has been checked to vary uniformly with parameter b
in equation (7). The increased instability of such counter-rotating vortices fully agrees with their lack of
oceanic observations.

The lowest azimuthal modes m = 1, 2 have also been consistently found to be the fastest growing modes
in the stability results reported in Tychensky (1999) for both a 3-layer and a 5-layer system. A general
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Figure 1. Growth rate of the fastest growing eigenmode for (a) b=0.0, (b) b=1.4 in a domain such that ztop = −zbottom = 6. [Note the
factor of 10 in ordinate scale between (a) and (b)]. (c) Growth rate of azimuthal modes up to m = 5 for wide Gaussian vortices with
b = 0.

discussion of the influence of the radial profile of the vortex core on the azimutal modes selection for the
barotropic case is given in figure 2 of Balmforth et al. (2001). For the baroclinic instability of a wide
gaussian vortex (Bu < 1 and b = 0 in equation (7)), the dominance of azimuthal mode m = 2 holds for
0.1 < Bu < 1. However in the limit of vanishing Bu higher azimuthal modes become dominant, as shown
in figure 1(c), e.g. the cross-over of the growth rate curves of azimuthal modes m = 2 and m = 3 occurs
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Figure 2. Growth rate variation with thinness of lens for a domain such that ztop = −zbottom = 6 (continuous line) and
ztop = −zbottom = 3 (dash line).
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Figure 3. Real part of the angular velocity Re{c} of the leading unstable mode for b=0.0 for a domain such that ztop = −zbottom = 6.

for Bu = 0.075, while m = 4 will dominate over m = 2 for Bu < 0.05.
The two-layer study of Benilov (2003) showed that stability results strongly depend on the relative

thinness of the eddy with respect to the lower layer thickness. This sensitivity has been examined in figure
2 for the case of the azimuthal mode m = 2 by examining the influence of varying the total depth of the
domain and contrasting the two cases with ztop = −zbottom = 6 (continuous line) and ztop = −zbottom = 3
(dash line). Figure 2 confirms the result that thin lenses are more stable than thicker ones, but the
sensitivity is found to remain relatively small in the case of the base state of equation (7).

3.2 Critical level localization

As elaborated by the asymptotic analysis of Benilov (2003), the preferred destabilization of wide ba-
roclinic vortices (small Bu) occurs preferentially through “slow” unstable modes, whose real part of the
complex angular frequency is small when compared to the maximal swirl angular velocity of the vortex
core. This explains why unstable modes are associated to critical levels that are located at the vortex per-
iphery since the swirl velocity of the vortex decreases with radial distance from the vortex center and thus
highlights the crucial importance of the vortex periphery for its stability. Figure 3 gives the distribution
as a function of Bu of the real angular phase speed of the leading unstable mode for a co-rotating vortex
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Figure 4. Critical levels of the four most unstable eigenmodes on top of a (r, z) section of the basic state potential vorticity
2(Bu/Ro)(Q̄ − 1) for (a) m = 2, b = 0, Bu = 0.1 and (b) m = 2, b = 0, Bu = 0.3.

(b = 0). For a Gaussian base state, the right hand side of condition (A.4) is

Ro

2
e−(r2+z2)(ztop − zbottom) at z =

{

ztop,

zbottom.

whose maximum amplitude is 1.4 × 10−15 for Ro = 1 and ztop = −zbottom = 6. Figure 3 shows that
|Re{c}| > 0.1 for the most unstable azimuthal mode m = 2 for all Bu. Thus the ratio of the right and left
hand sides of condition (A.4) is 1.4 × 10−14, which ascertains that condition (A.4) holds for the Gaussian
base state and domain height considered hereafter.

The critical levels in the (r, z) plane, overlayed on top of the basic state potential vorticity field, are
shown in figures 4(a) and (b) for the four most unstable eigenmodes of m = 2, for respectively Bu = 0.1
and Bu = 0.3. The critical levels correspond to locations where the angular phase speed c is equal to the
base state angular velocity

1

r

∂ψ̄

∂r
= Re{c}. (12)

The critical levels are located well outside the vortex core, and also outside the area of maximal vertical
and/or radial shear of the swirl velocity of the vortex. Note that the critical level of the first four leading
eigenmodes are closely spaced, with a vertical spacing between levels in the range of non-dimensional
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δz ≈ 0.02−0.10, which is much smaller than the base state vortex size (figures 4(a,b)). The spatial pattern
of the hierarchy of unstable modes (not shown) for the continuous stratification does not follow a simple
rule, such as being ordered according to the number of zeros of the real part of the eigenfunction (similarly
to the Oscillation Theorem in the Sturm-Liouville theory, as in the two-layer case of Benilov 2003), but
displays instead local modifications of their streamfunction curvature that are not simply related to their
potential vorticity field. The spatial structure of the streamfunction of the leading unstable eigenmode in
the (r, z) plane for both co- and counter-rotating vortices is shown in figures 5(a,b), with the position of
their respective critical level overlaid. The potential vorticity extrema of the leading unstable eigenmode
is shown on the right panel : their location exactly coincides with the position of critical level in the case
of thin lenses (Bu < 1). We have checked that, in that case, potential vorticity extrema correspond to
extrema of the vortex stretching component of potential vorticity, f2(ψ′

z/N
2)z, rather than the relative

vorticity component ∇2ψ′. Therefore the critical layer will correspond to the location of a strong density

gradient, i.e. a density interface. However, in actual flows, such density interfaces are in general the spatial

boundaries of homogenized regions : both phenomena of density interfaces and homogenized regions are
usually found together in the perturbed state after the perturbation has evolved and this will give rise to
persistent layering.

On the other hand, in the case of a tall lens (with Bu > 1), its destabilization (third row of figure 5(a)
for Bu = 2.0) involves extrema in potential vorticity that are dominated by relative vorticity, and are
located nearer the core of the base state vortex.

3.3 Initial-value simulations

The stability of co-rotating vortices has also been investigated through a time integration of the linearized
equation (3) initialized with random disturbances, using the spectral code of Hua and Haidvogel (1986)
with a resolution of 2562 × 480 vertical levels. The integration shows the growth of transient features as
well as the final dominance of the exponential modes which have been identified in the previous section. The
disturbances have been projected onto azimuthal mode m = 2 and results are shown in figure 6 at different
stages of the growth of disturbances. Orr-like mechanisms cause the transient growth of regularly spaced
extrema in potential vorticity with vertical scales that become thinner with time (Orr 1907, McWilliams
et al. 2003). At the late stages of the integration, there is a clear evidence of the dominance of the fastest
growing exponential mode at the periphery of the vortex for

√
r2 + z2 ≈ 1.6, with weaker secondary

extrema closely spaced in its immediate vicinity.

4 Discussion and summary

This work addresses the linear, exponentially-growing dynamics underlying the phenomenon of layering,
involving the ubiquituous formation of sharp vertical interfaces of temperature anomalies, preferentially
located at the periphery of energetic vortices, well outside the vortex core both in the radial and vertical
directions. This was performed by numerically computing the slow modes of destabilization of a vortex
lens in a continuously stratified rotating fluid. They were found to be associated with the critical layer
instabilities such as discussed by Benilov (2003) for a two-layer configuration. Although the most unstable
mode has a vertical size that is comparable to the vortex height, the relative locations of the critical levels
pertaining to the successively fastest growing modes are quite closely spaced, at intervals along the axial
direction that are much smaller than the vortex height.

Orders of magnitude for the vertical spacing between successive critical levels in the parameter range of
oceanic intrathermocline eddies, with L ≈ 20 − 30km, N/f ≈ 50, Bu ≈ 0.1 − 1, H =

√
Bu (N/f)L ≈

200− 600m, corresponds to a typical vertical spacing in the range of 4-60m (using the result of section 3.2
that non-dimensional spacing between critical levels δz ≈ 0.02−0.10 ). This matches the range of observed
vertical scales for the layering at the periphery of oceanic intrathermocline eddies (Quentel et al. 2010).

Our results suggest that the sharpness of the interfaces between layers can be linked to the existence
of critical layers of the leading most unstable modes. The exponential instability does not yield a definite
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Figure 5. Spatial pattern of the leading unstable eigenmode for different azimutal modes : streamfunction field with critical level
overlayed (left) and corresponding potential vorticity extrema (right). Eigenmodes correspond to both a co-rotating and counter-rotating
basic state [respectively, (a) b = 0.0, (b) b = 0.7]. The growth rate is indicated on top of each panel.
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Figure 6. Forward time integration of linearized potential vorticity for a Gaussian lens with b = 0.0, Bu = 0.3. Projection of potential
vorticity disturbances on azimuthal mode m = 2 at successive times (in rotation periods units). Each instantaneous plot has a color map
normalized to the extremum value of the field.
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scale selection, but the locations of the critical layers of the leading modes could favor the growth of sharp
interfaces with vertical scales characteristic of layering.

Furthermore, figure 3 shows that the leading unstable mode for a given Bu, namely azimuthal mode
m = 2 (resp. m = 1) for Bu < 1 (resp. Bu > 1), always corresponds to a location of the critical layer
outside the vortex core, with an amplitude of the real part of the angular velocity that is less than 0.2. For
the case of a Gaussian lens, independently of the nature of the dominant instability mechanism (baroclinic
instability for Bu < 1 and barotropic instability for Bu > 1), we thus find that the peripheral location of
critical layers appears generic. Such results, obtained for a Gaussian lens in a continuously stratified flow,
differ from the asymptotic results of Benilov (2003) who found, for a setup corresponding to a vortex in a
two-layer model with a thin upper layer, that only baroclinic instability would favor unstable modes that
are slow enough for their critical layer to be located outside the vortex core.

Finally, the appendix documents the location of the critical layer of a purely barotropic Gaussian vortex
and a purely vertically-sheared Gaussian zonal flow. The latter case shows that only disturbances with
long wavelengths will have critical layer located outside the vortex core and that moreover there are only 2
unstable modes in the case of pure baroclinic instability. This suggests that the layering which we attribute
to the critical layers of the successively fastest growing modes found for the Gaussian lens (equation 7)
exist because the radial confinement of the lens induces a larger number of unstable eigenmodes with
similar values of their angular phase speeds.
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Annexe A

Rigid lid boundary conditions at the ocean surface and bottom actually correspond to

Ψzt + J(Ψ, Ψz) = 0

and are exactly satisfied by the base state vortex by virtue of its axial symmetry. The boundary condition
at z = ztop and z = zbottom for the disturbance streamfunction is

(

c − ψ̄r

r

)

ψz +
ψ

r
ψ̄zr = 0. (A.1)

Equation (A.1) can be reduced to

ψz = 0, (A.2)

if

Re{c} ≫
∣

∣

∣

ψ̄rz

r

ψ

ψz

∣

∣

∣
,

∣

∣

∣

ψ̄r

r

∣

∣

∣
. (A.3)

An upper bound of the first term on the right hand side of (A.3) corresponds to a vertical scale of the
perturb ation as tall as the full domain height,
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∣
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,
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recalling that ztop − zbottom is the dimensionless domain height (scaled by the base state vortex thickness).
Thus a sufficient condition is that

|Re{c}| ≫ max
(∣

∣

∣

ψ̄r

r

∣

∣

∣

)

(ztop − zbottom) at z =

{

ztop,

zbottom.
(A.4)

This relation obviously covers the two conditions of (A.3) if (ztop − zbottom) > 1. The condition (A.4) is
verified provided the top and bottom boundaries are sufficiently distant from the eddy center for a base
state vortex whose amplitude is rapidly decaying away from the origin. This was checked explicitly a
posteriori in section 3.

Annexe B Pure barotropic instability of Gaussian column vortex in a stratifed medium

The case of a barotropic column vortex with a Gaussian radial profile for the streamfunction field

ψ̄(r) = e−r2

(B.1)

has been studied by Gent and McWilliams (1986) and their figure 1(b) shows the real part of the propa-
gation speed for the most unstable mode Re{mc}, which magnitude is less than 0.25 for azimuthal mode
m = 1 (which has the largest growth rate), thus corresponding to a critical layer outside the vortex core.

Annexe C Pure barotroclinic instability of a Gaussian vertically sheared flow

The limit of pure baroclinic instability can be addressed by considering the base state

Ū(z) = −e−z2

, (C.1)

whose meridional gradient of ambiant potential vorticy is

dQ̄

dy
= −d2Ū

dz2
.

Looking for disturbances such as

ψ′ = F (z)eik(x−ct) cos ly

leads to the eigenvalue problem

(Ū − c)
(d2F

dz2
− K2F

)

+
dQ̄

dy
F = 0, (C.2)

with K2 = k2 + l2 and boundary conditions dF/dz = 0 at the surface and bottom of the domain.
Only two unstable modes are found and figure C1 displays the growth rate and the real part of the

propagation speed as a function of zonal wavenumber k, for the case of a prescribed value of l = 0.1.
Figure C1(b) reveals that for the most unstable mode, the longest wavelengths will correspond to slowly
propagating disturbances (≈ 0.15) so that their critical layer will lie outside the vortex core. The variation
of the propagation speed with horizontal wavenumber can be rationalized by multiplying equation (C.2)
by the complex conjugate of F and add to the result the product of F with the complex conjugate of C.2.
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Figure C1. (a) Growth rate of the only two unstable modes for the pure baroclinic instability case of base state (C.1) ; (b) real part of
their propagation speed as a function of zonal wavenumber

The expression is integrated with respect to z on the domain height yielding

Re(c) =

∫

Ū
∣

∣

∣
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dz

∣

∣

∣

2
dz +
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|F |2 dz + K2
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Ū |F |2 dz
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