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Abstract:  

One of the problems concerning studies of fish egg distribution is the weak spatial and temporal 
resolution due to the workload that examination of a large number of samples would demand. 
Recently, the development of a new laboratory imaging system, the ZooScan, capable of obtaining 
relatively good resolution images enables automated zooplankton identification using supervised 
learning algorithms. This new approach was applied to formalin-fixed fish egg samples collected 
during French winter IBTS (International Bottom Trawl Surveys) in the Eastern English Channel and 
the Southern North Sea. Fish egg spatial distributions of seven species based on the microscope and 
ZooScan identifications were compared. Abundance and distribution maps of winter-spawning areas 
of plaice, long rough dab, cod and whiting were similar for both methods. Low identification accuracy 
for small size eggs was due to microscope misidentification of standards used for the ZooScan 
learning (dab and flounder). The potential input of such a tool to quickly acquire valuable data on 
identification, enumeration, size frequency distribution of fish eggs and map spawning areas is of great 
interest for understanding and forecasting fisheries recruitment and will support ecosystem-based 
management.  
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1. Introduction 
 
The egg being a critical phase in the life cycle of fish, studying changes in abundance and 
distribution of fish eggs is essential to interpret fish stock evolution. In recognition of this, a 
scientific expert committee related to the Fifth International Conference on the Protection of the 
North Sea (ICES, 2003) recommended regular monitoring of spawning grounds of important 
commercial fish species as an ecosystem-based approach to fisheries management in the North 
Sea. 
One of the main problems confronting study of spawning grounds distribution is low sampling 
resolution, both spatial and temporal. Although it is widely recognized that small scale sampling 
would be relevant to increase the accuracy of spawning ground map, the work involved in fish egg 
sample analysis has made it impossible to sample at very high resolution in most programs. To 
some extent, the lack of sampling capability can be resolved using a Continuous Underway Fish 
Egg Sampler (CUFES) (Checkley et al., 1997; Zwolinski et al.; 2006, Petitgas et al., 2009; Lelièvre 
et al., 2010), but the analysis of such amount of samples by traditional microscope observations is 
still a very time consuming task. However, recent advances in digital plankton image processing 
and pattern recognition have made automated or semi-automated coarse taxonomic level 
identification possible (Benfield et al. 2007). The recently developed ZooScan integrated system 
produces measures of zooplankton abundance, biomass and size spectra for a variety of 
ecological studies (Grosjean et al., 2004; Schultes and Lopes, 2009; Gorsky et al., 2010). In this 
study, ZooScan device was used on formalin-fixed fish eggs samples collected by the CUFES 
during winter International Bottom Trawl Surveys (IBTS) of 2008 and 2009 in the Eastern Channel 
and the Southern North Sea. Distribution of eggs of seven fish species (dab, flounder, rocklings, 
whiting, cod, plaice and long-rough dab) identified with the ZooScan were compared to distribution 
of eggs identified by traditional microscopy method. The potential input of such tool to quickly 
acquire valuable data on identification, enumeration, and size frequency distribution of fish eggs 
and map spawning areas is discussed. 
 

2. Material and method 
 
Data collection and conservation 

The data were collected during the French January-February International Bottom Trawl Surveys 
(IBTS) 2008 and 2009 on board the RV Thalassa (Fig. 1). Fish eggs were collected by the CUFES 
(Model C-100, Ocean Instruments Inc.). A full description of the CUFES has been provided 
elsewhere (Checkley et al., 1997; ICES, 2007). Essentially, seawater is continuously pumped at 5 
m depth by a submersible, high volume pump mounted at the end of a pipe installed internally on 
the vessel, hardly edging from the hull and pumping perpendicularily to the current. To enhance 
the catching efficiency, a metallic scoop has been bolted on the side of the ship and is directed into 
the current. The flow rate continuously monitored with a flowmeter (Promag) was about 700 L. min-

1. The mesh size of the concentrator and collector was 500 μm. The samples were taken every 30 
min. periods (which corresponds to approximately 21 m3 of seawater pumped), 24/24h along the 
vessel route, for a total of 1050 samples in 2008 and 1021 samples in 2009.  
Egg samples were preserved using the formalin solution described in Mastail and Battaglia (1978) 
modified by Bigot (1979). This solution improves the preservation of chromatophores and prevents 
yolk burst into the perivitellin space, which are key features for egg identification. Briefly, a solution 
of buthylhydroxyanisol (BHA) was made up by adding 8 g BHA to 500 mL monopropylen glycol 
and a solution of ethylenediaminetetraacetic acid (EDTA) was made by adding 20 g EDTA to 500 
mL distilled water. Both solutions were added to two litres of commercial formalin (36%) and 
buffered to pH 7 with sodium glycerophosphate, while stirring. Then, 2 g ascorbic acid and distilled 
water were added up to 5 L to obtain a stock solution at 14.4% of formalin buffered at pH 7. Finally, 
the samples are preserved in sea water using 6% of the stock solution (which is enough when 
plankton account for ¼ of the sample volume). The resulting concentration of formalin in the 
sample is less than 1%. 
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Fish egg identification by microscopy 
 
Eggs were identified to species level under a binocular microscope according morphological 
criteria, mainly egg size (measured by a micrometer), the presence of an oil globule, and the 
pigmentation of the embryo in function of the stage development (Russell, 1976; Munk and 
Nielsen, 2005). The number of eggs counted in each sample was converted into number of eggs 
for a standard reference volume of 20 m3 (close to that filtered in 30min):  

20×=
V
NNstd   (1) 

where: Nstd = Number of eggs per 20 m3, N = number of eggs counted, V = volume pumped (m3). 

 

Sample digitisation with the ZooScan system 
 
CUFES samples were digitised using a ZooScan imaging system (Hydroptic-V2 model) together 
with dedicated image processing software ZooProcess and Plankton Identifier (Gorsky et al., 
2010). Prior to digitisation of formalin fixed-samples, they were rinsed with tap water and 
subdivided, when necessary, using a Motoda splitter (Motoda, 1959). Samples were poured into 
the scanning cell (11 × 24 cm) and organisms were manually separated to minimize overlapping. 
Samples were scanned into a 2400 dpi, 16 bit grey digital image for archiving and then converted 
to an 8 bit image for processing. The final image was segmented at a default level of 243, thus 
keeping 243 grey levels for characterizing organisms. Objects having an equivalent circular 
diameter bigger than 0.3 mm were enumerated and 51 attributes (e.g., size, shape and grey-
levels) were extracted from every object (see appendix 1 for a detailed description of attributes). A 
vignette of each object was extracted and associated measurements were saved in a text file 
called a PID file (Plankton Identifier file) for further identification process. After digitisation, sample 
was recovered and reconditioned to be archived. 
 

Building and evaluating the classifier for automated identification 
 
Automated identification of fish eggs was made using supervised learning algorithms available in 
the Plankton Identifier free software (Gasparini, 2007). All supervised learning methods need a 
subset of objects already identified by an expert (learning set) to produce a classification model 
(classifier). Fish eggs identified under microscope from IBTS 2008 samples were sorted by species 
level and development stage to make a collection of fish eggs. These standards of eggs were 
scanned to obtain a learning set, i.e., a set of vignettes of sorted fish eggs together with their 
attributes. Two development stages were identified: stage A (early stages), without embryo, 
corresponding to stages IA and IB after Thompson and Riley (1981) and stage B (advanced 
stages) with an embryo, corresponding to stage II, III, IV and V after Thompson and Riley (1981).  
By default the classifier classifies all vignettes, including detritus, damaged eggs or other 
organisms (e.g., copepods, chaetognathes) that could have been collected with the CUFES. As we 
wanted to focus on fish eggs we created classes for damaged eggs per species and pooled 
detritus and other organisms in one class named ‘detritus’, in order to minimize bias during 
analysis. Only species having highest relative abundance and occurrence frequency were taken 
into account for building the learning set. The supervised learning method chosen to build the 
classifier was the Random Forest algorithm  (Breiman, 2001) as it is known to give best results on 
zooplankton samples (Gorsky et al., 2010). The random forest method is well suited to situations 
involving a large number of variables to describe objects belonging to several predefined classes. 
This automatic method consist in choosing, at each step of an iterative process, a number of 
variables. Based on these variables, objects are divided into the predefined groups using a 
classification tree. Each node of the tree is characterized by a threshold value of a variable and 
each variable can be used many times in the construction of the tree. At the end of the process, a 
set of classification trees (forest) is obtained in which each element is associated to variables. In 
this forest, the tree giving the minimum number of misclassifications is selected. Such a criterion 
gives equal weight to all errors regardless of the class. The variables associated with this tree are 
then considered to be most efficient to classify objects. The performance of the classifier was 
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evaluated on an independent test set whose vignettes were not used at any time during the 
learning process. 
 

Factorial analyses and classification 

A Principal Component Analysis (PCA) followed by a Hierarchical Cluster Analysis (HCA) was 
performed on the learning set under R version 2.14 (R Development Core Team, 2005). Our 
objectives were to i) analyse linear interactions between the 51 ZooScan attributes, ii) identify 
clusters (subgroups of object in the learning set) and iii) characterise clusters with the ZooScan 
attributes and the identification classes that are highly representative of each cluster. The 
combination of PCA and cluster analysis is a common way to explore relationships among a large 
number of variables and to identify homogenous subgroups of instance in a population (Lebart et 
al. 2000). PCA describes the total inertia (or variability) of a multidimensional set of data, in a 
sample of fewer dimensions (or factors) that is the best summary of the information contained in 
the data. We computed the PCA using the 51 ZooScan attributes as continuous active variables 
and the identification classes as categorical supplementary (or illustrative) variable. The HCA was 
then performed based on the factorial coordinates supplied by the two first factors of the PCA and 
on the identification classes of the learning set used as pre-clusters to handle the very large 
dataset and to create the dendrogram from these pre-clusters. The type of HCA used here is an 
agglomerative clustering (based on Ward’s criterion), i.e. a procedure that successively groups the 
closest objects into clusters, which then are grouped into larger clusters of higher rank (Legendre 
and Legendre 1998). 
 

Geostatistical analyses and interpolated map 
 
Spatial distribution of eggs were mapped using geostatistical analyses (Webster and Oliver, 2001). 
Geostatistics embody a suite of methods for analysing spatial data and allow the estimation of the 
values of a variable of interest at non-sampled locations from more or less sparse sample data 
points based on spatial auto-correlation between these points. 
The separation distance between points was calculated using longitude transformed into 
equivalent decimal degrees of latitude of the sampling location (2), which are of constant distance 
using a mercator-like projection formula. 

( )180cos π×× latitudelongitude   (2) 

Also, abundances of the eggs were log-transformed (log (x + 1), with x the abundance of eggs for 
a standard volume of 20 m3), to be closer to normality. For each fish species egg and each year a 
variogram was calculated. The variogram is a model of the spatial auto-correlation pattern of the 
variable of interest that summarises how the variance of a variable changes as the distance and 
direction separating any two points varies. The distances between points were calculated using 
latitudes and corrected longitudes. In the presence of a local trend or drift, values of fish egg 
abundances were modelled by fitting a low-order polynomial (linear or quadratic) regression to the 
spatial coordinates using the least-square regression method. If the variance explained by the 
regression accounted for more than 20% of the total variance, the variogram was then calculated 
on the residuals. 
Four models (exponential, circular, spherical and pentaspherical) were statistically adjusted to the 
experimental variogram using the least-square regression to determine the nugget, sill and range 
parameters that characterise the shape of the variogram. The sill represents the maximum 
variance of the data. The range is the lag distance at which the sill is reached. It marks the limit of 
spatial correlation between points and describes the extent of the observed pattern. The nugget is 
the positive intercept of the variogram with the ordinate axis and depicts the variance between low-
distance points. The model with the best visual and statistical adjustment (so, explaining the most 
variation) was retained as the variogram. The latter was used to estimate egg abundances on the 
knots of a regular grid by using the kriging interpolation method (Carpentier et al., 2005). The 
geostatistical analyses were made using GenStat software (GenStat Release 7.1, 2004)) on 
microscopic and ZooScan data obtained for each species. To compare the obtained maps, the 
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zonal relative error between microscopic and ZooScan identifications was calculated on each 
samples as follow:  

  zonal
maxµ

zµ

N
NN

errorrelative
−

=  (3) 

where, Nµ and Nz correspond to the number of eggs per 20 m3 according to microscope and 
ZooScan observations respectively. The absolute error was divided by the maximum abundance 
observed by microscope (Nµmax) in order to rescale the error as a function of the maximum 
permissible error, being the maximum difference that may occur between visual and zooscan 
identifications and to highlight areas where this error has the most impact on the evaluated 
abundance.  
 

3. Results 
 
Fish eggs identified under microscope 

Table I lists the 16 fish species whose eggs were identified under microscope in 2008 and 2009 
French IBTS with their relative abundance and frequency of occurrence. As it was difficult to 
accurately discriminate (using visual criteria) between the different rockling eggs (three species 
were identified by molecular analysis in the area, Lelièvre et al. 2010), they were pooled for 
mapping and making standard for ZooScan. The studied species belong to nine families, 
Pleuronectidae and Gadidae being the most represented. Unexpectedly, dab (Limanda limanda) 
and whiting (Merlangius merlangus) had the highest relative abundance and frequency of 
occurrence, whereas their spawning period is known to take place from March to June in the North 
Sea (Munk and Nielsen, 2005). In addition to dab and whiting, the following species were abundant 
enough to make standard for ZooScan analysis: plaice (Pleuronectes platessa), flounder 
(Platichthys flesus), cod (Gadus morhua), rocklings (Enchelyopus cimbrius, Ciliata mustela and C. 
septentrionalis), and long rough dab (Hippoglossoides platessoides). 
 

Classifier performance 
 
Learning and test sets were composed respectively of 3276 and 2265 vignettes distributed into 21 
classes (Fig. 2). The number of eggs into each class of the learning set was balanced, when 
possible, in order to avoid over learning of one class to another. For most of the species, 300 to 
400 eggs were used, except for the long rough dab for which a bit less than 200 eggs were 
colleted in 2008. Best classifier performance on the test set was obtained when pooling the 
development stages A and B into one class in the learning set (Fig. 3). So in a first step fish eggs 
were identified per species without any distinction of development stages, and in a second step 
development stages were determined for each species separately. For the latter, classifiers 
allowing distinction between stage A and B was built for each species, their performance is shown 
in figure 4. The confusion matrix (Table II) gives an overview of performance obtained to correctly 
classify fish eggs from the independent test set without distinction of development stages (first 
step). Fish eggs of plaice, cod and whiting have a recall (rate of true positives) higher than 96% 
and a contamination (rate of false positive) lower than 8%. For the fish eggs of long rough dab the 
recall was of 86% due to the misidentification of few eggs with plaice eggs. The main confusion 
was observed between eggs of dab, flounder and rocklings with high contaminations (>30%) and 
low recalls (<80%). Damaged eggs were either well recognized or assigned into the species class 
to which they belonged (long rough dab, plaice, common sole). Otherwise they presented the 
same confusions as the species class to which they belonged (dad, flounder and rocklings). As 
expected fish eggs were distinguished from the detritus class with a very good accuracy (99%).  
 

Factorial analysis and clustering on the learning set 

The first two factorial axes of the PCA performed on the learning set explained ca. 65% of the total 
variability (inertia) in the data (Fig. 5). The position of the 51 ZooScan attributes is shown as 
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arrows along the factorial axes in the circle of correlation (Fig. 5 top), and the centroids of the 
identification classes (detritus and fish eggs) were simply projected into this factorial plane without 
participating in its computation (Fig. 5 bottom). The first factor (41.4% of the total inertia) was 
mainly defined by the opposition between parameters describing the circularity (circ., circexc., 
roundness) and grey level variability (Stdev., CV, Range) of objects on the negative side (r > 0.8) 
and parameters describing objects having low grey level (Mean, Mode, Median, Min, Histcum 1 
and 2) and a low area compare to their perimeter or diameter (PerimAreaexc and FeretAreaexc) 
on the positive side (r <-0.8). So the first factor clearly opposed the detritus (such as fibres) to the 
fish eggs classes. The second factor (22.2% of the total inertia) was mainly defined by parameters 
of dimension (Perim., Major, Feret, Skelarea, Convexperim, Convexarea) and allows the 
distribution of fish eggs along the factorial axis according to their size. Thus, the big eggs of long 
rough dab and plaice are opposed to the smaller eggs of dab, flounder and rocklings along the 
second factor. The descriptors of the learning set objects used in the clustering were their factorial 
co-ordinates on the first two axes obtained in the PCA. As the additional amount of variability 
explained by the factorial axes decreased markedly after the first two factors, only the latter were 
used to identify clusters in the learning set through a HAC (Fig. 5B). Five clusters were identified. 
The first one corresponded to the detritus group. The second cluster, grouped together the small 
eggs of flounder, dab and rocklings with their corresponding damaged eggs. The third cluster, 
grouped together the eggs of whiting and sole. The forth cluster was intermediate to cod and the 
damaged eggs of whiting and sole. The last cluster corresponded to the eggs of plaice and long 
rough dab with their respective damaged eggs and the damaged eggs of cod. 
 
Interpolated maps 

We compared distribution mapping of fish eggs for each species (all stages combined) identified 
under the microscope or with the ZooScan (Fig. 6). The distribution pattern of total egg abundance 
was similar comparing the maps based on microscope and ZooScan counting. Highest 
abundances were found in the eastern part of the North Sea, from French waters to the German 
Bight, in the English Channel, in front of the three French estuaries of Canche, Authie and Somme. 
The zonal relative error between microscope and ZooScan counting reached an average of 1±1%. 
As suspected from the confusion matrix, distribution mapping of dab, flounder and rockling eggs 
showed different patterns according to the method of identification. Abundance of dab eggs were 
lower with the ZooScan compared to microscope identifications, whereas for flounder and rocklings 
eggs it was the opposite. Mean relative errors for the latter was high, 12±2% and 20±40%, 
respectively. The same pattern of egg distribution was observed between microscope and 
ZooScan identification methods for cod and whiting with a mean relative error rate 3±4% and 
2±3% respectively. Microscope and ZooScan identifications produced similar distribution patterns 
for plaice and long rough dab eggs. Both methods showed that long rough dab eggs were 
generally found in the north east of the study area whereas plaice eggs had a larger distribution in 
the North Sea and were also observed in the English Channel. The mean relative error was of 
7±6% for plaice and of 2±3% for long rough dab. 
 

4. Discussion 
 
The 16 fish species whose pelagic eggs were identified under microscope, from winter IBTS 
surveys in 2008 and 2009, can be divided into winter-spawning and spring-spawning species. 
Plaice, flounder, cod and long rough dab are winter-spawning species having highest spawning 
activity in February (van der Land, 1991). Eggs of dab and whiting were the most abundant and 
rocklings eggs were common as well, even though they are spring-spawning species having 
highest spawning activity in March-April. Past studies have already reported that these species 
may start to produce high egg abundances already in January (Desbrosses, 1943; van der Land, 
1991). The other species identified under microscope were rare and their maximum spawning 
activity occurs normally later in spring. As we wanted to evaluate the ZooScan capacity to identify 
the main winter spawning areas in the Eastern English Channel and the Southern North Sea we 
decided to build the learning set only with the winter-spawning species and those with high 
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abundance and frequency. This may have induced minor contaminations leading to lower 
recognition performance when applying our classifier on the dataset. Indeed all types of object that 
were encountered in a sample could only be identified according to one of the categories available 
in the learning set (detritus group and seven fish species). But we assumed that the contamination 
by the other species was not significant due to their weak occurrence in the studied area in winter.  
The ZooScan system for plankton samples digitisation and dedicated softwares used in this study 
permitted a rather rapid analysis of the large number of samples collected underway by CUFES 
and to produce interpolated maps of the spawning grounds with high spatial resolution. CUFES 
samples were scanned one year later after microscope identification and few eggs may have been 
lost between each step of identification process (sieving, microscope sorting, and sample 
recovery). Moreover, ZooScan maps produced in this study did not include the damaged egg 
classes. These may have induced some differences of abundance between both enumeration 
methods. However, the similarity between maps of egg distribution (all species) obtained from 
microscope and ZooScan counting confirmed the validity of the ZooScan approach to have a quick 
estimate of egg abundance, distribution, and size spectra.  
A difficulty in automated plankton recognition and classification systems is the selection of the 
number of classes (Fernandes et al., 2009). We demonstrated that merging the development 
stages of fish eggs in only one class per species permitted to maximize the number of vignettes 
available per species and to improve the performance of good recognition of each species. In a 
second automatic identification step, two developmental stages (early and advanced) were 
determined for each species separately using dedicated learning sets, which minimized 
contamination risks. For the purpose of mapping spawning grounds, it is indeed preferable to 
identify early development stages. In the same line of thought, we chose to gather objects that 
were not eggs in only one class of detritus in the learning set. This allows limiting the number of 
vignettes to be sorted, since a class needs a minimum of 200 – 300 vignettes to be sufficiently 
represented in the learning set (Gorsky et al., 2010). Detritus (which also included other 
zooplankton taxa) were then very well distinguished from eggs, mainly on the basis of circularity 
parameters as shown by the PCA analysis. 
The factorial analysis and clustering on the learning set showed that fish eggs can be easily 
distinguished into small (dab, flounder and rocklings group), medium (whiting and cod group) and 
large (long rough dab and plaice groups) eggs based one size parameters and texture parameters. 
The supervised learning method used in this study, the Random Forest algorithm (Breiman, 2001), 
improved slightly the distinction between species, and permitted to get good recognition of long 
rough dab, plaice, whiting and cod eggs. For these species maps of abundance distribution 
patterns were comparable with both identification methods with a reasonable spatial relative error 
(<10%). The supervised learning method did not allow distinguishing species inside the dab, 
flounder and rocklings group of small eggs, giving low recalls (<80%) and high contaminations 
(>30%). 
It was demonstrated by Culverhouse et al. (2003) that in general, neither human nor machine can 
be expected to give highly accurate or repeatable labelling of specimens. Dab and flounder eggs, 
as well as cod and whiting eggs are difficult to distinguish under microscope, especially for the 
early stages (Taylor et al., 2002). In order to validate microscope identification of the standards 
used for building the learning set, molecular analyses were performed (Lelièvre et al., 2010). If 
92.5% of standard dab eggs were correctly identified, only 63.8% of standard flounder eggs were, 
the remaining eggs (36.2%) being dab eggs. Similarly, 98% of standard cod eggs were correctly 
identified but only 71% of standard whiting eggs were, the remaining (29%) being of cod eggs. 
Then, distribution mapping of dab and cod eggs based on microscope identifications correctly 
illustrated spatial patterns but underestimated abundances in spawning areas, whereas 
abundances were overestimated for flounder and whiting eggs. This standard quality problem had 
serious consequences on ZooScan identification accuracy as the classifier was built including 
these misidentifications. A possible solution to ensure the identification quality of fish egg in 
standards would be to obtain eggs directly from fish spawns under experimental and aquaculture 
conditions. Identification of rockling eggs did not lead to confusion under microscope because of 
the presence of an oil globule. Unfortunately, according to the position of eggs on the scanning 
cell, the globule is not always visible, which makes this important egg feature not useful for image 
analysis. This explained why worst ZooScan identification results were obtained with this species 
that was confused with species of similar size class (dab and flounder). 



 8 

In future work effect of fixation solution on standard eggs over time will need to be tested. Indeed, 
formalin solution may changed size diameter of eggs (Hislop and Bell, 1987). The fixative used in 
this study had less than 1% formalin which should reduce any shrinkage effect. However, formalin 
may also increase the opacity of eggs over time. We observed that eggs from IBTS 2008 used to 
build standards were more opaque and yellowish in colour than eggs from 2009. In order to 
improve ZooScan identification performances on fish eggs several tracks can be followed. First, 
the learning set needs to be balanced for those species that are under-represented (long rough 
dab, rocklings and cod). Secondly, the PCA analysis showed that among the 51 parameters some 
were highly correlated and redundant, resulting in an over fitted classifier. Although the use of 
partly redundant variables should not affect classification performances with algorithms like 
random forest, reducing the number of variables may lead to a reduction in the calculation time. 
Applying a method of selection of variables, such as stepwise linear discriminant analysis 
procedures (Klecka, 1980), on the learning set would probably help identify the redundant 
variables in the case of recognition of fish species eggs. Finally, comparison between ZooScan 
and traditional methods of counting showed that ZooScan allowed to size and count eggs to give a 
reproducible estimation of proportional abundance of different species (or size class) eggs. A 
correction factor obtained by either microscope or molecular analyses on a spatially representative 
subset of samples of each species may be applied on each group in order to obtain eggs 
distribution maps per species, in a similar manner to that applied in Lelièvre et al. (2010). 
Beside some taxonomic problems, the ZooScan can rapidly give useful size spectra and biomass 
estimate of eggs for ecological oriented studies, and can thus be considered as a good 
complementary approach to traditional microscope identification. The ZooScan is of great interest 
to envisage higher sampling resolution of spawning grounds in order to improve our knowledge of 
pelagic fish egg distribution and to support ecosystem-based management. 
 
 
Supplementary data 
 
Supplementary data can be found online at http://plankt.oxfordjournals.org. 
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Figures 
 

 
 
Fig. 1. Spatial location of CUFES samples collected every 30 min periods along the RV Thalassa 
route during French January–February IBTS 2008 (open circle) and 2009 ( plus). 
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Fig. 2. Number of vignettes per class in the learning (black bars) and test (white bars) sets used for 
building and evaluating the classifier. StA, early stage eggs; StB, advanced stage eggs; d, 
damaged eggs, those of dab and flounder were pooled together. 
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Fig. 5. A representation in the first factorial plane of the PCA of the 51 ZooScan attributes of the 
learning set (top) and the identification class centroids (open circle) (bottom). The five cluster 
centroids identified by the Hierarchical Ascendant Clustering were also projected in this plane 
(black diamond) (bottom). The first (horizontal) and second (vertical) axes explained 41.4 and 
22.2% variance, respectively. 
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Fig. 6. Fish eggs distribution of log-transformed data of each species from IBTS 2009, identified by 
the microscope (left), by ZooScan analyses (middle) during IBTS 2009 and relative error map 
(right) 
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Fig. 6. Continued 
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