Modelling secondary production in the Norwegian Sea with a fully coupled physical/primary production/individual-based Calanus finmarchicus model system

Type Article
Date 2012-04-25
Language English
Author(s) Hjøllo Solfrid Sætre1, Huse Geir1, Skogen Morten D.1, Melle Webjørn1
Affiliation(s) 1 : Institute of Marine Research, Bergen, Norway
Source Marine Biology Research (1745-1019) (Taylor and Francis), 2012-04-25 , Vol. 8 , N. 5-6 , P. 508-526
DOI 10.1080/17451000.2011.642805
WOS© Times Cited 47
Keyword(s) Calanus finmarchicus, zooplankton, IBM, NORWECOM, end-to-end modelling, North-East Atlantic
Abstract The copepod Calanus finmarchicus is the dominant species of the meso-zooplankton in the Norwegian Sea, and constitutes an important link between the phytoplankton and the higher trophic levels in the Norwegian Sea food chain. An individual-based model for C. finmarchicus, based on super-individuals and evolving traits for behaviour, stages, etc., is two-way coupled to the NORWegian ECOlogical Model system (NORWECOM). One year of modelled C. finmarchicus spatial distribution, production and biomass are found to represent observations reasonably well. High C. finmarchicus abundance is found along the Norwegian shelf-break in the early summer, while the overwintering population is found along the slope and in the deeper Norwegian Sea basins. The timing of the spring bloom is generally later than in the observations. Annual Norwegian Sea production is found to be 29 million tonnes of carbon and a production to biomass (P/B) ratio of 4.3 emerges. Sensitivity tests show that the modelling system is robust to initial values of behavioural traits and with regards to the number of super-individuals simulated given that this is above about 50,000 individuals. Experiments with the model system indicate that it provides a valuable tool for studies of ecosystem responses to causative forces such as prey density or overwintering population size. For example, introducing C. finmarchicus food limitations reduces the stock dramatically, but on the other hand, a reduced stock may rebuild in one year under normal conditions.
Full Text
File Pages Size Access
Author's final draft 33 2 MB Open access
19 701 KB Access on demand
Top of the page