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Abstract:  
 
This chapter deals with object recognition in images involving a weakly supervised classification 
model. In weakly supervised learning, the label information of the training dataset is provided as a 
prior knowledge for each class. This prior knowledge is coming from a global proportion annotation of 
images. In this chapter, we compare three opposed classification models in a weakly supervised 
classification issue: a generative model, a discriminative model and a model based on random forests. 
Models are first introduced and discussed, and an application to fisheries acoustics is presented. 
Experiments show that random forests outperform discriminative and generative models in supervised 
learning but random forests are not robust to high complexity class proportions. Finally, a compromise 
is achieved by taking a combination of classifiers that keeps the accuracy of random forests and 
exploits the robustness of discriminative models. 
 
 
 
 
 
1. Introduction 
 
 
Recent signal processing applications involve new problematics in machine learning. For 
instance, in addition to supervised learning scheme and unsupervised clustering, semi-
supervised classification show the improvement brought by considering a training dataset 
formed by labelled and unlabelled data [4]. Semi-supervised classification is then considered 
when labelled data are lacking. One can consider a more general situation: the weakly 
supervised learning. In weakly supervised learning, the label information of training data is 
composed of the prior for each class grouped 
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together in a vector. The supervised learning and the semi-supervised learning are
particular cases of weakly supervised learning. For instance, in supervised learning,
prior vector gives 1 if the instance belongs to the considered class and 0 if not. In a
same way, in semi-supervised learning, if the class is unknown the prior is equal for
each class, and if the class is known it leads to a binary vector indicating 1 for the
corresponding class as in supervised classification.

The field of fisheries acoustics provides weakly supervised learning schemes [22]
[19] [16]. In fisheries acoustics, people try to recognize fish schools in images, the
objective being to assess fish stock biomass, to study the marine ecosystem, or to
carry out selective trawl catches. For example, when assessing the fish stock biomass
in a given area, the oceanographic vessel covers the area to bring back species in-
formation. In figure 1-left, an area to be assessed is shown. The vessel transversal
motion is schematically represented. Through the transversal motion, the vessel ac-
quires images of the water column thanks to an acoustic sounder mounted on the
hull. An example of acquired images is shown in figure 1-right. By successive ver-
tical acoustic pulses, an echogram can be built in which acoustic echo samples are
represented. The image then shows the acoustic response of each sample of the
underwater space. Each sample of one fish school has different acoustic response
compared to the seabed, the water, or the plankton. In the example of figure 1-right,
the sea surface is visible as well as the bottom sea and some fish schools. The ob-
jective being to conceive classification models, a labelled training dataset is needed.
In that sense, trawl catches are carried out to give the proportion of species in the
related image. This proportion gives a prior knowledge for each fish schools of
the images. As shown in figure 1-left, several trawl catches are realized during the
acoustic campaign (trawl catches are represented with black points). Note that trawl
catches often provide multi-class catch as a class proportion (classes being species).
These species proportion sampling allows to built a training dataset of prior labelled
fish schools. Once classification models are built, species biomasses are evaluated in
non-labelled images thanks to a physic relation that links the backscattered acoustic
energy to the biomass species. Several other examples of weakly supervised learn-
ing can be found in the field of computer vision. For instance, in computer vision
people try to recognize objects in images for detecting their localization, their rota-
tions and/or their scale [10] [24] [6] [5] [29]. The training dataset is then composed
of images that contain objects and that are labelled with the indication of the pres-
ence or the absence of class in each image. Proposed models can then be based on
Expectation-Maximization (EM) algorithm [28] [26] [20], on discriminative models
[25] [27], or on Gaussian Markov random field [14].

In this chapter, three classification models are compared and studied. The first
one is a generative model based on the EM algorithm [26] [9], the second one is a
Fisher-based discriminative model that is extended to the non linear case [9], and
the last one is a soft random forest [2] [17] that have been extended to weakly super-
vised learning. Classification models are useful in different situations. For instance,
one model may provide strong accuracy but may not be robust to complex weakly
supervised dataset. A procedure is then presented to combine the probabilistic clas-
sifiers to improve classification performances. The three models are evaluated on a
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dataset composed of real fish schools. Experiments are carried out to evaluate both
the robustness of the classification models as regards to the complexity of the train-
ing labels and the accuracy of the correct classification rate reached that is reached.

Section 2 is dedicated to notations and to the general framework. In the next sec-
tions 3, 4 and 5, the generative model, the discriminative model and the soft random
forests are respectively presented. In section 6, the method that combines several
classification models and improves classification performance is presented. Exper-
iments are done in section 7 and concluding remarks close the chapter in section
8.

Fig. 1 In order to assess fish stock in an area (left), the vessel acquires images of the water column
throughout transversal motion (left). Images contain fish schools (right) that must be classified
according to their class species. Species are discriminant as a function of the shape, the position
in the water column or the energy. The ground truth allowing training classification models is
achieved by successive trawls catches (fishing with a net). Trawl catches spots are shown on the
left with dark points.

2 Notations and general framework

The training data is composed of objects characterized by feature vectors along with
class prior vectors such that the training dataset can be written as {xn,πn}1≤n≤N ,
where xn = {xd

n}1≤d≤D is the nth object of the dataset, d being a feature index, and
πn = {πni}1≤i≤I is the vector of the prior of each class i for object xn.

We aim at defining probabilistic classification models with parameters Θ . The
classification step involves the computation of the posterior p(y = i|x,Θ) for any
non-labelled object x, where y = i refers to the class of the object x. The classification
rule typically resorts to selecting the maximum according to the posterior likelihood.
Three main categories of models can be investigated:

• Generative models based on the distribution of the feature vectors for each class
p(x|y = i,Θ). The required posterior probabilities are then obtained using Bayes’
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theorem:

p(y = i|x,Θ) =
p(y = i)p(x|y = i,Θ)

I

∑
j=1

p(y = j|x,Θ)

(1)

• The discriminative model that aims at determining hyperplans that separate
classes in the descriptor space. The training consists in determining each co-
efficients Θ = {ωi,bi}i of the hyperplane that separates class i from the others,
such as the posterior is given by:

p(y = i|x,Θ) =
exp[< Φ(x),ωi > +bi]

I

∑
j=1

exp[< Φ(x),ω j > +b j]

(2)

where Φ(x) is a function that allows to map the feature space in order to take in
account non linear solutions and <,> is the dot product.

• The soft random forests from the boosting family. It consists in determining a set
of weak classifiers that are mixed using a vote. In this paper, the weak classifiers
are soft decision trees that take probabilities at the input and provide probabil-
ities at the output. Considering Θ = {Θt}1≤t≤T where Θt are parameters of the
tth decision tree of the forest, and considering a forest that contains T decision
trees, the required posterior probabilities are then obtained using the following
normalizing expression:

p(y = i|x,Θ) =
1
T

T

∑
t=1

p(y = i|x,Θt) (3)

The three approaches are detailed in the next sections.

3 Generative model

Given Θ =
{

ρi1 . . .ρiM,µi1 . . .µiM,σ2
i1 . . .σ2

iM
}

the parameters of a Gaussian mixture
model, the distribution of the feature vector for each class i is given by:

p(x|y = i,Θ) =
M

∑
m=1

ρimN (x|µim,σ2
im) (4)

N (x|µim,σ2
im) is the normal distribution with mean µim and a diagonal covariance

matrix with component σ2
im on the diagonal. The weakly supervised learning of

model parameters Θ is then stated as a probabilistic inference issue. For prior train-
ing data set of the form {xn,πn}n such as πni = p(yn = i), a maximum likelihood
criterion can be derived:
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Θ̃ = argmax
Θ

∏
n

p(πn|xn,Θ) (5)

We detail in this paper the solution to (5). The EM (Expectation-Maximization)
procedure is exploited to estimate model parameters Θ [7]. It relies on the iterated
maximization of the conditional expectation log likelihood:

Q(Θ ,Θ c) = Ey

[
lnp(x,y|π,Θ)

∣∣∣∣∣x,π,Θ c

]
(6)

c refers to current parameters. Assuming that objects in any image are independent,
(6) can be turned into :

Q(Θ ,Θ c) =
N

∑
n=1

{
I

∑
i

p(yn = i|xn,Θ
c) ln

[
πni p(xn|yn = i,Θ)

]}
(7)

When considering proportion-based training data, the proportion data is regarded as
a class prior for each image, such that the E-step is modified to take into account
this prior knowledge as follows:

p(yn = i|xn,Θ
c) =

πni p(xn|yn = i,Θ c)

∑
j

πn j p(xn|yn = j,Θ c)
(8)

In the M-step, log-likelihood (7) is maximized with the respect to the variable Θ .
Reminding that the dependency of (7) upon Θ c is only due to p(yn = i|xn,Θ

c) and
independently separating the maximization for each class i, the M-step amounts to
maximizing a typical log likelihood weighted by p(yn = i|xn,Θ

c) of the Gaussian
mixture model defined by (4):

Qi(Θ ,Θ c) =
N

∑
n=1

p(yn = i|xn,Θ
c) ln

[
p(yn = i|x,Θ)

]
(9)

The maximization of (9) with respect to Θ is then issued from a second EM proce-
dure. Introducing the hidden variable sni, defined as p(sni = m) = ρim that indicates
the probability for the item to be classified among the mth mode of the distribution
of the class i, the conditional expectation log likelihood is maximized:

Q∗i (θ ,θ c) = Es

[
ln
(

p(x,s|θ)
)∣∣∣∣∣x,π,θ c

]
(10)

Where θ = {µi1 . . .µiM,σi1 . . .σiM}, i.e. the mean and the variance for each mode of
the Gaussian mixture for class i. Similarly to (7), the complete log likelihood (10)
can be rewritten as:
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Q∗i (θ ,θ c)=
N

∑
n=1

{
p(yn = i|xn,Θ

c)
M

∑
m=1

p(sni = m|xn,θ
c) ln

[
ρimN (xn|yn = i,θ)

]}
(11)

The E-step of the second EM algorithms is given by:

p(sni = m|xn,θ
c) =

ρimN (xn|sni = m,θ c)
M

∑
l=1

ρil p(xn|sni = l,θ c)

(12)

New parameters θ are given in the M-step, by optimization of the complete log
likelihood (11) with the respect to θ . A typical Lagrange multipliers procedure is
then used to compute {ρim}.

The whole algorithm is shown in table 1. In comparison to the algorithm pro-
posed in [26] for which the presence or the absence of classes are known in training
images, here the class priors πn must not be assessed in the 3rd step of the procedure.
Secondly, in comparison to the common EM procedure that considers a single hid-
den variable indicating the considered mode, the weakly supervised learning needs
to take into account two hidden variables: yn and sni such as sni = m indicates that
object xn is classified in mode m of the multi modal distribution of class i. This con-
straint leads to develop two EM procedures that are mixed. This is shown in table 1
where there are two E-steps in items 1 and 2, and one M-step in item 3.

The advantages of the generative model are the solid mathematical developments
and the large quantity of paper that deals with the EM procedures. Furthermore,
generative models are close to data and describe the data distribution with accuracy.
Drawbacks of the model are the possibility for the optimization to be in a local
maximum point. Generative models are known to do not fit well in presence of noisy
datasets that produce weak classification accuracy. For lots of datasets, in supervised
learning, these models are then outperformed by other classification models such as
Support Vector Machine (SVM) or random forest.

4 Discriminative model

4.1 Linear model

Discriminative models are stated as an explicit parameterization of the classification
likelihood. They are here defined as probabilistic versions of discriminative models.
As proposed by [26] [9] [16], probabilistic linear discriminative models can be de-
fined as follows:

p(y = i|x,Θ) ∝ F(〈ωi,x〉+bi) (13)

where 〈ωi,x〉+ bi is the distance to the separation hyperplane defined by 〈ωi,x〉+
bi = 0 in the feature space. Model parameter Θ is given by {ωi,bi}i. F is an increas-
ing function, typically an exponential or a continuous stepwise function. Hereafter,
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Table 1 Learning of the generative classification model.

Given an initialization for Θ = {ρim, µim, σ2
im}i,m, do until convergence:

1. Update the posterior likelihood of the 1st hidden variable likelihood:

τni = p(yn = i|xn,Θ) = πni p(xn|yn=i,Θ)
∑

I
j=1 πn j p(xn|yn= j,Θ)

2. Update the posterior likelihood of the 2nd hidden variable likelihood:

γnim = p(sni = m|xn,Θ) = ρimN (xn|sni=m,Θ)
∑

M
l=1 ρil p(xn|sni=l,Θ)

3. Update the parameters Θ = {ρim, µim, σ2
im} :

ρim = ∑n τniγnim
∑n τni

, µim = ∑n τniγnimxn
∑n τniγnim

, and σ2
im = ∑n τniγnim(xn−µim)(xn−µim)T

∑n τniγnim

F will be chosen to be the exponential function:

p(y = i|x,Θ) =
exp(〈ωi,x〉+bi)

I

∑
j=1

exp
(〈

ω j,x
〉
+b j

) (14)

In [26], a maximum likelihood (ML) criterion is derived for the estimation of the
model parameters for the presence/absence training data. The resulting gradient-
based optimization was proven experimentally weakly robust to the initialization. A
two-stage optimization was then developped. It exploits a Fisher-based criterion to
estimate a normalized vector defining each discrimination plane. In a second step, a
gradient-based optimization of the norm of this vector w.r.t. a ML criterion is carried
out.

The Fisher-based discrimination is derived as follows. A ”one-versus-all” strat-
egy is considered, so we hereafter consider a two-class case. Fisher discrimination
[12] amounts to maximizing the ratio between inter-class and intra-class variances:

ω̂i = argmax
ωi

{(
ωT

i (mi1−mi2)
)

ωT
i

(
Σi1 +Σi2

)
ωi

}
(15)

where mi1 and Σi1 are the mean and variance of the class i, and mi2 and Σi2 are the
mean and variance of the remaining classes. The estimate is given by ω̂ = (Σi1 +
Σi2)−1(mi1−mi2).

Fisher discrimination is applied to weakly supervised learning based on the es-
timation of class mean and variance for known object class priors. Formally, for a
given class i, mean m1 is estimated as:
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mi1 ∝

N

∑
n

πnixn (16)

mi2 are computed replacing πk by (1−πk), Σi1 and Σi2 are calculated identically:

Σi1 ∝

N

∑
n

πni(xn−m1)(xn−m1)T (17)

Once the initialization is done, in order to find the better coefficients Θ̃ , a mini-
mum error criterion using a typical gradient minimization is considered:

Θ̃ = argmin
Θ

∑
k

D(π̃k(Θ),πk) (18)

where π̃k(Θ) and πk are respectively the vector of the estimated class priors in image
k and the real class priors in image k, and D a distance between the observed and
estimated priors. Among the different distances between likelihood functions, the
Battacharrya distance [1] is chosen:

D(π̃k(Θ),πk) =
1
N

N

∑
k=1

√
π̃k(Θ) ·πk (19)

The major drawback of this basic model is that the non linear separations of
classes are not taking in account.

4.2 Non linear model

A non-linear extension of the model defined by (13) can be derived using a kernel
approach. The non linear mapping using kernel trick [23] [9] is based on the Kernel
principal component analysis method (Kpca). It consists in a transformation of the
feature space in which linear solutions are difficult to obtain. In the mapped space,
a linear model is specified. The expression of the posterior is then as follows:

p(y = i|x,Θ) ∝ F(〈ωi,Φ(x)〉+bi) (20)

The ”kernel trick” is that the function Φ(x) must not be known explicitly, but
only the dot product < Φ(x1),Φ(x2) > defined by kernel function K(x1,x2) =<
Φ(x1),Φ(x2) >. Here, a Gaussian kernel with scale parameter a is chosen:

<,Φ(x1),Φ(x2) >= exp
(
−||x1− x2||2

2a2

)
(21)

In order to reduce the space dimensionality, the kernel trick is associated to a princi-
pal component analysis (PCA) whose size is N pca (see table 2). This model is very
similar to the SVM. In comparison to SVM that maximizes merges in the mapped
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space [23], the weighted Fisher criterion is here used in the mapped space. The
whole procedure including the non linear mapping and the parameters assessment
is given in table 2.

The advantages of the discriminative model are the good performance reached,
the robustness of the parameterized posterior function and the flexibility in use re-
garding to the kernel choice and associated parameters. The drawbacks are the same
than the SVM, i.e. a possibility for the optimization to find a local minimum point,
the kernel choice that can not be matched to the considered dataset, and the difficulty
to interpret the data, especially in the mapped space.

Table 2 Learning of the non-linear discriminative classification model.

Given a training dataset {xn,πn}1≤n≤N , do:

1. Computation of the covariance matrix:

K = {K(xn,xm)}= exp
(
−||xn−xm||2

2a2

)
2. Diagonalization of the covariance matrix:

Nλα = Kα

where λ = {λ d}d are eigen values (sorted by order) and α = {αd} are eigen vectors.

3. Projection of training instances in the mapped space:

Φ(xn)d =
N pca

∑
m=1

α
d
mK(xm,xn)

where d denotes the feature index in the mapped space, N pca denotes the size of the truncated
mapped space, and αd

m denotes the components of the dth eigen vector of the covariance matrix
K.

4. Computation of the linear separation hyperplans in the mapped space for each class i:

ωi = (Σi1 +Σi2)−1(mi1−mi2) and bi = ωi(Σi1 +Σi2)/2.

5. Optimization of the linear separation hyperplans in the mapped space for each class i:

Θ̃ = argminΘ ∑k D(π̃k(Θ),πk).
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5 Soft decision trees and soft random forests

5.1 Soft decision trees

Decision trees are classification models that sample the feature space in homoge-
neous groups. This unstable classifier is well used with random forests that generate
several trees and reduce the unstability.

Learning a classification tree involves an iterative procedure which sequentially
creates children nodes from the terminal nodes of the current iteration. At each node,
the corresponding cluster of objects is splitted in several homogeneous groups. This
procedure is typically carried out until children groups reach some predefined level
of class homogeneity. Known methods propose different criterions to split instances
in homogeneous groups [3] [21] [15] [18].

Formally, at a given parent node, the attribute and associated split value are de-
termined with respect to the maximization of some information gain G:

arg max
{d,Sd}

G(Sd) (22)

where d indexes attributes and Sd is the split value associated to the attribute d. The
Shannon entropy of object classes is among the popular gain criterion [21]:

G =
(

∑
m

Em
)
−E0

Em =−∑
i

pmilog(pmi)
. (23)

where E0 indicates the entropy at the parent considered node, Em is the entropy
obtained at the children node m, and pmi the likelihood of the class i at node m.
Regarding the classification step, an unlabelled object passes though the decision
tree and is assigned to the class of the terminal node that it reaches.

We here present a criterion to build classification trees in a weakly supervised
context. From the original C4.5 scheme [21], an entropy-based splitting criterion
computed from class priors instead of class labels is proposed. It relies on the eval-
uation of likelihoods pmi of object classes i for children nodes m. A first solution
might be to consider the mean of the class likelihoods over all the instances in the
considered cluster. It should however be noted that class priors can be interpreted
as classification uncertainties for each training sample. Consequently, the contribu-
tions of samples with low and high uncertainties are expected to be weighted. For
instance, samples associated with a uniform prior should weakly contribute to the
computation of the class priors at the cluster level. In contrast, a sample known to
belong to a given class provides a particularly informative prior. For feature index d,
denoting xd

n the feature value for sample n and considering the children node m1 that
groups together data such as {xd

n}n < Sd , the following fusion rule is then proposed:
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pm1i ∝ ∑
{n}|{xd

n}<Sd

(πni)α (24)

For the second children node m2 that groups data such as {xd
n}n > Sd , the equivalent

fusion rule is suggested:
pm2i ∝ ∑

{n}|{xd
n}>Sd

(πni)α (25)

The considered power exponent α weights low-uncertain samples, i.e. samples such
that class priors closer to 1 should contribute more to the overall cluster mean pmi.
An infinite exponent values resorts to assign the class with the greatest prior over all
samples in the cluster. In contrast, an exponent value close to zero withdraws low
class prior from the weighted sum. In practice, we typically set α to 0.8. This setting
comes to give more importance to priors close to one. If α < 1, high class priors are
given a similar greater weight compared to low class priors. If α > 1, the closer to
one the prior, the greater the weight.

Note that in comparison to previous work, final nodes are associated to prior
vector instead of integer indicating the class.

The procedure to train a soft tree is given in table 3.

Table 3 Learning of the soft random forests.

Given a training dataset {xn,πn}1≤n≤N , learn T soft decision trees as follows:

1. At a given children node m that is not identified as a final node and that is not split again, find
the split value Sd and the descriptor d that maximize G:

G =

−
I

∑
i=1

 ∑
{n}|{xd

n}<Sd

(πni)α log

 ∑
{n}|{xd

n}<Sd

(πni)α

+ ∑
{n}|{xd

n}>Sd

(πni)α log

 ∑
{n}|{xd

n}>Sd

(πni)α


2. Split the data in two groups {xn|xd

n < Sd} and {xn|xd
n > Sd} respectively associated to children

nodes m1 and m2.

3. Compute the class priors pm1 = {pm1i}i in children node m1 and the class priors pm2 = {pm2i}i
in children node m2 such as:

pm1i ∝ ∑
{n}|{xd

n}<Sd

(πni)α and pm2i ∝ ∑
{n}|{xd

n}>Sd

(πni)α

4. If the children node m1 is class-homogeneous enough, then m1 is a final node with associated
class prior pm1 .
If the children node m2 is class-homogeneous enough, then m2 is a final node with associated
class prior pm2 .

5. If there exists node m that are not final nodes return to step 1 and treat them.
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5.2 Soft random forest

Whereas the unsteadiness of one tree is a critical issue, boosting procedures can
exploit this drawback to build ensemble classifiers to reach remarkable classifica-
tion performance [8] [2] [13]. The randomization of classification trees, especially
random forests [2], have been shown to be a powerful and flexible tool for improv-
ing classification performances. This randomization may occur at different levels:
in the random selection of subsets of the training dataset, in the random selection of
the feature space, in the random selection of the features considered for each split-
ting rule. The classification step generally comes to a voting procedure over all the
generated trees.

Once a tree is built from weakly labelled data, a random forest [2] can be elabo-
rated in the same way. Trees are not pruned. Let t, 1 ≤ t ≤ T be the tree index for
the created random forests.

Regarding the classification of unknown samples, we proceed as follows. A test
instance x goes through all the trees of the forest. As a result, the output from each
tree t is a prior vector pt = [pt1 . . . ptI ]. pt is the class probability at the terminal node
of the tree t. The probability that x is assigned to class i, i.e. the posterior likelihood
p(y = i|x), is then computed as a mean:

p(y = i|x) =
1
T

T

∑
t=1

pti (26)

6 Classifier combination

In this section, a combination of classifiers is investigated. Different experimental
properties can be expected from the considered classifiers, especially random forest
and discriminative models, in terms of robustness to the complexity of the training
data. The latter models might be more robust to uncertainties, and thus to complex
training mixtures, as they rely on a parametric (linear) estimation of the separation
planes between object classes. In contrast, random forests potentially depict greater
adaption capabilities. This property may become a drawback for datasets with larger
training uncertainties. Then it should be appropriate to combine posteriors from
different classifiers in order to extract positive information.

Let Θ1 and Θ2 be the parameters of two assessed classifiers and let p(y = i|x,Θ1)
and p(y = i|x,Θ2) be their posterior classification likelihoods. Two approaches
might be undertaken to exploit the two posteriors:

• A way may be to use the usual classifier combination that is expressed as follows
[11]:

p(y = i|x,Θ1,Θ2) ∝ β p(y = i|x,Θ1)+(1−β )p(y = i|x,Θ2) (27)

where β is a parameter that gives less or more weight to each classifier. For
example, if Θ1 and Θ2 are respectively the parameters of the discriminative model
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and the random forests, β will set a compromise between the robustness of the
discriminative model as regard to the high complexity labels and the random
forests as regard to the high accuracy reached in supervised learning.

• An other way will be to update the prior with a classifier and use the updated prior
to train an other classifier. Formally, we proceed as follows. Given a probabilistic
classifier with parameters Θ1, we compute the resulting posterior classification
likelihoods {p(yn = i|xn,Θ1)}n,i for any training sample xn. Given the training
prior πn = {πni} for sample xn, this prior is updated as:

π
new
ni ∝ p(yn = i|xn,Θ1)π

β

ni (28)

Finally, this new training prior is considered to learn the final classifier with pa-
rameters Θ2. The considered training dataset is then {xn,π

new
n }n. Coefficient β

states the relative confidence in the posterior issued from the classifier Θ1 w.r.t.
the initial training prior. It might be noted that this fusion rule guarantees that
impossible classes for a given sample (i.e. classes associated with a null prior)
remain excluded. In particular, the prior labelled samples, i.e. priors equalling 1
for one class, will not be modified by this update. This procedure is particularly
relevant for training samples with highly uncertain priors.

In the experiments the second proposed solution will be chosen with Θ1 being
the parameters of a discriminative model and Θ2 the parameters of a soft random
forests. The drawback of the first solution is that prior training knowledge, such as
pini = 0, are not conserved.

7 Application to fisheries acoustics

7.1 Simulation method

In practice, because the ground truth is only composed of the proportion of classes
in images, no one can know exactly the individual class of each object in the images.
Weakly supervised training dataset are then built from supervised training dataset.

The procedure to build a weakly supervised training dataset from a given super-
vised dataset is reported in table 4. We distribute all the training examples in several
groups according to predefined target class proportions. All the instances in a given
group are assigned to the class proportion of the group. In table 4, examples of tar-
get proportions are shown for a four-class dataset. The objective being to evaluate
the comportment of classification models as regard to the complexity of the class
mixture, we create groups containing from one class (supervised learning) to the
maximum-class available (four classes in the example of table 4). For each case of
class-mixture, different mixture complexities can be created: from one class dom-
inating the mixture, i.e. the prior of one class being close to one, to equiprobable
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class, i.e. nearly equal values of the priors. For example, in table 4, considering
three-class mixture, 24 images are built with the corresponding class proportions.

Mean classification rates are assessed using a cross validation procedure over 100
tests. 90% of data are used to train classifier while the 10% remainders are used to
test. Dataset is randomly split every test and the procedure that affects weak labels
to the training data is carried out at each test. For each test of the cross validation,
the correct classification rate corresponds to the mean of the correct classification
rate per class.

Table 4 Construction of weakly supervised dataset from supervised dataset.

Given a supervised training dataset {xn,yn}1≤n≤N with four classes such as 1 ≤ yn ≤ 4, build a
weakly supervised dataset as follows:

1. Generate a set of target proportions.

Mixtures with one class:


1
0
0
0




0
1
0
0




0
0
1
0




0
0
0
1

(supervised case)

Mixtures with two classes:


0.9
0.1
0
0




0.1
0.9
0
0




0.6
0.4
0
0




0.4
0.6
0
0




0
0.9
0.1
0




0
0.1
0.9
0




0
0.6
0.4
0




0
0.4
0.6
0




0
0

0.9
0.1




0
0

0.1
0.9




0
0

0.6
0.4




0
0

0.4
0.6


0.9
0

0.1
0




0.1
0

0.9
0




0.6
0

0.4
0




0.4
0

0.6
0




0.9
0
0

0.1




0.1
0
0

0.9




0.6
0
0

0.4




0.4
0
0

0.6




0
0.9
0

0.1




0
0.1
0

0.9




0
0.6
0

0.4




0
0.4
0

0.6



Mixtures with three classes:


0.9
0.05
0.05

0




0.05
0.9
0.05

0




0.05
0.05
0.9
0




0.4
0.3
0.3
0




0.3
0.4
0.3
0




0.3
0.3
0.4
0




0.9
0

0.05
0.05




0.05
0

0.9
0.05




0.05
0

0.05
0.9




0.4
0

0.3
0.3




0.3
0

0.4
0.3




0.3
0

0.3
0.4


0

0.9
0.05
0.05




0
0.05
0.9

0.05




0
0.05
0.05
0.9




0
0.4
0.3
0.3




0
0.3
0.4
0.3




0
0.3
0.3
0.4




0.9
0

0.05
0.05




0.05
0

0.9
0.05




0.05
0

0.05
0.9




0.4
0

0.3
0.3




0.3
0

0.4
0.3




0.3
0

0.3
0.4



Mixtures with four classes:


0.85
0.05
0.05
0.05




0.05
0.85
0.05
0.05




0.05
0.05
0.85
0.05




0.05
0.05
0.05
0.85




0.4
0.2
0.2
0.2




0.2
0.4
0.2
0.2




0.2
0.2
0.4
0.2




0.2
0.2
0.2
0.4




0.4
0.1
0.2
0.3




0.3
0.4
0.1
0.2




0.2
0.3
0.4
0.1




0.1
0.2
0.3
0.4



2. Choose a type of mixture (one, two, three, or four) and distribute examples {xn}n|yn=i in each
group of data following the different proportions of class i.

3. Build the weakly supervised training dataset {xn,πn}n by attributing to xn his corresponding
class proportion.

7.2 The fish school dataset

The dataset is a set a fish schools that have been observed in 13 different acous-
tic campaigns from 1989 to 1993 in the Bay of Biscay. Software has automatically
detected the fish schools in the image according to a given acoustic threshold. Be-
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cause fish has a backscattering strength larger than water or plankton, the threshold
determines if the acoustics sample is fish or not. The same software extracted sets
of descriptors for each fish school. Typically, morphological descriptors are used
such as the length, the height, the depth, the fractal dimension, and the seabed alti-
tude of the fish school (figure 2). Other descriptors indicate the mean backscattering
strength, the upper backscattering strength, and the lower backscattering strength of
each fish school. The backscattering strength gives some information about the fish
density of the considered school, but also about the fish species. For example, fish
with swim bladder has a more important bachscattering strength than fish without
swim bladder.

In practice, fish schools are identified by experts from association between mono
specific trawl catches and acoustic images acquired during the trawling operation.
If trawl catches provide only one species, we suppose that fish schools in the corre-
sponding images contain only the considered species.

In the database, four classes of species are identified: Sardina (179 fish schools),
Anchovy (478 fish schools), Horse Mackerel (667 fish schools), and Blue Whiting
(95 fish schools). For instance, different fish schools are represented in figure 2.
Sardina schools appear dense and large with lot of backscattering strength, Anchovy
schools are scattered from the seabed to the middle of the water column, and Horse
Mackerel are rather situated close to the seabed with spatial organisation similar to
Anchovy.

7.3 Results

Results are shown in figure 3. The mean correct classification rate is reported for
the generative model (EM), for the discriminative model based only on the Fisher
model (Fisher) that is presented in equation (15), for the discriminative based on
the Fisher model followed by the optimization (Fisder + Optim) that is presented in
equation (18), for the soft random forest (SRF), and for the combination between
SRF and Fisher (SRF + Fisher). The combination of the two classification models is
carried out in applying the method proposed in section 6 with equation (28). Θ1 are
the parameters of the Fisher-based discriminative model and Θ2 are the parameters
of the random forest that is built with the dataset {xn,π

new
n }n. The classification rate

is shown as a function of the number of class in training images from one class
(supervised learning) to four classes and following the target proportion shown the
table 4.

Firstly, we analyse the supervised learning to notice that, for this dataset, random
forests greatly outperforms the generative and the discriminative models. Actually,
the rate goes from 0.63 to 0.7 with generative and discriminative models whereas it
reaches 0.9 with random forest. The high performances reached by random forest in
supervised learning justified their use in a weakly supervised learning.

Secondly, looking at the weakly supervised learning, we notice that performance
fall down compare to supervise learning. It is particularly true for the random forests
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Fig. 2 Examples of fish school organisations in one echogram for Anchovy, Sardina, and Horse
Mackerel.

that loose around 30% accuracy in four-class mixture compare to supervised learn-
ing and the generative model that looses around 20% accuracy in four-class mixture
compared to supervised learning. For random forests the explanation is that the used
criterion to find acceptable split at the corresponding node m does not fit for prior
labelling. Actually, in most of cases because of mean calculation (24) and (5.1),
situations may produce uniform class distribution pm. In fact, there is no normaliza-
tion term in equations (24) and (5.1) that provides information about the number of
instance that are involved by each class. The falling down performances provided
by the generative model can be explained by the difficulty for the EM procedure to
fit with complex data. Especially when the data organisation in the descriptor space
does not correspond to Gaussian mixture and when there is a lot of overlapping
between classes. In comparison, the weighted Fisher-based model is more robust
as regards to the prior complexity. Actually, the discriminative model is down only
around 1% accuracy from the supervised learning to the four-class mixture. The
simplicity of the Fisher weighting and the non linear mapping explains this robust-
ness. The analysis of the comportment of the discriminative optimization reveals the
drawback of this approach, i.e. the non-optimal convergence. A rate improvement
from the weighted-Fisher was waited but there is a significant loss from 3% to 5%
rate. This can be explained by the fact that a lot of solutions exist for equation (18)
and there is not enough constraints to find the true solution.
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On the opposite, the classifier combination seems to be a very good solution to
weakly supervised data. Using equation (28) to combine the discriminative model
and the random forests, high accuracy performances are reached compared to single
models such as discriminative model or soft random forest. By fusing responses,
the robustness of the discriminative model is kept (there is a rate loss around 2%
from the supervised learning to the three class mixture and around 10% from the
supervised learning to the four-class mixture) and the high accuracy reached by the
random forests is conserved too (the correct classification rate goes from 89.2% in
the supervised learning case to 77.2% in the four-class mixture case).

Fig. 3 Mean correct classification rate as a function of the number of class per training images.

In figure 4, two confusion matrixes are shown for the classification model that
combine the soft random forests with the discriminative model. The confusion ma-
trixes are reported for the supervised learning (figure 4-left) for which the mean
correct classification rate equals 0.893 and the four-class mixture (figure 4-right)
for which the mean correct classification rate equals 0.772. Note that confusion
matrixes are obtained by computing the mean over the cross validation which ex-
plains that horizontal and vertical sums do not exactly equal to 1. In the supervised
learning case, correct classification rates per class reach high performance except
for Sardina that provides a mean correct classification rate that equals 73.8%. Blue
Whiting seams to be the class that is well separated from the others with a cor-
rect classification rate of 97%. In the four-class mixture case, the Sardina does not
change and the correct classification rate of the other classes fall down from around
15%.
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Fig. 4 Confusion matrixes for the classifier that results from the combination of the discriminative
model and the random forests. Confusion Matrixes are shown for the supervised learning (left) and
the four-class mixture.

While the combination of the random forests and of the discriminative models re-
sorts to the best performances, we further analyse the robustness of each classifier. In
figure 5, we report classification performances w.r.t. mixture complexity. We evolve
the complexity of the 3-class training mixture from the supervised case to the unsu-
pervised case (i.e. uniform prior). Note that for each experiment all training samples
are generated with the same type of mixture proportion (see table 4), i.e. the train-
ing data does include both low and high uncertainty samples. These results clearly
illustrate the relative robustness of the different classifiers to the degree of class un-
certainty in the training dataset. Obviously, classification performance decreases in
all cases. The slopes are however different. Whereas the classification trees greatly
outperform the two other types of classifiers in the supervised case, it also shown to
be the less robust to the increased mixture complexity with a loss in classification
performances greater than 50% between the supervised and unsupervised cases. In
contrast, the performances of the discriminative models only decrease by less than
15%.

These additional experiments further validate the choice of the combination of
the discriminative models and the random forest. It should be noted that for real
applications training datasets would involve a variety of mixture complexities such
that the performances of the random forest would not be as degraded as in the ex-
treme situations considered in figure 5. The combination of the two classifiers lead
to the best results in all cases and the improvement w.r.t. random forests alone reach
a classification gain up to 14% and 20%.

8 Conclusion

This paper is dedicated to weakly supervised learning. The majority of models pro-
cesses training data that are labelled with binary vector indicating the presence or
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Fig. 5 Mean correct classification rate for 3-classes images with different target proportions going
from the supervised case (on the left) to uniform situations (on the right).

the absence of object class in images. Here training data are provided with prior
labelling, the label being a vector that indicates the prior for each class. These train-
ing data are obtained with class proportion knowledge in images instead of pres-
ence/absence knowledge. This kind of training data is typical from fisheries acous-
tics that provide objects in images that are labelled with relative class proportion.

Three probabilistic classification models are presented and analysed. We inten-
tionally choose models that are very different in terms of global and mathematical
approaches: a generative model, a discriminative model and random forests. These
three models take probabilities at the input and provide probabilities at the output.
For the fisheries acoustics dataset, in supervised learning, random forests reach the
better correct classification rate but results fall down in weakly supervised learn-
ing and are equivalent. The generative model provides the lower results with cor-
rect accuracy in supervised learning but very low performance in weakly supervised
learning. The discriminative model is the more robust model as regard to the weakly
supervised learning but accuracy is not correct. A classifier combination method has
been then proposed to fuse two classification models and to combine their classifi-
cation abilities, i.e. the strong accuracy and the robustness. Results prove the perti-
nence of the approach by providing more robust and accurate correct classification
rates.

As regards to the application, the operational situations typically involve mix-
tures between two or three species and the reported recognition performances (be-
tween 90% and 77%) are relevant w.r.t. ecological objectives in terms of species
biomass evaluation and the associated expected uncertainty levels. However, this
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approach does not take in account the spatial organisation of species in the given
area. So, an effort must be done to include spatial information [16].
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