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A Method for Optimal Analysis of Fields With Spatially Variable Mean 

P. Y. LE TRAON 

Collecte Localisation Satellites Argos, 1imlouse, Fmnce 

This brief report addresses the problem of objective analysis ol' fields with spatially variable mean. 
Conventional objective analysis is confined to fluctuations, where the larger scale is assumed to be 
known; this report shows how to use the method described by Davis (1985) to estimate simultaneously 
a large-scale component and a mesoscale component with an accurate error budget. The extension to 
multivariate analysis is also discussed. The method is then applied to simulated data; this illustrates its 
contribution in relation to conventional objective analysis. 

I. INTRODUCTION 

Conventional objective analysis is confined to fluctua­
tions, where the larger-scale component of the signal is 
assumed to be known and is subtracted from the data. In 
cases where the mean component is not perfectly known (the 
usual case) the estimator is generally no longer optimal, and 
the error maps do not take into account the additional error 
arising from difficulties in distinguishing between the mean 
field and tl?e mesoscale fluctuations. However, a functional 
form of the mean field can usually be assumed, and this 
should be used in the analysis. 

The technique below elaborates on this idea and gives a 
general framework for simultaneously estimating the n)ean 
and the fluctuation fields. This can be seen as a generaliza­
tion of the objective analysis of a field with a constant mean 
as presented by Bretlzerton eta/. [1976]. As in the work of 
Bretlzerton et a/. [1976], our estimator will be a best (in a 
least squares sense) linear unbiased estimator which has the 
advantage of being a maximum likelihood estimator for 
Gaussian fields (in the other cases it has, however, no 
general optimum properties). Our method will closely follow 
the ideas presented by Davis [ 1985] for estimation of the 
large-scale component of the signal and will extend this 
approach to the multivariate case. The objective here is not 
necessarily to determine the large-scale component precisely 
but to incorporate it in the analysis and error budget. This 
large-scale component estimation is similar to the classical 
problem (see, for example, Kendall and Stuart [1977]) in 
time series analysis of trend or seasonal effect removal to 
deal with stationary statistics. However, in our case this 
estimation will be clone simultaneously with the mesoscale 
nuctuation field estimation. 

This kind of analysis can be of practical value for mapping 
fields with a nonnegligible large-scale component. In such 
cases the specification of the mean field has a significant 
influence upon the mapped fields, which should be reflected 
in the error budget. Watts et a/. [1989] have shown, for 
example, that the mapping of the Gulf Stream thermal front 
is very sensitive to the choice of the functional form of the 
mean field. 

In the following discussion this technique will first be 
presented in the univariate case and then be extended to the 
multivariate case. An application to simulated data will also 
be given to demonstrate the usefulness of the method. We 
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will assume, as in conventional objective analysis, that we 
have good a priori statistical knowledge of mesoscale fluc­
tuations. 

2. UNIVARIATE ANALYSIS 

2.1. Simultaneous Data 

Let \[robs (x1 )(i = l, · · · , N) be theN observations of a field 
\{r at a given time 10 and at positions x1 = (x1, y 1). \.fr is 
assumed to consist of a large- (spatial) scale component and 
a mesoscale component: \fr(x) = {"fr(x)} + \.fr'(x). The large­
scale field is defined by the smoothing operator { · }. 

\Itobs(x,.) = \It(x,.) + E,Jr(x,.) = {\fr(x,.)} + \.fr'(x;) + c;,l,(x,.) (I) 

The noise c:,1,(x;) is instrumental error and smallunresolvable 
scales of \{r. \fr'(x) is mesoscale turbulence. 

The large-scale component is estimated using the method 
described by Davis [ 1985]. He selects a complete set of 
functions F 11Jx), so that any function f of x can be expanded 
over the area of interest: 

f(x) = :Z b 11zFm(X) 
111 =I 

The functions F 111 (x) may be chosen from a complete set of 
orthogonal functions such as polynomial or Fourier series. 
Note, however, that the method does not require the func­
tions F 111 (x) to be orthogonal. 

The spatial filter { · } is then specified to pass the first M 
functions while rejecting all others: 

M 

{\.fr(x)} = :Z b111F 111 (X) (2) 
m= I 

i.e., the large-scale part is defined by the truncated smnover 
the first M basic functions, assumed to be ordered inversely 
to their spatial scales. These M functions should preserve 
the large-scale features of the field and remove al1 the 
mesoscale features. 

The field \fr(x) is estimated as a linear combination of the N 
observations, and the weights are selected to minimize the 
mean square error as in conventional objective analysis: 

N 

\fr cst(X) = :Z f3 (x, x")\.fr obs(x,) 
II= I 
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where ( · ) is an average over an ensemble of realizations which in turn yields 
such that 

('l''(x)) = 0 (e ,1,(x 11 )) = 0 for any x, X 11 

This means that the spatial filter is also a perfect filter for 
ensemble averaging, that is, we assume that the mean field 
(i.e., in the stochastic sense) has larger scales than the 
mesoscales. 

The clitierence relative to objective analysis lies in the 
zero-bias constraint on the estimator: 

('Ir cst(x) - 'l'(x)) = 0 (3a) 

which yields 

M [ N l 2:; (b 111 ) 2:; {3(x, X11 )F11/X 11 )- F 111 (X) = 0 
m= I 11= I 

(3/;) 

Following Davis [1985], we will force the analysis to pass the 
M fundamental functions F 111 with unit gain: 

N 

2:; {3(x, x,JFnb,J = F111 (X) m= 1, ···,M (4) 
11=1 

With these conditions the zero-bias constraint is automati­
cally fulfilled. The mean square error can then be ,written as 

N 

e2(x) = C,,- 2 2:; {3(x, XnlCxn 

s=l 

N N 

+ 2:; 2:; (3(x, x,.)(3(x, Xs)A,.,. (5) 
r=ls=l 

with 

In these expressions 'l'~bs(x,.) is defined as 'l' obs(x,.) -
{'l'(x,.)} = \[r'(x,.) + s,1,(x,.). 

The minimization problem is solved using Lagrange mul­
tipliers. The result is 

M 

(3(x, X 11 ) = 2:; [F111 (X) - G 111 (x)] 
m= I 

M N N 

M M N 

'l' cst(X) = 2: Fm(X) 2: z,~l 2: 
m= I k=l p =I 11 =I 

+ £ £ A,~ 1 C,.,['Vobs(x,.)- -!£ Fm(x,.) 
r = I s =I m 'C I 

(7a) 

This is similar to the result found by Bretherton et al. [1976] 
for a constant estimated mean (M = 1, F 1(x) = 1). This also 
can be compared to the result of optimal analysis of a field 
with a spatially variable, but perfectly known, mean. In the 
latter case it can indeed be easily shown [e.g., Bretherton 
and McWilliams, 1980] that the best linear unbiased estima­
tor at x is given by 

N N 

'l'est(X) = ('V(x)) + 2:; 2: A,~ 1 C,.,.['l'obs(x,.)- ('V(x,.))] 
r =I s =I 

(7b) 

The mean field ('l'(x)) is subtracted from each observation 
value 'l'obs(x,.) and added back to the estimate. This is similar 
to (7a), where the mean field was not assumed to be known 
a priori. However', the mean field in (7b) is replaced in (7a) 
by a large-scale estimated field {'l'(x)} which is not necessar­
ily stationary (in the stochastic sens.e). The large-scale 
component is that found by Davis [1985]. By estimating 
simultaneously the large-scale component ancl the mesoscale 
component, it is possible, however, to take account of the 
error due to the unknown mean. 

The effect of not knowing the mean flow reappears indeed 
in the associated error calculation. We thus have· 

N N 

e 2(x) = Cxx- 2:; 2:; C,,.C,,.A,~ 1 

r =I s =I 

M M 

+ 2: 2:; Z,~i(F111(x)- G 111 (x)][Fk(x)- Gk(x)] (8) 
m =I k= I 

The last term is the additional error clue to uncertainty on the 
mean field, which is, of course, different from the error on 
the mean field only. 

2.2. Nonsimultaneous Data 

2:; Z,~1~ 2:; A,~}Fk(xp) + 2:; A,~ 1 C,i (6) Generally, data gathered at difierent time periods are 
k=l p=l i= I 

where 

N N 

Zmk = 2:; 2:; A,~ 1 Fm(x,.) Fk(xsl 
r =I s =I 

N N 

G"b) = 2: F 111(x,.) 2: A,~ 1 C,,. 
r =I s =I 

used, particularly since this provides a better description of 
the mean field. For example, one can take N measurements 
at time t 0 and points X 11 , which are thus correlated with 'I'' (x, 
t0 ), and M additional measurements at other times t111 which 
may not be correlated with 'l''(x, t 0 ) if (t 111 - t0 ] > Td, where 
Td is the mesoscale decorrelation time. However, these 
measurements are still useful for the estimation of the 
large-scale field since T( . } >> Td where T( . } is a character­
istic time scale of the large-scale field. In this case the 
correlation matrix takes the form 
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[
Ao (O)J 

[A,.s] = (O) A
111 

and 

_ 1 [;t01 
(o) J 

[A,.s ] = (O) A,~ I 

From (7) it can be seen that all the terms of the inverse 
matrix appear in the calculation of the mean Held, while only 
the A<]- 1 term appears in the expression for the fluctuating 
part. 

Using nonsimultaneous data makes it easier to distinguish 
between the mean field and the mesoscale Held, as the two 
have different temporal scales. The constraint of having a 
{ · } field with a larger spatial scale than the mesoscale can 
even be relaxed if enough data are used to permit a separa­
tion in time, rather than a separation in space. 

3. MULTIVARIATE ANALYSIS 

This approach can be extended to observations which may 
not be direct observations of the \{f field to be estimated. For 
example, let u and v be two variables such that u = L 1 (\{f) 

and v = L2 (~), where L 1 and L 2 are linear differential or 
integral operators. \[r will thus be estimated as a linear 
combination of 1.1 obs(X;) and v0 b5 (xj), i.e., 

Nl N2 

'V est(X) = L a(x, X;)t.l 0 b5 (X;) + L f3(x, x)vobs(x) · (9) 
i= I j= I 

The zero-bias constraint yields 

M Nl 

L (bm)Fm(x) = L a(x, x,)(llobs(X;)) 
m:::::: 1 

but 

i= I 

N2 

+ L f3(x, Xj)(v0 b5 (Xj)) 
j= I 

Nl 

L a(x, x;)(L 1 [~(x;)] + s 11(x;)) 
i= I 

N2 

+ .2: f3(x, x;)(L2[~(xj)] + s,,(x;)) 
J=l 

M 

(10) 

= LJ[({~(x,)})] = L (bm)Ll[F111 (X;)] 
m =I 

since L 1 (0) = 0 and the operators L 1 and ( · ) are assumed to 
commute. There is a similar expression for L 2 • 

This shows that if 

Nl 

F 111 (x) = L a(x, X;)Ll[F111 (X;)] 
i= 1 

N2 

+ L f3(x, xi)L 2[F111 (xj)] 
.i~ I 

m=1,···,!11 

then the zero-bias condition is fulfilled. 

(11) 

Taking ~obs(X;) = 110 tJ 5 (X;)(i = 1, · · ·, Nl) and 'l'obs(X;) = 
vobs(X;)(i = N 1 + 1, · · · , N 1 + N2) and considering the 
correlations between the variables 'V~bs(X;) = 'lt obs(x;) -
L{'Ir} alone in matrix A and with 'lt'(x) in the C terms, the 
same formalism as above can be applied (equation (7)). 
However, the F 111 (x,) must be replaced by L 1[F111 (x,)] for p 
= I, · · · , N 1 or L 2[F111 (x,)] for p = N 1 + I, · · · , N 1 + N2. 

It should also be noted that the correlations aillong \[r', 

~~~bs, v~bs can also be obtained analytically by knowing 
(\Ir'(x,.)'l''(x.J), given that L 1 and L 2 are linear operators. 

4. APPLICATION 

P. Y. Le Traon and M. Ollitrault (Description of an eddy 
west of the Mid Atlantic Ridge near 36°N, 40°W, submitted 
to Journal of Marine Research (1990); hereinafter Le Traon 
and Ollitrault (submitted manuscript, 1990)) have used this 
multivariate analysis on velocities and dynamic height mea­
surements to describe the dynamic height field at 100 dbar in 
a 120-km latitude, 150-km longitude area near 36°N, 40°W. 
This was a simple case in which three fundamental functions 
were chosen to describe the large-scale field: F 1 (x) = 1, 
F 2(x) = y, and F 3(x) = x with x = (x, y). Mesoscale 
autocorrelation functions of sea surface height were derived 
from satellite altimetry, and the large-scale component was 
introduced to deal with a possible mean field (Azores cur­
rent) or larger variability scales not taken into account in 
satellite altimetry covariance functions. We showed that this 
large-scale field and the mesoscale field can be estimated 
simultaneously. However, in this particular case only a 
slightly better mapping of the field is obtained because the 
mean field is weak in relation to the mesoscale field (see Le 
Traon and Ollitrault (submitted manuscript, 1990) for a more 
detailed discussion). 

This brief report provides a more convincing example 
which demonstrates the usefulness of the method. A dy­
namic height field D(x), x = (x, y) on a 500- by 500-km grid 
and a 25-km (x andy) sampling interval, was simulated using 
a Gaussian pseudorandom vector generator. The field is 
determined completely by the mean value (D(x)) at each 
point and the two-point covariances (D(x 1)D(x2) for all x 1, 

x2 pairs. These parameters were chosen as follows (where D 
is in centimeters and y is in kilometers): 

(D(x)) = 20- 100(y/500) 2 

a= 50 km -I U' = 20 em 

The mean field amplitude varies between 20 em and -80 
em. Such a range is typical of the variations observed in 
western boundary currents. The covariances were obtained 
from the analytical model put forward by Arhan and Colin de 
Verdiere [1985], assuming isotropic, homogeneous, meso­
scale turbulence. 

Figure 1 shows a simulated dynamic height field, i.e., a 
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Fig. I. Simulated reference dynamic height field (units are cen­
timeters) on a 500-km by 500-km grid. It is a particular realization of 
a Gaussian field D(x), with x = (x, y), demonstrating the following 
statistical properties: (D(x)) = 20 - tOO (y/500) 2 (Din centimeters, 
y in kilometers) and (D(x 1)D(x2)) = u 2[t + ar + f. (ar) 2 -

f. (ar) 3]e-ar with r = [(x 1 - x 2) 2 + (y 1 - y 2) 2] 112 , a= 50 km -I, and 
u = 20 em. 

particular realization of the statistical set defined above. We 
shall take this as the reference field. Sixteen simulated 
measurements were selected from the field. A random Gaus­
sian error with zero mean and a variance of 20 c'm 2 (5% of 
the variance of the mesoscale field) was added to each such 
measurement. The method described above was then ap­
plied, where the mean field was assumed to have the 
following functional form: (D(x)) = b 1 + b2 y + b3 y 2 (it is 
not assumed in advance that b2 is zero). The field obtained is 
shown in Figure 2 a. It can be compared to the field which 
would be obtained by conventional objective analysis (sub­
traction of the data mean, analysis of fluctuations, and 
addition of the data mean to the estimated fluctuation field) 
(Figure 2 b). 

Although the relatively loose sampling does not permit an 
accurate description of the small structures shown in Figure 
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Fig. 2 a. Reconstructed dynamic height field using the method 
described in this brief report (units are centimeters). A random noise 
of 20 em 2 was added to each of the 16 data measurements (plus 
signs) before applying the method. The main features of the refer­
ence field are well reconstructed. 
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Fig. 2b. Same as Figure 2a, but using conventional objective 
analysis, i.e., by removing, before analysis, a constant mean, 
analyzing the fluctuations, and adding back the constant estimated 
mean. This kind of analysis does not provide a good estimation in 
areas far from the data measurements. 

I, the expected general shape is observed. However, this 
shape is not observed in conventional objective analysis, in 
particular close to the edges (Figure 2 b). In the center of the 
area the analyses are fairly similar, as they are significantly 
constrained by the data. The error maps for our analysis 
(Figure 3a) and conventional objective analysis (Figure 3b) 
also differ and provide a means of estimating the additional 
error due to lack of knowledge of the mean field (the last 
term of (8)). It can be seen that this error increases consid­
erably in areas far from the data measurements. This error is 
typically l-2 em at the center of the area and reaches a 
maximum of 15 em at the edges. The error map given by 
conventional objective analysis, which does not take ac­
count of the term, is not at all realistic, and the estimated 
errors are considerably lower than the differenc~s between 
the field estimated in Figure 2 b and the reference field. 

In conclusion, we have demonstrated that it is possible to 
estimate, simultaneously, a mean field and a mesoscale 
fluctuation field. In particular, we have shown that the 

Fig. 3a. Error map in centimeters corresponding to Figure 2 a. 
The additional error clue to the unknown mean field is typically 1-2 
em in the center of the area but can reach 15 em at the edge~. 
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Fig. 3b. Error map in centimeters corresponding to Figure 2b 
(conventional objective analysis). This error map is not realistic, 
since it assumes the mean field is perfectly known and thus largely 
underestimates the error field. 

additional error due to lack of knowledge of the mean field 
can also be estimated. This method, which is a simple 
generalization of conventional objective analysis, should be 
recommended for mapping the field when a significant mean 
component is present. 
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