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Estimating the sea state bias of the TOPEX and POSEIDON 
altbneters from crossover differences 
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Abstract. TOPEX (Ku band) and POSEIDON altimeter measurements at crossover 
points are used to estimate the sea state bias (SSB) of these two instruments. Different 
SSB models are tested, ranging from a constant fraction of the significant wave height 
(SWH) to more elaborate models involving up to four adjustable parameters. For 
TOPEX, the data show a decrease in the magnitude of the relative bias (SSB/SWH) 
with SWH. This behavior is well reproduced using a simple empirical model with two 
adjustable parameters. The three-parameter SSB model used in the NASA geophysical 
data records does well in explaining the wind-induced variations of the bias. A model 
including four adjustable parameters is needed to account for both the wind- and SWH
related variability of the SSB. POSEIDON data analysis reveals a significantly larger 
SSB than for TOPEX. This bias seems to consist of a skewness plus tracker bias of -2 
to -3% of SWH superimposed on a natural EM bias whose wind- and SWH-related 
variations are similar to those of TOPEX. 

1. Introduction 

TOPEX/POSEIDON is designed to be a high-precision 
satellite altimetric mission dedicated to the observation of 
the ocean general circulation. It takes advantage of new 
advances in altimeter technology and altimeter data process
ing to reduce all possible measurements errors. As the data 
show, the result is the most accurate satellite altimeter 
mission to date. In previous missions, the error in the radial 
position of the satellite dominated the altimetric error bud
get. The TOPEX/POSEIDON orbit error is now below 5 em 
RMS [e.g., Nouel eta!., this issue]. Altimeter sea state bias 
is the second largest source of error in the TOPEX/ 
POSEIDON provisional error budget established by Stewart 
et a!. [1986]. Its estimated uncertainty is about 2 em RMS. 
The work reported in this paper is a contribution toward a 
better estimation of this bias. 

Sea state bias (SSB) has three well-identified components: 
electromagnetic (EM) bias, skewness bias, and tracker bias. 
The EM bias is the di1Terence between the mean height of the 
sea surface specular facets and the mean height of the sea 
level. Observations and theory show that the mean height of 
the specular facets is below mean sea level, the diJierence 
being proportional to the significant wave height (SWH). 
Typical values of EM bias are between -1 and -4% of 
SWH. The skewness and tracker biases are due to inaccu
rate tracking of mean height of the specular facets by the 
altimeter tracker. As Fu [1990, p. 25] explains: "The altim
eter onboard tracker is actually designed to track the median 
height of the specular facets. The diJierence between the 
median and the mean of the height of the specular facets is 
called the skewness bias because it is directly related to the 
skewness oft he distribution of the specular facets. The error 
in the tracker's determination of the median height is called 
the tracker bias." The skewness bias is generally smaller 

Copyright 1994 by the American Geophysical Union. 

Paper number 94JC01430. 
0 !48-0227 /94/94J C-0 1430$05.00 

than the EM bias while different tracking problems can result 
in a nonnegligible tracker bias. 

Several papers concerning the sea state bias, or more 
specifically the EM bias, have been published, including a 
few theoretical works and many experimental studies. 
Jackson [1979] presented the first theoretical analysis of the 
EM bias. His work was based on the geometrical optics 
approximation to radar backscatter and assumed non
Gaussian dis~ribution of smface elevation and slopes as 
derived from the statistical theory of Longuet-Higgins [1963] 
for weakly nonlinear gravity waves. His approach was 
restricted to a unidirectional sea. Barrick and Lipa [1985] 
and Srokosz [1986] extended this work taking into account 
two-dimensional surface slopes. They showed that in this 
context the EM bias (EMB) can be expressed as 

EMB = -(A2/8) SWH (1) 

where A2 is a function of second- and third-order moments of 
the joint probability density function of the surface elevation 
and slopes. Unfortunately, (1) cannot be used directly for 
operational evaluation of the SSB as the statistical moments 
involved in the computation of A2 cannot be accurately 
estimated from present altimeter measurements [Rodriguez, 
1988]. Jackson. [1979] and Barrick and Lipa [1985] provided 
quantitative estimates of the EM bias for specific wave 
spectra only. 

More recently, Rodriguez et a!. [ 1992] investigated the 
physics of the EM bias conducting a set of numerical 
scattering experiments. This approach was chosen to mini
mize the number of assumptions both in the electromagnetic 
calculations (applicability of geometrical optics is not as
sumed) and in the characterization of the surface (for exam
ple, the suri~1ce is simulated without making assumptions 
about the high-order moments of the distribution of the 
surface elevation and slopes). In addition, the simulations of 
Rodriguez et a!. [1992] include the small gravity-capillary 
waves and allow them to be modulated by large waves. 
However, the computations are based on a specified wave 
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spectrum that only approximates the true wave spectrum 
and is largely uncertain in its small-wave part. Furthermore, 
because of computational limitations, only one-dimensional 
simulations are performed. Accordingly, the authors do not 
claim to make exact predictions of the Etvl bias magnitude 
but rather insist on the behavior of the simulated bias as a 
function of the radar frequency and wind speed. Results 
concerning the wind speed dependence are specially inter
esting and will be discussed later in this paper. 

This short review of theoretical works clearly shows the 
limitations of the present theories and their inability to 
provide simple means for accurately determining the EM 
bias from available altimeter measurements. In another 
approach, a number of research groups attempted direct 
determination of SSB either in the laboratory [e.g., Branger 
eta/., 1993] or from aircraft or towers [e.g., Melville et al., 
1991; Walsh eta/., 1991; Hevizi eta/., 1993]. They then tried 
to empirically relate the measured bias to easily accessible 
sea surface parameters. Such studies are relatively few and 
often limited to a narrow range of wind and sea state 
conditions. Still, they provide interesting information about 
the SSB variability as a function of different wind- or 
wave-related parameters. 

Empirical studies have also been performed to extract 
from the altimeter data themselves the fraction of the signal 
that correlates with sea state-related parameters [e.g., Born 
et a/., 1982; Ray and Kob/insky, 1991; Fu and Glazman, 
1991]. The advantage is that huge data sets, covering a wide 
range of sea surface conditions, are available for experi
ments. The drawback is that the EM bias is only one part of 
the extracted signal. Other sea state related signals, includ
ing the skewness and tracker bias, are also extracted. 
Preliminary data processing is needed to eliminate or at least 
reduce such unwanted signals. Previous studies, mostly with 
Geosat data, were hampered by the presence of a relatively 
large orbit error which was not easily eliminated without 
affecting the SSB signal [Z/otnicki et a/., 1989]. TOPEX/ 
POSEIDON provides us with a much better data set. Inter
esting results can thus reasonably be expected from new 
empirical studies of the SSB, like the one presented in this 
paper. 

Our SSB estimation method is presented in the next 
section. Special attention is paid to data processing and 
noise reduction techniques. The data set is described in 
section 3. Estimates of the TOPEX Ku band SSB are 
obtained in section 4, using different types of models includ
ing the Fu and G/azman [1991] model and a whole family of 
empirical models. Both the global and regional performances 
of the models are analyzed. In section 5 the same models are 
used to estimate the POSEIDON SSB. The last section 
summarizes and discusses the main results of this study. 

2. Sea State Bias Estimation Technique 
Our problem is that of extracting a small signal, the sea 

state bias (SSB), from altimeter measurements containing 
much stronger signals and errors. In such conditions the 
signal to be extracted is best estimated when (1) a precise 
model of it is available and (2) when noise, or other signals, 
are reduced to a minimum before estimating the signal. 
Unfortunately, theoretically derived SSB models yield 
rather limited, often qualitative, results. As a consequence, 
most present models have empirical rather than theoretical 

bases. Such models might also describe, at least partly, 
non-SSB signals within the altimeter data. The estimated 
SSB can thus be polluted by other e[fects with similar 
functional behavior. [n such circumstances it is specially 
important that most of the unwanted signals or noise be 
eliminated before estimating SSB. However, one must be 
extremely cautious as some noise reduction techniques can 
easily corrupt the weak SSB signal in the data. ln general, 
we prefer a reliable estimate of SSB with large error bars to 
a less uncertain biased estimate. 

2.1. Content of Altimeter Data 

The basic data are altimeter-derived sea surface height 
(SSH) relative to the reference ellipsoid. It is obtained by 
forming the dilference between the satellite altitude (H) and 
the altimeter range measurement (II 11 ). Here we cannot, a 
priori, correct the altimeter range for the sea state bias we 
are trying to estimate. We thus have to work with an 
uncorrected range 

h~, = ha- SSB (2) 

and an uncorrected sea surface height (SSH') that contains 
the geoid signal (hy), dynamic topography (YJ), and SSB: 

SSH' = H- h~, = hy + YJ + SSB (3a) 

Using the generic notation x = x 111 + B" where x 111 is the 
measured or estimated value of any variable x and B,- its 
error, (3a) can be rewritten 

SSH;11 + sssH' = H 111 - h~1111 + sH- s 11 ~ = hy + YJ + SSB 
(3b) 

hence 

SSH;11 = SSB + hy + YJ- sH + s 11 ;, (4) 

where sH is orbit error and s,, the altimetric measurement 
error including all instrumental and geophysical correction 
errors, except SSB. If one tries to retrieve the SSB directly 
from SSH;11 data, (4) indicates that the noise affecting the 
estimation process will be the sum of the geoid signal, the 
dynamic topography and the orbit and altimetric measure
ment errors. 

2.2. Dealing With the Geoid and Dynamic Topography 
Signal 

The geoid is, by far, the largest signal in the data, of the 
order of meters to tens of meters. It is, fortunately, easily 
eliminated by forming differences between measurements 
taken at the same geographic locations, either along collinear 
tracks or at crossover points. Differences can be between 
individual measurements made at different times or between 
individual measurements and a mean. When forming such 
differences, ( 4) directly yields 

11SSH;11 = ilSSB + llYJ- ilsH + ils 11;, (5) 

where 11 denotes a di!Ierence. Measurement differencing 
actually eliminates any time-invariant component in the 
data: the geoid but also the steady part of the dynamic 
topography. 

Most empirical studies on the SSB of Seasat or Geosat are 
based on collinear diJierences [Born et a/., 1982; Douglas 
and Agreen, 1983; Z/otnicki eta!., 1989; Fu and G/azman, 
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1991; Ray and Koblinslc)', 1991]. Forming clitierences be
tween a mean track and individual passes is the most usual 
differencing technique. However, the combination of data 
gaps and orbit errors complicates the estimation of the mean 
[e.g., Chelton et a!., 1990] and the nominal SSB correction 
used to compute the mean track can bias later SSB estimates 
[Ray and Koblinsky, 1991]. Accorclingly, recent works on 
SSB [Fu and Glazman, 1991; Ray and Koblinsky, 1991] tend 
to use collinear differences between individual tracks. 

Collinear differencing produces vast amounts of data. 
Along-track measurements are about 7 km apart (for 1-s 
averages). They are thus highly correlated as the typical 
oceanic correlation scales are of the order of several tens of 
kilometers, for the mesoscale, or larger. Subsampling of the 
data is thus perfectly appropriate for the purpose of SSB 
determination. Forming crossover differences is a very sim
ple and efficient way to do so. In this study we will take 
advantage of a large TOPEX/POSEIDON crossover data 
set. For this satellite, the distance between adjacent cross
over points is close to 150 km at micllatitucles. A specially 
interesting property of crossover points is that differences 
can be taken between data from the same repeat cycle. The 
time lag between differenced measurements is then relatively 
small. In mir TOPEX/POSEIDON data set, its mean value is 
close to 3.5 clays. The change in dynamic topography !::..7] is 
limited over such a short period. This is an additional way of 
reducing the noise affecting the SSB estimation. A similar 
noise reduction cannot be obtained with collinear differences 
since the minimum time lag between differenced measure
ments is one repeat cycle (i.e., 10 days for TOPEX/ 
POSEIDON). 

2.3. Other Noise Components 

For all altimetric missions before TOPEX/POSEIDON, 
the radial orbit error e H was a major component of the 
altimetric error budget, ranging typically from several 
meters to several decimeters RMS. Accordingly, nearly all 
previous empirical estimates of the SSB were obtained after 
orbit error reduction. The classic method for removing this 
error is to fit a model of the orbit error to the data using linear 
least squares techniques. The model-estimated error is then 
removed. Orbit error models have been gradually improved, 
evolving from low-order polynomials fitted to short arcs to 
Fourier expansions of the theoretical orbit perturbations 
fitted over very long arcs (for a cletailecl analysis see Tai and 
Fu [1986], Engelis [1987], Schrama [1989], or Chelton and 
Schlax [1993]). Still, data-adjusted orbit errors retain some 
nonorbital signals, including ocean signals. This a1Iects any 
subsequent analysis of the data and in particular SSB stud
ies. Zlotnicki et a!. [1989] observe significant systematic 
changes in the estimated sea state bias when changing the 
length of the arcs on which the orbit error is adjusted. 
Conversely, Ray and Koblinsky [1991] notice important 
variations of the computed orbit correction depending on the 
chosen SSB correction. 

Such problems are dilllcult to avoid when orbit corrections 
are actually performed. Any data-adjusted orbit error will 
contain a number of nonorbital signals that can be correlated 
with SSB. Such correlations will then affect SSB estima
tions, as observed by Zlotnicki eta!. [1989]. However, there 
is no physical basis for a correlation between SSB and the 
true orbit error. Accordingly, the use of uncorrected data 
should yield unbiased SSB estimates, but with larger formal 

estimation errors. Recently, Gaspar et a!. [1992] obtained 
reasonably accurate estimates of the Geosat SSB without 
correcting for an orbit error. The GEM-T2 orbit [Haines et 
al., 1990] was used with an estimated radial error close to 40 
em RMS. The TOPEX/POSEIDON orbit error is an order of 
magnitude smaller [e.g., Nouel eta!., this issue]. It is thus 
safe, simple, and accurate to avoid orbit correction in this 
study. 

The last noise component in (5) is the altimetric measure
ment error. The situation is again favorable since every 
effort was made to minimize the TOPEX/POSEIDON mea
surement error budget. Errors of the tide model, with an 
amplitude of about 5 em RMS, are presently the largest 
component in e 11 •• This error shall be significantly reclucecl 
when new mocl~ls, calibrated with TOPEX/POSEIDON 
data, become available. However, little correlation is ex
pected between SSB and tide errors so that these errors 
should have little impact on the estimated bias. 

A bit more worrisome is the inverted barometer (IB) 
correction which is known to be imperfect and highly 
correlated with SSB. The correlation between SWH and 
surface atmospheric pressure is such that empirical esti
mates of the SSB have the wrong sign (i.e., the estimated 
bias is toward the wave crests) when the IB correction is not 
applied to the altimeter data [Gaspar et al., 1992]. Still, a 
recent analysis of the TOPEX/POSEIDON data by Fu and 
Pihos [this issue] shows that the IB correction is appropriate 
at latitudes greater than 20 degrees. Significant deviations 
from a perfect IB response are observed only at lower 
latitudes. However, the pressure variability is so weak in 
these latitudes (1 to 2 mbar RMS) that errors inclucecl by a 
possibly inaccurate IB correction remain very small. The IB 
correction is thus systematically applied in this work. It will 
be shown in section 4.8 that IB errors in the equatorial ocean 
have little impact on our global estimates of the SSB. 

2.4. SSB Estimation Using Linear Regression 

Estimation of the SSB from (5) is simple if a linear model 
of the bias is assumed 

p 

SSB = 2:: a;X; + essB 
i=l 

(6) 

where EssB is the non model eel part of the sea state bias, a; 

coefficients are p parameters to be estimated and X; vari
ables are SSE-related variables, such as SWH, wind speed 
( U), backscatter coefficient (u0 ), or any combination 
thereof. Equation (5) then becomes 

p 

1\SSI-1;11 = "V a;L\X; + LlEssB + !::..7] L\e 11 + !::..e 11 • (7) 
L.., " 
i=l 

Lumping all errors together as the sum of a zero-mean noise 
(e) and a bias (a 0 ), this can be rewritten 

p 

t:..SSI-I;/1 = 2:: a ;L\X; + E 

i=O 

(8) 

where L\X0 is a dummy variable equal to unity. We thus have 
a classic multivariate linear regression problem. Given 11 

observations of (t:..SSH;11 , L\Xi) and using bold characters to 
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denote observations vectors or matrices, the standard linear 
least squares estimate of the parameter vector a is [e.g., 
Liehelt, 1967] 

(9) 

The estimator is unbiased if A.X and e are uncorrelated. It 
minimizes the sample variance of the residuals E, or equiv
alently the variance of L'l.SSI-1 111 , the sea surface height 
crossover differences corrected for the SSB. Provided the 
residuals are uncorrelated random variables with common 
variance u 2

, the covariance matrix of a is 
( 10) 

For uncorrelated residuals, an unbiased estimate of u 2 is 
obtained by dividing the residual sum of squares by its 
degrees of freedom, that is, the number of cases minus the 
number of model parameters. In practice, the residuals in (8) 
always remain somewhat correlated (less for crossover 
differences than for collinear differences). The number of 
degrees of freedom is thus less than theoretically estimated. 
Accordingly, (I 0) generally underestimates the true variance 
of the estimator. Better estimates can be obtained from 
replication methods or bootstrapping [e.g., E.fi·on, 1979]. The 
basic idea of these methods is to derive the pertinent 
statistics concerning the regression coefficients from a pop
ulation of coefficient estimates obtained from a number of 
different data subsets. We will use such a technique imple
mented as follows. Our global data set includes 29 repeat 
cycles of the TOPEX/POSEIDON mission (see next sec
tion). It will be split into subsets containing each the data 
from one cycle. Regressions will be performed with both the 
global data set and individual cycles. The coefficient esti
mates will be obtained from the regression with the global 
data set. Their uncertainties will be evaluated by computing 
the standard deviation of the estimates obtained for individ
ual cycles. 

3. Data Sets 

Here use is made of the crossover data sets provided by 
AVISO. These are based on the TOPEX/POSEIDON 
merged geophysical data records (GDRs). They are pro
duced operationally, cycle per cycle, and made available on 
AVISO CD-Roms [AVISO, 1993]. Data from repeat cycle 2 
to 30 are employed. They cover the period October 4, 1992, 
to July 28, 1993. The Centre National d'Etudes Spatiales 
(CNES) orbit, based on Doppler orbitography and radiopo
sitioning integrated by satellite (DORIS) measurements, is 
used for all data. The following standard corrections are 
applied to the TOPEX (Ku band) and POSEIDON altimeter 
range measurements: dry tropospheric range delay and 
inverted barometer efl'ect from European Centre for Medi
um-Range Weather Forecasts sea level pressure, wet tropo
spheric range delay from TOPEX microwave radiometer 
measurements, ionospheric corrections from filtered dual
frequency altimeter measurements for TOPEX and from 
DORIS measurements for POSEIDON, solid Earth tide, 
ocean tide from the Cartwright and Ray [1990] model. The 
wii1cl speed U is deduced from the backscatter coefficient 
(u0 ) using the Modified Chelton-Wentz (MCW) algorithm 
[Witter and Chelton, 199la]. The TOPEX backscatter coef
ficient is corrected for its known bias of 0.7 dB. 

Rather stringent editing is applied to eliminate anomalous 

Table 1. Number ofTOPEX/TOPEX CfT), POSEIDON/ 
POSEIDON (PP), or TOPEX/POSEIDON (TP) Validated 
Crossover Data for Each Repeat Cycle 

Cycle TT pp TP 

2 3130 0 0 
3 3229 76 1020 
4 4017 139 1474 
5 4046 53 909 
6 3530 220 1696 
7 5130 0 0 
8 2994 95 1102 
9 3360 170 1521 

10 6403 0 0 
II 5141 63 1102 
12 4214 233 1891 
13 5208 115 1613 
14 4909 175 1779 
15 5567 83 1407 
16 4450 84 1167 
17 7437 0 0 
18 7324 0 0 
19 7166 0 0 
20 0 5980 0 
21 7138 0 0 
22 7050 0 0 
23 6643 0 0 
24 6493 0 0 
25 6374 0 0 
26 6212 0 0 
27 5949 0 0 
28 5827 0 0 
29 5594 0 0 
30 5485 0 0 

Total 150,020 7486 16,681 

data. In particular, all cases with satellite attitude angle 
larger than 0.3° are eliminated. Also discarded are measure
ments with missing or unreliable standard corrections or 
with u0 < 7 dB, u0 > 20 dB, or SWH > 11 m. A complete 
description of the editing procedure is given by Le Traon et 
al. [this issue]. After quality control a total of 174, 187 
crossover differences are obtained, including 150,020 cross
over points with TOPEX measuring on both the ascending 
and the descending arc (these will be referred to as TT 
crossovers), 7486 crossovers with POSEIDON measuring on 
both arcs (PP crossovers) and 16,681 crossovers with 
TOPEX and POSEIDON measuring on one arc each (TP 
crossovers). The number of TT, PP, or TP crossovers in 
each cycle is given in Table 1. We use the TT and PP data 
sets separately to estimate the TOPEX and POSEIDON sea 
state biases. The results are described in the next two 
sections. 

4. TOPEX Sea State Bias 
4.1. Constant Relative Bias 

The adimensional ratio SSB/SWH is often referred to as 
the relative bias. The simplest, most usual, parameterization 
of SSB is based on the assumption of a constant relative bias 

SSBIII ={/I SWH (11) 

This is obviously derived directly from (I) assuming A2 to be 
a constant. The constant a 1 has been estimated by manY 
authors. For studies based on Geosat measurements the 
published values typically range from -0.01 to -0.04, that 
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is, -1 to -4% of SWH [e.g., Ray and Koblinsky, 1991], in 
agreement with various airborne and tower measurements 
[e.g., Walsh eta!., 1989]. Values in the same range are found 
for GEOS 3. Significantly higher values (about -7%) are 
quoted for the Seasat altimeter. They are considered as 
atypical and generally attributed to peculiar features of the 
Sea sat altimeter tracker and ground processing [Bom eta!., 
1982; Hayne and Hancock, 1982]. 

The linear regression on the global (cycle 2 to 30) TT 
crossover data set yields a 1 = -0.02, a very reasonable 
result close to the typical Geosat estimates. The uncertainty 
of that estimated coefficient is ±0.003. As explained in 
section 2.4, this uncertainty is the standard deviation of the 
different a 1 estimates obtained by performing regressions on 
individual cycles. In this case, the computation is based on 
28 cycles since our 29-cycle data set includes one subset 
(cycle 20) without TT crossovers. 

Before SSB correction, the variance of the TT crossover 
differences is 127.71 cm 2

. After correction the variance is 
reduced to 120.38 em 2 , corresponding to a sea level variabil
ity signal of 11 em RMS. The variance of the crossover 
differences explained by this SSB parameterization is thus 
7.33 cm 2

, or 2.7 em RMS. 
We also analyzed the regression residuals (s) as a function 

of the regressor L1SWH. To do so, residuals were sorted into 
bins 1m wide according to L1SWH. The mean residual within 
each bin is plotted in Figure 1. The averaged residuals show 
coherent variations with L1SWH. This obviously indicates 
that the simple SSB parameterization (11) does not account 
for the whole sea state related variability in the altimeter 
measurements. In other words, the SSB is not simply 
linearly dependent on SWH. This is nothing new. Several 
authors have proposed a variety of more elaborate SSB 
models to compensate for the shortcomings of (11) [e.g., Ray 
and Koblinsky, 1991; Melville eta!., 1991; Glazman eta!., 
1994]. We examine such models in the next two subsections. 
We first analyze the ability of a relatively simple physically 
based SSB model proposed by Fu and Glazman [1991]. We 
then investigate a whole range of more empirical models, 
including that selected by NASA to produce the TOPEX 
GDRs [Callahan, 1992]. 
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Figure I. Mean regression residuals for SSB parameteriza
tion (II) as a function of L1SWH. The clots show averages 
computed on 1-m-wide L1SWH bins. 
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Figure 2. Variance explained by the Fu and Glazman 
[1991] SSB model (12) as a function of the selected value of 
parameter d. 

4.2. Fu and Glazman Model 

The statistical properties of the sea surface, and hence the 
SSB, depend not only on SWH but also on the degree of 
wave development [Glazman and Pilorz, 1990; Glazman and 
Srokosz, 1991; Minster et a!., 1992]. Glazman and Srokosz 
[1991] showed that the A2 parameter in (1) could be ex
pressed as a function of wave age. Fu and Glazman [1991] 
(hereinafter referred to as FG) then introduced the concept 
of pseudo wave age, a proxy for the true wave age which 
cannot be determined from altimeter data alone. They pro
posed the following SSB parameterization: 

, ? I 
SSB

111 
=a 1 SWH (g SWH!U-) _, (12) 

where the adimensional ratio (g SWH/U 2 ) is the pseudo 
wave age, with g the acceleration due to gravity; a 1 and d 
are empirical parameters to be determined. For Geosat, FG 
estimated a 1 = -0.01 and d = 0.55. These estimates were 
obtained by minimizing collinear differences along selected 
ground tracks. More recently, Glazman eta!. [1994] revised 
their estimates using a more comprehensive global data set. 
They found a 1 = -0.014 and d = 0.35. The FG SSB model 
is used in the POSEIDON GDRs [Zan(f'e, 1992] and in the 
AVISO merged GDRs [AVISO, 1993]. The selected param
eter estimates are close to those of FG: a 1 = -0.01 and d = 
0.5. 

Simultaneous estimation of a 1 and d is, of course, a 
nonlinear problem. It is easily solved using iterative minimi
zation methods for which standard computer routines are 
available. On the other hand, if a value of d is selected, 
finding the optimal value of a 1 is a simple linear problem, 
immediately solved using (9). We actually solved it for a set 
of regularly sampled values of d in the range [ -0.5, 1.5]. 
Each experiment gave us the amount of variance explained 
for one value of d. The results are plotted in Figure 2. After 
this first set of experiments, it was simple to refine our 
estimate of d in the range of values where the explained 
variance was the largest. The optimum was found for a = 

0. 17 and ft 1 = -0.016. Regressions performed on individ
ual cycles, keeping a = 0. 17, yield estimates of a 1 between 
-0.01 and -0.02. 

For the global TT data set, the variance explained by (12) 
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is 7.98 cm 2 or 2.8 em RMS, a value close to that obtained 
with a constant relative bias(!!). This is not surprising as the 
optimal value of dis rather close to zero, the value for which 
(II) and (12) are identical. Accordingly, the regression 
residuals obtained with the .FG parameterization vary with 
LlSWH in a way that is very similar to that observed in 
Figure I. This disappointing result shows that for TOPEX 
(!2) does not extract significantly more SSE-related variabil
ity from the crossover differences than (II) does. This is 
unlike the results previously obtained for Geosat by FG and 
Glazman et a!. [1994]. Those works yield estimates of d 
ranging from 0.35 to 0.55. Figure 2 shows that for TOPEX, 
exponents in this range yield similar or poorer results than a 
simple constant relative bias (d = 0). This difference 
between TOPEX and Geosat is as yet unexplained. It might 
be clue to technological differences between the two instru
ments, but it might also, at least partly, be clue to dill'erent 
data processing. In particular, FG and Glazman eta!. [I 994] 
use an orbit error correction scheme that might atiect the 
estimated SSB, as previously explained in section 2.3. No 
orbit adjustment is performed here. There might also be a 
problem with the wind speed algorithms since Glazman eta/. 
[1994] use the Glazman and Greysukii [1993] wind speed 
algorithm instead of MCW. To check this we performed new 
regressions using wind speeds computed with the Glazman 
and Greysukh [1993] algorithm. The results prove to be only 
slightly different. The best SSB calibration is obtained for 
cl = 0.14 and a1 = -0.017. The explained variance is 7.87 
em 2 . It is thus clear the choice of wind speed algorithm 
cannot be the main cause of the observed differences. 

4.3. Formulation and Selection of Other Empirical Models 

As the physical basis to produce a generally applicable 
SSB model is lacking, one can, on statistical bases, try to 
find the relationship that best matches the sea state-related 
variability of the sea smface height. The theoretical expres
sion (I) shows that SSB is proportional to SWH but the 
proportionality factor is not exactly known. It is not a 
constant, as shown in section 2. I, but rather a function of 
different sea state parameters that remains to be determined. 
That function can, of course, be approximated with a Taylor 
series expanded in terms of pertinent sea state related 
variables. This is the solution adopted to estimate the SSB in 
the TOPEX GDRs produced by NASA [Callahan, 1992]. In 
practice, the variables of the Taylor series can only be 
chosen from sea state related parameters that are measur
able by an altimeter: SWH, a-0 , U, or any combination 
thereof. In the NASA GDRs use is made of SWH U and 
p = (r SWH!U 2 ) -o.s, a wave age related pm:ameter. 
Simultaneous use of the two highly correlated variables U 
and a-0 is purposely avoided. In view of the limited success 
obtained in the preceding section with the FG parameteriza
tion, we will also avoid using p. We are thus left with two 
pertinent parameters: SWH and U. Like in the NASA 
GDRs, the series expansion will be limited to the second
order terms. Adding more terms is unnecessary, as will be 
shown later. The general SSB formulation to investigate is 
thus 

This relation is obviously linear. All parameters are easily 
estimated using (9). As usual in regression analysis, we will 
test models with a progressively increasing number of terms 
(parameters) in ( 13). The results obtained with a 1 as a single 
parameter were examined in section 2.1. The variance 
explained is 7.33 cm 2• Just to have an idea of the maximum 
variance one can hope to explain with a model like (13), we 
performed the full six-parameter regression. The variance 
accounted for is 10.48 cm 2 (3.24 em RMS). The difference 
with respect to the simple one-parameter model is thus 
relatively small. In all following experiments we will keep 
the zero-order term a 1 which turns olit to explain a large 
ti·action of the variance. When keeping this term, the number 
of possible models with 2, 3, 4, 5, and 6 parameters is 5, 10, 
10, 5, ancll, respectively. This represents a maximum of31 
models to test. To discriminate between all these models we 
will use three well-defined criteria. For a given number of 
parameters, the best model is the one (I) which explains the 
largest amount of variance, (2) whose parameter estimates 
are most robust (i.e., exhibit the smallest cycle to cycle 
variability), and (3) whose residuals display the smallest 
possible coherent variations (i.e., correlations) with the 
regressors ,:lSWH and/or LlU. For the ease of notation, each 
of the selected bias model will be denoted BMx, where x is 
the number of parameters fitted in the model. The constant 
relative bias model (I 1) will accordingly be identified as 
BMI. 

4.4. Two-Parameter Models 

The variance explained by all two-parameter models is 
shown in Table 2. Among these, two solutions are clearly 
ahead. These are the models using SWH2 or SWH3 as the 
second regressor. The explained variance is almost exactly 9 
cm 2 in both cases. Note that the FG model, also a (nonlin
ear) two-parameter model, is placed fourth with an explained 
variance of 7.98 cm 2 • The Ray and Koblinsky [1991] type of 
model, with SWH and U SWH as regressors, performs less 
well. Interestingly, the two best models are functions of 
SWH only, that is, they do not require wind speed estima
tion. This can be useful in the early phases of altimeter 
missions when the a-0 calibration and wind speed algorithms 
are not yet ascertained. 

It is quite easy to choose between the best two two
parameter models as the solution including SWH 2 is clearly 
less robust. The estimates of a 1 and a 2 are strongly anticor
related and variable. The estimates of a 1 determined from 
individual repeat cycles range from -7 to -3.8% of SWH. 
Significantly more stable results are obtained with SWH 3 as 
the second regressor. Our preferred two-parameter model 
(BM2) thus reads 

(14) 

Figure 3 shows the relative biases corresponding to (14) 
successively fitted over the 28 individual repeat cycles of our 
TT crossover data set. The match between all cycles is 
indeed remarkable. The coefficient estimates are a 1 = 

-0.037 ± 0.004 and b 4 = 0.00029 ± 0.00007. The 
corresponding relative bias is plotted in Figure 4. 

The basic effect introduced by the SWH 3 term in BM2 is 
a progressive decrease of the magnitude of the relative bias 
when SWH increases. Interestingly, a similar effect is pre
dicted by the theoretical EM bias model of Barrick and Lipa 
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Table 2. Variance of the TT Crossover Differences Explained by Two- and Three-Parameter SSB Models 

a 1 SWH + az SWH 2 + a3 SWH U + a4 SWH 3 + a 5 SWH U 2 + a6 SWH 2 U 
Variance Explained, 

cm 2 

Two-Parameter Models 
X 
X 
X 
X 
X X 

X 

X 

7.34 
X 7.43 

X 8.23 
8.95 
9.00 

Three-Parameter Models 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 

X 

X 
X 
X 

X X 
X 
X 
X 

X X 8.94 
X 8.98 

X 8.99 
9.00 

X 9.06 
X 9.06 

9.22 
9.31 

X 9.80 
X 9.92 

Crosses indicate the terms that are retained in each model. The simple one-parameter model explains 7.32 em 2 and the full six-parameter 
model explains 10.48 cm 2

. 

[1985]. This model yields a relative bias whose magnitude is 
proportional to SWH - 0

·
28

, clearly a decreasing function of 
SWH. This result is obtained assuming a Joint North Sea 
Wave Project directional wave spectrum [Hasselmann eta!., 
1980]. The simpler theoretical model of Jackson [1979] does 
not provide conclusive results on that point. This model 
assumes a one-dimensional Phillips [1977] wave spectrum. 
Relative bias is shown to be directly proportional to the 
ocean smface skewness. But no simple correlation is found 
between skewness and SWH [Rodriguez and Chapman, 
1989]. 

On the other hand, Witter and Chelton [1991b] have also 
observed a decreasing relative bias with increasing wave 
heights in the Geosat data. For SWH values below 3 m they 
find nearly constant relative biases between -3 and -4% of 
SWH, as in BM2 (see Figure 4). The decrease in the 
magnitude of the relative bias becomes well marked for 
SWH >3m. Witter and C!wlton [1991b] attribute this effect 
to attitude and sea state errors in the Geosat altimeter 

4 

3 

t'a' 2 

::: 1 
en 
~ 0 
'-' 
til -1 c:'l :a 

-2 Q.) 

,::; 
..... -3 
c:'l 
a:; 
p::; -4 

-5 

-6 

0 1 2 3 4 5 6 7 8 9 10 11 

SWH(m) 

l<'igurc 3. Relative bias estimates as a function of SWH. 
These estimates are obtained by fitting BM2 (14) over 28 
dilierent TT crossover data subsets, each corresponding to 
one repeat cycle (cycles 2 to 19 and 21 to 30). 

on-board tracking algorithm. Here we think it is more likely 
to be a true sea state bias effect. Indeed, TOPEX/ 
POSEIDON has never had Geosat's severe attitude prob
lems. Small pointing errors (generally below 0.4°) were 
present until the end of cycle 8. After that, pointing is almost 
perfect (error below 0.1°). Attitude errors are thus unlikely 
to be present in the estimated sea state biases of cycle 9 to 
30. Since our bias estimates before and after cycle 8 are very 
comparable, there is probably no attitude effect at all in our 
results. 

4.5. Three-P~rameter Models 

Turning now to three-parameter models, it appears that 
most of the 10 tested models do not explain significantly 
more variance than BM2. Interestingly, the four best models 
all include the SWH U term. The best one (BM3) reads 

SSBm = SWH[a 1 + a 3U + a 5 U 2
] (15) 
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Figure 4. Relative bias estimate as a function of SWH. 
This estimate is obtained by fitting BM2 (14) to our global TT 
crossover data set. 
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Figure S. Relative bias estimates as a function of U. These 
estimates are obtained by fitting BM3 (15) over 28 ditTerent 
TT crossover data subsets, each corresponding to one repeat 
cycle (cycles 2 to 19 and 21 to 30). 

The relative bias is, noticeably, a function of wind speed 
only. This solution explains a variance of 9.92 cm 2

. The 
coefficient estimates are i'1 1 = 0.0036 ± 0.007, i'1 3 = 
-0.0045 ± 0.0008, and i'1 5 = 0.00019 ± 0.00003. Regres
sions performed on individual cycles indicate that this solu
tion is quite robust (Figure 5). Still, the relative bias esti
mates are slightly more variable than those obtained with 
BM2, specially at low wind speeds. This wast~ be expected 
since increasing the number of model parameters generally 
increases the variance of the parameter estimates. BM3 was 
actually implemented by NASA to produce the TOPEX 
GDRs. The estimated parameter values are [Callahan, 1992] 
i'l 1 = -0.0029, i'1 3 = -0.0038, and d 5 = 0.000155. These 
parameter estimates are remarkably close to ours. The 
corresponding explained variance is 9.3 em 2 • Figure 6 shows 
that the NASA parameterization yields relative biases that 
are slightly below those obtained here but the difference 
always remains smaller than 0.7% for wind speeds up to 20 
m/s. 

The NASA algorithm selection was based on Hevizi et 
al.'s [1993] extensive analysis of recent tower and airborne 
measurements. Interestingly, their data set included new 
observations made at high wind speeds, up to 20 m/s. Such 
measurements were not previously available. As indicated 
by the authors, these new measurements give confidence 
that the wind speed dependence of the relative bias is 
quadratic, not linear as previously considered [e.g., Melville 
eta!., 1991; Ray and Koblinsky, 1991]. This result is clearly 
confirmed here. The numerical scattering experiments of 
Rodriguez et a!. [1992] also provide theoretical support to 
that experimental result. Rodriguez eta!. [1992] simulations 
indeed indicate that the magnitude of the relative bias 
increases with wind speed for wind speeds up to about .I 0 
m/s, and slightly decreases at higher wind speeds. This is 
again remarkably consistent with the behavior simulated by 
BM3. 

Now the question arises whether we should prefer a 
two-parameter model with an explained variance of 9 em 2 or 
a three-parameter model explaining 9.9 em 2 . This is where it 
is useful to analyze the regression's residuals. As previously 

clone for the regression with BM I, we sorted the residuals 
for the two- and three-parameter models into liSWH bins of 
width I m but also into Li U bins of width I m/s. The results 
are shown in Figures 7a, 7b, Sa and Sb. The comparison 
between Figure 1 and Figure 7a clearly shows that the SWH 3 

term added to ( 11) significantly reduces the variations in the 
residuals as a function of liSWI-I. All binned residuals now 
have means below 2 em. Most are smaller than I em, an 
excellent result. The mean residuals sorted according to ll U 
are also small but show a very clear trend with LiU. This is 
not surprising as ( 14) does not include any wind-dependent 
terms while wind-induced variations of the SSB are reported 
in numerous experiments [e.g., Melville et a!., 1991; Walsh 
eta!., 1991; Ray and Koblinsky, 1991; Branger eta/., 1993]. 
This trend is probably not easily explained by one simple 
wind-dependent term. Indeed, of all the three-parameter 
models we tested, none of the solutions including SWH and 
SWH 3 plus a wind-dependent term performs significantly 
better than BM2. The residuals from BM3 behave quite 
diiJerently: the mean residuals binned according to Li U arc 
very small, below 0.5 em, while the same residuals binned 
according to liSWH have significantly larger means, up to 
2.5 em, and show marked SWH-related variations. 

To summarize, BM2 and BM3 arc two models represent
ing fairly well either the wave-induced SSB variability (BM2) 
or the wind-induced variability (BM3). As previously men
tioned, there is no hope of finding a solution by simply 
adding one of the wind-dependent terms to (14). This brings 
us to consider a four-parameter model. Given the very small 
amount of explained variance one can still gain, the need for 
such a model can be questioned. However, one must be 
aware that our data set is dominated by crossover differ
ences associated with wave heights and wind speeds close to 
the means (3 m and 7.5 m/s for SWH and U, respectively). 
Most of the variance we are trying to explain thus corre
sponds to "normal" wind and wave conditions. That part of 
the variance is already well explained by BMl and, even 
better, by BM2 and BM3. Figures 1, 7, and 8 indeed show 
that large residuals are found mostly at high values of liSWH 
and Li U, that is, for measurements including wind speeds or 
wave heights that deviate significantly from the mean. There 
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Figure 6. Comparison between the relative bias used in the 
NASA TOPEX GDRs and the bias obtained by fitting BM3 
(15) to our global TT crossover data set. 
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are few such measurements, and they therefore make only a 
small contribution to the total variance. Still, they are most 
interesting cases from which one can learn about the SSB 
variability. If a four-parameter model can reduce the resid
uals in those extreme cases without degrading the solution 
for normal situations, then we believe it is useful, even if the 
additional variance explained is very small. 

4.6. Four-Parameter Models 

As previously mentioned, (13) provides 10 possible com
binations of four-parameter models. We performed the 10 
regressions and found only three models explaining more 
variance than BM3. They all contain the three basic terms of 
BM3 plus one of the other three possible terms: SWH2 , U 
SWH 2

, or SWH 3
. The explained variance is, in the same 

order: 10.46, 10.42, and 10.41 cm 2 • The largest explained 
variance is now extremely close to that obtained with the full 
six-parameter model (10.48 cm 2

). The differences are small 
between the best three models, but the largest explained 
variance is obtained when including SWH 2 as the fourth 
regressor. This term already provided the best two-
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Figure 7. Mean regression residuals for BM2 (14) as a 
function of (a) t.SWH and (b) tlU. The squares show 
averages computed on t.SWH bins of width I min Figure 7a 
and on t.U bins of width I m/s in Figure 7b. 

parameter model, in terms of explained variance. The best 
four-parameter model (BM4) thus reads 

SSB 111 = SWH[a, + a 2SWH + a3U + asU 2
] (16) 

with a1 = -0.019 ± 0.009, a2 = 0.0021 ± o.oolt, a3 = 
-0.0037 ± 0.0008, and fl 5 = 0.00014 ± 0.00003. The 
relative bias is plotted in Figure 9. The new term actually 
controls the SWH-related variations of the relative bias 
whose magnitude now decreases with SWH. This type of 
effect was already parameterized by BM2 using a term 
proportional to SWH 3 . Interestingly, the addition of a 
SWH 2 term to BM3 only has a limited impact on the 
estimated a 3 and a 5 parameters which govern the wind
dependent response of the SSB. On the contrary, the addi
tion of the new wave-dependent term has a significant impact 
on a 1• The estimate of a 1 in BM3 was a small, but unex
pectedly positive, 0.36% of SWH. The new value obtained 
with BM4 is -1.9% of SWH, an apparently more reasonable 
SSB estimate for low wind speeds and wave heights. 

Analysis of the regression residuals confirms that BM4 
performs quite well in a wide range of conditions. The 
residuals binned according to !lSWH generally have means 
well below I em (Figure lOa). The means are even smaller 
when the residuals are sorted according to tlU (Figure lOb). 
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Figure 9. Relative bias estimate (% SWH) as a function of SWH and U. This estimate is obtained by 
fitting BM4 (16) to our global TT crossover data set. 

BM4 thus models the SSB by simply combining the basic 3 

wave- and wind-related variations that were separately pa- (a) 

rameterized in BM2 and BM3. As shown earlier, these basic 2 m 

functional dependences are supported by theoretical devel- ----e 
u 
'-' opments and experimental results. A linear combination of 

the two effects is thus physically appealing, but currently -; m 

::s m 

there are no theoretical results to justify it. Numerical :sa 0 
simulations of the EM bias, such as those performed by 

rJJ "' m "' m <1,) .... 
Rodriguez et al. [1992], could provide interesting results in c:: 

ell -1 
that regard. Unfortunately, the simulations presented so far <1,) 

are limited to significant wave heights between 0 and 3 m, a 
:; 

range too narrow to detect any significant SWH-related -2 

trend. It is hoped that the empirical results presented here 
will provide impetus for new studies into the physics of the -3 

combined wind and wave effects on sea state bias. -6 -4 -2 0 2 4 

LlSWH (m) 
4.7. Recapitulation 

Given our simple empirical approach, we can hardly 
expect improvements beyond the four-parameter model. 3 

Three generic well-behaved SSB models (BM2, 3, and 4) (b) 

have been selected for TOPEX data. Their exact expressions 2 

read s 
~ 

BM2(T): SSB 111 = SWH[ -0.037 + 0.00029 SWH2
] -; 

(17a) ::s 
'"CI m m ·v; 0 m m <1,) m 

BM3(T): SSB 111 = SWH[0.0036- 0.0045 U .... 
c:: 
ell 

-1 
+ o.ooo19 u2

] 
<1,) 

(17b) :; 

BM4(T): SSB 111 = SWH[ -0.019- 0.0037 U -2 

+ 0.00014 U 2 + 0.0027 SWH] (17c) -3 

-8 -6 -4 -2 0 2 4 6 
where (T) has been added to the name of each model to 

LlU (m/s) identify expressions that have been specifically fitted to 

m 

6 

m m 

8 

TOPEX data. This is to avoid later confusion with similar Figure 10. As in Figure 7, but for BM4 (equation(l6)). 
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results obtained for POSEIDON. Estimated uncertainties 
for all model coefficients can be found in the text. 

4.8. Regional Performances of the Selected Models 

The selected models have been fitted over global data sets 
and, accordingly, the models have been classified as a 
function of the explained variance computed over the globe. 
A finer examination of the results has been performed 
through the analysis of regression residuals. These have 
been computed for different classes of values of L:lSWH and 
Ll U. It has been shown that the models with relatively few 
parameters (BM2, BM3) perform quite well for small values 
of L:lSWH and Ll U, generally corresponding to crossover 
data with near-average wind and wave conditions. BM4 
proves to be superior (i.e., has significantly smaller regres
sion r~siduals) only at large values of .clSWH and Ll U, that 
is, mostly for measurements including wind speeds or wave 
heights that largely deviate from the global mean. This 
suggests that BM2 or BM3 could perform nearly as well as 
BM4 in regions where extreme conditions are rare. More 
generally one would like to know if the ranking of our 
globally fitted models still holds at the regional level since 
the regional wind and wave statistics are largely variable, as 
shown, for example, in Figures lla and 1lb. 

To investigate that, all TT crossover data between 65°S to 
65°N were binned into 10° latitude bands. The crossover 
differences and their variances were first computed in each 
bin without correcting for the SSB. They were then com
puted using the SSB corrections deduced from BM2(T), 
BM3(T), and BM4(T), successively. The crossover differ
ences were also computed assuming a SSB equal to -2% of 
SWH, that is, using the BM1(T) model. Since the variance of 
both SWH and U increases polewards (see Figures 11a and 
11 b), the variance explained by all SSB models (BM1 to 
BM4) also increases toward the poles. The explained vari
ances range from nearly zero at the equator up to 15 or 16 
em 2 in midlatitude and high latitudes. The very small ex
plained variance in the equatorial ocean is not surprising. 
Indeed, the variance of SWH between sos and soN is about 
0.2 m 2

• A typical SSB of -2% of SWH can thus explain a 
maximum variance of 0.8 cm 2

. However, the variance 
actually explained by BM4 is only 0.2 cm 2

. The variance 
explained by BM2 is even negative. This is probably due to 
inaccuracies in the IB correction. Indeed, the IB correction 
is strongly correlated with the SSB [Gaspar et al., 1992] and 
has significant errors in the equatorial band [Fu and Pihos, 
this issue]. In this region its variance (typically between 1 
and 4 cm 2) is larger than that of the SSB. Errors in the IB 
correction can thus easily corrupt the weak SSB signal. As a 
consequence, models that effectively correct for the true 
SSB can appear to have a negligible or even a negative 
impact on the explained variance in the equatorial ocean. 

The above mentioned meridional variations of the ex
plained variance are common to all models and much larger 
than the differences between the models. To facilitate the 
comparison between these models, we computed for each 
latitude band the dill'erences between the variance explained 
by BMl and that explained by the other models. These 
dill'erences are plotted in Figure 12. Only minor dill'erences 
(both positive and negative) are observed between BM2 and 
BM 1 in the (20°S, 20°N) latitude band. This is easily uncler
stood as the clill'erence between the two models is a term 
proportional to SWH 3 which becomes significant only for 
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Figure 11. Meridional distribution of the variance of (a) the 
significant wave height and (b) the wind speed, as observed 
by TOPEX. 

large values of the SWH (see Figure 4). Large waves are rare 
in the tropics: the mean SWH is 1.8 m with a standard 
deviation of 0. 7 m. The performance of BM2 is significantly 
better in midlatitudes and high latitudes where larger and 
highly variable wave heights are observed. BM3 is better 
than BM2 at all latitudes. The wind speed dependence ofthe 
relative bias, as modeled by BM3, thus clearly explains more 
variance than the wave height dependence modeled by BM2. 
However, the combination of the two effects, as modeled in 
BM4, proves to be superior to BM3 at latitudes greater than 
30 degrees, in regions of usually higher sea states. The 
diJierence between BM4 and BM3 very much resembles that 
between BM2 and BM1: the el'l'ect of the additional SWH
dependent term is apparent only in regions where large 
waves are commonly observed. 

The discussion about the results obtained near the equator 
indicate that calibrating SSB models with data from the 
equatorial ocean can be misleading. Fortunately, the use of 
such data proves to be of minor importance in this work. 
Indeed, the data between 20°S and 20°N only represent 11% 
of our global data set. In addition, the SSB variance in that 
latitude band is typically I order of magnitude smaller than 
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Figure 12. Meridional distribution of the variance ex
plained by the BM2, BM3, and BM4 models minus the 
variance explained by BMl, 

that observed at higher latitudes, The impact of the low
latitude data on our regression results is thus likely to be 
negligibly smalL This was verified by performing new regres
sions with the BMl to BM4 models excluding all data within 
20 degrees from the equator, Most model coefficients remain 
virtually unchanged, The largest variations are observed 
with BM4. The new regression yield is 

SSB 111 = SWH[ -0.021 - 0.0037 U + 0.000.14 U 2 

+ 0.0028 SWH] 

Comparison with (17c) immediately shows that the changes 
are indeed minor, well within the error bars of the coefficient 
estimates. 

5. POSEIDON Sea State Bias 
Due to the relatively short period of time during which 

POSEIDON has been operating from cycle 2 to 30, our data 
set only contains 7486 PP crossovers. Estimates of the 
POSEIDON SSB are thus bound to be more uncertain than 
for TOPEX. Also, the robustness of the different SSB 
models can hardly be tested by repeating regressions over 
different data subsets: our global PP data set is about the size 
of one TT subset (data from a single repeat cycle)! Still, the 
general approach used for the TOPEX SSB analysis remains 
valid and will be repeated for POSEIDON. 

5.1. Constant Relative Bias and FG Model 

The regression based on the simple constant relative bias 
parameterization (BMl) yields a surprising result: the esti
mated bias is -5% of SWH and the variance explained is 
34.55 cm 2 (5.9 em RMS). The variance of the PP crossover 
differences, before SSB correction, is 160.94 cm 2 (12.7 em 
RMS), significantly larger than for TOPEX (127.71 cm 2 or 
11.3 em RMS). After correction, the variance is reduced to 
126.39 cm 2 (11.2 em RMS). This compares better with the 
TOPEX figure (120.38 cm 2 or 11 em RMS), obtained after a 
correction of -2% of SWH. There is thus a clear difference 
of about 3% of SWH in the sea state-related signal contained 
in the TOPEX and POSEIDON data. The TOPEX (Ku band) 

and POSEIDON operating frequencies being nearly identi
cal, no difference is expected between their actual EM 
biases. The observed difference is thus probably clue to 
ditl"erences in the skewness and/or tracker biases of the two 
altimeters. 

The skewness bias can be approximated by (- A/24) SWH, 
where A is the skewness of the sea surface elevation 
[Srokosz, 1986; Rodriguez, 1988]. According to Rodriguez 
and Chapman [1989], the average value of A is between 0.2 
and 0.3, implying a skewness bias between -0.8 and -1.2% 
of SWI-I. The POSEIDON data are not corrected for this 
bias [Zan(f"e, 1992]. However, even if the TOPEX data were 
perfectly corrected for it, this bias could only explain SSB 
di1Terences of about 1% of SWI-I bet ween TOPE X and 
POSEIDON. We are thus left with a difference of, at least, 
2% of SWH which can only be explained by tracker biases. 
Since the observed TOPEX SSB is too small (- 2% of SWH) 
to include a significant tracker bias, we are led to assume 
that a tracker bias of -2% to -3% of SWH is present in the 
POSEIDON data. 

The FG model was also tested using PP data. As for 
TOPEX, regression series were performed using diJierent 
values for exponent din (12). The largest amount of variance 
(34.72 cm 2) is explained for cl = 0.03 and a1 = -0.049. 
With such a small cl this solution is nearly identical to the 
simple constant relative bias modeL This might indicate that 
an unusually large fraction of the SSB is modeled well by a 
constant relative bias. This would be the case if the observed 
skewness and tracker biases were properly modeled by a 
constant fraction of SWH. 

5.2. Other Empirical Models 

As for TOPEX, we tested the generic model (13) with 
gradually more parameters. A total of 25 regressions were 
performed with all possible two-, three-, and four-parameter 
models. In these three categories the models that explain the 
largest amounts of signal variance prove to be exactly the 
same as for TOPEX, that is, BM2, 3, and 4. Among the 
two-parameter models, BM2 ranks first, closely followed by 
the solution including the SWH2 term instead of SWH 3

. For 
the three-parameter models, BM3 is once again clearly 
ahead. In the four-parameter category, BM4 explains the 
largest amount of variance (35.337 cm 2), nearly as much as 
the full six-parameter model (35.347 cm 2

). The second and 
third ranking models are the same as for TOPEX. The BM2, 
3, and 4 models fitted to POSEIDON data read 

BM2(P): SSB 111 = SWH[ -0.059 + 0.00016 SWH 2] 
(18a) 

BM3(P): SSB 111 = SWH[ -0.040- 0.0025 U 

+ 0.00012 U 2
] (18b) 

BM4(P): SSB 111 = SWH[ -0.047- 0.0023 U 

+ 0.00011 U 2 + 0.0010 SWH] (18c) 

Due to the relatively small number of available data, the 
binned residuals for each of these models are considerably 
noisier than for TOPEX. Still, the mean residuals obtained 
with the four-parameter model are mostly below 1 em (for 
the same bins as used for TOPEX) and exhibit no .lSWH- or 
Ll U-dependent trends. 
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Figure 13. BM2(P) and BM2(T) relative biases as a func
tion of SWH. 

The relative biases corresponding to BM2(P) and BM3(P) 
are plotted in Figures 13 and 14, respectively. They are 
compared with the corresponding TOPEX models. The 
difference between the TOPEX and POSEIDON relative 
biases appears to be nearly constant. The same holds true 
with the four-parameter models. For a mean SWH of 3 m 
and a mean wind speed of 7.5 m/s, the differences between 
the TOPEX and POSEIDON BM2, BM3, and BM4 models 
are -2.3, -3.2 and -2.4% of SWH, respectively. Though 
somewhat scattered, these values are consistent with the 
-3% estimate obtained with BMl. Such differences remain 
too large to be explained by a skewness bias only. 

To summarize, the POSEIDON SSB exhibits wind- and 
wave-related variations that are very close to those observed 
with the TOPEX altimeter. This variability is probably the 
natural sea state-related variability of the EM bias. Super
imposed on it, a nearly constant relative bias is apparent in 
the POSEIDON data. It is probably the sum of an uncor
rected skewness bias and a tracker bias. 
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Figure 14. BM3(P) and BM3(T) relative biases as a func
tion of U. 

6. Conclusion 
A large global data set of TOPEX and POSEIDON cross

over differences was used to estimate the SSB of the two 
altimeters. Data from repeat cycles 2 to 30 are employed. 
They include over 150,000 TT and 7000 PP crossovers. A 
simple linear estimation technique is used to extract a 
modeled SSB signal from the crossover differences. Differ
ent SSB models were tested. The experiments performed 
with TOPEX data indicate the following conclusions: 

1. The mean TOPEX sea state bias averaged over all wind 
and wave conditions is close to -2% of SWH. 

2. The magnitude of the bias tends to decrease with SWH. 
This tendency is well reproduced using a two-parameter 
model (BM2) in which the relative bias (SSB/SWH) is 
represented by a constant plus a quadratic term in SWH. 
Such a parameterization outperforms the nonlinear two
parameter model of Fu and Glazman [1991]. 

3. The wind-induced variations in SSB are modeled well 
using the three-parameter formula (Bl\13) presently used in 
the NASA GDRs. The associated relative bias is a quadratic 
function of wind speed. 

4. To account for both the wind- and wave-related vari
ability of the SSB, a four-parameter model is needed. We 
found that the most appropriate four-parameter model 
(BM4) includes the NASA three-parameter model plus a 
term proportional to SWH 2

. 

5. BM2 proves to be significantly better than a constant 
relative bias only in midlatitudes and high latitudes where 
the SWH-induced variability of the relative bias becomes 
important. BM3 does better than BM2 everywhere. BM4 
outperforms BM3 only at latitudes greater than 30 degrees, 
once again in regions where the SWH-induced variability of 
the relative bias is significant. 

The POSEIDON data set is considerably smaller than the 
TOPEX data set. All POSEIDON SSB estimates thus have 
relatively larger uncertainties. However, the data show 
beyond doubt that the POSEIDON SSB is significantly 
larger than that ofTOPEX. This bias appears to consist of an 
uncorrected skewness bias plus a tracker bias superimposed 
on a natural EM bias. Different model fits yield estimates of 
the skewness + tracker bias ranging from -2.3 to -3.2% of 
SWH for average wind speed and wave height values ( U = 
7.5 m/s, SWH = 3 m). The EM bias exhibits wind- and 
SWH-related variations similar to those observed for 
TOPEX. The same two-, three-, and four-parameter empir
ical SSB models explain the largest amount of variance in 
both the TOPEX and POSEIDON data. 

This study has thus produced, for both TOPEX and 
POSEIDON, a set of empirical SSB models including up to 
four adjustable parameters. The four-parameter model ap
pears to be robust and to provide good results in a wide 
range of wind and wave conditions. But this model is 
empirical. It may include some signal that is only empirically 
correlated with the SSB. The search for an efficient, physi
cally based, SSB model is thus encouraged. It should take 
into account both the wind- and the wave-induced variability 
of the relative bias. 

Nearly 16,700 TP crossover data remain unused. Th~y 
obviously contain information about the TOPEX and, more 
importantly, POSEIDON SSB. A slight generalization of 
regression (8) is needed to extract the information. This will 
be the subject of further work. 
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