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[1] Since Last Glacial Maximum (23–19 ka), Earth climate warming and deglaciation
occurred in two major steps (Bølling-Allerød and Preboreal), interrupted by a short
cooling interval referred to as the Younger Dryas (12.5–11.5 ka B.P.). In this study, three
cores (MV-33, MV-66, and MD-40) collected in the central part of Pandora Trough (Gulf
of Papua) have been analyzed, and they reveal a detailed sedimentary pattern at millennial
timescale. Siliciclastic turbidites disappeared during the Bølling-Allerød and Preboreal
intervals to systematically reoccur during the Younger Dryas interval. Subsequent to the
final disappearance of the siliciclastic turbidites a calciturbidite occurred during meltwater
pulse 1B. The Holocene interval was characterized by a lack of siliciclastic turbidites,
relatively high carbonate content, and fine bank-derived aragonitic sediment. The
observed millennial timescale sedimentary variability can be explained by sea level
fluctuations. During the Last Glacial Maximum, siliciclastic turbidites were numerous
when the lowstand coastal system was located along the modern shelf edge. Although they
did not occur during the intervals of maximum flooding of the shelf (during meltwater
pulses 1A and 1B), siliciclastic turbidites reappear briefly during the Younger Dryas, an
interval when sea level rise slowed, stopped, or perhaps even fell. The timing of the
calciturbidite coincides with the first reflooding of Eastern Fields Reef, an atoll that
remained exposed for most of the glacial stages.

Citation: Jorry, S. J., A. W. Droxler, G. Mallarino, G. R. Dickens, S. J. Bentley, L. Beaufort, L. C. Peterson, and B. N. Opdyke

(2008), Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment

nature and accumulation to sea level fluctuations at millennial timescale, J. Geophys. Res., 113, F01S19, doi:10.1029/2006JF000649.

1. Introduction

[2] The Gulf of Papua (GOP) between northeast Australia
and south Papua New Guinea (Figure 1) is an outstanding
extant example of a tropical mixed siliciclastic/carbonate
system [cf., Mount, 1984], where large masses of terrige-
neous sand and mud discharge into a region of major neritic
carbonate production. Unlike mixed systems in the ancient
rock record that have received much investigation [e.g.,

Budd and Harris, 1990; Foreman et al., 1991; Holmes and
Christie-Blick, 1993], only a few late Quaternary analogues
have been studied [i.e., Ferro et al., 1999; Belopolsky and
Droxler, 1999; Dunbar et al., 2000; Page et al., 2003]. The
GOP represents an exquisite place to observe, describe,
interpret, and ultimately understand the juxtaposition and
accumulation of siliciclastic and carbonate sediments within
the context of well-established late Quaternary global
(eustatic) sea level change [e.g., Lambeck et al., 2002],
including major millennial-scale fluctuations in the rate of
change [Weaver et al., 2003; Clark et al., 2004].
[3] Sea level and climate clearly influence the nature and

timing of sedimentary fill in basins adjacent to continental
margins. This is particularly true for turbidites deposited
along both siliciclastic [e.g., Gibbs, 1981; Bouma, 1982;
Mallarino et al., 2006] and carbonate [e.g., Droxler and
Schlager, 1985; Glaser and Droxler, 1993; Schlager et al.,
1994; Andresen et al., 2003] margins over the last few
glacial cycles. The frequency and magnitude of turbidites
are generally highest along siliciclastic margins during
glacial periods, because the associated lows of sea level
expose the shelf, and rivers can transport their sediments
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directly into the heads of submarine canyons. Conversely,
carbonate systems usually show a reversal of this pattern.
Calciturbidites preferentially occur during highstands of sea
level, when bank tops are flooded and highly productive.
[4] One might expect special sequences of siliciclastic

and carbonate turbidites in basins along tropical mixed
margins. However, remarkably few studies have examined
late Quaternary sediment accumulation in such basins. Most
work to date has come from the Belize margin in the
Caribbean Sea (B. Carson, personal communication,
2006) and from the Queensland Trough [e.g., Dunbar
et al., 2000; Page et al., 2003] adjacent to the Great Barrier
Reef (GBR) south of the GOP. These studies have generally
selected cores without turbidites and without the age reso-
lution to examine millennial-scale fluctuations during the
last glacial cycle. To our knowledge, no study has addressed
late Quaternary infill, especially turbidites, along tropical
mixed siliciclastic/carbonate margins with millennial time-
scale resolution.

[5] Pandora Trough parallels the northern shelf edge of
the GOP (Figure 1), and receives siliciclastic and carbonate
sediment from the adjacent shelf and atolls. The flat floor of
central Pandora Trough suggests significant input from
sediment gravity flows [Francis et al., 2008]. In this paper,
we develop high-resolution stratigraphies for three sediment
cores from central Pandora Trough and examine sediment
components within the context of late Quaternary sea level
change. The cores indicate that Pandora Trough bears the
imprint of rapid sea level transgression and regression
linked to millennial-scale global warming and cooling since
the Last Glacial Maximum (LGM).

2. Background

2.1. Physiography of the Gulf of Papua

[6] The GOP, broadly defined, comprises�150,000 km2 of
the northern Coral Sea between the southern coast of Papua
New Guinea (PNG) and the northeast coast of Australia
(Figure 1). The seafloor consists of a half-moon-shaped

Figure 1. Modern physiography of the Gulf of Papua, and location of the three cores in Pandora Trough
(MV-66, MV-33, MD-40) and of core MD97-2134 north of Ashmore Trough. Ashmore and Pandora
troughs represent two main oceanic basins directly adjacent to the modern shelf edge. The Pandora
Trough is a flat floor basin, mostly enclosed toward the SE (represented by the dark gray area). It is filled
with thick siliciclastic sandy/muddy turbidites and slumps alternating with pelagic sediments. The black
lines correspond to the location of the 3.5 kHz seismic profiles shown in Figure 2.
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continental shelf area of �40,000 km2 with a radius of
200 km and a series of slope basins and plateaus covering
�110,000 km2 [Francis et al., 2008]. Crucial to this paper
are the northern and western shelves, isolated carbonate
platforms, and Pandora and Ashmore Troughs. A series of
large rivers draining PNG annually discharge an enormous
load of siliciclastic sediment, perhaps >300 x106 metric
tones, into the northern GOP [Pickup and Chewings, 1983;
Salomons and Eagle, 1990]. At present, most of this
discharge accumulates along the coast, especially the inner
shelf [Harris et al., 1993, 1996; Walsh and Nittrouer, 2004].
By contrast, the modern middle and outer shelves in the
northwest GOP receive little siliciclastic sediment; instead,
they are covered by a thin veneer of mostly carbonate
sediments with occasional Halimeda bioherms [Harris et
al., 1996]. However, numerous channels cut across this
portion of the shelf, and many gullies line the upper slope
of Pandora Trough [Harris et al., 1993; Francis et al., 2008].
Large masses of siliciclastic sediment almost assuredly
crossed the outer central GOP shelf in the recent past.
[7] The northern terminus of the modern GBR occupies

the broad western GOP shelf. This complex reef system
comprises patch reefs on the inner and middle shelves
toward the southern Fly River delta and an almost contin-
uous barrier reef along the shelf/slope break. In both places,
reefs have grown to sea level. The GOP also has several
large atolls, which include the partially shelf-attached Port-
lock Reef and Ashmore, Boot, and Eastern Fields reefs.
These atolls are typical rimmed reefs, reaching present sea
level and enclosing shallow lagoons with water depths of
40–55 m [Francis et al., 2008; J. M. Webster, personal
communication, 2006]. Because Holocene lagoonal sedi-
ment should have minimal thickness [MacKinnon and
Jones, 2001; Gischler, 2003], the average present lagoon
depths most likely approximate the topography of a Pleis-
tocene karstified surface prior to the most recent flooding.
These reef systems border Ashmore and Pandora Troughs
and supply neritic carbonate sediment to these basins,
especially during the Holocene.
[8] Ashmore and Pandora Troughs are adjacent to the

shelf. These troughs, in particular the central part of
Pandora Trough, are the focus of this study because they
represent traps for late Quaternary sediment. The relatively
narrow and small Ashmore Trough (Figure 1) lies between
the GBR to the west and the atoll chain of Ashmore, Boot,
and Portlock reefs to the east. The seafloor of Ashmore
Trough dips to the south toward the Bligh Trough and to
the east toward Pandora Trough so that it resembles a
slope more than a basin per se. Surface sediment is
dominated by neritic carbonate shed from surrounding
reefs [Carson et al., 2008]. East of Ashmore Trough is
the much larger Pandora Trough (Figure 1), a basin
bounded by the atoll chain of Ashmore, Boot, and Portlock
reefs to the west, the GOP shelf edge to the north, and
Eastern Plateau (with the atoll of Eastern Fields) to the
south. The eastern end of Pandora Trough is open to
Moresby Trough. The central part of Pandora Trough has
a very flat seafloor (Figure 2), bathymetry typical for an
enclosed basin filled with thick siliciclastic sandy/muddy
turbidites and intervening hemipelagic sediments. North-
east of Eastern Fields atoll, Pandora Trough contains
drowned parts of a broader Miocene carbonate platform

that included Eastern Fields [Tcherepanov et al., 2008].
Features include a series of subparallel ridges hundreds of
meters high (interpreted as the unburied and drowned part
of the Miocene platform) and several subcircular miniba-
sins about 2 km wide. These are disconnected from the
main seafloor of Pandora Trough and partially filled with
onlapping sedimentary units, presumably rich in muddy
turbidites (Figure 2).

2.2. Late Quaternary Changes in Sea Level and
Climate

[9] Over the last 23 ka, Earth systems have experienced two
extreme climate end-members and the dramatic transition
between them. During the LGM interval �23–19 ka B.P.,
sea-surface temperatures dropped by several degrees, even in
tropical latitudes [Thunell et al., 1994; Lea et al., 2000;
Guilderson et al., 2001; Visser et al., 2003], and eustatic sea
level was much lower than at present, probably about –125 m
[Fairbanks, 1989; Yokoyama et al., 2000; Weaver et al.,
2003; Clark et al., 2004; Bassett et al., 2005]. Global climate
reached an optimal interglacial regime in the early Holocene
�7–6 ka B.P., when sea level rose to within several m of its
present level [Lambeck and Chappell, 2001].
[10] The transition from the LGM to the Holocene was

not smooth; rather, it involved major changes in rates of
warming and sea level rise. The �12 ka of warming, first
initiated at 19 ka B.P. [Clark et al., 2004], was marked by
several intervals of stepwise climatic changes, the Bølling-
Allerød interval (between 14.5 and 12.5 ka B.P.) and
the Preboreal warming at the beginning of the Holocene
(11.5 ka B.P.), being the most preeminent of them [Alley
et al., 1993]. Two short intervals characterized by more
glacial conditions, referred to as the Oldest and Younger
Dryas, also occurred �18–14.7 and �12.5–11.5 ka B.P.,
respectively [Alley et al., 1993; Hughen et al., 2000;
Weaver et al., 2003]. The temporal and mechanistic links
between changes in temperature and sea level during the
deglaciation remain controversial [Kienast et al., 2003;
Weaver et al., 2003]. Regardless, there were clearly two
short intervals of fast sea level change commonly called
meltwater pulse 1A (MWP 1A) and meltwater pulse 1B
(MWP 1B). During these events, sea level rose by >40 and
>11 mm/a (where a is years), respectively [Weaver et al.,
2003]. The climate coolings (e.g., Oldest and Younger
Dryas) appear coupled to plateaus in the sea level curve
[Hanebuth et al., 2000; Weaver et al., 2003]; though not
demonstrated or accepted, sea level might have dropped
during these intervals [Liu et al., 2004].

3. Materials and Methods

3.1. Core Collection

[11] Three cores from Pandora Trough (Figures 1 and 2,
Table 1) were examined in this study. Two jumbo piston
cores, MV25-0403-33JPC (MV-33) and MV26-0403-
66JPC (MV-66), were collected during the 2004 PANASH
cruise aboard R/V Melville; one Casq core MD05-2940C2

(MD-40) was collected during the 2005 PECTEN cruise
aboard R/V Marion Dufresne. The Casq corer is a 12 m
long, 0.25 m width/breadth square section gravity corer,
commonly used to obtain sedimentary sequences kept
almost intact. Core MV-66 was retrieved from the middle,
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flat central portion of Pandora Trough, at mid distance
(�75 km) between the atoll chain of Ashmore, Boot, and
Portlock to the west and Eastern Fields atoll to the east. Core
MV-33was retrieved in the eastern flat part of central Pandora
Trough, 30 km north of Eastern Fields. Core MD-40 is
located in one of a series of subcircular, partially isolated
minibasins 50 km north of Eastern Fields.
[12] During the 2005 PECTEN cruise, core MD-40 was

logged and imaged. Physical and magnetic properties
(P wave velocity, gamma density and porosity, magnetic
susceptibility) were measured at 2 cm intervals using a
Geotek MultiSensor Core Logger. Sediment color was

measured at 5 cm steps using a handheld Minolta CM
2002 spectrophotometer. We use lightness (L*), red–green
chromaticity (a*) and blue–yellow chromaticity (b*) of the
spherical L*a*b* color space. The mean standard deviation
for these measurements is 0.06 for L*. The lightness of cores
MV-66 and MV-33 was also measured, but at Rosenstiel
School of Marine and Atmospheric Science (University of
Miami) using a MultiSensor Core Logger.
[13] Preliminary core descriptions were made during both

cruises, and detailed descriptions were made during the
postcruise sampling. Three main types of sediments were

Figure 2. The 3.5 kHz seismic lines crossing the Pandora Trough and location of core MD-40 (flat floor
mini basin, north Eastern Fields Atoll) and MV-33 and MV-66 (central Pandora Trough).
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differentiated: siliciclastic sandy and muddy turbidites,
calciturbidites, and intervening hemipelagic sediment.

3.2. Size Separations

[14] Each core was sampled at 10 cm intervals, purposely
excluding turbidites. Sediment samples were freeze-dried
for 48 h to remove pore water. Dried sediments were
disaggregated with Calgon solution and sieved with water
using a 63 mm mesh. Both fractions were retained and dried
again.
[15] The >63-mm fraction was examined under a reflected

light microscope to qualitatively assess grain composition.
Throughout all three cores, carbonate dissolution is modest
and planktic foraminifer tests are abundant in hemipelagic
sediment intervals. Specimens are well preserved and show
no evidence of mud infilling or diagenetic recrystallization
(e.g., secondary carbonate cement). Samples were then dry
sieved to retain the >250 mm fraction from which tests of
specific planktic foraminifer species were identified and
picked for oxygen-isotope analyses (10 tests) and for
accelerator mass spectrometer (AMS) 14C dating (500 tests).

3.3. Geochemical Observations

[16] Oxygen-isotope analyses were conducted on small
batches of monospecific planktic foraminifera that calcify in
the surface mixed layer of the water column:Globigerinoides
ruber for core MV-66 and Globigerinoides sacculifer
(without the final sac-like chamber) for core MD-40. On
average, 10 specimens were picked from the >250 mm
fraction. Specimens were ultrasonically cleaned in distilled
water after careful crushing to release potential sediment
infilling. Samples were then roasted under vacuum at 375�C
for 1/2 h to remove organic contaminants. Using a common
100% phosphoric acid bath at 90�C, 20–50 mg of sample
were reacted and analyzed using a GV Instruments Optima
isotope ratio mass spectrometer at University of California,
Davis. Isotope values are reported in delta notation relative
to Vienna Peedee belemnite. Repeated analyses of a
marble working standard (calibrated against the interna-
tional standard NBS-19) indicate an accuracy and precision
of 0.05% (1s).
[17] A total of 10 AMS dates were also obtained in cores

MV-66, MV-33, and MD-40 (Table 2). For each measure-
ment, about 500 specimens of G. ruber and G. sacculifer
were picked from the >250 mm fraction, washed in an
ultrasonic bath with distilled water, and dried. These ali-
quots were then analyzed at the AMS laboratory at Univer-
sity of California, Irvine. Reported radiocarbon ages were
converted to calendar ages using the Radiocarbon Calibra-
tion Program [Fairbanks et al., 2005]. A surface ocean
reservoir correction of 468 years was used; this is the sum

of the global surface water reservoir age correction of
400 years [Stuiver and Braziunas, 1993; Bard et al., 1994]
and the regional reservoir age correction DR of 68 years for
Torres Strait [Reimer and Reimer, 2001], assuming it to be
invariant with time. We also assume that the upper ocean
waters (i.e., where G. ruber and G. sacculifer live) do not
vary by >200 years [Duplessy et al., 1991]. All ages are
reported in thousands of years before present (ka B.P.),
where Present is defined as 1950 AD.
[18] The <63 mm fraction of sediment was used to

determine carbonate content and carbonate mineralogy.
Carbonate contents were analyzed using a carbonate bomb
[Müller and Gastner, 1971; Droxler et al., 1988]. About
2 cm of sample were placed into a sealed vessel and reacted
with 20% HCl (2.3 mol L–1). The volume of CO2 released
was compared to volumes released by reacting known
amounts of 100 percent CaCO3 standard. The precision of
the analysis is �2%.
[19] Carbonate mineralogy was determined on 33 sam-

ples by X-ray diffraction (XRD). Samples were ground with
an agate mortar and pestle and, depending on the amount,
either packed with a spatula into an aluminum sample
holder or dispersed in a methanol solution and pipetted
onto a glass slide. Analyses were conducted using a Rigaku
D/Max Ultima II Powder Diffractometer housed at Rice
University. Each sample was scanned twice: at a fast speed
of 2�/min from 2 to 100� 2q for general mineralogy
identification and at a low speed of 0.25�/min from 25 to
31� 2q for optimal resolution of carbonate phases. Differ-
entiation of high magnesium calcite (HMC) and low mag-
nesium calcite (LMC) was based on an established
relationship between the d104 lattice spacing shift and
mole% MgCO3 [Goldsmith et al., 1961].
[20] Total organic carbon (TOC) content was measured

on 88 samples of bulk sediment from core MD-40 using an
EC-12 Carbon Determinator manufactured by Leco Corpo-
ration. Rock samples were homogenized by grinding and
the carbonate carbon was removed by acidification. Resid-
ual material was then combusted, and organic-carbon con-
tents were determined from the carbon dioxide produced.
Analytical precision depends on sample type and carbon
content, but averaged �0.5% for our samples.

4. Results

[21] Age/Depth models for the three cores have been
determined on the basis of at least one of the following
glacial/interglacial stratigraphies using down core variations
of (1) d18O in planktic foraminifers G. sacculifer or G.
ruber, (2) carbonate content in the fine fraction (<63mm),
and (3) lightness values by digital scans. Moreover, those

Table 1. Location, Type, Bathymetry, and Length of the Studied Coresa

Core Name Core Type Latitude, �S Longitude, �N Water Depth, m Length, m

MV26-0403-66JPC Jumbo piston core 10.0020 145.1500 1783 11.68
MV25-0403-33JPC Jumbo piston core 9.8670 145.6000 1787 12.76
MD05-2940C2 Casq box core 9.7937 145.7248 1769 8.80

aThese cores have been retrieved in the turbiditic systems of the Pandora Trough, Gulf of Papua, during a 2004 R/V Melville
(MV cores) and a 2005 R/V Marion Dufresne (MD cores) cruise. MV-66 is located at the middle of the flat floor Pandora
Trough, a distal location from Eastern Fields Atoll (75 km). MV-33 has been collected on the flat floor of Pandora Trough, 30
km north of Eastern Fields Atoll. MD-40 has been retrieved in the middle of a flat floor circular minibasin, located 50 km north
of Eastern Fields Atoll.
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stratigraphies are solidly anchored by several 14C AMS
dates.

4.1. Primary Core Chronology

[22] As true in many regions [e.g., Linsley, 1996; Dürkoop
et al., 1997; Chodankar et al., 2005], d18O records of
G. sacculifer and G. ruber from Coral Sea cores can be
correlated to global d18O records to obtain first-order ages
since 100 ka [Anderson et al., 1989; Dunbar et al., 2000; de
Garidel-Thoron et al., 2004]. There is, however, an offset
between the d18O of these planktic foraminiferal species,
with d 18O of G. sacculifer typically about 0.5 to 0.6%
heavier than that of G. ruber [e.g., Stott et al., 2002]. The
d18O of planktic foraminifera is also associated with
changes in local salinity. The modern d18O salinity rela-
tionship in the tropical western Pacific is �0.2% (d18O) per
unit of salinity [Fairbanks et al., 2005], although this
relationship varies slightly from region to region and may
be lower in the western tropical Pacific, because the
summer/winter salinity contrast is low [Stott et al., 2002].
[23] Ages for cores MV-66 and MD-40 were initially

determined using down core variations in the d18O of
planktic foraminifers G. ruber and G. sacculifer, respec-
tively (Figures 3 and 4). The glacial–interglacial transition
is clearly identified in both cores. In core MD-40 below
400 cm, the d18O values of G. sacculifer tests range from
–0.5 to –1.0%; the values decrease by –0.4% from
400 to 120 cm; above 120 cm, the d18O values range
from –1.4 to –2.3%. For core MV-66 below 420 cm, the
d18O of G. ruber tests range from –1.0 to –1.2%; they

decrease by –0.5% from 420 to 130 cm and range from
–1.7 to –2.9% in the upper 130 cm of the core. The
heavy d18O values in the lower half of each core clearly
correspond to the LGM (>23 ka B.P.), the light d18O
values in the upper 30 cm correspond to Holocene
(<11 ka B.P.), and the intermediate d18O values charac-
terize the deglacial transition. In both records, the d18O
amplitude from the LGM to Holocene is the same 1.8%
for MD 40 and 1.9% for MV-66, though the d18O values
in core MV-66 are systematically 0.6% lighter than in
core MD-40.
[24] The oxygen isotope stratigraphies for cores MD-40

and MV-66 nicely correlate with the high-resolution d18O
record from core MD97-2134 (Figure 3). Core MD97-2134
was retrieved at 760 m water depth in northern Ashmore
Trough (latitude: 9�540S, longitude: 144�390E, Figure 1).
Well anchored time wise on 13 AMS dates, de Garidel-
Thoron et al. [2004] have constructed a high-resolution
oxygen-isotope stratigraphy on the basis of G. ruber
planktic foraminifer shells. By comparison with the
MD97-2134 d18O LGM–Holocene transition which display
an amplitude of about 2%, LGM is clearly identified in core
MD-40 at �650–700 cmbsf (cm below seafloor), which
depth corresponds to the heaviest d18O values, i.e., –0.45 per
mil Peedee belemnite (Figure 3).
[25] The glacial_interglacial transitions in cores MD-40

and MV-66, solidly anchored by 8 14C AMS dates of mixed
G. ruber and G. sacculifer planktic foraminifers (Table 2,
Figure 4), confirmed that these cores span from LGM to late
Holocene and are recording the last glacial-to-interglacial

Table 2. Radiocarbon Dates From Cores MV-33, MV-66, and MD-40a

Core Depthb cmbsf

14C Age (Planktic),
years

14C Age (Wood),
years

Standard
Deviation,

years

Corrected 14C Age
(Planktic Age

Minus 468 Years),
years

14C Calendar Age
[Fairbanks et al., 2005]c,

years

MV-66 62–64 8,390 � 10 7,922 8,722
MV-66 127–129 10,730 � 25 10,262 12,033
MV-66 221–223 13,040 � 80 12,572 14,776
MV-66d 837 � 16,450 45 � 19,563
MV-66d 955 � 17,100 40 � 20,272
MV-33 154–156 10,625 � 40 10,157 11,837
MV-33 331–333 11,325 � 25 10,857 12,787
MD-40 100–102 10,280 � 20 9,812 11,226
MD-40 180–182 12,280 � 40 11,812 13,724
MD-40 320–322 13,490 � 40 13,022 15,439
MD-40 420–422 15,545 � 45 15,077 18,436
MD-40 700–702 19,190 � 60 18,722 22,349

aAll dates are based on planktic foraminifer Globigerinoides ruber and Globigerinoides sacculifer measured at Irvine (University of California, Irvine).
bIn cmbsf (cm below seafloor).
cThe 14C ages were converted into calendar ages using the Radiocarbon Calibration Program [Fairbanks et al., 2005].
dTwo additional (AMS) 14C dates have been obtained from wood fragments at core MV-66 (L. J. Patterson et al., unpublished manuscript, 2008).

Figure 3. Millennial timescale sedimentary variability observed during the last deglaciation in central Pandora Trough.
(a) Oxygen isotope curve of the last deglaciation for core MD97-2134, north Ashmore Trough (after de Garidel-Thoron et
al. [2004], copyright 2004 National Academy of Sciences, U.S.A.). (b) Planktic oxygen isotopes and timing of gravity-
flow deposits at core MD-40 since LGM in Pandora Trough. (c) Oxygen isotope record from the Greenland Ice Sheet
Project 2 (GISP2) [Grootes et al., 1993; Stuivert and Grootes, 2000]. LGM is the Last Glacial Maximum, OD is the Oldest
Dryas, B-A is the Bølling-Allerød warming, and YD is the Younger Dryas cold period. (d) Relative sea level (RSL)
records from far field sites (Weaver et al. [2003], reprinted with permission from AAAS). Data are from Bonaparte Gulf
(open circles with lines) [Yokohama et al., 2000], Barbados U/Th-dated corals (open squares) [Bard et al., 1990], Sunda
Shelf (open circles with pluses) [Hanebuth et al., 2000], Tahiti (solid triangles) [Bard et al., 1990], and New Guinea (solid
squares) [Edwards et al., 1993].
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Figure 3
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transition or deglaciation. Two additional AMS dates of
organic particles from two LGM and late Glacial (late
LGM) siliciclastic turbidites in core MV-66 (L. J. Patterson
et al., Petrological and geochemical investigations of deep
sea turbidite sands in the Pandora and Moresby Troughs:
Source to Sink Papua New Guinea focus area, unpublished
manuscript, 2008; see also Table 2) confirm a high sediment
accumulation rate during the LGM and until the first clear
initiation of the last deglaciation (Figure 4).

4.2. Detailed Lithochronology

[26] Although they are separated by distances of tens of
km, cores MV-33, MV-66 and MD-40 exhibit a common
sediment pattern; siliciclastic sandy turbidites and muddy
turbidites are numerous in the lower parts of the cores
corresponding to LGM. The turbidites are separated by
intervening intervals rich in pelagic carbonates, which

become more frequent up the core. The siliciclastic turbi-
dites disappear up the cores and are not recognized in the
Holocene, which consists only of pelagic carbonate-rich
sediment. Once the siliciclastic sandy turbidite layers dis-
appear in the core, 1 dm thick calciturbidite is observed on
the upper part of the three cores (Figure 4).
[27] Siliciclastic turbidites, with dark sand-dominated

layers (1–10 cm thick) and well-preserved wood and plant
fragments (Figure 5a) and characterized by erosional bases
were studied in details in core MD-40. The coarse fraction
of these siliciclastic turbidites (from 63 to 125 mm) is
dominated by silica and some volcanic-rock-related miner-
als (i.e., amphibole, pyroxene, zircon, apatite) (Figure 5b).
Additional information on the sandy turbidite layers in core
MV-66 was found by L. J. Patterson et al. (unpublished
manuscript, 2008). The sands at the bases of the turbidite
layers are predominantly quartzofeldspathic with a signifi-

Figure 4. Correlation between cores MV-33, MV-66, and MD-40 based on sedimentological
description and measurements of lightness, carbonate content, and oxygen isotopes, anchored by AMS
14C dates. This correlation demonstrates that the last glacial-interglacial transition was a two-steps change
from LGM to the Holocene. The first warming/deglacial step corresponds to the Bølling-Allerød/MWP
1A interval. The second step, clearly identified on the three cores by an abrupt decrease of the d18O,
peaks of lightness and carbonate content, and deposition of a calciturbidite, corresponds to the beginning
of the Holocene or MWP 1B (Pleistocene/Holocene transition). The location map of these cores results
from the integration of multibeam and 3.5 kHz seismic surveys [Francis et al., 2008].
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cant amount of heavy minerals (zircon, amphibole, and
oxide minerals). Planktic foraminifers are uncommon and
are mainly represented by sparse Orbulina universa. Ben-
thic foraminifers (Cibbicides, Uvigerina, Quinqueloculina,
Bolivina, Bulimina, Textularia), gastropods, scaphopods,
and diverse bioclastic carbonate fragments are also present
in the coarse fraction (>350 mm).
[28] Calciturbidites occur at 130, 160, and 110 cmbsf, in

cores MV-66, MV-33, and MD-40, respectively. This
calciturbidite is particularly developed in core MV-33,
where it displays a well-individualized fining-upward car-
bonate 20 cm thick layer. The lower part of the calciturbidite
consists of heterogeneous skeletal fragments, centimeter to
many centimeters in size. Those neritic grains (mostly large
benthic foraminifers, gastropods, large bivalve, and echi-
noid fragments) demonstrate that they had to be produced in
shallow water environments of an adjacent carbonate plat-
form, most likely Eastern Fields atoll (Figure 5c). The upper
part of the calciturbidite layer in MV-33 consists of mostly
planktic foraminifers. In core MV-66, retrieved from a
more distal location relative to Eastern Fields, the calcitur-
bidite is thinner and the calcareous particles consist almost
exclusively of planktic foraminifers as in the upper part of
the calciturbidite in core MV-33. The occurrence of much
aragonite and magnesium calcite in the fine fraction of the
calciturbidite in both cores MV-33 and MV-66 points to a

neritic source for the turbidite material, Eastern Fields Reef
being the most likely candidate.
[29] Occurrences of muddy terrigeneous intervals were

distinguished in core MD-40 from pelagic intervals mostly
by the lack of foraminifers. The deposition of these layers,
devoid of foraminifers and other biogenic particles, is inter-
preted to represent low-density gravity flows [Mallarino
et al., 2006] and/or distal or lateral turbidite-mud deposition
in Pandora Trough.
[30] Pelagic carbonate-rich intervals contain higher

numbers of planktic foraminifers (Figure 5d). Several spe-
cies and genera have been recognized: Globigerinoides
ruber, Globigerinoides sacculifer, Globigerina bulloides,
Orbulina universa, Globorotalia menardii, Pulleniatina,
Neogloboquadrina, Hantkenina. These intervals are inter-
calated with siliciclastic sandy/muddy turbidites through
LGM and become the majority of the sediment in the
Holocene.
[31] Once primary stratigraphies were established in cores

MV-66, MV-33, and MD-40 on the basis of planktic d18O
down core records anchored on 10 14C AMS radiocarbon
dates (see first paragraph in Results), it became obvious that
input of siliciclastic sandy and muddy intervals were
dominant during LGM. Frequency and thickness of silici-
clastic turbidites progressively decrease up the cores and
completely disappear in the Holocene. Between 14.5 and

Figure 5. Photomicrographs of sediment accumulated in Pandora Trough. (a) Coarse fraction (>200 and
<300 mm) of a siliciclastic turbidite showing an important concentration of wood debris (core MD-40);
(b) coarse fraction (>63 and <125 mm) of a siliciclastic turbidite composed of silica and some volcanic-
rock-related minerals (core MD-40). (c) Coarse fraction (>300 mm) composed of neritic carbonate
fragments and large benthic foraminifers taken at the base of a calciturbidite (core MV-33); d: coarse
fraction (>200 and <300 mm) of a pelagic carbonate sediment dominated by planktic foraminifers (core
MD-40).
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12.5 ka B.P., the siliciclastic turbidites dramatically turned
into an interval that is strictly dominated by the deposition
pelagic carbonate_rich sediments. An interval between
12.5 and 11.5 ka B.P. is dominated by the deposition of
siliciclastic mud. The base and top of this interval are
defined by siliciclastic turbidites observed in all three cores
studied in Pandora Trough. Siliciclastic turbidites disappear
in the central part of Pandora Trough at the beginning of
the Holocene. This interval is marked by the occurrence of
a calciturbidite. This calciturbidite most likely represents
the initiation of neritic carbonate production. The Holocene
is strictly dominated by the deposition of pelagic carbo-
nates enriched by bank-derived fine aragonite.
[32] TOC content varies between 0.25% and 2.49% in

core MD-40 (Figure 4). The highest TOC values (2.49 wt%)
coincide with siliciclastic turbidites, whereas low values
generally characterize pelagic carbonate-richer intervals.
TOC values range are 0.5–1.0% during LGM and late
Glacial, and <0.5% during the Holocene. In this study, the
most plausible explanation for TOC-rich intervals is
increased supply of terrigeneous organic matter, especially
because most of these intervals in core MD-40 contain many
wood and plant fragments (Figure 5a). These fragments are
preferentially accumulated during LGM and late Glacial,
intervals coinciding with a reduced continental shelf area
and, therefore, with a relative proximity of the coastlines.

4.3. Two-Step LGM-Holocene Transition

[33] Although the glacial-interglacial transition in
Pandora Trough is clearly recorded by the planktic d18O
variations, other parameters such as carbonate content and
L* (Lightness) variations also illustrated the last glacial-
interglacial transition. Carbonate content in cores MV-33
and MV-66 ranges between 3% during LGM and 40–50%
in the late Holocene (Figure 4). It is not a surprise that the
variations of L* values, directly linked to the carbonate
content, also demonstrate the last glacial_interglacial tran-
sition; the lowest L* values occur during the LGM and high
values during the late Holocene (Figure 4). The good
agreement between variations of planktic oxygen-isotope
values, lightness, and carbonate concentration, therefore,
provide a record of the last deglaciation.
[34] L* of the sediments was measured along the cores at

a high sample resolution (every 5 cm or less), and the curves
demonstrate that the last glacial-interglacial transition was
not smooth but rather was a two-step change from LGM to
the Holocene. Pelagic sediment (high L* values at 225 cm
in core MV-66, at 338 cm in core MV-33, and at 200 cm in
core MD-40), devoid of sandy and muddy turbidites and
enriched in foraminifer concentration, marks a first step in
each core at the beginning of the deglaciation. This lighter
interval, corresponding to higher carbonate content (24%
and 27% in cores MV-66 and MV-33, respectively) and
lighter d18O values, is even more conspicuous because it is
abruptly overlain by a core interval characterized by low L*
and carbonate values (CaCO3 content drops to 8%), and
relatively higher d18O values (Figure 4). The beginning and
end of this darker interval is framed by the occurrence of
two siliciclastic sandy turbidites separated by an unusually
muddy interval almost completely devoid of foraminifers.
This darker interval is then, followed by a second step with
increased L* and carbonate and lighter d18O values. This

second step is emphasized by some of the highest L* and
carbonate values observed in each core, in particular at 116
and 134 cmbsf in cores MV-66 and MV-33, respectively
(Figure 4). These highest L* values and CaCO3 peaks
correspond to the occurrence of a calciturbidite.
[35] This two-step deglaciation is relatively well

anchored in time by radiocarbon dates (Figure 4). The
overall deglacial trend, expressed by a relatively gradual
decrease of d18O values, is interrupted by a significant cold
reversal (beginning abruptly at �12.5 ka B.P. and ending at
�11.5 ka B.P., interval III in Figure 3), underlain and
overlain by two stepwise warming periods occurring at
�14.5 and �11.5 ka B.P. The timing of this cold reversal,
as indicated by a significant increase of d18O values, low
lightness and carbonate content, corresponds relatively well
to the timing of the Younger Dryas.
[36] The first warming/deglacial step (interval II in

Figure 3), evidenced by low d18O values, high CaCO3

content and high L* values, corresponds most likely to the
Bølling-Allerød interval during which the MWP 1A
occurred (Figures 3 and 4). In core MD-40, a 14C age of
13.7 ka B.P. precisely indicates this warming event. In core
MV-33, a 14C age of �13 ka B.P. supports this pelagic
interval as the same warming event. In core MV-66, this
event is dated at 14.8 ka B.P., which is older than the two
other cores. This older radiocarbon age could be explained by
significant erosion of the upper part of the Bølling-Allerød
interval during the emplacement of an overlying turbidite
layer.
[37] The second warming/deglacial step, identified in the

three cores by an abrupt decrease of the d18O and peaks of
lightness and carbonate content (interval IV in Figures 3
and 4), corresponds to the beginning of the Holocene or
MWP 1B. In the three cores, this Pleistocene/Holocene
transition is marked by the deposition of a calciturbidite
and the accumulation of bank-derived aragonite in the fine
carbonate fraction. On the basis of 14C ages obtained in
cores MV-66 and MD-40, the timing of the calciturbidite
deposition appears synchronous at the scale of the Pandora
Trough and to have occurred between 11.5 to 11.0 ka B.P..
The 14C age of 11.8 ka B.P. in core MV-33, obtained from
the upper part of the carbonate gravity flow, suggests a
possible reworking of older biogenic carbonate particles.

5. Discussion

[38] In the three cores MV-33, MV-66, and MD-40, a
series of five distinct intervals at millennial timescale are
observed during the last deglaciation (Figure 3). Using the
oxygen-isotope curve established on core MD-40, these
five intervals, labeled up the core from I to V, can be
correlated with the GISP2 oxygen-isotope curve and in
respect to the sea level curve of Weaver et al. [2003]:
(1) Interval I, LGM and late Glacial (including the Oldest
Dryas): sandy and muddy intervals with siliciclastic turbi-
dites; (2) interval II, Bølling-Allerød/MWP 1A (�15.0 or
14.5–12.5 ka B.P.): pelagic interval devoid of sandy and
muddy siliciclastic turbidites with relatively high carbonate
content (foraminifers and coccoliths); (3) interval III, Youn-
ger Dryas (between 12.5 and 11.5 ka B.P.): terrigeneous
mud-rich interval with a few thin sandy siliciclastic turbi-
dites; (4) interval IV, MWP 1B (11.5–10.5 ka B.P.): return
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to pelagic sediment with relatively higher carbonate content
and the occurrence of a calciturbidite; and (5) interval V,
Holocene: devoid of sandy siliciclastic turbidites with rare
muddy turbidites, and consists mostly of pelagic sediment
rich in carbonate (40–50%) with some bank-derived fine
aragonite.
[39] This study in the central part of Pandora Trough

includes the first published data set that clearly demon-
strates how variations of mixed siliciclastic/carbonate
sediment accumulation into a basin adjacent to a siliciclastic
shelf and atolls is directly linked to sea level fluctuations
during the last deglaciation at millennial timescale variabil-
ity. Siliciclastic gravity flows occurred during sea level
lowstand and stillstand intervals, while they disappear
during transgressive and highstand intervals characterized
with carbonate enriched hemipelagic sediment. This model
is consistent with the basic concept of sequence stratigraphy
for siliciclastic sediments, which explains that large quan-
tities of shelf sediments are eroded from the shelf and
redeposited on the slopes and in the basins during sea level
regression. If rivers reach the shelf edge during maximum
lowstand intervals, the entire river load will be accumulated
directly on the adjacent slope and basin floor [e.g.,
Mitchum, 1977; Vail et al., 1977; Vail, 1987].
[40] The occurrence of the calciturbidite and the onset

of bank-derived fine aragonite are contemporaneous to
MWP 1B. This observation illustrates that the reflooding
of bank tops and margins of adjacent carbonate platforms,
such as the modern atolls of Eastern Fields, Portlock, Boot,
and Ashmore atolls (with lagoon depths ranging between
40 and 55 m), triggered the reinitiation of neritic carbonate
production and export during the transgression following
the Younger Dryas (Figure 3). This relationship, well
illustrated in central Pandora Trough, is consistent with
the concepts of ‘‘highstand shedding’’ and ‘‘highstand
bundling’’ [Droxler and Schlager, 1985; Schlager et al.,
1994]. These processes explain that carbonate platforms
shed sediments produced on their bank tops and edges
during the late part of sea level transgressions, as these
platform edges and tops are reflooded. Shedding also
occurs during highstand intervals, as long as bank tops
and/or edges remain within the photic zone after their long-
term exposure associated with sea level regressions and
lowstands. In the following subsections and Figure 6, a
scenario is developed on the basis of the five successive
intervals defined in core MD-40 (Figure 3).

5.1. Interval I

[41] During the LGM and late Glacial, the GOP shelf and
the bank tops and margins of Eastern Fields, Portlock, Boot,
and Ashmore Reefs were subaerially exposed. The lowstand
coastal system had migrated all the way to the modern shelf
edge [Droxler et al., 2006], and rivers were transporting

their sediment loads directly to the upper slope. Isolated
carbonate banks were karstified islands. The sediments
accumulating into central Pandora Trough were essentially
a vertical succession of sandy and muddy siliciclastic
turbidites. High volume of the terrigeneous mud released
by rivers was transported offshore, diluting the pelagic
carbonates.

5.2. Interval II

[42] At the end of the Bølling-Allerød, sea level was �60
m lower than today. During this 2.0–2.5 ka long interval,
sea level had risen by about 50 m, with rates of sea level
rise exceeding 40 mm/a. As a direct consequence, the
coastline shifted landward and river sediments were trapped
on the inner shelf. The Eastern Fields, Ashmore, Boot, and
Portlock atolls still remained exposed, and, therefore, con-
tinued to be dissolved (karstified). Because of the diminution
of the siliciclastic sediments raining through the water
column, pelagic sediment enriched in planktic foraminifers
and characterized by relatively low accumulation rates
represented the main sedimentation in central Pandora. On
the slopes, accumulation rates dramatically decreased by a
factor 10–20 at the beginning of the Bølling-Allerød [Febo
et al., 2008].

5.3. Interval III

[43] The pelagic interval corresponding to the Bølling-
Allerød was abruptly interrupted by the return of siliciclastic
sandy and muddy turbidites for a short interval that lasted
most likely no longer than 1 ka, referred to as the Younger
Dryas. During this interval, sea level stopped rising, reaching
a stillstand at�60 m belowmodern sea level, most likely still
too low to flood the bank tops and margins of the modern
atolls. However, during the Younger Dryas, influenced by the
sea level stillstand (or perhaps an undocumented sea level
fall), the siliciclastic coastal system readvanced toward the
shelf edge. This movement seaward was enough seaward to
bring siliciclastic sandy turbidites into the central Pandora
Trough and a large volume of mud close enough to the shelf
edge to explain the extreme dilution of the pelagic carbonates
at that time.
[44] The Younger Dryas interval was global in nature,

because it has been described in the Atlantic basin, on the
North and South American continents, in the Sulu Sea
[Kudrass et al., 1991; Linsley and Thunell, 1990; de
Garidel-Thoron et al., 2001], and more recently in the
southern Australian Bight [Andres et al., 2003], and in the
southwestern tropical Pacific Ocean [Corrège et al., 2004].
Sea-surface temperatures in Vanuatu were on average 4.5 ±
1.3�C cooler during the Younger Dryas interval than today.
In Pandora Trough, siliciclastic turbidites were dominant
during the late LGM sea level lowstand, and were absent
during both meltwater pulses. The occurrence of a major

Figure 6. Two-dimensional diagram illustrating the millennial timescale relationships among variations of sea level,
sediment fluxes, and sedimentary processes at the origin of the sedimentary infilling in Pandora Trough from LGM until
Holocene. Siliciclastic gravity flows are dominant during LGM, late Glacial, and Younger Dryas and are interrupted by the
deposition of hemipelagic carbonate oozes at the Bølling-Allerød warming. The deposition of a calciturbidite in Pandora
Trough has been triggered by the reflooding of the Eastern Fields bank top during the MWP 1B, when overproduction of
neritic carbonates is exported to the deep ocean. The Eastern Fields Holocene atoll is characterized by an aggrading rimmed
carbonate platform, where exceeding sediment is preferentially trapped in the lagoon.
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siliciclastic turbidite at the beginning of the Younger Dryas
can be explained by cooling with no change in sea level. It
implies that a humid climate can trigger erosion on the land,
accumulation of terrigeneous sediment on a reduced shelf
area (sea level was 60 m lower than today), and export of
siliciclastic gravity flows toward the slope and the basin.
Although no direct lines of evidence for a Younger Dryas
sea level fall have been observed in spite of the significant
advance of the Fennoscandian ice sheet during that partic-
ular interval [Mangerud et al., 1979], R. G. Fairbanks
(personal communication, 2006) does not rule out such a
sea level fall, in particular, because a drop of sea level is now
observed during the Oldest Dryas [Peltier and Fairbanks,
2006]. On the basis of sedimentological arguments, our
study from Pandora trough would support this suggested
sea level fall during the Younger Dryas.

5.4. Interval IV

[45] Siliciclastic sandy and muddy turbidites were shut
down by the rapid 15–20 m sea level rise (11 mm/a) during
MWP 1B, and never returned to the central part of Pandora
Trough during the Holocene. Their absence eliminated
siliciclastic sands and the majority of the mud from the
outer shelf and, therefore, the central part of Pandora
Trough. The sediment in the trough became relatively
enriched in carbonates as sea level flooded the margins
and tops of the modern atolls, supplying bank-derived
aragonite in the fine sediment fraction, dated at �12 ka B.P.

5.5. Interval V

[46] The rest of the Holocene is characterized by an
increase of the carbonate content (coccoliths and planktic
foraminifers) in the pelagic sediment. The typical atoll
modern morphology is reinforced by their rim aggradation
during the Holocene transgression, causing loose neritic
sediments to accumulate either in the lagoon or on the slope
and basin floors adjacent to the atolls.

6. Conclusions

[47] The study of three cores collected in the central part
of Pandora Trough reveals a detailed sedimentary pattern at
millennial timescale during the last glacial/interglacial
cycle. This sedimentary variability at millennium scale
demonstrates that the last glacial-interglacial transition
was a two-step change from the Last Glacial Maximum to
the Holocene. The deposition of a pelagic carbonate interval
during the Bølling-Allerød, devoid of sandy and muddy
turbidites, marked the first step of deglaciation. The second
step corresponded to the deposition of a calciturbidite
during the meltwater pulse 1B. This two-step deglaciation
was clearly interrupted by the deposition of siliciclastic
sandy and muddy turbidites during the Younger Dryas cold
reversal.
[48] The observed millennial timescale sedimentary var-

iability can be explained by the sea level fluctuations
corresponding to maximum rates of sea level rise (meltwater
pulses 1A and 1B, <40 mm/a, and 11 mm/a, respectively)
and to a one 1 ka cooling interval of the Younger Dryas. The
input of siliciclastic turbidites was maximal during Last
Glacial Maximum, when the lowstand coastal system was
located along the modern continental shelf edge, and

disappeared during the intervals of maximum reflooding of
the shelf during meltwater pulses 1A and 1B. Siliciclastic
turbidites reappeared briefly during the Younger Dryas, an
interval when rates of sea level rise slowed down or most
likely stopped. The timing of the calciturbidite coincided
with the first reflooding of Ashmore, Boot, Portlock, and
Eastern Fields atoll during the meltwater pulse 1B. It repre-
sents the initiation of neritic carbonate production of the bank
top, which had remained exposed for most of the glacial
stages. The deposition of this calciturbidite (�11 ka B.P.)
strongly suggests that carbonate production started very
rapidly during the second step of the deglaciation.
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