
58794

SUIVI REGIONAL DES NUTRIMENTS SUR LE LITTORAL NORD/PAS-DE-CALAIS/PICARDIE

Bilan de l'année 1996

Séverine TRUFFIER - Benoist HITIER - René OLIVESI - Régis DELESMONT - Marc MOREL - Nicolas LOQUET

AGENCE DE L'EAU ARTOIS PICARDIE

SUIVI REGIONAL DES NUTRIMENTS SUR LE LITTORAL NORD/PAS-DE-CALAIS/PICARDIE

Bilan 1996

Rapport réalisé en collaboration par :

Séverine Truffier / D.E.U.S.T. A.E.L. Calais Benoist Hitier / IFREMER Boulogne sur mer René Olivesi / IFREMER St Valéry sur Somme Régis Delesmont / I.P.L. Gravelines Marc Morel / IFREMER Boulogne sur mer Nicolas Loquet / GEMEL St Valéry sur Somme

avec l'aide des moyens nautiques de :

Service Maritime de Boulogne /Calais Service Maritime du Nord Sport Nautique Valéricain

pour les prélèvements

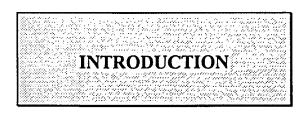
et des laboratoires de :

IFREMER Boulogne et Saint Valéry sur Somme GEMEL Saint Valéry sur Somme I.P.L. Gravelines

pour les analyses

SUIVI REGIONAL DES NUTRIMENTS SUR LE LITTORAL NORD/PAS-DE-CALAIS/PICARDIE

SOMMAIRE


INTRODUCTION
L PRESENTATION DU SUIVI REGIONAL DES NUTRIMENTS EN 96
I.1 - Les radiales
I.2 - Fréquence de prélèvements
I.3 - Paramètres étudiés et analyses
II. COMPARAISON INTRARADIALE
II.1- Dunkerque
II.1.1 - Température
II.1.2 -Salinité
II.1.3 - Turbidité
II.1.4 - Matières en suspension
II.1.5 - Matière organique particulaire
II.1.6 - Chlorophylle a
II.1.7 - Phaeopigments
II.1.8 - Ammonium
II.1.9 - Nitrite
II.1.10 - Nitrate
II.1.11 -Phosphate13
II.1.12 - Silicate

II.2 - Boulogne-sur-mer

	II.2.1 - Température	15
	II.2.2 - Salinité	15
	II.2.3 - Turbidité	16
	II.2.4 - Matières en suspension	16
	II.2.5 - Matière organique	17
	II.2.6 - Chlorophylle a	17
	II.2.7 - Phaeopigments	18
	II.2.8 - Ammonium	18
	II.2.9 - Nitrite	19
	II.2.10 - Nitrate	19
	II.2.11 - Phosphate	20
	II.2.12 - Silicate	. 20
п.з -	La Baie de Somme	
	II.3.1 - Température	. 22
	II.3.2 - Salinité	. 22
	II.3.3 - Turbidité	. 23
	II.3.4 - Matières en suspension	. 24
	II.3.5 - Matière organique	. 24
	II.3.6 - Chlorophylle a	. 25
	II.3.7 - Phaeopigments	. 25
	II.3.8 - Ammonium	. 26
	II.3.9 - Nitrite	. 26
	II.3.10 - Nitrate	. 27
	II.3.11 - Phosphate	. 27
	II.3.12 - Silicate	. 28

IIL PHYTOPLANCTON

IIL1 - Introduction	29
III.2 - Fluctuations saisonnières	29
III.3 - Méthodes	30
III.3.1 - Choix des Taxons	30
III.3.2 - Indices calculés par p	oint et par espèce31
III.3.2.1 - INDICE de	SANDERS31
III.3.2.2 - Application	de L'INDICE de SANDERS32
III.3.2.3 - INDICE de	SHANNON34
III.3.2.4 - Interprétation	ons graphiques de L'INDICE de SHANNON34
IV. <u>DISCUSSION</u>	
IV.1 - Comparaison interradiale	36
IV.1.1 - Paramètres physico-c	chimiques et biologiques36
IV.1.1.1 - Tempéra	ture et salinité36
IV.1.1.2 - M.E.S. t	urbidité et matière organique
IV.1.1.3 - Chlorop	hylle a et phaeopigments36
IV.1.1.4 - Nutrime	nts36
IV.1.1.5 - Phytopla	ancton
IV.2 - Discussion	37
CONCLUSION	39
ANNEXES	40
BIBLIOGRAPHIE	62

L'enrichissement excessif des eaux marines côtières par les sels nutritifs, l'eutrophisation, est un problème qui préoccupe de plus en plus Scientifiques, Administrations, Collectivités locales et Professionnels de la mer.

Jusqu'à présent, le suivi des nutriments sur le littoral n'était réalisé qu'épisodiquement par l'intermédiaire du RNO (Réseau National d'Observation) ou du RNC (Réseau National de Contrôle).

La nécessité de surveiller plus finement et sur une longue période les variations de concentration en sels nutritifs du milieu littoral a conduit l'Agence de l'Eau Artois-Picardie et l'IFREMER à mettre en place en 1992 un Suivi Régional des Nutriments (SRN) sur la façade Nord/Pas-de-Calais/Picardie.

Après une année de mise en place du protocole d'étude et les publications en juillet 93, 94, 95 et 96 des quatres premières séries de résultats, l'année 1996 a confirmé le schéma opérationnel de suivi sur les 3 radiales de Dunkerque, Boulogne-sur-Mer et la Baie de Somme.

Le présent rapport rappelle le principe de fonctionnement du SRN et fait le bilan des résultats obtenus, à l'issue de la cinquième année d'étude, en présentant radiale par radiale l'évolution en fonction du temps des valeurs obtenues pour chaque paramètre analysé. Quelques éléments de comparaison interradiale seront repris en discussion-conclusion. Tous les résultats ayant servi à l'élaboration des figures se trouvent en annexes.

A noter cette année la présence à nouveau de résultats bruts concernant le phytoplancton, la nouvelle base de données (QUADRIGE) étant opérationnelle à la date de ce rapport. Un traitement sur la variation des abondances du phytoplancton a été effectué en utilisant deux indices mathématiques.

L <u>PRESENTATION DU SUIVI REGIONAL DES NUTRIMENTS SUR LE LITTORAL NORD/PAS-DE-CALAIS/PICARDIE EN 1996</u>:

L'historique, les objectifs, les sites, les paramètres et les méthodes d'analyses ont été décrits en détail dans le bilan SRN 1992. Nous nous bornerons à en faire ici une description sommaire.

L 1 - Les radiales

En 1996, les 3 radiales de Dunkerque, Boulogne-sur-mer et la Baie de Somme, composées de 3 ou 4 stations selon un gradient côte-large ont été globalement reprises. Les coordonnées des différents points sont précisées dans le tableau 1, leur position est indiquée sur les cartes 1, 2 et 3

L 2 - Fréquence des prélèvements

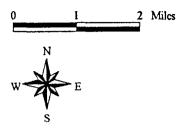
Cette année, tous les prélèvements prévus n'ont pu être réalisés à cause des conditions météorologiques défavorables ou par manque de moyens nautiques. C'est pourquoi on n'enregistre que 13 sorties sur les 16 prévues à Boulogne ainsi que 12 sorties sur les 16 prévues à Dunkerque et en Baie de Somme. Ce sont les moyens nautiques du Port Autonome pour Dunkerque, du SMBC pour Boulogne et du Sport Nautique Valéricain pour la Baie de Somme qui ont servi à effectuer les prélèvements selon le calendrier en annexe n°4.

L 3 - Paramètres étudiés et analyses

Les paramètres étudiés sont les mêmes que les années précédentes, à savoir :

- température,
- salinité,
- turbidité,
- ammonium,
- nitrite,
- nitrate,
- phosphate,
- silicate,
- MES (Matières en Suspension),
- MOP (Matière Organique Particulaire),
- chlorophylle a et phaeopigments
- phytoplancton.

Ils ont été analysés dans les laboratoires de l'Institut Pasteur à Gravelines (radiale de Dunkerque), de l'IFREMER à Boulogne-sur-mer (radiale de Boulogne) et du GEMEL à St-Valéry-sur-Somme (radiale de la Baie de Somme).


Les méthodes d'analyses suivent les procédures décrites dans le manuel des analyses chimiques en milieu marin d'AMINOT et CHAUSSEPIED, sont pour l'essentiel identiques aux trois laboratoires.

Les dénombrements de phytoplancton ont été réalisés soit à l'IFREMER Boulogne soit à l'IFREMER St-Valéry-sur-Somme.

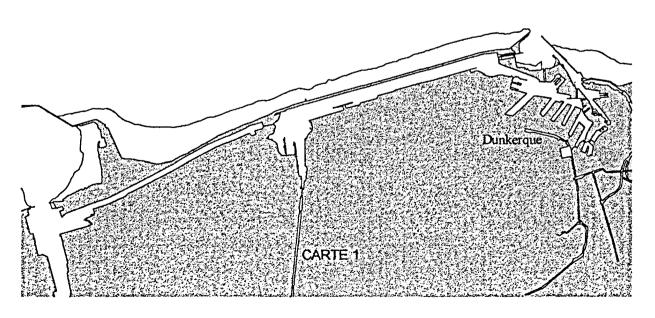
TABLEAU 1: COORDONNEES DES STATIONS SUR LES 3 RADIALES

RADIALES STATIONS	DUNKERQUE	BOULOGNE	BAIE DE SOMME
			<u>MI-MER</u>
Station 0			Latitude : 50°13'30 Nord Longitude : 1°32'40 Est
Station 1	RNO 1 Latitude: 51°04'30 Nord Longitude: 2°20'20 Est	Latitude: 50°43'90 Nord au flot 50°45'02 Nord au jusant Longitude: 1°33'00 Est au flot 1°33'90 Est au jusant	ATSO Latitude: 50°14'0 Nord Longitude: 1°28'50 Est
Station 2	RNO 3 Latitude: 51°06'70 Nord Longitude: 2°17'20 Est	OPHELIE OU APPROCHE Latitude: 50°43'90 Nord au flot 50°45'30 Nord au jusant Longitude: 1°30'90 Est au flot 1°31'11 Est au jusant	MER 1 Latitude: 50°13'60 Nord Longitude: 1°27'20 Est
Station 3	RNO 4 Latitude: 51°09'20 Nord Longitude: 2°15'10 Est	ZC1 Latitude: 50°45'02 Nord Longitude: 1°27'15 Est	MER 2 Latitude: 50°13'15 Nord Longitude: 1°26'75 Est

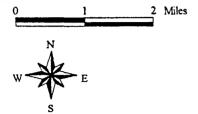
PLAN DE SITUATION DES STATIONS DE LA RADIALE DE DUNKERQUE

STATION 4

STATION 1 Latitude: 51°04'30 Nord Longitude: 2°20'20 Est


STATION 3 Latitude: 51°06'70 Nord Longitude: 2°17'20 Est

STATION 4


Latitude: 51°09'20 Nord Longitude: 2°15'10 Est

♥ STATION 3

♦ STATION I

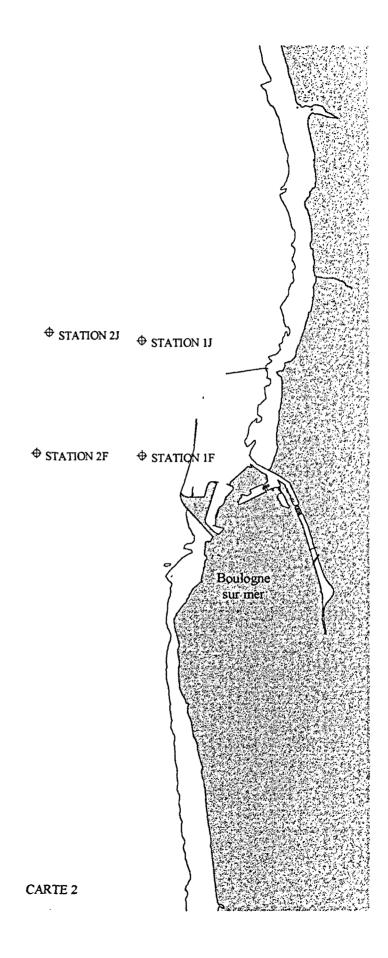
PLAN DE SITUATION DES STATIONS DE LA RADIALE DE BOULOGNE

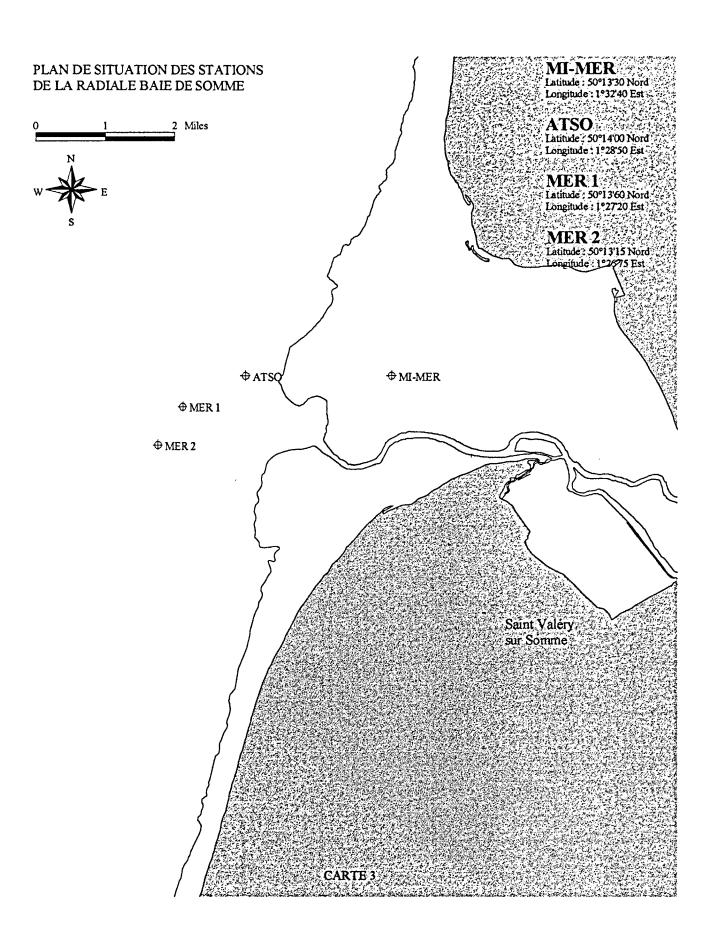
♥ STATION 3

STATION 1J Latitude: 50°45'30 Nord Longitude: 1°33'00 Est

STATION 2J

Latitude: 50°45'38 Nord Longitude: 1°31'11 Est


STATION 3 Latitude: 50°42'02 Nord Longitude: 1°27'15 Est


STATION 2F

Latitude: 50°43'90 Nord Longitude: 1°30'90 Est

STATION 1F

Latitude: 50°43'90 Nord Longitude: 1°33'00 Est

DUNKERQUE

II COMPARAISON INTRA-RADIALE

II.1 - Dunkerque

En raisons de conditions météorologiques défavorables ou faute de moyens nautiques, seulement 12 prélèvements sur les 16 prévus initialement ont pu être effectués. Tous les paramètres ont été analysés cette année sur chaque prélèvement y compris ceux effectués dans le cadre du RNO.

L1.1 - Température

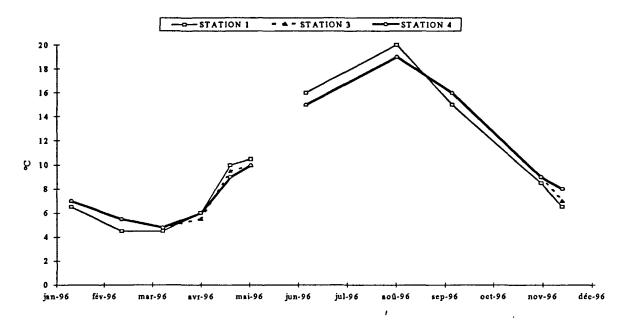


Fig.1.1: Dunkerque - Température

L'évolution annuelle de la température montre un réchauffement progressif jusqu'en août avec des températures qui atteignent 20°C le 20 août pour les 3 stations. La température la plus faible (4.5C) est relevée le 14 mars pour les 3 stations ainsi qu'au 15 février pour la station côtière. Il manque 2 séries de mesures, les 28 mai et 4 juin.

II.1.2 - Salinité

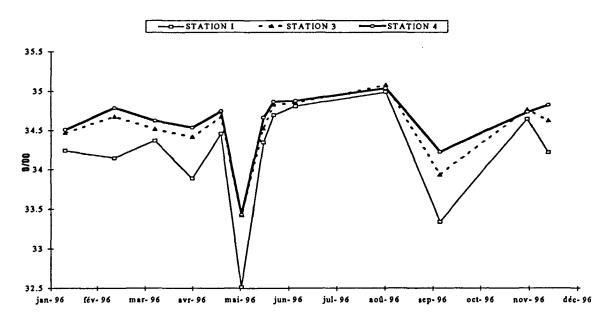


Fig.1.2: Dunkerque - Salinité

En raison des précipitations du mois d'avril, la dessalure la plus importante est relevée en mai à la station côtière (32, 5 ‰). Au large, la salinité est alors de 33,43 ‰. La valeur moyenne annuelle globale est d'environ 34.4 ‰.

IL1.3 -Turbidité

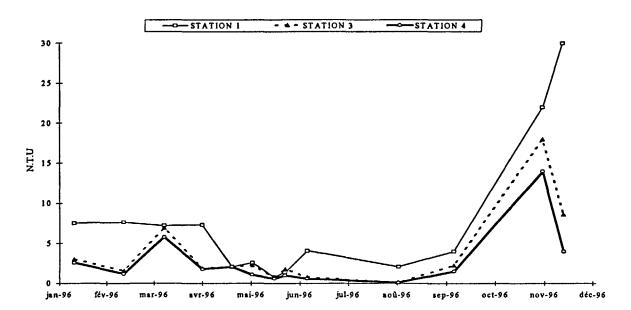


Fig.1.3: Dunkerque - Turbidité

Les valeurs les plus importantes sont relevées en novembre pour les 3 stations avec respectivement 30 N.T.U., 18 N.T.U et 14 N.T.U. On remarque un gradient côte-large décroissant. Par comparaison à 1995, les eaux de Dunkerque sont moins chargées pendant l'été 96, en revanche les valeurs dépassent aisément celles de l'hiver 95.

II.1.4 - Matières en suspension

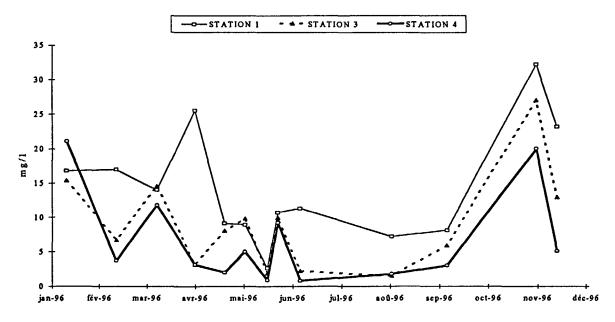


Fig.1.4: Dunkerque - Matières en suspension

Les matières en suspension présentent un pic important en novembre pour les 3 stations (20 à 32 mg/l) que l'on peut relier aux maximums de turbidité précédents. On observe un second pic à la station 1 le 9 avril (25,5 mg/l), lié aux fortes précipitations de ce mois.

II.1.5 - Matière organique particulaire

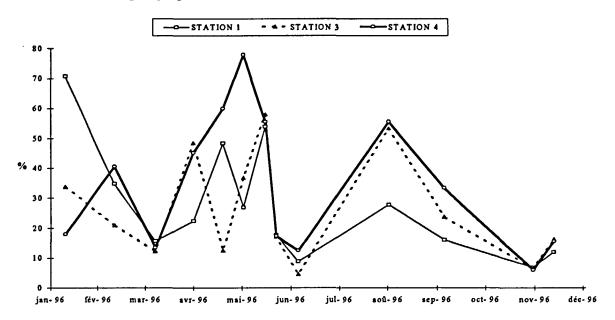


Fig.1.5: Dunkerque - Matière organique particulaire

Les matières en suspension sont de nature essentiellement organique en mai (78% à la station 4), cela s'explique principalement par le développement phytoplanctonique et par une moindre mise en suspension des sédiments. A l'inverse, elles sont de nature essentiellement minérale en juin (4.5% à la station 3). Le 20 août, la station 4 présente un second pic (55%).

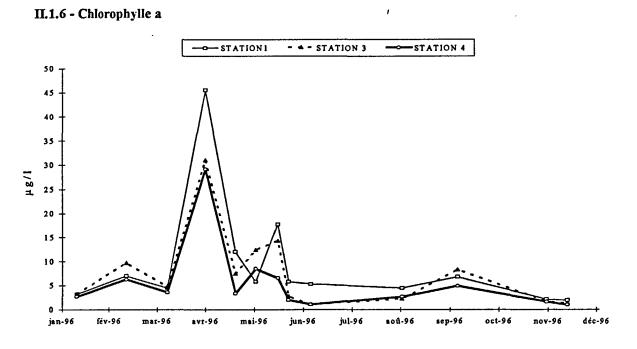


Fig.1.6: Dunkerque - Chlorophylle a

Contrairement aux années précédentes, le cycle de la chlorophylle est marqué par un pic de grande ampleur en avril. Les concentrations maximales se situent le 9 avril pour toutes les stations (respectivement $45,5\mu g/l$, $31\mu g/l$ et 29,2 $\mu g/l$). A partir de la mi-mai, les valeurs chutent pour atteindre 1 $\mu g/l$ le 9 décembre (station 1, 3 et 4). On constate généralement des valeurs plus élevées à la côte qu'au large.

II.1.7 - Phaeopigments

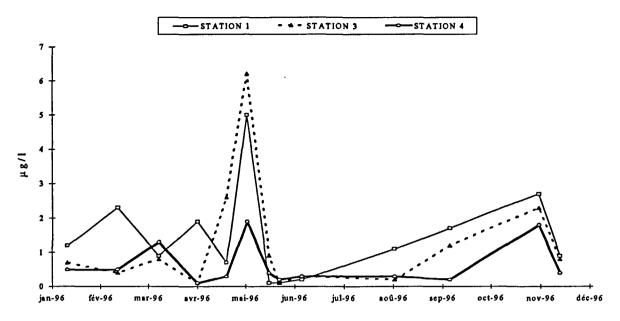
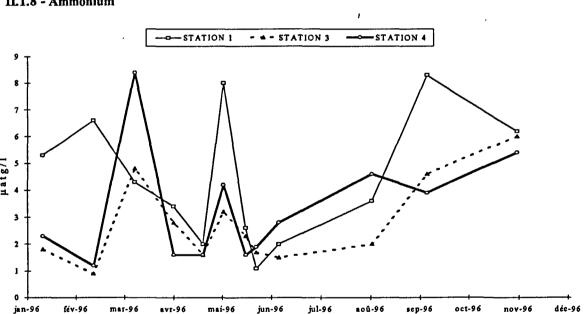



Fig.1.7: Dunkerque - Phaeopigments

Les concentrations en phaeopigments atteignent un maximum de 6,2 µg/l le 13 mai à la côte et station 3. Elles demeurent inférieures à 3 µg/l pour le reste de l'année. Les valeurs les plus élevées correspondent aux périodes de dégradation du phytoplancton. On observe un gradient côte-large décroissant.

IL1.8 - Ammonium

Fig.1.8: Dunkerque - Ammonium

L'évolution des teneurs en ammonium est en dents de scie. Elle passe par trois maximums en mars mai et septembre 96 qui sont rapidement consommés par le phytoplancton.

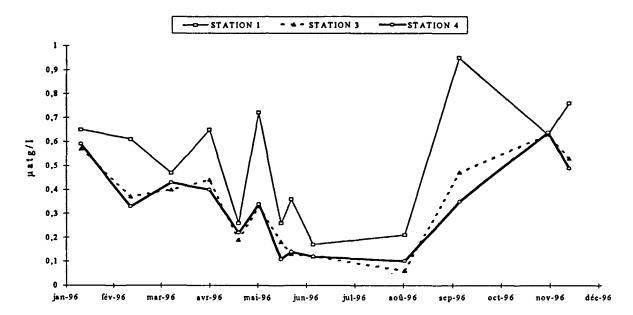


Fig.1.9: Dunkerque - Nitrite

Les teneurs en nitrite sont basses l'été et évoluent en dents de scie un peu comme l'ammonium. Le maximum (1 µatg/l) est atteint en septembre à la station 1.

IL1.10 - Nitrate

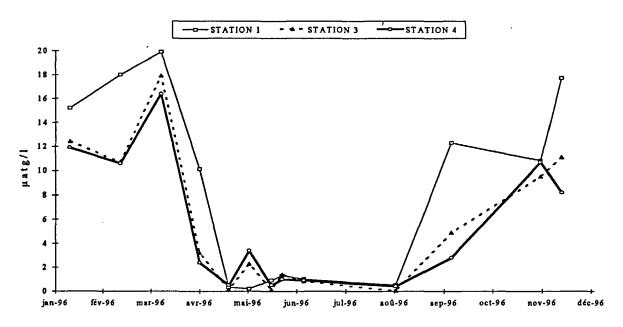


Fig.1.10: Dunkerque - Nitrate

La concentration maximale en nitrate est de 19,9 µatg/l le 14 mars (station côtière). Pour ce même mois en 1995 la concentration maximale atteignait 191,1 µatg/l soit10 fois plus qu'en 96. On observe une consommation rapide par le phytoplancton jusqu'à épuisement observé en mai. Il faut attendre les pluies automnales pour retrouver des valeurs voisines de 18 atg/l (17,7 µatg/l le 9 décembre à la côte).

IL.1.11 - Phosphate

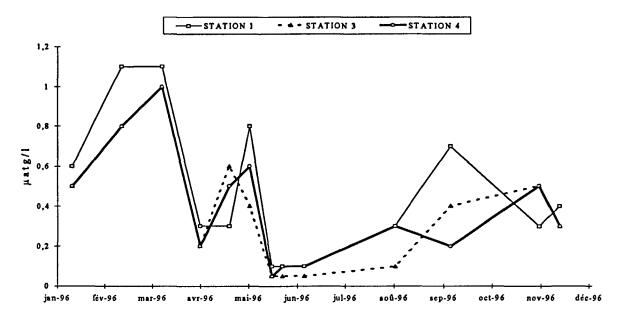


Fig 1.11: Dunkerque - Phosphate

Les concentrations en phosphate varient de la même façon que les concentrations en nitrate, avec des valeurs maximales en février-mars (1,1 µatg/l à la côte), puis des valeurs plus faibles le reste de l'année, ne dépassant jamais 0,8 µatg/l (le 13 mai à la station 1).

II.1.12 - Silicate

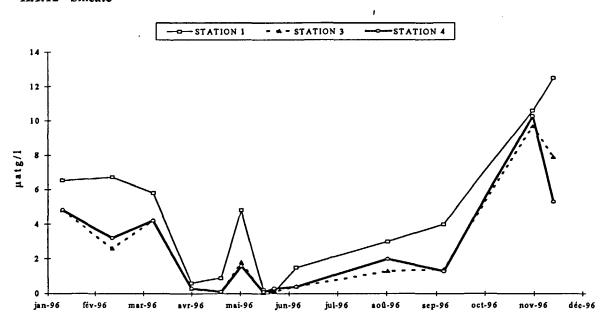


Fig.1.12: Dunkerque - Silicate

L'évolution annuelle du silicate est très comparable à celle du nitrate et du phosphate avec des concentrations importantes en février (6,7µatg/l à la côte) et en décembre (12,5 µatg/l à la côte). Elles sont basses en été, pouvant limiter le développement des *Diatomées* dont le squelette est constitué de silice.

BOULOGNE-SUR-MER

II.2 - Boulogne-sur-mer

En 1996, 13 sorties ont eu lieu sur les 16 prévues initialement en raison de conditions météorologiques défavorables en février et en mars.

II.2.1 - Température

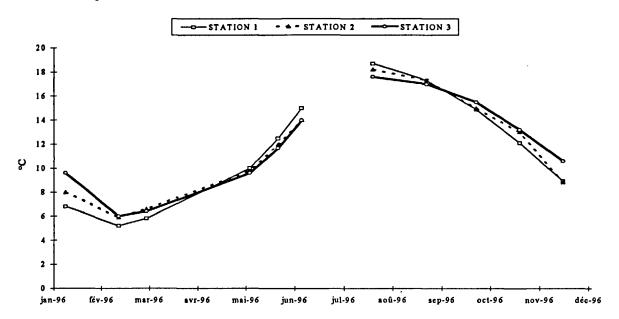


Fig. 2.1: Boulogne-sur-mer - Température

Mis à part l'absence de mesures le 5 juillet pour les 3 stations, les 'courbes de température suivent la même tendance observée en 1995. Les températures passent en moyenne de 8,1°C le 9 janvier à 18,1°C le 6 août, puis diminuent progressivement jusqu'à 9,4 °C le 12 décembre.

II.2.2 - Salinité

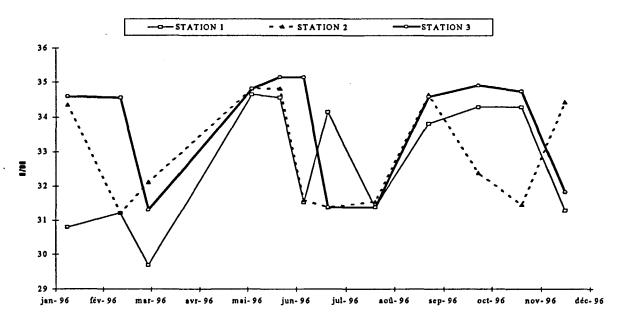


Fig.2.2: Boulogne-sur-mer - Salinité

Les 3 stations oscillent autour de leur valeur moyenne (environ 33,08 ‰) avec un maximum de 35,16 ‰ à la station 3 le 3 juin et un minimum de 29,7 ‰ le 5 mars à la station côtière. Des pluies abondantes entraînent des dessalures.

II.2.3 - Turbidité

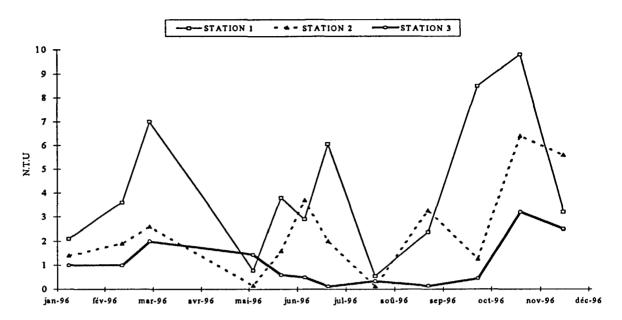


Fig.2.3: Boulogne-sur-mer - Turbidité

Au début et à la fin de l'hiver, une forte turbidité est observée à la côte (9,8 N.T.U le 13 novembre et 7 N.T.U le 5 mars). Alors que les eaux du large sont faiblement turbides. Les valeurs intermédiaires subissent l'influence de la côte et on observe le plus souvent un gradient côte-large décroissant.

II.2.4 - Matières en suspension

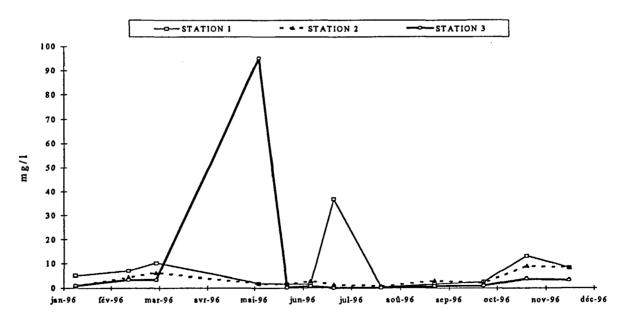


Fig. 2.4: Boulogne-sur-mer - Matières en suspension

La station 3 présente un pic important (95,2 mg/l) le 15 mai, difficilement explicable pour les eaux les plus au large. Le reste de l'année on constate l'existence d'un gradient côte-large décroissant.

II.2.5 - Matière organique particulaire

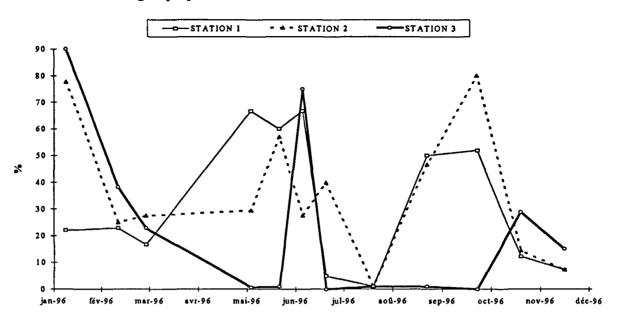


Fig. 2.5: Boulogne-sur-mer - Matière organique particulaire

La matière organique est représentée ici en pourcentage de perte au feu de la matière organique particulaire (c'est le rapport en % de M.E.S.O sur M.E.S.T). La part de la M.O dans la M.E.S.T fluctue différemment cette année (station 3), avec en particulier un pic à 90% le 9 janvier et un second à 75% le 19 juin. Les évolutions des stations 1 et 2 sont plus ou moins similaires à celles de 95.

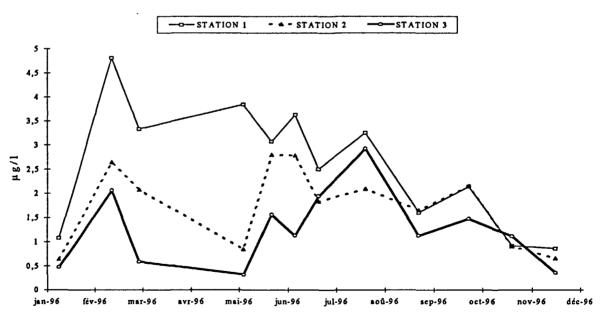


Fig. 2.6: Boulogne-sur-mer - Chlorophylle a

Les teneurs en chlorophylle, indicatrices de l'abondance du phytoplancton, sont faibles en janvier (0.73 mg/l). Une augmentation de la teneur en chlorophylle est visible pour les 3 stations dès février (respectivement 4,81 mg/l, 2,64mg/l). On observe ensuite une diminution progressive des teneurs en chlorophylle jusqu'en décembre. Le pic de printemps est précoce cette année (février).

II.2.7 - Phaeopigments

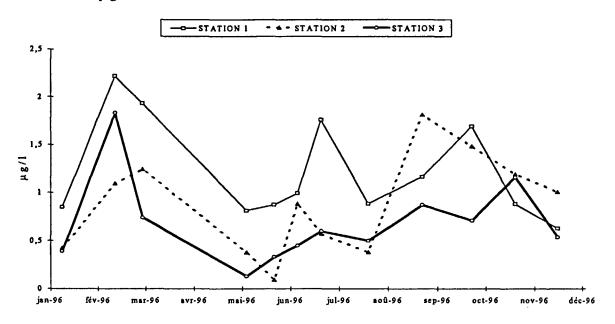


Fig. 2.7: Boulogne-sur-mer - Phaeopigments

Les teneurs en phaeopigments évoluent comme celles de la chlorophylle a avec des valeurs qui diminuent en dents de scie de février-mars à décembre-janvier. On remarque des concentrations plus faibles qu'en 1995.

II.2.8 - Ammonium

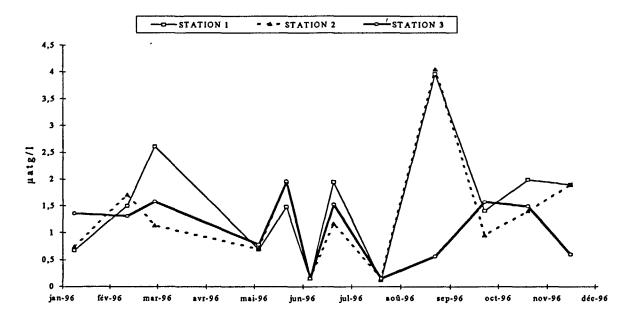


Fig.2.8: Boulogne-sur-mer - Ammonium

La fluctuation des concentrations en ammonium est plus marquée cette année. Toutefois les valeurs sont généralement moindres qu'en 1995. On note des concentrations faibles en ammonium (< 2,61 µatg/l) jusqu'au mois d'août 1996, puis un pic important pour les stations 1 et 2 (respectivement 3,96 µatg/l et 4,05 µatg/l le 11 septembre 1996 au lieu de 6,1 µatg/l le 6 novembre 1995). L'excès d'ammonium dans l'eau de mer doit son origine, essentiellement aux rejets urbains.

IL 2.9 - Nitrite

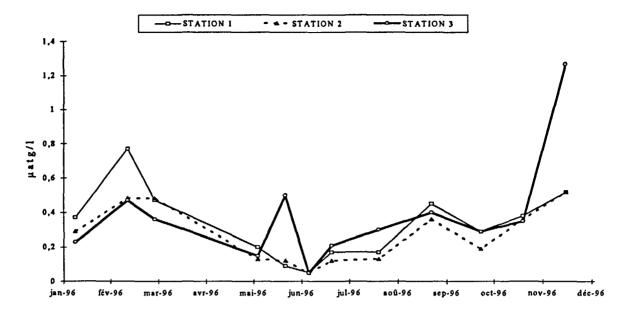
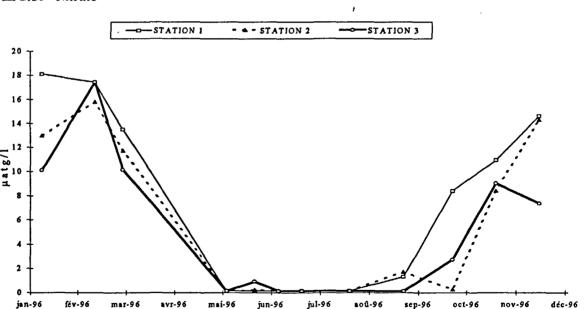



Fig. 2.9: Boulogne-sur-mer - Nitrite

Les teneurs en nitrite fluctuent avec des valeurs maximales en février (la station 1 (0,8 µatg/l)), le 3 juin (la station 3 (0,8 µatg/l)) et en décembre (la station 3 (1,27 µatg/l)). Cette dernière valeur correspondrait à la remise en suspension des sédiments lors d'une mer agitée. La valeur minimale se situe le 19 juin pour les 3 stations (< 0,05 µatg/l).

II. 2.10 - Nitrate

Fig. 2.10: Boulogne-sur-mer - Nitrate

Les réserves accumulées pendant l'hiver (18,09 µatg/l pour la station côtière, au lieu de 27,7 µatg/l en 1995) sont épuisées à la même date pour les 3 points de prélèvements (mai 1996). Cette chute reflète l'activité phytoplanctonique. La remontée des teneurs en nitrate commence dès septembre jusqu'en février.

II.2.11 - Phosphate

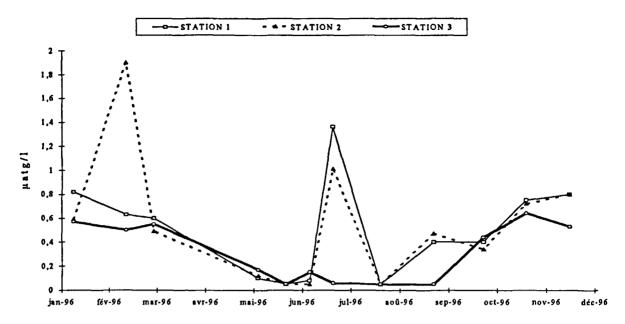


Fig. 2.11: Boulogne-sur-mer - Phosphate

La courbe d'évolution du phosphate a sensiblement la même allure que celle du nitrate sauf fin juin où l'on constate une remontée des teneurs à la côte. Le début de l'année est marqué par un seul pic, celui du 15 février (1,9 µatg/l) à la station 2.

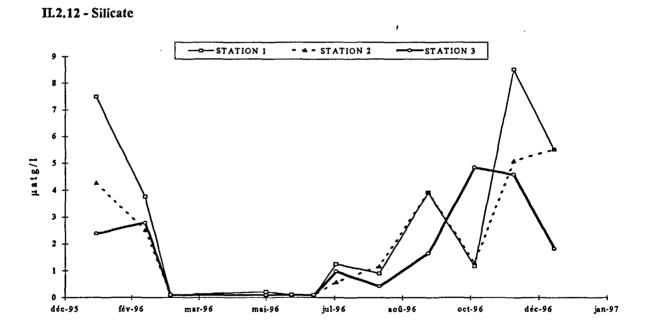


Fig.2.12: Boulogne-sur-mer - Silicate

Le silicate utilisé par les *Diatomées* pour former leur thèque est vite épuisé dès le mois de mars. Les réserves ne se reconstituent qu'à partir de la saison automne-hiver. Une baisse est toutefois observée en décembre (1,83 µatg/l), surtout au large.

BAIE DE SOMME

II.3 - Baie de Somme

En 1996, 12 sorties ont été effectuées pour chaque point. Cette année nous avons ajouté les résultats obtenus au point BIF (à l'intérieur de la Baie) échantillonné par le GEMEL, afin d'élargir le gradient de la radiale.

IL3.1 - Température

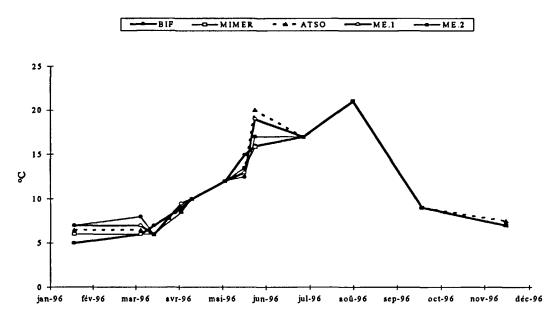


Fig.3.1: Baie de Somme - Température

La moyenne annuelle globale (11,8°C) est sensiblement la même qu'en 1995 (11,4°C). On notera l'absence de valeurs le 10 octobre pour les 5 stations. Les mois le plus froid sont en hiver. La température atteint un maximum de 21°C le 19 août pour 3 stations (BIF, ATSO et ME.1) puis décroît rapidement. En décembre, la température atteint 7°C, soit une perte de 14°C par rapport au mois d'août.

II.3.3 - Salinité

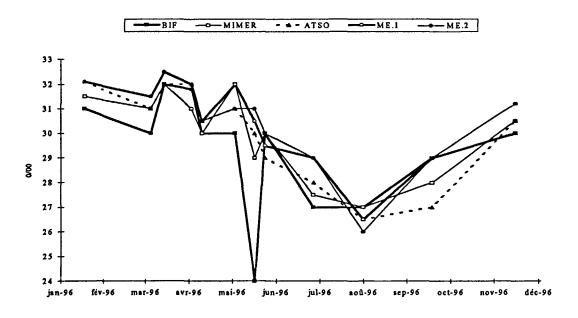


Fig.3.1: Baie de Somme - Salinité

La salinité de l'eau de mer est plus faible que pour les autres radiales, influencée par le fleuve Somme. Son maximum correspond au minimum relevé sur Boulogne-Dunkerque (environ 32 %). le minimum est atteint (à 24 %)

le 29 mai 1996 à l'interiur de la Baie (station BIF). Notons, une moyenne plus faible qu'en 1995 (30,03 ‰ contre 31,8 ‰ en 1995) que l'on peut expliquer par l'ajout du point BIF.

II.3.3 - Turbidité

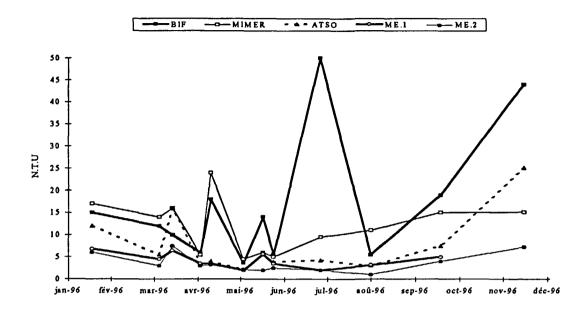


Fig.3.3: Baie de Somme - Turbidité

- La courbe du point BIF fluctue considérablement. Une valeur maximale est atteinte à 50 N.T.U au mois de juillet. Ceci s'explique par la position géographique du point BIF.
- La courbe du point MIMER montre que la turbidité est comprise entre 5 N.T.U et 24 N.T.U, valeurs maximales relevées aux mois de janvier et d'avril.
- La courbe du point ATSO représente une turbidité comprise entre 2,2 et 25 N.T.U. La valeur maximale est obtenue le 12 décembre.
- Les courbes des points ME1-ME2 suivent pratiquement la même tendance. Les valeurs relevées à ces 2 stations sont relativement faibles.

Globalement on constate un gradient décroissant de l'intérieur de la Baie vers le large avec des valeurs plus élevées l'hiver.

II.3.4 - Matières en suspension

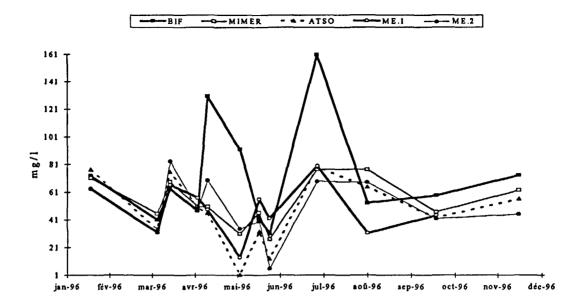


Fig.3.4: Baie de Somme - Matières en suspension

Les plus fortes valeurs sont comprises entre 31 et 161 mg/l pour la station BIF et les plus basses valeurs sont comprises entre 1-81 mg/l pour ATSO et MER.2. La Baie de Somme est caractérisée par des eaux turbides surtout à l'intérieur de la Baie où l'on constate un gradient décroissant jusqu'au large.

II.3.5 - Matière organique particulaire

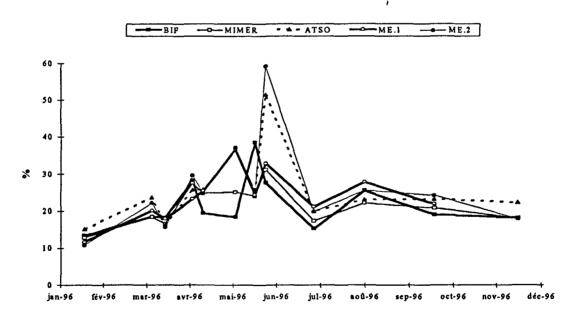


Fig.3.5: Baie de Somme - Matière organique particulaire

Les valeurs maximales sont atteintes le 6 juin à la station ME.2 (59,1%) et à la station ATSO (51,42%). Les valeurs minimales se situent en janvier avec la valeur la plus basse (10,82%) à la station ME.2. Le profil des courbes 96 est assez similaire à celui de 95.

II.3.6 - Chlorophylle a

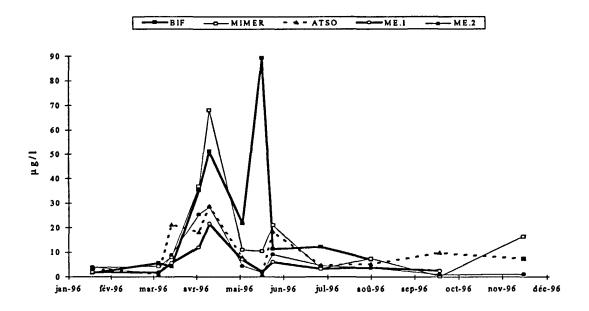


Fig.3.6: Baie de Somme - Chlorophylle a

La quantité de chlorophylle a nous donne une idée de l'abondance et de la répartition du phytoplancton sur une année. Les plus fortes teneurs sont relevées le 29 mai pour la station BIF (90 μ g/l) puis le 19 avril pour la station MIMER (68,09 μ g/l), ce qui s'explique par le bloom printanier. Les valeurs les plus fortes sont souvent à la côte.

II.3.7 - Phaeopigments

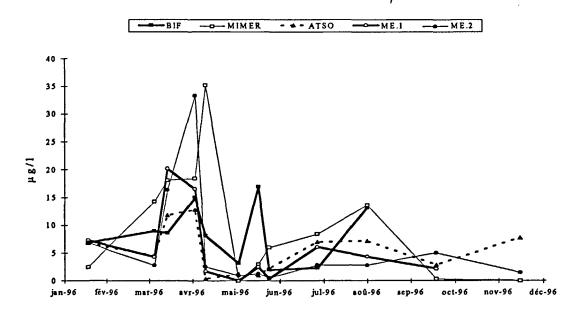


Fig.3.7: Baie de Somme - Phaeopigments

La mesure des phaeopigments est un bon indicateur de la dégradation de la chlorophylle a. A un pic de chlorophylle correspond souvent un pic de phaeopigments d'où il tire son origine. Par exemple le 19/04 à la station MIMER, la teneur en chlorophylle a est de $70\mu g/l$ pour 35 $\mu g/l$ de phaeopigments, le 29/05 à la station BIF elle est de 90 $\mu g/l$ en chlorophylle a et de 17 $\mu g/l$ en phaeopigment. Pour chaque station les maximums de phaeopigments sont donc liés aux maximums de chlorophylle a mais restent dans des teneurs toujours plus faibles que ces derniers.

II.3.8 - Ammonium

IL3.9 - Nitrite

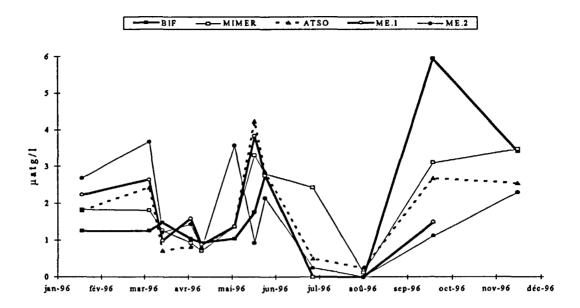


Fig.3.8: Baie de Somme - Ammonium

On enregistre les valeurs minimales au cours des mois de mars, d'avril et en juillet-août. Elles correspondent aux blooms du phytoplancton. Les concentrations maximales sont relevées de mai à juin pour les stations MIMER, ATSO et ME1 (respectivement 3,30µatg/l et 4,23µatg/l le 29/05/97). Au début de la période hivernale, les teneurs sont les plus élevées à la station BIF (6 µatg/l le 10 octobre 1996).

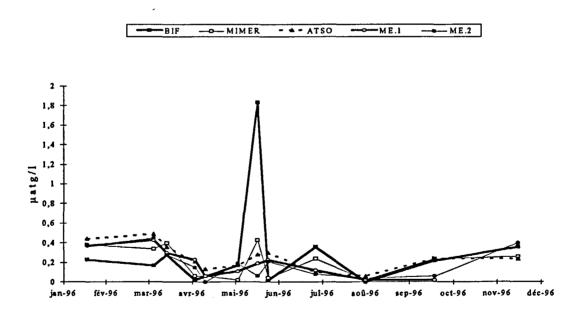


Fig.3.9: Baie de Somme - Nitrite

L'étude des valeurs montre que la moyenne générale annuelle a pratiquement diminué de moitié par rapport à 1995. Les nitrites représentent une forme de transition très fugace entre l'ammonium et le nitrate. Leurs concentrations sont très variables dans l'espace et dans le temps et réagissent très rapidement à des modifications du milieu et en particulier aux modifications des concentrations en oxygène dissous. L'interprétation de cette figure demeure délicate car les concentrations fluctuent sans cesse. Mais, on peut cependant remarquer une chute des valeurs de mars à avril et un pic

de 1.83 µatg/l le 29 mai à la station BIF. Ce dernier correspond au pic de chlorophylle a (90 µatg/l à la même date et au même lieu).

II.3.10 - Nitrate

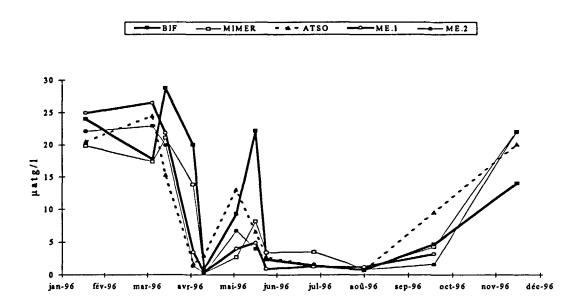


Fig.3.10: Baie de Somme - Nitrate

Les concentrations moyennes annuelles en nitrate sont comprises entre 8.92µatg/l (ME1) et 9.09 µatg/l (MIMER). Le maximum de concentration est d'environ 30µatg/l à BIF et la valeur minimale de concentration est relevée le 19 avril à MIMER, ME1 et ME2 (0.26µatg/l). Elle correspond au démarrage de la production phytoplanctonique printanière qui conduit rapidement à l'épuisement du nitrate. Les concentrations en nitrate réaugmentent pour atteindre 22,15 µatg/l le 29/05 (point BIF). Elles diminuent de nouveau dès le mois de juin. En général, le stock des nitrates commence à se reconstituer après le mois d'août.

II.3.1.1 - Phosphate

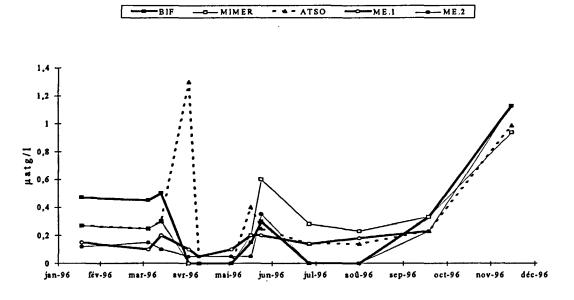


Fig.3.11: Baie de Somme - Phosphate

Dans l'ensemble, les valeurs minimales ne dépassent pas 0,6 µatg/l de janvier à octobre, avec un minimum en avril. A partir du mois d'octobre, les réserves du phosphate se reconstituent pour atteindre 1 à 1,2 µatg/l en décembre. Un

maximum de concentration est cependant relevé le 11 avril à ATSO (1,30 µatg/). Cette valeur n'est pas cohérente avec les autres valeurs enregistrées (voir discussion).

IL3.12 - Silicate

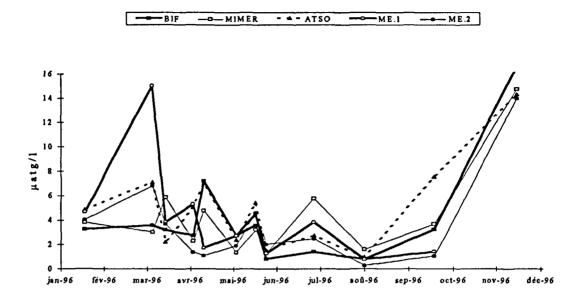


Fig.3.12: Baie de Somme - Silicate

La courbe d'évolution du silicate montre des teneurs basses l'été et élevées l'hiver. Le pic du début d'année se situe le 11 mars à la station MER.1. On note une fluctuation des teneurs en silicate qui reflète bien les blooms successifs de mars à octobre aux 4 stations. Au mois d'octobre les réserves en silicate se reconstituent pour atteindre 15 µatg/l en décembre.

III. PHYTOPLANCTON

III.1 - Introduction

Dans les zones à climat tempéré, la croissance du phytoplancton peut être limitée par deux types de facteurs : les facteurs physiques (température, éclairement, turbulence, turbidité des masses d'eau...) et les facteurs nutritionnels dont nous avons pu observer les variations à la lecture du chapitre II. Au cours des périodes postautomnales, la température et surtout l'énergie solaire diminuent de telle façon que la croissance du phytoplancton est stoppée ce qui favorise la reconstitution des stocks de sels nutritifs par minéralisation de la substance organique (débris de cellules phytoplanctoniques, entre autres). A la fin de l'hiver, les sels nutritifs étant abondants, l'allongement des jours et le réchauffement progressif de l'eau déclenchent les poussées phytoplanctoniques printanières constituées majoritairement de diatomées. Dans les secteurs côtiers non soumis à des apports terrigènes significatifs, la consommation rapide des sels nutritifs par le phytoplancton va entrainer une chute de leur concentration, dans le milieu, qui devient rapidement limitante pour la croissance phytoplanctonique. Aux diatomées, succèdent alors, pendant la période estivale, les dinoflagellés, espèces à croissance lente et aux besoins moindres en azote et en phosphore. Une nouvelle poussée de diatomées peut intervenir en automne si les conditions hydrologiques ont favorisé le brassage et remis à disposition dans la colonne d'eau les sels nutritifs régénérés pendant l'été. Dans ce chapitre, nous allons nous intéresser aux variations d'abondance des espèces phytoplanctoniques avec l'aide de deux indices mathématiques qui nous ont été d'une grande utilité.

III.2 - Fluctuations saisonnières

L'importance du phytoplancton dans la biologie des mers a conduit depuis longtemps à évaluer son abondance dans les eaux marines. Cette évaluation a mis en évidence les fluctuations considérables de sa densité. C'est ainsi que les observations régulières en un même lieu montrent souvent des variations de grande amplitude au cours de l'année, qui se répètent généralement suivant un même cycle d'une année à l'autre.

Tous les éléments du phytoplancton cependant ne se développent pas simultanément: les diatomées présentent entre elles, suivant les espèces, des décalages plus ou moins grands de leurs maximums et les péridiniens montrent un évolution annuelle toute différente. Il s'ensuit que le phytoplancton varie considérablement dans le temps, non seulement dans son abondance, mais aussi dans sa composition.

Enfin il existe des pullulations rapides et massives de phytoplancton qui, bien qu'elles se produisent plus fréquemment dans des zones particulières, déjouent le plus souvent la prévision et disparaissent presque aussi vite qu'elles sont apparues.

Toutes ces variations, connues depuis plus ou moins longtemps, ont suscité de nombreux travaux, cherchant à en préciser les modalités ou à les expliquer.

Contrairement à 1995, nous disposons cette année des listes floristiques de chaque radiale. Il est donc possible de présenter les résultats bruts de l'année 1996 et de les interpréter.

III.3 - Méthodes

III.3.1 Choix des Taxons

Les données brutes sur les espèces phytoplanctoniques des trois radiales ont été simplifiées afin de faciliter nos travaux. Ainsi une liste limitée de taxons permet de mettre en valeur les espèces les plus significatives et de négliger dans notre étude les espèces peu significative

Taxon dénombré	Synthèse ligne
RHIZDEL	606
ASTEGLA	468
MELO	393
THAANIT	354
RHIZIMB	324
CHAE	285
RHIZSTO	259
PSNZSER	247
PHAE	244
LAUD	222
PARAMAR	204
SKELCOS	203
NITZ	184
THALROT	178
RHAP	149
THAL	149
LEPT	129
PLAG	128
NITZLON	127
RHIZSET	127

1. Tableau des Taxons dénombrés pour l'ensemble des stations.

Taxon dénombré	Synthèse ligne
RHIZDEL	422
MELO	380
RHIZIMB	251
RHIZSTO	229
THAANIT	215
CHAE	185
ASTEGLA	177
SKELCOS	158
THALROT	151
GYRO	126
CHAECUR	111
PSNZDEL	109
PSNZSER	108
PHAE	103
THAL	103
NAVI	99
RHIZSET	89
GUIN	74
LEPT	70
GYMN	69

2. Tableau des Taxons dénombrés pour DUNKERQUE-BOULOGNE confondus.

III.3.2 Indices calculés par point et par espèce

III..3.2.1 INDICE de SANDERS

L'indice biologique d'une espèce est l'addition des rangs occupés par cette espèce pour toutes les dates (dates auxquelles l'espèce a été dénombrée). Le rang de l'espèce pour une date donnée est fonction de sa dominance par rapport à celles des autres espèces présentes.

L'indice biologique est calculé selon la méthode de SANDERS (1960). Pour chaque date, les espèces sont classées en fonction de leur abondance. La plus abondante, donc la plus dominante à cette date, est notée 10. la seconde, 9; la troisième, 8; etc. jusqu'à la dixième, 1, les suivantes étant notées 0. Ainsi, pour chaque date, 10 espèces sont classées. Pour chaque espèce, les notes obtenues à toutes les dates sont additionnées et leur somme correspond à l'indice de SANDERS rencontré dans les tableaux de résultats.

Guille (1970) propose la classification biocénotique suivante des espèces en fonction de la valeur de l'indice de SANDERS, pour un site donné:

- 1. Les espèces classées dans les dix premières sont appelées espèces préférantes du site.
- 2. Les espèces classées dans les dix suivantes sont appelées espèces accompagnatrices du site.
- 3. Les espèces dont l'indice de SANDERS est nul, sont dites accessoires du site.

III.3.2.2 APPLICATION DE L'INDICE DE SANDERS

	******	D	uni	kerque	•••••					E	30U	logne	******	***************************************	
côte	******	intermédia	ire	large		globa	I	côte	•••••	inte média	ire	large		globa	ĺ
RHIZDEL	82	RHIZDEL	77	RHIZDEL	79	RHIZDEL	238	MELO	76	MELO	72	MELO	53	MELO	201
MELO	56	MELO	74	MELO	49	MELO	179	RHIZDEL	65	RHIZDEL	66	RHIZDEL	53	RHIZDEL	184
THAANIT	52	ASTEGLA	52	RHIZIMB	49	RHIZIMB	145	RHIZSTO	55	RHIZIMB	41	RHIZSTO	44	RHIZSTO	133
CHAE	47	RHIZIMB	50	ASTEGLA	48	ASTEGLA	139	RHIZIMB	37	RHIZSTO	34	THAANIT	29	RHIZIMB	106
RHIZIMB	46	CHAE	43	CHAE	41	CHAE	131	THAANIT	35	THAANIT	28	THALROT	29	THAANIT	92
ASTEGLA	39	PSNZDEL	36	THAANIT	39	THAANIT	123	ASTEGLA	33	SKELCOS	28	RHIZSET	29	SKELCOS	83
SKELCOS	38	THAANIT"	32	GYRO	34	RHIZSTO	96	PSNZDEL	33	GYRO	28	RHIZIMB	28	THALROT	73
RHIZSTO	35	RHIZSTO	31	RHIZSTO	30	PHAE	87	SKELCOS	32	NAVI	26	CHAECUR	27	NAVI	70
THALROT	31	PHAE	28	PHAE	30	CHAECUR	79	RHAP	31	CHAE	25	NAVI	26	GYRO	67
CHAECUR	30	CHAECUR	26	THALROT	24	THALROT	78	PSNZSER	26	THAL	24	SKELCOS	23	PSNZSER	62
PHAE	29	THALROT	23	CHAECUR	23	SKELCOS	75	THALROT	23	PSNZSER	23	THAL	20	RHIZSET	61
THAL	22	PSNZSER	18	PSNZDEL	22	PSNZDEL	66	RHIZSET	22	GYMN	22	GYRO	18	THAL	59
LEPT	20	CERA	18	PSNZSER	22	GYRO	59	GYRO	21	THALROT	21	RHIZ	18	CHAE	54
GUIN	18	SKELCOS	17	SKELCOS	20	PSNZSER	46	NAVI	18	RHAP	18	ORPERID	16	RHAP	53
CYLICLO	17	CYLICLO	15	NITZLON	20	THAL	44	CHAE	17	LEPT	18	PSNZSER	13	PSNZDEL	43
GYMN	14	LEPT	14	GUIN	20	NITZLON	42	THAL	15	LAUD	16	STAUMEM	13	ASTEGLA	38
GYRO	12	GYMN	14	THALDEC	16	GUIN	42	LAUD	14	GUIN	15	NITZLON	13	LEPT	36
NITZLON	12	GYRO	13	RHIZSET	15	CYLICLO	37	STAUMEM	11	PSNZ	15	CHAE	12	GYMN	36
CHAESOC	11	THALNOR	12	NAVI	15	LEPT	34	PHAE	10	EUCP	11	GYMN	12	STAUMEM	34
EUCP	10	NITZLON	10	THAL	14	GYMN	33	DITY	10	RHIZSET	10	CLDINOP	12	CHAECUR	32
					:	2									

3. Tableau des vingts espèces les plus abondantes à Dunkerque et à Boulogne

Le tableau 3 réunit vingt espèces phytoplanctoniques principales rencontrées depuis le large à la côte de Dunkerque et de Boulogne. Chaque espèce se voit respectivement affecter une somme. Celle-ci correspond aux sommes des indices de Sanders pour un même site donné (côte-intermédiaire-large). D'après la classification biocénotique des espèces, les dix premières de ce tableau sont dites espèces préférantes du site. Les dix suivantes sont appelées espèces accompagnatrices du site.

<u>DUNKERQUE</u>: L'espèce Rhizosolenia delicatula (global: 238), dont la répartition est homogène de la côte au large, (respectivement 82, 77, 79), est la plus abondante. Melosira sp. avec ses 179 au global est la deuxième espèce abondante. La répartition des autres espèces est hétérogènes suivant la côte, l'intermédiaire et le large. Prenons l'exemple de Rhizosolenia imbricata, les sommes d'indice de Sanders sont non alignées dans le tableau. A savoir, CHAE domine RHIZIMB (47 contre 46) à la côte, ASTEGLA domine RHIZIMB (52 contre 50) à l'intermédiaire et MELO domine RHIZIMB (pourtant leurs valeurs sont identiques: 49).

<u>BOULOGNE</u>: L'espèce la plus abondante est cette fois Melosira sp. Puis, Rhizosolenia delicatula est classée deuxième. Les espèces restantes sont réparties dans l'espace dimensionnel de façon hétérogène comme précédemment.

,			Bai	e de Som	me		• • • • • • • • • • • • • • • • • • • •		
bif		mimer		atso		mer1		mer2	
ASTEGLA	75	ASTEGLA	64	NITZ	54	ASTEGLA	47	ASTEGLA	54
PARAMAR	48	PARAMAR	61	ASTEGLA	48	NITZ	39	RHIZDEL	42
PLAG	40	PHAE	35	RHIZDEL	43	PSNZSER	33	NITZ	34
RHIZDEL	38	LAUD	35	THAANIT	35	RHIZDEL	32	LAUD	34
NITZ	31	PSNZSER	31	PARAMAR	32	PARAMAR	32	PARAMAR	31
THAANIT	31	RHIZDEL	29	LAUD	32	LAUD	31	PSNZSER	28
ODONREG	31	NITZ	26	PLAG	25	PHAE	30	RHAP	28
PHAE	30	THAANIT	26	PSNZSER	22	RHAP	30	PHAE	26
LAUD	30	PLAG	25	PHAE	20	THAANIT	26	THAL	24
PSNZSER	24	ODONREG	23	CHAE	17	RHIZIMB	24	CHAE	23
CHAE	18	CHAE	22	RHAP	17	EUCP	22	THAANIT	18
NITZLON	17	NITZLON	18	EUCP	16	SCEN	18	SKELCOS	16
PEDI	15	LEPT	17	RHIZIMB	15	CHAE	17	RHIZIMB	15
ODONAUR	14	DITY	14	CHAEDEC	15	PLAG	15	LEPT	15
SCEN	11	EUCP	13	CERA	14	RHIZSTO	13	PLAG	14
DITY	11	RHIZIMB	12	LEPT	13	NITZLON	12	DITY	14
NAVI	10	RHIZSET	12	DITY	12	SKELCOS	11	PORO	13
EUCP	10	ODONAUR	11	THAL	12	LEPTMIN	10	EUCP	12
RHIZIMB	9	ASTEFOR	10	RHIZSET	10	LEPT	9	NITZLON	12
SKELCOS	9	SKELCOS	9	THALROT	9	DITY	8	STAUMEM	10

4. Tableau des vingts espèces les plus abondantes en Baie de Somme

Le tableau 4 réunit vingt espèces phytoplanctoniques principales rencontrées depuis l'intérieur de la Baie à la côte de la Baie de Somme. La présentation du tableau est similaire au précédent, excepté l'absence de la colonne « global ».

<u>BAIE de SOMME:</u> Lors de son efflorescence, l'espèce ASTEGLA dite Asterionella a été dénombrée majoritairement pour chaque station, sauf au point ATSO où l'espèce NITZSCHIA est la plus abondante (54 contre 48 pour ASTEGLA). L'espèce PARAMAR n'est pas observée aux radiales de Dunkerque-Boulogne.

Concernant Phaeocystis, cette dernière fait parties des espèces préférantes du site pour chaque station.

COMPARAISON INTER-RADIALES

On observe:

- une permutation de l'espèce abondante entre Dunkerque et Boulogne.
- l'hétérogéinité spatiale de l'indice de Sanders pour une même espèce rencontrée sur chaque point de prélèvements,
 - le problème de la classification des espèces ayant la même valeur d'indice,
- on ne rencontre pas forcément les mêmes espèces aux trois radiales. Celles qui sont communes, ont des valeurs d'indice différentes.
- Phaeocystis n'est classée que onzième parmi les vingts principales espèces rencontrées sur Dunkerque et dix neuvième parmi les vingts espèces rencontrées sur Boulogne.

III.3.2.3 INDICE de SHANNON

Pour chaque site les évolutions de la richesse spécifique rapportée au nombre total de taxons rencontrés sur le site et de la diversité spécifique peuvent être représentées.

La richesse spécifique (S) est le nombre d'espèces, ou taxons, identifiées à une date donnée. L'indice de diversité, retenu ici pour caractériser la diversité spécifique, est l'indice de Shannon, H.

$$H = -\sum Pi \operatorname{Log}_{2}(Pi)$$

Avec Pi = Ni / Σ Ni qui est égale à la fréquence de l'espèce i dans l'échantillon. Ni est le nombre d'individus de l'espèce i et Σ Ni est le nombre total d'individus pour toutes les espèces dans l'échantillon N.

Dans notre étude Ni / Σ Ni n'est autre que la dominance de l'espèce i dans la station considérée.

L'indice de Shannon tient compte du nombre d'espèce.

On dit de l'indice qu'il est BON quand il monte jusqu'à 6.

On dit de l'indice qu'il est MAUVAIS quand il descend jusqu'à 0.52.

III.3.2.4 INTERPRETATION GRAPHIQUE DE L'INDICE DE SHANNON.

DUNKERQUE

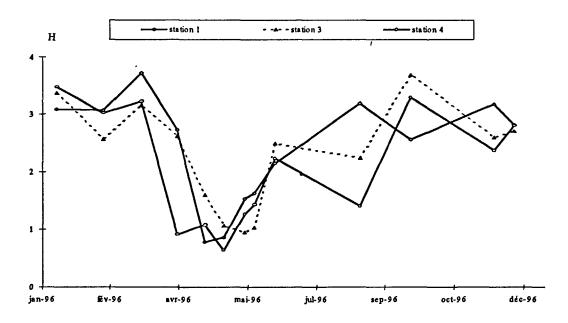


Fig.1: Dunkerque-Indice de Shannon

Les indices d'avril à mai sont les plus faibles pour les trois stations (station 1: 0.78, station 3: 1.06 et station 4: 0.63). Ces derniers nous indiquent qu'à ces points de prélèvements, les espèces phytoplanctoniques sont très peu diversifiées. Par conséquent, une voire deux espèces dominent au printemps; Ces espèces sont RHIZOSOLENIA delicatula et CHAETOCEROS sociale. En ce qui concerne le développement de PHAEOCYSTIS, il aurait pris du retard pour cette année. Par contre, là où les indices de Shannon sont les plus élevés, nous rencontrons un milieu riche en espèces phytoplanctoniques dont la densité (pi) est identique. Les valeurs importantes sont lues dès le mois de septembre jusqu'à mars.

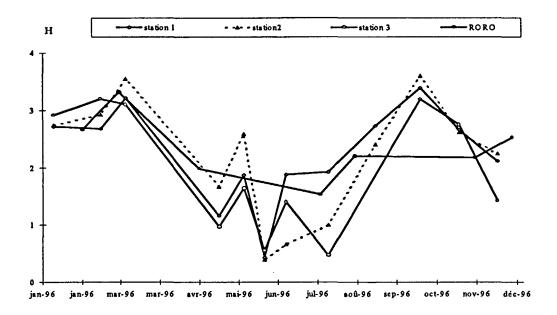


Fig.2: Boulogne-Indice de Shannon

La valeur minimale de l'indice est atteinte à 0.43 le 19 juin 1996 pour les trois stations. L'observation faite sur Dunkerque se répète à Boulogne. En effet, l'espèce dominante est *RHIZOSOLENIA delicatula*. Elle est en si grand nombre que les autres espèces sont négligeables. *PHAEOCYSTIS* n'a pas connu de grand bloom de mai à juin. Cette affirmation est à émettre avec prudence en raison de deux sorties non effectuées le 22 mai et le 27 juin 1996. Le meilleur indice est de 3.59 le 15 octobre pour la station 2.

BAIE de SOMME

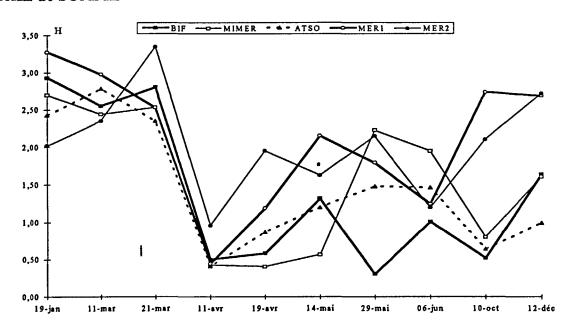


Fig.3: Baie de Somme-Indice de Shannon

Quatre stations (BIF, MIMER, ATSO et MER.1) convergent en même relevé (0.45) le 11 avril. Cette valeur représente le plus faible indice de diversité (après celui du 29 mai à la station BIF), d'où la dominance d'une voire deux espèces (RHIZOSOLENIA delicatula et PHAEOCYSTIS). Le reste de l'année se caractérise par de nombreuses fluctuations, avec des indices oscillant entre 0.31 et3.50.

IV. DISCUSSION

IV.1 - Comparaison interradiale

Comme pour les bilans des années antérieures, nous nous proposons de dégager les différences essentielles entre chaque radiale en ce qui concerne les résultats des analyses physico-chimiques, biologiques et le phytoplancton.

IV. 1.1 - Paramètres physico-chimiques et biologiques

IV.1.1.1 - Température et salinité

La température évolue pour les 3 radiales dans une plage située entre 4,5°C et 7°C pour les minima, 19 et 21°C pour les maxima. L'écart de température entre la côte et le large ne dépasse jamais 2°C.

La salinité moyenne pour Dunkerque et Boulogne est de l'ordre de 34-35 ‰ alors qu'elle est de 30,2 ‰ pour la Baie de Somme, ce qui confirme l'influence de la dessalure due au fleuve Somme.

IV.1.1.2 - M.E.S, turbidité et matière organique particulaire

Les valeurs de turbidité sont beaucoup plus élevées en Baie de Somme (moyenne : 7,15 N.T.U.) qu'à Dunkerque (moyenne : 4,8 N.T.U.) et Boulogne (moyenne : 2,50 N.T.U.) avec un maxima de 25 N.T.U. contre 30 à Dunkerque et 9,8 N.T.U. à Boulogne. Il en est de même pour les matières en suspension, les teneurs les plus élevées se situent en Baie de Somme avec un maxima de 161 mg/l en juillet en Baie contre 95,2 mg/l au large en mai à Boulogne et 32,2 mg/l à la côte en novembre à Dunkerque.

Le pourcentage de matière organique est plus élevé en juin en Baie de Somme (60 %), en mai à Dunkerque (80 %), et en janvier à Boulogne (90 %).

IV.1.1.3 - Chlorophylle a et phaeopigments

On note un net pic printanier en chlorophylle a sur la station intermédiaire à Dunkerque (45,5 μ g/l) et en Baie de Somme (90 μ g/l). Par contre, à Boulogne, on n'observe pas de pic important, mais plutôt des valeurs élevées à la côte début janvier (4.81 μ g/l). Pour cette radiale, les valeurs évoluent en dents de scie.

Les phaeopigments sont des indicateurs de la dégradation de la chlorophylle. En Baie de Somme, les phaeopigments dépassent 35 µg/l à la côte en avril contre 6,2 µg/l en mai à Dunkerque et 2,22 µg/l en février à Boulogne.

IV.1.1.4 - Nutriments

Les concentrations en ammonium sont comprises, pour les 3 radiales, entre 0 et 8,5 µatg/l avec un gradient décroissant côte-large plus ou moins marqué à Dunkerque. Les valeurs les plus fortes se situent en fin d'année pour Boulogne et en milieu d'année pour la Baie de Somme, alors qu'à Dunkerque, les fortes concentrations sont régulières sur une année.

Les teneurs en nitrite ne dépassent pas 1 µatg/l sauf à Boulogne en février (1,27 µatg/l) au large et 1,8 µatg/l à l'intérieur de la Baie de Somme. Les minima se produisent à la saison printemps-étè pour Dunkerque, Boulogne et sont variables pour la Baie de Somme. C'est en hiver que l'on trouve les maxima pour les 2 radiales (Dunkerque-Boulogne).

L'évolution saisonnière du nitrate est comparable à Dunkerque, Boulogne et en Baie de Somme. On passe par des maxima l'hiver puis par des minima d'avril à septembre. Sur les stations les plus côtières, les teneurs atteignent 19,9 µatg/l à Dunkerque, 18,09 µatg/l à Boulogne et 24,45 µatg/l en Baie de Somme.

Le phosphate suit globalement les mêmes variations annuelles que le nitrate mais avec des valeurs comprises entre 0 et 2 µatg/l. Néanmoins, un pic de 1,4 µatg/l est observé à Boulogne en juillet ainsi qu'en mai à Dunkerque avec 0,8 µatg/l.

Les teneurs en silicate sont faibles dès le mois de mars à Boulogne, et ce jusqu'à mi-juin où elles commencent à remonter. Par contre, pour Dunkerque, les teneurs fluctuent au printemps; avec des valeurs faibles en avril, une remontée

en mai puis une chute en juin suivie d'une augmentation progressive. En ce qui concerne, la Baie de Somme, les fluctuations sont en dents de scie.

IV.1.2 - Phytoplancton

A Dunkerque Rhizosolenia delicatula (diatomée) et Chaetoceros apparaissent de mars à mai, en passant par un pic chlorophyllien en avril. Phaeocystis leur succède de mai à juin.

A Boulogne, cette année, le pic printanier est précoce à la côte. Phaeocystis n'aurait pas connu de grand bloom de mai à juin.

Rhizosolenia delicatula et Phaeocystis ont été dénombrées au printemps en Baie de Somme.

En ce qui concerne les diatomées, on note quelques similitudes dans la succession des espèces principales. On dénombre ainsi les genres suivants : Rhizosolenia, Leptocylindrus, Lauderia.

Globalement le nombre d'espèces identifiées est plus élevé en Baie de Somme qu'à Dunkerque ou Boulogne.

Les espèces Dinophysis, Gymnodinium et Gyrodinium (ces trois espèces sont toxiques à des fortes quantités) furent observées aux trois radiales mais à des quantités trop faibles pour entraîner des problèmes de toxicité.

IV.2 - Discussion

Il faut en préambule, constater que 37 sorties sur les 48 programmées ont été effectuées en 1996 avec 12 sorties pour Boulogne et la Baie de Somme, et 13 sorties pour Dunkerque. L'absence de sorties s'explique suivant les radiales par les conditions météorologiques défavorables ou par absence de moyens nautiques disponibles.

1. Température et salinité

Les résultats confirment bien l'évolution saisonnière de la températuré et le gradient côte-large décroissant pour la salinité des trois radiales avec des influences maritimes pour Dunkerque et celles du fleuve Somme en Baie. La salinité reste inférieure à 35,5 ‰ aux 3 radiales et contrairement aux années précédentes, on n'observe pas à Boulogne de valeurs aberrantes (37 ‰). Cette situation est à confirmer en 1997.

2. M.E.S, turbidité et matière organique.

Il est possible de corréler ces 3 paramètres pour chaque radiale.

A Dunkerque, le maxima de M.E.S correspond au minima de matière organique, c'est-à-dire que les 32 mg/l de M.E.S sont à 97.8 % d'origine minérale (station côtière le 25 novembre). Il semble y avoir une influence sur la turbidité (22 N.T.U).

A Boulogne, les M.E.S, très faibles en août (0,8 mg/l à la station 2), sont majoritairement d'origine organique (80% à la station 2) et on peut également observer des valeurs assez faibles de turbidité.

En Baie de Somme, les maxima de M.E.S (mars-avril) correspondent aux minima de la matière organique, en étant essentiellement d'origine minérale. Ces valeurs correspondent aussi avec le maximum de turbidité relevé à la côte en avril (24 N.T.U).

3. Chlorophylle a et phaeopigments.

Les teneurs maximales en chlorophylle a sont en général plus élevées qu'en 1995 surtout en Baie de Somme où on relève $68,09\mu g/l$ sans compter les 90 $\mu g/l$ à l'intérieur de la Baie contre 23 $\mu g/l$ en 1995 et à Dunkerque avec 45 $\mu g/l$ contre 25 $\mu g/l$ en 1995. La seule diminution remarquée est à Boulogne avec 5 $\mu g/l$ contre 16 $\mu g/l$ en 1995.

4. Nutriments et phytoplancton.

De Dunkerque à la Baie de Somme, on remarque que les teneurs en nutriments ont généralement diminué par rapport à 1995.

Les concentrations en ammonium et en nitrite évoluent en dent de scie en raison de leur instabilité. Cette évolution était identique en 1995.

Le nitrate est consommé rapidement par le phytoplancton, ce qui explique sa chute au printemps. Il en est de même pour le phosphate qui connaît pourtant des valeurs élevées à Boulogne en février (1,9 µatg/l à la station intermédiaire) et en Baie de Somme au mois d'avril (1,30 µatg/l à la station ATSO). Celles-ci s'expliquent difficilement au regard des autres paramètres relevés à la même période. On peut penser que le vent soit à l'origine de ces valeurs, d'où une remise en suspension du phosphate.

Le silicate dissous dans le milieu est utilisé par les Diatomées afin de constituer leurs thèques.

Le bloom de *Phaeocystis* ne coïncide pas cette année avec le pic de chlorophylle a à Dunkerque.

5. Influence des conditions météorologiques

On sait que les conditions météorologiques (pluie, vent, soleil) peuvent avoir une influence importante sur la plupart des paramètres analysés dans cette étude.

Le paramètre pluviométrie a été particulièrement étudié. Les précipitations enregistrées par décade aux trois stations météorologiques de Dunkerque, Boulogne-sur-mer et de la Baie de Somme (annexe 3) font apparaître plusieurs épisodes pluvieux tout au long de l'année avec des maxima en août.

En moyenne, l'année 1996 a été moins pluvieuse qu'en 95 (571.49 mm contre 634.1 mm) sur le littoral Nord/Pas-de-Calais/Picardie. Le pic de précipitation en Baie de Somme en août se traduit par des dessalures notables, de même pour Dunkerque et Boulogne. Par contre à Boulogne les dessalures existent, mais elles sont beaucoup plus homogènes: il n'y a pas de véritable chute des valeurs comme à Dunkerque et en Baie de Somme.

CONCLUSION

Les résultats de cette cinquième année de fonctionnement du Suivi Régional des Nutriments sur le littoral Nord/Pas-de-Calais/Picardie permettent de tirer toute une série d'enseignements qui confirment souvent les résultats obtenus lors des précédents suivis :

- Un gradient côte -large, plus ou moins net selon les radiales et les paramètres, existe qu'il soit croissant ou décroissant.
- L'évolution saisonnière est bien marquée pour la plupart des paramètres. Les sels nutritifs passent par des maxima en hiver et des minima en été. Pour la chlorophylle et le phytoplancton, on observe les valeurs les plus faibles en hiver et les plus élevées au printemps et en été.
 - Enfin, on note l'influence des épisodes pluvieux.

Par rapport aux résultats de 95, on constate surtout une tendance à la diminution des teneurs en nutriments mis à part l'ammonium et le silicate à Dunkerque, le nitrite à Boulogne et en Baie de Somme.

Une synthèse globale sur 5 ans des résultats obtenus de 1992 à 1996 est prévue au cours du second semestre 1997 à la suite de la publication des présents résultats. Cette synthèse devrait nous permettre d'entrevoir d'éventuelles améliorations ou dégradations des eaux littorales depuis 1992. La reconduction du Suivi Régional des Nutriments pour 5 nouvelles années a été décidée en mars 97 par le Conseil d'Administration de l'Agence de l'Eau Artois Picardie afin de parfaire la connaissance de l'évolution des teneurs en nutriments dans le temps.

Analyses physicochimiques

Résultats bruts

DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phaeo	NH4	NO2	NO3	PO4	SIOH
11/01/96	6.5	34.24	7.5	16.8	11.9	3.2	1.2	5.3	0.65	15.2	0.6	6.5
15/02/96	4.5	34.15	7.6	17	5.9	7	2.3	6.6	0.61	18	1.1	6.7
14/03/96	4.5	34.37	7.2	14	2.2	4.5	0.9	4.3	0.47	19.9	1.1	5.7
09/04/96	6	33.89	7.3	25.5	5.7	45.5	1.9	3.4	0.65	10.1	0.3	0.6
29/04/96	10	34.46	2.1	9.1	4.4	12	0.7	2	0.26	0.3	0.3	0.9
13/05/96	10.5	32.51	2.6	8.9	2.4	5.8	5	8	0.72	0.2	0.8	4.8
28/05/96		34.35	0.8	2.6	1.4	17.7	< 0,1	2.6	0.26	0.9	0.1	0.2
04/06/96		34.7	1.4	10.7	1.9	5.8	0.1	1.1	0.36	1.3	0.1	0.21
19/06/96	16	34.81	4.1	11.3	1	5.3	0.2	2	0.17	1	0.1	1.5
20/06/96	20	34.99	2.1	7.2	2	4.5	1.1	0.21	0.21	0.5	0.3	3
26/09/96	15	33.34	4	8.1	1.3	6.8	1.7	8.3	0.95	12.3	0.7	4
25/11/96	8.5	34.65	22	32.2	2.2	2.1	2.7	6.2	0.63	10.8	0.3	10.6
09/12/96	6.5	34.22	30	23.2	2.8	1.9	0.9		0.76	17.7	0.4	12.5

1996, Radiale de Dunkerque, Station 1

DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phaeo	NH4	NO2	NO3	PO4	SIOH
11/01/96	7	34.47	3	15.4	5.2	3.3	0.7	1.8	0.57	12.4	0.5	4.8
15/02/96	5.5	34.68	1.6	6.7	1.4	9.7	0.4	0.9	0.37	10.7	0.8	2.6
14/03/96	4.8	34.52	6.9	14.6	1.8	4.8	0.8	4.8	0.4	17.9	1	4.2
09/04/96	5.5	34.42	1.9	3.1	1.5	31	< 0,1	2.8	0.44	3.2	0.2	0.3
29/04/96	9.5	34.68	2.1	8	4.4	7.5	2.6	1.6	0.19	0.1	0.6	0.1
13/05/96	10	33.43	2.3	9.8	3.6	12.4	6.2	3.2	0.33	2.3	0.4	1.8
28/05/96		34.53	0.8	1.9	1.1	14.3	0.9	2.3	0.18	0.1	<0,05	<0,05
04/06/96		34.83	1.8	9.9	1.7	2.8	0.1	1.7	0.13	1.4	<0,05	0.1
19/06/96	15	34.85	0.8	2.2	0.1	1.1	0.3	1.5	, 0.12	0.8	<0,05	0.4
20/08/96	19	35.08	0.1	1.5	0.8	2.2	0.2	2	0.06	0.04	0.1	1.3
26/09/96	16	33.94	2.25	5.9	1.4	8.3	1.2	4.6	0.47	4.9	0.4	1.4
25/11/96	9	34.77	18	27	1.8	1.8	2.3	6	0.63	9.5	0.5	9.7
09/12/96	7	34.63	8.6	12.9	2.1	1.4	0.8		0.53	11.1	0.3	7.9

1996, Radiale de Dunkerque, Station 3

							,				,	
DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phaeo	NH4	NO2	NO3	PO4	SIOH
11/01/96	7	34.51	2.6	21.1	3.8	2.7	0.5	2.3	0.59	11.9	0.5	4.8
15/02/96	5.5	34.79	1.2	3.7	1.5	6.3	0.5	1.2	0.33	10.6	0.8	3.2
14/03/96	4.8	34.63	5.8	11.8	1.6	3.6	1.3	8.4	0.43	16.4	1	4.2
09/04/96	6	34.54	1.8	3.1	1.4	29.2	0.1	1.6	0.4	2.4	0.2	0.3
29/04/96	9	34.75	2.1	2	1.2	3.4	0.3	1.6	0.22	0.5	0.5	0.1
13/05/96	10	33.43	1.1	5	3.9	8.5	1.9	4.2	0.34	3.4	0.6	1.6
28/05/96		34.67	0.6	0.9	0.5	6.6	0.4	1.6	0.11	0.5	0.05	0.1
04/06/96		34.87	1	9.2	1.6	2	0.2	1.9	0.14	1	0.1	0.3
19/06/96	15	34.88	0.6	0.8	0.1	1.1	0.3	2.8	0.12	0.9	0.1	0.4
20/08/96	19	35.04	0.1	1.8	1	2.7	0.3	4.6	0.1	0.4	0.3	2
26/09/96	16	34.23	1.5	3	1	4.9	0.2	3.9	0.35	2.8	0.2	1.3
25/11/96	9	34.74	14	20	1.2	1.6	1.8	5.4	0.64	10.7	0.5	10.3
09/12/96	8	34.83	4	5.1	0.8	1	0.4		0.49	8.2	0.3	5.3

1996, Radiale de Dunkerque, Station 4

DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phaeo	NH4	NO2	NO3	PO4	SIOH
09/01/96	6.8	30.8	2.1	5	1.1	1.08	0.85	0.67	0.37	18.1	0.82	7.49
15/02/96	5.2	31.22	3.6	7	1.6	4.81	2.22	1.5	0.77	17.4	0.63	3.76
05/03/96	5.8	29.7	7	10.2	1.7	3.33	1.93	2.61	0.47	13.5	0.6	<0,1
15/05/96	10	34.65	0.79	1.8	1.2	3.84	0.81	0.69	0.2	<0,15	0.1	0.22
03/06/96	12.5	34.56	3.8	1.5	0.9	3.07	0.87	1.48	0.09	<0,15	<0,05	<0,1
19/06/96	15	31.53	2.9	1.5	1	3.63	0.99	<0,15	<0,05	<0,15	0.08	<0,1
05/07/96		34.15	6.07	36.8	1.8	2.5	1.76	1.95	0.17	<0,15	1.36	1.26
06/08/96	18.7	31.39	0.55	0.4	0.4	3.25	0.88	0.12	0.17	<0,15	<0,05	0.9
11/09/96	17.3	33.81	2.38	1.6	0.8	1.6	1.16	3.96	0.45	1.32	0.4	3.91
15/10/96	14.9	34.29	8.5	2.5	1.3	2.14	1.69	1.4	0.29	8.41	0.4	1.17
13/11/96	12.1	34.29	9.8	13.1	1.6	0.92	0.88	1.99	0.38	10.9	0.75	8.52
12/12/96	8.9	31.29	3.2	8.3	0.6	0.86	0.63	1.9	0.52	14.6	0.8	5.51

1996, Radiale de Boulogne, Station 1

DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phaeo	NH4	NO2	NO3	PO4	SIOH
09/01/96	8	34.36	1.4	0.9	0.7	0.64	0.42	0.74	0.29	13	0.59	4.27
15/02/96	5.9	31.22	1.9	4.4	1.1	2.64	1.09	1.71	0.48	15.8	1.9	2.52
05/03/96	6.6	32.12	2.6	6.2	1.7	2.07	1.24	1.13	0.48	11.7	0.49	<0,1
15/05/96	9.8	34.82	0.15	1.7	0.5	0.85	0.38	0.7	0.13	<0,15	0.12	<0,1
03/06/96	12	34.82	1.6	1.4	0.8	2.79	0.09	1.96	0.12	0.23	<0,05	<0,1
19/06/96	14	31.6	3.7	2.9	0.8	2.78	0.88	<0,15	<0,15	<0,15	<0,05	<0,1
05/07/96		31.39	2.01	1.33	0.53	1.83	0.57	1.17	0.12	<0,15	1.01	0.59
06/08/96	18.2	31.55	0.11	0.8	0.8	2.09	0.38	<0,15	0.13	<0,15	<0,05	1.17
11/09/96	17.3	34.63	3.26	3	1.4	1.65	1.81	4.05	0.36	1.73	0.47	3.91
15/10/96	15	32.39	1.27	2	1.6	2.15	1.48	0.95	0.19	0.26	0.34	1.3
13/11/96	13	31.46	6.4	9	1.3	0.91	1.19	1.4	0.36	8.41	0.72	5.07
12/12/96	8.8	34.43	5.6	8.3	0.6	0.66	1.01	1.9	0.52	14.3	0.8	5.51

1996, Radiale de Boulogne, Station 2

DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phaeo	NH4	NO2	NO3	PO4	SIOH
09/01/96	9.6	34.6	1	1	0.9	0.48	0.39	1.36	0.23	10.1	0.57	2.38
15/02/96	6	34.56	1	3.4	1.3	2.06	1.83	1.31	0.47	17.4	0.5	2.79
05/03/96	6.4	31.32	2	3.5	0.8	0.59	0.74	1.58	0.36	10.1	0.55	<0,1
15/05/96	9.6	34.82	1.45	95.2	0.7	0.32	0.13	0.78	0.15	<0,15	0.17	<0,1
03/06/96	11.7	35.16	0.6	0.2	0.2	1.56	0.33	1.96	0.5	0.92	<0,05	<0,1
19/06/96	14	35.15	0.5	0.8	0.6	1.13	0.45	<0,15	<0,05	<0,15	<0,15	<0,1
05/07/96		31.39	0.12	0.06	0	1.94	0.6	1.53	0.21	0.15	0.06	0.99
06/08/96	17.6	31.39	0.34	0.2	0.2	2.92	0.5	<0,15	0.3	<0,15	<0,05	0.42
11/09/96	17	34.58	0.13	0.8	0.8	1.13	0.87	0.56	0.4	<0,15	<0,05	1.66
15/10/96	15.5	34.91	0.45	1	0	1.48	0.71	1.57	0.29	2.76	0.44	4.84
13/11/96	13.2	34.74	3.2	3.8	1.1	1.12	1.16	1.49	0.35	9.04	0.64	4.58
12/12/96	10.6	31.84	2.5	3.3	0.5	0.36	0.54	0.6	1.27	7.37	0.53	1.83

1996, Radiale de Boulogne, Station 3

DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phéo	NH4	NO2	NO3	PO4	SIOH
19/01/96	5	31	15	72,9	13,45	1,6	6,81	1,25	0,23	23,99	0,47	3,25
11/03/96	6	30	12	41,1	18,57	5,61	8,97	1,26	0,17	17,76	0,45	3,59
21/03/96	7	32	10	63,3	18,31	4,27	8,62	1,48	0,28	28,78	0,5	3,22
11/04/96	9	31,8	6	47,5	28,23	35,24	15,03	1,04	0,02	20	limite	2,76
19/04/96	10	30	18	130	19,49	51,26	8,17	0,93	0,06	0,92	limite	7,18
14/05/96	12	30	3,7	91,9	18,45	21,79	3,18	1,04	0,17	9,31	limite	2,76
29/05/96	15	24	14	42,2	38,45	89,28	17,02	1,76	1,83	22,15	0,15	3,59
06/06/96	16	30	5,5	31	27,64	11,32	1,99	2,75	0,02	2,34	0,3	0,83
12/07/96	17	27	50	161	15,34	12,18	2,33	limite	0,36	1,37	limite	1,42
19/08/96	21	27	5,5	53,3	25,5	6,94	13,17	limite	limite	0,73	imite	0,81
10/10/96		29	19	58,7	19,08			5,95	0,22	4,7	0,33	3,25
12/12/96	7	30	44	73,2	18,21	7,45	limite	3,41	0,36	13,99	1,13	16,66

1996, Radiale Baie de Somme, Station BIF

DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phéo	NH4	NO2	NO3	PO4	SIOH
19/01/96	6	31,5	17	71,1	12,8	3,74	2,43	1,83	0,38	19,82	0,27	3,81
11/03/96	6	31	14	45,5	18,43	4,27	14,23	1,81	0,34	17,38	0,25	3,04
21/03/96	6	32	16	68,3	16,6	8,01	18,16	1,26	0,4	21,07	0,3	5,89
11/04/96	8,5	31	5,5	50,5	27,54	36,85	18,48	0,93	0,06	13,78	limite	2,3
19/04/96	10	30	24	50,4	24,74	68,09	35,18	0,71	0,06	0,26	limite	4,79
14/05/96	12	32	4,5	30,7	25,11	10,89	0	1,37	0,02	2,73	limite	1,38
29/05/96	13,5	29	6	46,2	24,03	10,47	2,99	3,3	0,43	8,14	0,2	3,22
06/06/96	15,9	30	5	26,9	31,2	20,93	5,98	2,8	0,04	3,41	0,6	1,29
12/07/96	17	27,5	9,5	77,4	17,39	3,42	8,39	2,42	0,24	3,52	0,28	5,78
19/08/96	21	27	11	77,3	22,15	7,37	13,64	0,12	0,02	0,88	0,23	1,6
10/10/96		28	15	46,6	20,85	0,24	0,32	3,1	0,24	4,28	0,33	3,69
12/12/96	7	30,5	15	62,3	18,19	16,26	limite	3,47	0,26	22,02	0,94	14,74

1996, Radiale Baie de Somme, Station MIMER

DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phéo	NH4	NO2	NO3	PO4	SIOH
19/01/96	6,5	32,1	12	77,2	15,11	3,2	6,7	1,81	0,44	20,49	0,27	4,87
11/03/96	6,5	31	5,5	34	23,7	1,07	4,54	2,42	0,49	24,45	0,25	7,09
21/03/96	6	32	16	75,6	16,26	21,09	11,8	0,71	0,36	15,29	0,3	2,21
11/04/96	9	32	3,5	50,1	25,73	18,16	12,87	0,82	0,21	1,7	1,3	5,06
19/04/96	10	30,5	4	45,7	25,8	28,62	0,38	0,82	0,13	2,96	limite	7
14/05/96	12	31	2,2	1,4		7,9	1,22	1,37	0,17	12,99	limite	2,39
29/05/96	13,5	30	5,6	32,4	25,23	0,96	0,91	4,23	0,28	6,54	0,4	5,43
06/06/96	20	29	3,9	12,7	51,42	18,37	2,26	2,86	0,3	2,77	0,25	1,57
12/07/96	17	28	4,25	79,2	20,05	4,7	6,96	0,5	0,1	1,48	0,14	2,73
19/08/96	21	26,5	3	64,8	23,03	5,13	7,13	0,25	0,06	0,69	0,14	0,99
10/10/96		27	7,5	42,5	23,25	9,61	2,87	2,67	0,24	9,52	0,23	7,52
12/12/96	7,5	30,5	25	56	22,36	7,29	7,68	2,54	0,24	20,01	0,99	14,31

1996, Radiale Baie de Somme, Station ATSO

DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phéo	NH4	NO2	NO3	PO4	SIOH
19/01/96	7	32,1	6,8	63,6	11,69	1,87	7,29	2,23	0,37	24,93	0,15	4,68
11/03/96	7	31,5	4,5	31,7	20,2	1,87	4,3	2,64	0,43	26,52	0,1	15,01
21/03/96	6	32,5	6,5	66,3	18	5,61	20,19	0,99	0,3	21,85	0,2	3,87
11/04/96	9,5	32	3,5	56,9	23,32	12,02	16,58	1,59	0,23	3,49	0,1	5,34
19/04/96	10	30,5	3,5	48,3	25,4	21,57	1,75	0,88	0,06	0,47	0,05	1,75
14/05/96	12	32	2	13,8	36,76	7,05	0	1,37	0,11	4,03	0,1	2,76
29/05/96	13	30,5	5,7	55,9	24,36	2,14	2,5	3,84	0,19	4,92	0,2	4,51
06/06/96	19	29,5	3,5	42	32,92	6,09	0,42	2,75	0,23	0,92	0,2	1,29
12/07/96	17	29	2	80,1	21,17	3,2	6,07	limite	0,12	1,26	0,14	3,86
19/08/96	21	26,5	3,2	31,4	27,8	3,74	4,34	limite	0,02	1,21	0,18	0,81
10/10/96		29	5	44,2	21,98	2,46	2,18	1,49	0,02	3,19	0,23	1,42
12/12/96	7	31	20	53,8	21,66	1,76	1,6	2,67	0,22	14,26	0,99	12,74

1996, Radiale Baie de Somme, Station MER 1

DATE	Temp	Sali	Turb	MES	MESOP	Chloro a	Phéo	NH4	NO2	NO3	PO4	SIOH
19/01/96	7	32,1	6	63,1	10,82	4,01	6,84	2,68	0,37	22,1	0,12	4,03
11/03/96	8	31,5	3	31,6	22,23	1,34	2,78	3,68	0,45	22,92	0,15	6,81
21/03/96	6	32,5	7,5	83,2	15,72	8,81	16,42	1,21	0,28	19,96	0,1	3,68
11/04/96	8,5	32	3	48,5	29,62	25,37	33,32	1,43	0,15	1,41	0,05	1,38
19/04/96	10	30,5	3,2	69,4	24,74	28,41	2,54	0,77	limite	0,28	0,05	1,1
14/05/96	12	31	2,2	34,4	37,13	4,49	0,9	3,57	0,19	6,73	0,05	1,93
29/05/96	12,5	31	2	39,9	25,65	1,71	1,28	0,93	0,06	3,98	0,05	4,6
06/06/96	17	30	2,5	5,8	59,17	9,18	0,53	2,14	0,21	2,56	0,35	2,03
12/07/96	17	29	2	68,8	19,85	4,49	2,84	0,25	0,08	1,58	limite	2,47
19/08/96	21	26	1	68,1	25,51	3,63	2,8	limite	0,04	0,81	limite	0,29
10/10/96		29	4	41,8	24,25	0,96	5,02	1,12	0,06	1,62	0,23	1,07
12/12/96	7	31,2	7,2	45	17,95	1,12	1,46	2,29	0,4	21,98	1,13	13,96

1996, Radiale Baie de Somme, Station MER 2

Analyses phytoplanctoniques Résultats bruts

SRN Somme BIF	19/01/96	11/03/96	21/03/96	11/04/96	19/04/96	14/05/96	29/05/96	06/06/96	10/10/96	12/12/96
MELOSIRA	30 000	17 500		15 000	21 250	13 750	41 250	4 300	13 000	33 750
COSCINODISCUS	100	300		100	2 500	100	100	100	1 250	
THALASSIOSIRA retula	1 000	900	21 250				700	l		1
Autres THALASSIOSIRA	400	800		300				1		
SKELETONEMA costatum	30 000	ľ	ľ	i	1	ì	i	l	ł	
BIDDULFIA	21 250	21 650	35 100	5 100	B 750	16 250	8 850	13 850	12 500	1 300
EUCAMPIA zaodiacus	1		B0 0	8 750	2 200	5 000	7 500	13 750		l i
DITYLUM		32 500	12 500	8 750	1 250		200	1		200
CERATAULINA	ļ	500	5 000	6 250	10 000			1		
CHAETOCEROS curvicetus	ł	15 000	l	1 300	ł		ļ]	ŀ]
Autres CHAETOCEROS	12 500		2 200	1 500	18 100		600	23 750	İ	
GUINARDIA fincida					1 250	1 250	2 500	i 700	Ì	
LAUDERIA	İ	4 000	7 500	118 750	B2 500	7 500	73 750	9 700		[
POROSIRA	ł	l '	1 300	3 750						
LEPTOCYLINDRUS)	J .	j	10 000	5 000	11 250	3 750	1 600	j]
RHIZOSOLENIA delicatula	ļ	3 750	22 500	611 250	518 750	106 250	37 500	i	2 500	1
RHIZOSOLENIA shrubsolel	ļ			6 250	13 750	22 500	1 250			
RHIZOSOLENIA setiger	3 750	3 750			3 750	į .	6 250		100	
RHIZOSOLENIA stolterfortii	ļ		1			Į.		l		1 250
FRAGILARINEAE	22 500	37 500	52 500	23 750	17 500		1 300	1	15 000	700
RAPHONEIS amphiceres		3 750	1 250	1 250	12 500	1	2 500	100	1 250	1 250
asterionella	51 250	291 250	170 000	285 000	42 500	111 250	223 750	2 500	1 520 400	
THALASSIONEMA	800	108 750	125 000	15 000		ŀ	700	l		2 500
NAVICULA	2 500			2 500	İ					1 250
PLEUROSIGMA	100		1	1 250	600	300	100	1		
DIPLONEIS	ľ	1		ł	i	Ì	1	ł	ł	100
NITSCHIA longissima	1 250	17 500	5 000	3 750	1 250	6 250	3 750	2 500	1 250	1 250
NITSCHIA seriata	5 000	10 000	5 000	6 250		1	188 750	447 500	ŀ	l i
Autres NITSCHIA		30 0	6 250	46 250	513 750	1 128 750	81 250	}		1 250
Autres DIATOMEES					ļ	l		800	11 250	400
PROROCENTRUM micans				1	l	l	ļ	į	300	1 1
GYRODINIUM			100	2 200	3 300	200	1 000	1 000	200 '	
Autres DINOPHYCEAE			100	100	100	100	1	500]]
PHAEOCYSTIS				16 579 200	14 318 400		20 347 200		1	
DICTYOCHA speculum			100							
AUTRES celiules]	ļ	J	17 500	20 000	J	38 750]

SRN Semme MIMER	100104	410200	21/03/96	hanana	hamana	hanene	hansas	henene		havene
MELOSIRA	30 000	27 500	48 750	31 250	7 600	7 100	29/05/96 6 250		10/10/96 7 500	2 000
COSCINODISCUS	F	2 500	1 250	51 250	200	7 100	200 200	11 250	100	500
THALASSIOSIRA retula	2 500		5 000		ľ]	۳	300	100	700
Autres THALASSIOSIRA	400	16 250	r					500		/ ⁰⁰
SKELETONEMA cortatums	11 250	10 230						1	1	
BIDDULFIA		9 750	46 750	4 250	10 100	100	[L	١	
EUCAMPIA zaediacus	۳.50	750	P60 /30	B 750	26 250	100	1 250	B 850	2 500	2 600
	100	22 500			L		4 600	26 250		l
DITYLUM	100	22300	15 000	B 750	2 500 18 750	100	l		1	100
CERATAULINA	1		1 250		18 750		1 250	1	Í	
CHAETOCEROS curvicetus	į.			1 600				L		
CHAETOCEROS sociale	İ			8 000	L	L.,	L	7 500		
Awtres CHAETOCEROS	}	11 250	11 250	3 750	7 500	200	9 050	113 900	10 000	
GUINARDIA flacida	l		l	L	L		2 500	12 500		
LAUDERIA	1	2 500		B1 250	388 750	2 500	58 750	176 250		
POROSIRA	l			20 000						
LEPTOCYLINDRUS	j		400	6 250	f	6 250	5 000	6 250	17 500	
RHIZOSOLENIA delicatula		1 250	5 000	781 250	B71 250	137 500		5 000	400	
RHIZOSOLENIA shrub solel	l			3 750	22 500	10 000	1 250	ļ		
RHIZOSOLENIA setiger	400	2 500	2 500	3 750	6 250		6 250	1 250		2 500
RHIZOSOLENIA stolterfortii	ł	ł	ŀ	l	ļ	1 250		11 250]	
Autres RHIZOSOLENIA	ŀ		l		2 500	į.	1			
FRAGILARINEAE	1 700		43 750	13 750		800	1	ļ	1 700	
RAPHONEIS amphiceres		1	8 750		2 500	100	1 250	1 250	1 250	
ASTERIONELLA			332 500	R 000	108 750	ł	33 750	147 500	550 000	26 250
THALASSIONEMA	700	47 500	151 250	1 200	20 000			i	5 000	
PLEUROSIGMA	t	100	100	1 250	2 500	200	300			
NITSCHIA longissima		15 000	13 750	2 500	5 000	6 250	1 250	2 500		1 250
NITSCHIA seriata	3 750	18 750	1 250	5000	l	l	280 000	1 081 250	ł	
Austres NITSCHIA		300	7 500	140 000	556 250	1 670 000	3 750	6 250		
Autres DIATOMEES	200		1		l		ŀ		7 500	400
PROROCENTRUM micans	l		l				1		300	
GYRODINIUM		100	200	3 200	3 700	l	1 700	1 400		
Autres DINOPHYCEAE			100	100	100	200	400	100		100
PHAEOCYSTIS			i '	18 337 600	38 433 600	1	81 000	54 000	ŀ	
NOCTILUCA miliaris	i I		1	İ	l		1	1	100	
DICTYOCHA speculum			ĺ	ľ	ĺ	i	i	i	1 250	l
AUTRES cellules						l	l	1 600	6 250	

At so	19/01/96	11/03/96	21/03/96	11/04/96	19/04/96	14/05/96	29/05/96	06/06/96	10/10/96	12/12/96
MELOSIRA		2 300	7 400	2 400	700	2 400		16 250	27 500	B1 250
COSCINODISCUS	100	100	1 250							300
THALASSIOSIRA retula	47 500	2 500	2 000					300	800	ŀ
Autres THALASSIOSIRA	10 000	2 500	l		ļ]		l	2 500	j
SKELETONEMA costatum	1 000]								1
BIDDULFIA	6 250	400	10 200		400	1 100	100		300	400
EUCAMPIA zoodiacus	ļ	Į.	l	13 750	6 250	5 000		13 750		
DITYLUM	100	11 250	11 250	100	300					
CERATAULINA	1	400	2 500	22 500	6 250	'	800	2 500		
Autres CHAETOCEROS	1	S 000	B 750	25 000	6 000		1	27 500	15 000	500
GUINARDIA fincida	1	ſ	ſ	[1	200	500	500	[Ī
LAUDERIA	1	300	S 000	56 250	75 000	1 700	8 90 0	BO 000		
POROSIRA			1 600	2 100				1		ł
LEPTOCYLINDRUS			2 500	1	5 000	73 750	400	5 000	600	
RHIZOSOLENIA delicatula	1 250		16 250	543 700	658 700	91 250	5 000	1	2 500	
RHIZOSOLENIA shrubsolel	ł	İ	ł	8 750	17 500	B 750		ŀ	ŀ	
RHIZOSOLENIA setiger	1	5 000	3 750	1 250	6 250	100		Ì		1 250
RHIZOSOLENIA stelterfortii	l	l	ŀ			5 000		1 200		
Autres RHIZOSOLENIA	1	1	1 250							1
FRAGILARINEAE	70 000	20 000	73 750	ĺ	ļ	1 500			2 100	i
RAPHONEIS amphiceres	2 500	3 750	5 000	l	16 250				2 500	2 500
ASTERIONELLA	7 500	90 000	312 900	1 700	2 000	1 800		92 500	1 210 000	
THALASSIONEMA	16 250	37 500	125 000	80 0	5 000			1		5 000
NAVICULA	100	l			1 250					200
PLEUROSICMA	1 250	1	250	300	200	200				
NITSCHIA longissima			3 750	100	1 250	1 250		3 750		1 250
NITSCHIA seriata			5 000		3 750	800	75 000	832 500		1
Autres NITSCHIA	5 000	27 250	2 500	136 200	108 750	686 250	12 500	7 500	3 750	1
Autres DIATOMEES	1		}	1	}		}		1 700	2 500
PROROCENTRUM micans			1					i	600	100
GYRODINIUM			800	2 700	2 500	1 600	2 500			
GYMNODINIUM			l					4 300		
Autres DINOPHYCEAE		1	l	200				1 600	l	1
PHAEOCYSTIS		1	l	F	5 185 000				1	
AUTRES cellules] .		100					12 700	45 000	

SRN Somme mer 1	19/01/96	11/03/96	21/03/96	11/04/96	19/04/96	14/05/96	29/05/96	06/06/96	10/10/96	12/12/96
MELOSIRA	18 750		28 750		4 000	2 400		1 300	5 000	3 800
COSCINODISCUS	3 950	1 650		100	100	100		i		1 250
THALASSIOSIRA retula	700	1	3 700		8 750	İ		700		
Autres THALASSIOSIRA	1	1 700			ļ]	l]	1	j
SKELETONEMA costatum	10 000	7 500	1		ļ	Į	ļ	1	j	1
BIDDULFIA	14 550	l	1 950	3 750	400			2 500	400	1 850
EUCAMPIA zoodiacus		1	İ	5 000	6 800		400	16 700	28 750	
DITYLUM	l	11 250	11 250	1 250	1	l	l	2 500		100
CERATAULINA	l	300		10 000	2 000	1 250		300		
CHAETOCEROS curvicetus	l				İ	l	1	İ	2 500	l
CHAETOCEROS sectale	1	j]]	1	5 000	1			j
Autres CHAETOCEROS	i ,	20 000	11 250	22 500	2 100	i	1	24 450	1	1
GUINARDIA flacida				ł	1 250	100	200	3 750	ļ	ļ
LAUDERIA		3 750	1 600	65 000	31 250	l	4 300	72 500	İ	İ
LEPTOCYLINDRUS		l	1 500		800	13 750		6 250]	21 250
RHIZOSOLENIA delicatula	1	1 250	3 750	611 250	600 000	83 750	ŀ	5 000	3 750	
RHIZOSOLENIA shrubsolel			<u> </u>	12 500	18 750	50 000	1 250		100	ļ
RHIZOSOLENIA setiger	7 500	2 500	2 500	2 500	100	ĺ	ĺ	100	1	
RHIZOSOLENIA stelterfortii	1	}]		200	12 500		2 500	10 000	
Autres RHIZOSOLENIA					7 500				[[
FRAGILARINEAE		43 750	22 500		Į.				1	1
RAPHONEIS amphiceres	7 500	2 500	11 250		6 250	l			17 500	6 250
ASTERIONELLA	25 400	138 750	91 650	8 750	<u> </u>		l	42 500	600	5 400
THALASSIONEMA	8 750	40 000	78 750	8 750	1	l	l	Ì	•	1 100
NAVICULA		1 250	İ		1 250		1		İ	1 250
PLEUROSIGMA	1 250	100	1	1 250	2 500	1				
NITSCHIA delicatula	800	l	ł .		Ì	l	ļ	1	l	1
NITSCHIA longissima	2 500	5 000	8 750	3 750			1	6 250		1 250
NITSCHIA seriata	300	27 500	2 500		l	i	37 500	1 011 250	8 750	
Autres NITSCHIA		2 400	1 250	207 500	317 500	102 500	5 000	16 250	ł	1
Autres DIATOMEES		· ·			ļ			i	11 250	i
PROROCENTRUM micans					İ			1	200	ļ
GYRODINIUM			300	3 400	3 100	300	3 500	200	1	
GYMNODINIUM		}	1		1			1 500		1
Autres DINOPHYCEAE	·	100	200			200	500	6 900	1	i
PHAEOCYSTIS		1	252 500	14 569 600	3 173 000	l	1	1	1	l
NOCTILUCA miliaris					100		,	l		
AUTRES celiules					1		5 000	8 750		5 000

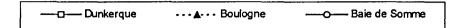
SRN Somme mer 2	19/01/96	11/03/96	21/03/96	11/04/96	19/04/96	14/05/96	29/05/96	06/06/96	10/10/96	12/12/96
MELOSIRA	6 250	2 000	12 500	3 400			3 400	4 500	1 100	5 950
COSCINODISCUS	500	1 250	3 750	100	1 250		ľ	ł	100	1 250
THALASSIOSIRA retula	800	3 200	1 600			l				
Autres THALASSIOSIRA	20 000	35 000	32 500			1		1	ł	
SKELETONEMA costatum	102 500					1			1 600	
BIDDULFIA	10 200	1 850	7 500	600	400	1	ł	ł	1 800	200
EUCAMPIA seediacus			5 000	30 000	2 400	1 250		35 000		
DITYLUM	200	22 500	16 250	1 250				l	ŀ	100
CERATAULINA		500		5 000	12 500	1	1		İ	
CHAETOCEROS sociale		l I	1	13 750	ł	}	ł	ł	ł	
Autres CHAETOCEROS	13 750	3 750	11 250	27 450	2 100	400		41 650	700	
GUINARDIA flacida				100	100	700	1 250	500		
LAUDERIA		2 500	2 500	211 250	37 500	5 000	6 250	102 500		
POROSIRA		ł	1	42 500	}	28 750	ł	ł		
LEPTOCYLINDRUS		1		3 750	500	15 000	600	8 750	6 250	
RHIZOSOLENIA delicatula		2 500	16 250	1 133 000	518 750	121 250	7 500	1	ŀ	
RHIZOSOLENIA shrubsolel			ŀ	12 500	6 250	16 250	2 500	i		
RHIZOSOLENIA setiger	600	6 250	1 250	2 500	2 500	100	ł	1 250	1	2 500
RHIZOSOLENIA stolterfortii				1		2 500	200	200		
Autres RHIZOSOLENIA			ŀ	1	200					
FRAGILARINEAE	2 200	42 500	8 000	10 000		l	·	İ	l	
RAPHONEIS amphiceres	1 250	8 750	3 750	3 750	8 750	1 250	1	1 250	22 500	7 500
ASTERIONELLA	160 000	244 300	63 750	48 750	ļ	17 500	l	11 250		4 600
THALASSIONEMA	2 300	18 750	42 500	11 250				ł	Į.	
NAVICULA		1 250		l			1	1 250	1 250	1 250
PLEUROSIGMA	1 250	100		l	500		ł	1	ł	100
NITSCHIA longissima	100	8 750	1 250	100	1 250	6 250		2 500		500
NITSCHIA seriata	800	8 750		11 250	8 750		41 250	1 180 000		
Autres NITSCHIA			6 250	90 000	332 450	448 750	6 250		1	
Autres DIATOMEES		}		}		i	l	ł	26 250	
PROROCENTRUM micans									600	
GYRODINIUM		100	800	3 200	2 700	400	1 800	500	200	100
Autres DINOPHYCEAE				200	1	200	300	12 100	100	
PHAEOCYSTI S				8 289 000	551 000		ł	27 000	Ì	
AUTRES cellules				t				15 000	1	

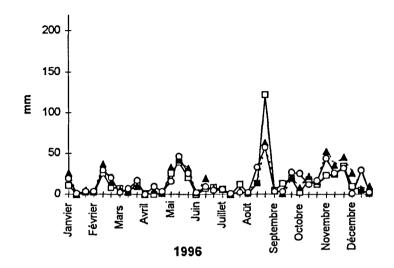
Pare 10 m	09/01/96	15/02/96	05/03/96	15/05/96	03/06/96	19/06/96	05/07/96	06/08/96	11/09/96	15/10/96	13/11/96	12/12/96
MELOSIRA	7 600	17 850	22 050	19 950		2 100	10 170	1 700	4 500	900	1 500	4 100
COSCINODISCUS	100	l l	1 050	İ		i	İ					
THALASSIOSIRA retula		224 700	21 000						100	1 700	 	
Autres THALASSIOSIRA	400	29 400	6 300		i	ļ	ŀ	l		400	200	Į l
SKELETONEMA contatums	3 900	55 650	6 300		l	l	1	1	600			600
BIDDULFIA	400	l	Ì				200		800		400	100
EUCAMPIA zoodiacus		İ			1					3 300		
DITYLUM	·	10 500	51 450	ļ		}	ļ		100	·		
CERATAULINA		ł	1 050	ì	l	1)	1 050		•]
CHAETOCEROS curvicetus		l					1			400		
Autres CHAETOCEROS	4 400	3 150	30 450				200	ļ	1			
GUINARDIA fiacida				1 050	i	2 800	500	1		ļ]	
LAUDERIA		24 150]	ļ	Į	İ	1	1	Į .	2 100	Ì	!
POROSIRA	200	1	2 100	2 100		ŀ						
LEPTOCYLINDRUS						ļ		29 400				
RHIZOSOLENIA delicatula		1 050	5 250	102 900	30 450	478 800	91 570	15 750	5 400	2 300		100
RHIZOSOLENIA shrubselel		ļ	ļ	82 950	101 850	5 600	925	164 800	200]]	
RHIZOSOLENIA setiger	1 000	8 400	1 050	2 100	3 150		3 700				1	100
RHIZOSOLENIA stolterfortii		İ		21 000	7 350	2 100	12 020	54 600	300		600	2 100
RAPHONEIS amphiceros	500	6 300	6 300	1		i	10 170	1 050	100	500	700	200
ASTERIONELLA		33 600	11 550	5 250]		3 000		1 300		400	ļ
THALASSIONEMA	1 400	16 800	71 400							[500	400
NAVICULA	200	100	100	1 050		ļ	3 700	2 100	200	200	100	100
PLEUROSIGMA	100	100					200	100		i		
DIPLONEIS				l						100		
NITSCHIA delicatula		11 550	11 550	102 900	130 200	Ĭ	•	2 100	500	Ì	İ	Ì
NITSCHIA longissima	100				l	1 400		1 050		100		
NITSCHIA seriata		15 750	8 400		7 350	4 200			700			,
Autres NITSCHIA	800	l	2 000	1		İ	1	l		100		
Autres DIATOMEES			•	3 150	ĺ	ĺ	ĺ	ĺ		1 200	ľ	100
PROROCENTRUM micans			l		ł			600	100	600		
GYRODINIUM				5 250	1 050	3 500	1 875	3 650	İ	100		
GYMNODINIUM						700	300	1 200	100	100	İ	100
Autres DINOPHYCEAE	100		100	3 150	4 200	2 100	i	1 050	200	100	ľ	
PHAEOCYSTIS				1 528 000		1]
NOCTILUCA miliaris								400			l	
DICTYOCHA speculum					l			1		500		

Point 2 SRN Boulogne	09/01/96	15/02/96	05/03/96	15/05/96	03/06/96	19/06/96	05/07/96	06/08/96	11/09/96	15/10/96	13/11/96	12/12/96
MELOSIRA	2 600	53 550	B 400	400			41 800		2 900	2 800	2 700	1 800
COSCINODISCUS						200	i	1	100			
THALASSIOSIRA retula		36 750	49 350			1	ļ			900		
Autres THALASSIOSIRA	100	19 950	4 200		3 150		100			5 70 0	400	100
SKELETONEMA costatum	1 500	61 950	l								1 600	
BIDDULFIA			ł			100]	i '	1 000	300		
EUCAMPIA zoodiacus						1 600				3 400	100	
DITYLUM	100	10 500	13 650			2 100	1					
CERATAULINA		100	1 050	200	2 100		i			100		
CHAETOCEROS curvicetus			16 800		1		ļ			900		
CHAETOCEROS sociale							ł			400		
Autres CHAETOCEROS	1 000	12 600	23 100		l '		400	400		500	300	
GUINARDIA flacida					l	11 550	600	7 350				
LAUDERIA		1 100	47 250						l '	2 000		
POROSIRA			3 150				ŀ					
LEPTOCYLINDRUS			Ĭ	1		1		34 650	3 500			
RHIZOSOLENIA delicatula	B00		27 300	2 500		1 172 000	1 358 000	J .	1 000	2 600	100	400
RHIZOSOLENIA shrub solei				2 700	71 400	7 350	ĺ	76 650	200			
RHIZOSOLENIA setiger	100	5 250	2 100				6 270			l '	100	
RHIZOSOLENIA stokerfortti	100				6 300	15 750	66 880	508 200		l .		-
Autres RHIZOSOLENIA		ŀ			27 300					l		
FRAGILARINEAE	1		31 500		1		ŀ					
RAPHONEIS amphiceros	300	1 050	1			100	1		1	100	300	400
asterionella			ł	ŀ		l	4 180	1	100	}		
THALASSIONEMA	200	15 750	17 850		l					600	700	400
NAVICULA	100	100	1 050	100		2 100		200	500	200	300	100
PLEUROSIGMA		ł		ŀ	1	200	600					
DIPLONEIS			Ì	Ì				Ì				100
NITSCHIA delicatula			13 650	l	Į			1 000	ļ			
NITSCHIA longissima		1 050	1 050	ľ	1	2 100	4 180		i	300	i	
NITSCHIA seriata		23 100	45 150		47 250	1		1	l			
Autres NITSCHIA			1 050	100	50 400	1 050	1			100		
Autres DIATOMEES										2 100	200	200
PROROCENTRUM micans			I					300		100		
GYRODINIUM	200				5 250	2 100	6 270	1 000	200	300		
GYMNODINIUM					2 100	4 200	8 360	1 000	100	İ		
Autres DINOPHYCEAE	10 0		3 150		3 150	3 150	2 090	300	l		<u> </u>	
PHAEOCYSTIS			l	ł	7 500	ł	l	}		l		
NOCTILUCA miliaris							l	100				
DICTYOCHA speculum			l			1	1	1		1 500		
AUTRES cellules				1		100			ļ			

Point 3 SRN Boulogne	09/01/96	15/02/96	05/03/96	15/05/96	03/06/96	19/06/96	05/07/96	06/08/96	15/10/96	13/11/96	12/12/96
MELOSIRA	500	17 850	400				5 250	1	3 000	3 200	i 400
COSCINODISCUS	100		l	l	ł	ł	ì	ł	ł	ł	
THALASSIOSIRA retula	1 000	5 2 500	600					Ì		l	
Autres THALASSIOSIRA		18 900	300		l	1				900	300
SKELETONEMA cortatum	1	57 750	400	1	1	ł	i	ł		400	} i
BIDDULFIA			l				100		}		
EUCAMPIA zoodiacus					ł	1			1 200		
DITYLUM	300	5 250	100	}	1	l	1		l		
CERATAULINA		1 050	1	200					600		
CHAETOCEROS curvicetus	900				}				6 600	1 200	
Autres CHAETOCEROS	600	11 550	l))	100]]	
GUINARDIA flacida							2 100	2 100			
LAUDERIA		B0 0	l	1	l			1	ļ		
LEPTOCYLINDRUS			ļ		}		273 000	J	j	ļ]
RHIZOSOLENIA delicatula		3 150	500	2 600	12 600	100	21 000	4 200	9 800	1	
RHIZOSOLENIA shrubsolel			1	300	104 300		1	32 550			
RHIZOSOLENIA setiger	200	7 350	300	ļ	ļ	300]	j	•	200	100
RHIZOSOLENIA stolterfortii					25 200	2 300	137 500	749 700	3 800	1	
Autres RHIZOSOLENIA						44 000				1 000	
RAPHONEIS amphiceres		100	1]]]			l	300	
ASTERIONELLA		3 150									
THALASSIONEMA		25 200	400						4 400	500	
NAVICULA	100	3 150	100		700	1	1 050	1 050	1 400	100	100
PLEUROSIGMA					[ĺ	100	100	ĺ	ĺ	
DIPLONEIS		1 050						:			
NITSCHIA delicatula		100			1	200				l	
NITSCHIA longissima		2 100	100		700	100	3 150	İ	600	ĺ	
NITSCHIA seriata		17 850			7 000	İ			400		
Autres NITSCHIA				l		100			1 000		100
Autres DIATOMEES	300		1	ĺ		ĺ		ĺ	2 600	100	1
PROROCENTRUM micans			Ì			l	1	100		100	
GYRODINIUM	100					200	2 100	3 150	200		
GYMNODINIUM			1		2 800	i	500	1 050			
Autres DINOPHYCEAE			1	100	2 800	300	i	8 400	600	100	
NOCTILUCA miliaris					·	100					
DICTYOCHA speculum			1		1	Ì	ł	ł	400	1	}
AUTRES celiules				· ·	1 400		l	1	1	1	

Point 1 SRN Dunkerque	11/01/96	15/02/96	14/03/96	09/04/96	29/04/96	13/05/96	28/05/96	04/06/96	19/06/96	20/08/96	26/09/96	25/11/96	09/12/90
MELOSIRA	1 900	17 090	700	21 000		1 400	Î	4 620	7 350	200		3 300	4 400
COSCINODISCUS	1				l			100				100	l
THALASSIOSIRA retula		54 510	2 900		l		400					1 600	1 200
Autres THALASSIOSIRA	100	24 480	1 000	2 100				200		100	18 900	400	400
SKELETONEMA cortatum	l	11 080	4 800	47 250	l	ł	l	ł	ł	1 200	ł	500	2 500
BIDDULFIA	400	500	400		İ	200	ļ	200			16 800	600	l
EUCAMPIA zoodiacus				18 900	500		400				15 750	1	Ì
DITYLUM	600	3 234	1 000	10 500		400			1	ļ		100	100
CERATAULINA	100	ł	ł	ł	}	ļ	ļ	1	ļ		Į.	ļ	1
CHAETOCEROS curvicetus	1 700	l	1 000	11 550	1		İ			3 500	48 300	400	
CHAETOCEROS seciale	10 000			16 000		1							
Autres CHAETOCEROS	4 100	2 986	5 500	700		200		1	92 400	2 100	54 600		300
GUINARDIA flacida	l	200	ļ	1 050		B00	400	1	S 250	4 300)	1]
LAUDERIA	воо			21 000			1				l	1	
POROSIRA	l	400	200			l			1				
LEPTOCYLINDRUS		l		İ	ŀ		116 400	1		ļ '	203 700		1
RHIZOSOLENIA delicatula	1 600	J	2 200	357 000	101 600	4 000	6 600	83 310	60 900	3 100	4 200	800	400
RHIZOSOLENIA shrubsolel	l			11 550	24 940	10 200	31 870	46 200	13 650	2 100	ſ	200	ĺ
RHIZOSOLENIA setiger	400	3 234	1 800	5 250		400		1	İ		1 050	100	100
RHIZOSOLENIA stolterfortii	300	l	Ì	31 500	5 544		2 200	9 240	21 000		1 050]	200
FRAGILARINEAE	1	1 000				l	İ		1			1	
FRAGILARINEAE		17 090	1 600		[ĺ	ſ	ĺ	ĺ	ĺ	ĺ	ĺ	
RAPHONEIS amphiceres	100	l	500	1 050	200	200	462	100	1 050		1	200	200
ASTERIONELLA		500	4 000	219 400	300	8 400	4 400	500	ł	2 300	1	1	
THALASSIONEMA	1 400	12 010	4 900	34 650	ĺ	400			2 100		17 850	1 400	1 800
NAVICULA	200	ĺ	200	ĺ	ĺ	ĺ	ĺ	Ĭ	2 100	ľ	5 250	300	200
PLEUROSIGMA	100		1			200	ļ	924	1		l		
DIPLONEIS		1		ł	l		1	İ	l	1			100
NITSCHIA delicatula	l		l		46 200								
NITSCHIA longissima	ĺ	4 620	400	7 350	462	1 400	i	ĺ	1 050	i	6 300	l	100
NITSCHIA seriata			3 600	l					ł				1
Autres NITSCHIA	200	7 392		8 400	ĺ	18 800	1 386			300	2 100	1	
Autres DIATOMEES	900		400	1		İ		ļ			5 250	1	
PROROCENTRUM micans		ľ	ł			ł	l	l		•	1 050	ł	100
GYRODINIUM	l	924	100	1	2 386	200	662	924	1	200			
GYMNODINIUM	l	924	100	l	924	[1 386	1 386	ĺ		1		
Autres DINOPHYCEAE	l	100		200	924	200	662	100		1 300	2 100	200	100
PHAEOCYSTIS	ł	ł	ł	346 500	1 251 000	342 000		1	1	l	1	1	
NOCTILUCA miliaris						500		1	1	300	ļ]
	600				1	[]	i		ĺ	[]		1	
AUTRES cellules	1	1	Ī	l		1	924						


Point 3 SRN Dunkerque	11/01/96	15/02/96	14/03/96	09/04/96	29/04/96	13/05/96	28/05/96	04/06/96	19/06/96	20/08/96	26/09/96	25/11/96	09/12/96
	-		26 250		42 000				2 500			2 000	5 300
COSCINODISCUS	200		ļ]	J		1			3 150			
THALASSIOSIRA retula	400	111 200	24 150	1		ł .		i 1		[]		200	2 000
Autres THALASSIOSIRA	500	12 600	2 100	110 770	ł	ł					2 700	300	
SKELETONEMA costatum		2 000			1	Ì	l					2 500	2 400
BIDDULFIA	100		ł		j						1 600		200
EUCAMPIA zoodiacus					l .	1	1				80 0		
DITYLUM	300	3 400	52 500	2 090	i						İ		
CERATAULINA	100				100	5 250	100		l 700	6 300			
CHAETOCEROS curvicetus	3000			81 510	ļ	600]				1 500		2 600
CHAETOCEROS sociale	400			564 300		ļ					1 000		
Autres CHAETOCEROS	2 700	9 200	147 800	900	1	1	1 700			1 350	3 400	1 200	
GUINARDIA fiscida		i		1	100			300					
LAUDERIA			48 300	48 070	J		1						
POROSIRA		6 800		1		ŀ				[[100	
LEPTOCYLINDRUS						į .	1		1 700	10 500	4 800		
RHIZOSOLENIA delicatula	700		14 700	570 500	105 000	B 400	221 550	102 900	8 400	47 250	700	200	1 000
RHIZOSOLENIA shrubsolel		i .	6 300	6 270	33 600	23 100	26 250	24 150	9 200	35 700	300		
RHIZOSOLENIA setiger	100	5 600	5 250	100		1	2 100			[100
RHIZOSOLENIA stolterfortii		200		200	700	ł	2 100	1 300	15 200	300	1 700		ì
RAPHONEIS amphiceros	200		1 050	160	l						l '	100	500
ASTERIONELLA		4 000	58 800	152 570	8 400	9 450			600		6 900	4 000	
THALASSIONEMA	1 700	18 200	42 000	81 510		1				[400	400	400
NAVICULA	200	200	2 100			l		100	100	100	300	200	200 .
PLEUROSIGMA				!	100	300	l	100	200		l		100
NITSCHIA delicatula	5 900				99 750	108 150	4 200		400		1		
NITSCHIA longissima		2 60 0			100	3 150			ĺ	1 050	1 300	[
NITSCHIA seriata			25 200	230	1 000	26 250	400				500		
Autres NITSCHIA	100	19 000			1	1			· '	5 250	100		
Autres DIATOMEES	4 800		11 550]						200		
GYRODINIUM		600		4 180	200	2 100		800	800	100			100
GYMNODINIUM					1 050	1 050	1	1 050	200	1 050	100		
Autres DINOPHYCEAE		400		4 180		l	l			300	600	100	
PHAEOCYSTIS				311 000	596 000	840 300						•	
NOCTILUCA miliaris	100				l	200			100	100	100	[Ì


Point 4 SRN Dunkerque	11/01/96	15/02/96	14/03/96	09/04/96	29/04/96	13/05/96	28/05/96	04/06/96	19/06/96	20/08/96	26/09/96	25/11/96	09/12/96
MELOSIRA	1 000	3 500	Ī			2 600	2 500		700			26 000	1 900
COSCINODISCUS	[[(İ	İ	100	ĺ	ļ :		ĺ.]	200	i
THALASSIOSIRA retuia	1 300	16 100	1 560	1 100	İ			Ì			l	4 400	
Autres THALASSIOSIRA	1 300	4 400	3 120	1		ļ.	100			•	40 950	800	
SKELETONEMA contatum	500	1 200	2 080	ł	l	1	l			1	ł	9 600	500
BIDDULFIA	200		520		1			100			1 050		100
EUCAMPIA zoodiacus	1						İ				27 300		
DITYLUM	800	1 000	4 680	ł	1	1	l	l		1	ł	1	
CERATAULINA	200				200		200				i		
CHAETOCEROS curvicetus	1 100	i	16 640	23 100			ļ.				14 700		
Autres CHAETOCEROS	1 000	000	15 600	11 500	1 000	}	1	Į į		1	95 550	5 000	400
GUINARDIA flacida			1	29 400	l		200	200	40 0	100			100
LAUDERIA	500	2 200	10 920										
POROSIRA	100	ł	1	ļ	1	l	ì	ļ	i		ļ		
RHIZOSOLENIA delicatula	2 300		1 040	344 400	B 000	11 080	147 000	80 850	800	7 100	9 450	600	
RHIZOSOLENIA shrubsolel	200		ļ	21 000	3 200	32 340	65 100	l	1 600	1 700	4 200		ļ
RHIZOSOLENIA setiger	400	700	3 120	2 100	ļ			14 700		ļ.,	1 050]	300
RHIZOSOLENIA stolterfortii		500		ļ	400	Į .	3 400	3 150	1 700	· '	6 300		
RAPHONEIS amphiceros			520		l	1		ļ			1 050	400	100
ASTERIONELLA		000	25 480	32 700	800	1 386	J	1 050				400	3 400
THALASSIONEMA	2 300	1 800	25 480	9 450		}				•	7 350	3 000	400
NAVICULA	100	100	1 040		1			1 050		100	3 150	600	200
PLEUROSIGMA)]		ļ	J]			1	200	
NITSCHIA delicatula	2 000	400	İ '	6 30 0		30 950		1 050				200	
NITSCHIA longissima		700	1 560	2 100	1	200	1 050	2 100			4 200	200	700
NITSCHIA seriata		800	19 240	15 750	J]					60 900	l	
Autres NITSCHIA	100							1 100		700	ĺ	[ĺ
Autres DIATOMEES							Ì				17 850	200	700
GYRODINIUM				600	400	2 310	3 150	2 100	100	100	2 100	1	
GYMNODINIUM		100		5 250	1	924	([1 050	40 0	100
Autres DINOPHYCEAE			520			ł	1 150	1 050		i '	11 550	1	
PHAEOCYSTIS			'	2 824 000	57 000	795 000							
NOCTILUCA miliaris					[200	((300	(
DICTYOCHA speculum		600			1	1							

Pluviométrie par décade à Dunkerque, Boulogne et baie de Somme

MOIS	Dunkerque	Boulogne	Baie de Somme	moyenne	écart-type
Janvier	11	26	19.4	19	7.52
	0	0.4	1.6	0.7	0.83
	3	4.6	3.6	3.7	0.81
Février	2	3.4	3.4	2.9	0.81
	25	36.4	29.6	30	5.74
	9	15	21	15	6.00
Mars	7	6	2	5	2.65
	2	2.4	7.6	4	3.12
	15	10	16.8	13.9	3.52
Avril	1	0.4	0.2	0.5	0.42
	0	4.8	9.8	5	4.90
	1	1.6	4	2.2	1.59
Mai	26	32.8	16	24.9	8.45
	39	40.9	46.4	55.1	3.84
	21	32.2	26	26.4	5.61
Juin	0	2	2	1.3	1.15
	7	19.2	9.2	11.8	6.50
	9	7.4	5.2	7.2	1.91
Juillet	6	6.6	6.6	6.4	0.35
	0	0.2	0.8	0.3	0.42
	12	4.6	2	6.2	5.19
Aoüt	[1	2.4	2.6	2	0.87
	13	14.5	32.8	20.1	11.02
	122	62.8	57.2	81	35.91
Septembre	5	5.2	3.6	4.6	0.87
	13	1.4	4.2	6.2	6.05
	20	21	26.6	36.2	3.56
Octobre	3	8.8	25	12.26	11.40
	18	22.2	12	17.4	5.13
	12	16	17.2	15.06	2.83
Novembre	22.8	51.8	43.8	39.46	20.51
	24.4	35	26	28.46	7.50
	34	44.8	32.2	37	7.64
Décembr e	9.2	25.4	1.76	12.12	11.46
	5.2	5.8	29.6	13.53	0.42
	1.8	9.6	2.6	4.6	5.52
somme	500.4	583.6	414.4	571.49	201.99

Pluviométrie décadaire en 1996 (en mm)

Il est tombé en moyenne 571.49 mm d'eau sur le littoral durant l'année 1996, soit 62.61 mm de moins qu'en 1995, ce qui représente 10 % de précipitations en moins par rapport à 1995. La plus grande différence se situe en Baie de Somme où il n'a plu que 414.4 mm d'eau en 1996 contre 696,4 mm en 1995. A Boulogne, les valeurs évoluent faiblement (583.6 mm contre 594.8 mm en 1995). Par contre, à Dunkerque, les valeurs ont tendance à baisser (500.4 mm contre 583.6 mm).

Les premières décades de janvier-février et avril ainsi que juillet ont été les plus sèches (0 mm). La deuxième décade de février a été la plus humide (30.3 mm).

Les valeurs passent par un maximum fin août (122 mm à Dunkerque), puis diminuent pour rester faibles au cours de l'automne (15.6 mm la moyenne des moyennes de septembre). Il faut attendre le mois d'octobre pour retrouver des valeurs supérieures à 30 mm contre 50 mm en 1995.

En moyenne, les pluies automnales sont légèrement plus faibles qu'en 1995.

Calendrier des sorties

Dates	Dunkerque	Boulogne	Baie de Somme
Janvier	11/01/96	09/01/96	19/01/96
Février	15/02/96	15/02/96	
Mars	14/03/96	05/03/96	21/03/96
	22/03/95		
Avril	09/04/96		11/04/96
	29/04/96		19/04/96
Mai	13/05/96	15/05/96	14/05/96
	28/05/96		29/05/96
Juin	04/06/96	03/06/96	06/06/96
	19/06/96	19/06/96	
Juillet		05/07/96	12/07/96
Août	20/08/96	06/08/96	19/08/96
Septembre	26/09/96	11/09/96	
Octobre		15/10/96	10/10/96
Novembre	25/11/96	13/11/96	
Décembre	09/12/96	12/12/96	12/12/96

calendrier des sorties SRN pour l'année 1996

BIBLIOGRAPHIE

- "Suivi Régional des Nutriments sur le littoral Nord / Pas-de-Calais. Bilan de l'année 1992" M. MIRLICOURTOIS, R. OLIVESI, F. JAMET, H. RYBARCZYK, M. MOREL Juillet 1993, 115 pp.
- "Suivi Régional des Nutriments sur le littoral Nord/Pas-de-Calais. Bilan de l'année 1993" B. HITIER, R. OLIVESI, H. RYBARCZYK, R. DELESMONT, M. MOREL Juillet 1994, 66 pp.
- "Suivi Régional des Nutriments sur le Littoral Nord / Pas-de-Calais. Bilan de l'année 1994" B. HITIER, R. OLIVESI, H. RYBARCZYK, R. DELESMONT, M. MOREL Juillet 1995, 71 pp.
- Le littoral de la région Nord/Pas-de-Calais, "Qualité du milieu marin" Juillet 96 Rapport IFREMER n° 3-1986, 149 pp.
- Le littoral de la région Nord/Pas-de-Calais, "Apports à la mer" Rapport IFREMER n° 15-1989, 149 pp.
- Réseau National d'Observation de la qualité du mileu marin, "Dix années de surveillance, 1974-1984" Rapport IFREMER, vol.II, 1988, 229 pp.
- Réseau National d'Observation de la qualité du milieu marin, "Surveillance du milieu marin, Travaux du RNO" Rapport IFREMER, éditions 1989-1990 (32 pp.),1991 et 1992-93, 1994.
- Réseau National d'Observation de la qualité du milieu marin ; Surveillance du milieu marin, Travaux du RNO, "Intercomparaison 1992 pour la salinité et les sels nutritifs"-Rapport IFREMER, 1992, 68 pp.
- "Annuaire de la qualité des eaux de surface du département de la Somme".- Agence de l'Eau Artois-Picardie, 1991.
- "Nitrogen, Phosphorus, Plankton and Oxygen. Deficiency in the German Bight and in Kiel Bay" Kieler Meeresforschungen, 1990, 35 pp.
- "Manuel des analyses chimiques en milieu marin" Centre National pour l'Exploitation des Océans -. AMINOT et CHAUSSEPIED, 1983, 395 pp.
- Reports and studies n° 34, "Review of potentially harmful substances. Nutrients" United Nations Educational, Scientific and Organisation, 1990, 40 pp.
- "Groupe de travail pour l'étude de l'eutrophisation des cours d'eau et des eaux littorales de la région Nord-Pas-de-Calais" - Secrétariat d'Etat du Premier Ministre chargé de l'Environnement - Service de l'Eau - Rapport 1989, 74 pp.
- "Processus d'eutrophisation et ses conséquences sur les peuplements d'un écosystème estuarien : la Baie de Somme" Thèse soutenue par H. RYBARCZYK à l'Université PARIS-6, Juin 1992, 171 pp.
- "North Sea subregion 4 et 9, Assessment Report" North Sea Task Force 1993, 195 pp. et 153 pp.
- "Qualité du milieu marin littoral"- Rapport IFREMER 1993, M. JOANNY, 241 pp.
- "Water Pollution Research Report n° 23: The dynamics of Phaeocystis Blooms in Nutrient Enriched coastal zones" C. LANCELOT and Al. 1991, 106 pp.