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Abstract:  
 
Large benthic foraminifers are considered to be good indicators of shallow marine carbonate 
environments in fossil series. Over the last 50 years, the palaeoenvironment of Tertiary Nummulites 
accumulations has been a matter of debate, particularly because of difficulties in interpreting these 
deposits, and in this way, the absence of analogues in present-day seas does not help. The aim of this 
paper is to insight the different ways Nummulites tests and clasts may accumulate according to their 
hydrodynamic behaviour. Based on experimental measurements and on SEM observations, it appears 
that the high primary skeletal porosity of Nummulites made them easily transportable. The calculated 
threshold shear velocities confirm that large-sized Nummulites can be moved by weak wave-driven 
currents. This peculiar hydrodynamic behaviour of Nummulites could explain the diversity of 
depositional models. Depending on local hydrodynamic conditions, autochthonous Nummulites 
deposits can be preserved as in situ winnowed bioaccumulations or be accumulated offshore, onshore 
or alongshore, away from the original biotope. 
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1. Introduction 

 

Nummulites accumulations occur in Late Paleocene to Early Oligocene carbonate 

deposits, which represent about 30 Ma in the geological record. During this time, the marine 

microfauna was dominated by Nummulites along the Tethys palaeomargins. Some authors 

point out that the predominance of Large Benthic Foraminifera (LBF) could be explained by 

the development of wide carbonate ramps and by warm sea waters that induced nutrient 

deficiencies (Hallock, 1985). This is supported by a major episode of global warming 

expressed by a 1.5 0/00 decrease in δ18O which peaked during the Early Eocene Climatic 

Optimum (EECO) at 52-50Ma (Kenneth and Scott, 1991; Zachos et al., 2001). 

Nowadays, the Nummulites limestones, which are extended from the West Pacific, Central 

Mediterranean, to the Atlantic (Figure 1), form important hydrocarbon reservoirs in northern 

African provinces (Tunisia and Libya). The reservoir qualities are mostly induced by the 

preservation of intraskeletal porosity of Nummulites tests. Numerous sedimentological studies 

have been made on these deposits in order to better understand the geometry of subsurface 

reservoirs (Arni, 1965; Comte and Lehman, 1974; Fournié, 1975; Bishop, 1985; Moody, 

1987; Bailey et al., 1989; Moody and Grant, 1989; Bernasconi et al., 1991; Loucks et al., 

1998; Anketell and Mriheel, 2000; Racey et al., 2001; Jorry et al., 2003a, Jorry et al., 2003b; 

Vennin et al., 2003; Hasler, 2004; Jorry, 2004). 

Various depositional models have been proposed, and most of them described Nummulites 

accumulations as banks, bars or low-relief banks, sometimes related to palaeo-highs. Previous 

studies have shown that LBF can be easily reworked by waves and currents (Davies, 1970; 

Martin and Liddell, 1991; Hohenegger and Yordanova, 2001a, 2001b; Yordanova and 

Hohenegger, 2002), and several authors point out that the hydrodynamic behaviour of 

Nummulites is an important factor controlling their distribution (Aigner, 1982; Fütterer, 1982; 

Racey, 2001). The unusual predominance of one group of organism associated to its peculiar 

hydrodynamic behaviour made the Nummulites a very good example of taphonomic feedback 

on transportation and deposition (Kidwell and Jablonski, 1983; Ginsburg, 2005). 

Nummulites reservoir facies are often associated with muddy and silt-sized facies 

composed of small debris (nummulithoclasts), which are mainly exported seaward (Loucks et 

al., 1998; Racey et al., 2001; Caline et al., 2003; Jorry et al., 2003a; Jorry et al., 2003b; 

Hasler, 2004; Jorry, 2004). Depending on the platform type (homoclinal ramp, rimmed shelf 

or platform with sharp slope breaks), the lateral facies variation is generally progressive and 



 3

other subfacies rich in Discocyclina or Operculina may occur between Nummulites 

grainstones and nummulithoclastic packstones. In more proximal settings, nummulithoclasts 

are less abundant  in the matrix of restricted/lagoonal muddy facies dominated by Orbitolites, 

Alveolina, and Miliolids (Middle Eocene Dernah Formation, NE Cyrenaica: Jorry, 2004). 

Nummulithoclasts clearly result from the reworking and the pulverization of Nummulites, but 

fragmentation processes remain unresolved. Loucks et al. (1998) suggested that bioturbation 

can be an important process for grain breakage. Beavington-Penney (2004) postulates that the 

fragmentation can also be the result of transportation of the tests within turbidity currents 

and/or predation by relatively large bioeroders, such as fish and echinoids. 

 

The main objectives of this work are 1- to review the different depositional models which 

have been proposed in the literature, characterising the palaeoenvironment of Nummulites, 2- 

to present new measurements of intraskeletal porosity, apparent density, and settling 

velocities of Nummulites, and to compare these results with those of previous studied (Aigner, 

1982; Racey, 2001), 3- to estimate the critical shear velocities of Nummulites of different 

sizes and densities, and to compare these values with wave shear velocities computed with the 

theoretical model developed by Madsen (1994), 4- to discuss the rare development or 

preservation of hydrodynamic sedimentary structures in these grain-supported sediments, 5- 

to propose an additional hypothesis regarding the preservation of complete Nummulites and 

the associated fragmentation processes, which lead to consequent nummulithoclast 

production. 

 

2. Generalities on larger foraminifera 

 

The palaeoenvironmental interpretation of carbonate rocks is significantly based on the 

presence or association of benthic fauna or microfauna, the life environment of which is 

particularly well documented in present-day seas. Unfortunately, there is no recent 

counterpart for the prolific accumulations of Nummulites, which appeared in the late 

Paleocene, invaded the tethyan margins during the Eocene and disappeared during the Middle 

Oligocene. The only recent form, Palaeonummulites venosus, restricted to the Indo-Pacific 

area, lives in marine environments with sandy bottoms between 20 and 85 m of water depth 

(Hohenegger et al., 1999; Hohenegger et al., 2000; Hohenegger, 2005). The maximum 

distribution is observed between 35 and 40 m (Langer and Hottinger, 2000). Seven families of 
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similar free-living LBF occur in modern day carbonate systems: the porcellaneous forms 

(Archaiasinidae, Peneroplidae, Sorotidae and Alveolinidae) and the hyaline forms 

(Amphisteginidae, Calcarinidae and Nummulitidae). Species of these seven families are 

associated with endosymbionts that require light. The porcellaneous forms host rhodophytes, 

chlorophytes, dinoflagellates and diatoms, whereas the hyaline forms host only diatoms, as 

identified by Leutenegger (1984) on the living Palaeonummulites venosus. 

 

Photoautotrophic symbionts are the only food source for LBF (Leutenegger, 1984; 

Krüger, 1994; Hohenegger, 2004) and provide the potential for calcification of large skeletons 

(Hallock et al., 1991). Excepted for Cycloclypeus carpentieri whose the maximum observed 

diameter is 120 mm (Hohenegger et al., 2000), the gigantism which characterises Eocene 

Nummulites has no counterpart in present-day protist groups. Diameter of the largest 

Palaeonummulites venosus microsphere is 6.4 mm and 3.2 mm for the largest macrosphere 

(Hohenegger et al., 2000), whereas fossil Nummulites often reach several centimetres in 

diameter. The largest size observed is reported by Nemkov (1962) who found, in 

Mesopotamia, specimens of Nummulites millecaput reaching 160 mm in diameter. 

 

This great difference does create a problem in relating modern to ancient forms. Such 

gigantism is considered by Cowen (1983) as the proof of an active algal symbiosis. The 

probable role of symbionts in fossil Nummulites is also supported by the presence of 

microstructures similar to those observed in present-day forms, which provide shelters for 

symbionts and allow respiration (Bartholdy, 2002). Moreover, Wells (1986), in discussing the 

control of stress in the environment on Nummulites ratios and sizes, points out that some 

foraminifers (such as Elphidium, Ammonia, and Planorbulina) can reproduce asexually in 

good environmental conditions but sexually during times of stress, when genetic diversity and 

dispersal are advantageous. 

 

In the fossil record, several authors consider the shape and wall thickness of foraminiferal 

tests as a depth indicator (Kulka, 1985; Eichenseer and Luterbacher, 1992; Loucks et al., 

1998; Racey, 2001; Jorry et al., 2003b; Vennin et al., 2003; Hasler, 2004; Jorry, 2004). This 

assumption is based on observations on LBF from present-day environments. Larsen (1976) 

and Larsen and Drooger (1977) found that Amphistegina showed a strong inverse relationship 

between test thickness and habitat depth. Similar data reported by Hallock (1979) for two 

Pacific sites confirm the tendency for thicker-tested forms in shallow, more turbulent 
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environments and thinner-tested forms in low-energy and/or deeper environments. This 

relationship has also been demonstrated for other foraminifers such as Heterostegina depressa 

(Hottinger, 1973) and for Operculinid foraminifera in general (Hottinger, 1973; Pecheux, 

1995; Yordanova and Hohenegger, 2004; Renema, 2005). Experimental work (Hallock, 1979; 

Hallock, 1981; Hallock et al., 1986) shows that both light and water motion directly influence 

test thickness and shape in Amphistegina by controlling the thickness of individual lamellae as 

they form. 

 

Classically, Nummulites are believed to have formed autochthonous banks or bioherms, or 

they are even considered as reef-builders (Arni, 1965). According to Loucks et al. (1998), 

these deposits are not high-profile or relief banks (they have no steep slopes or landward 

dipping strata) and formed in moderately low-energy environments between fair-weather and 

storm wave base. More recently, Nummulites have been recognized to occur, reworked, in 

high-energy environments such as shoals, fore-reef-channels and storm deposits (Racey, 

2001; Hasler and Davaud, 2001; Jorry et al., 2003b; Jorry, 2004). From a sedimentological 

point of view, nummulite-rich facies may result from three distinct processes: 1) they may 

represent the undisturbed record of a prolific biocoenosis, 2) the accumulation of tests 

transported by wave- or tide-induced currents, and 3) the residual concentration of tests after 

repeated winnowing events (Aigner, 1985). 

 

The distinction between these three depositional modes is essential for understanding the 

geometry and petrophysical properties of potential reservoir rocks. Undisturbed biocoenoses 

are characterised by packstone to wackestone textures, with well-preserved encrusted only on 

one side (Racey, 2001), and show a wide faunal diversity (i.e. red algae, echinoderms, 

gastropods, bryozoans, bivalves and small benthic foraminifers). The life position, which is 

often used as a reliable criterion for autochthony, is not well documented for Nummulites. 

Two contradictory possibilities have been suggested: Nummulites were lying on the sea floor 

or attached on sea grass leaves, the second possibility being not observed for the living 

Nummulites venosus in the present-day seas. This could explain the preferential encrustation 

on one side of the test (Racey, 2001). For Deeke (1914) and Rozloznik (1927) however, the 

symmetric and regular form of most of the tests indicate a vertical life position. 

 

By contrast taphocoenoses resulting from transportation or in-situ winnowing are 

characterised by more or less monospecific assemblages and grain-supported textures. 
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Sedimentary structures, which should be omnipresent in high-energy deposits, have been 

rarely documented from field or core studies. Aigner (1982) pointed out the presence of 

“reminiscent cross-bedding stratification”, small-scale scours and fill structures and 

Nummulites imbrications in the Gizehensis bed of Egypt. Jorry et al. (2003b) mentioned the 

presence of large-scale cross bedding in the Eocene El Garia Formation in Central Tunisia. 

But most of the time grain-supported facies show a rather chaotic pattern and no obvious 

sedimentary structures. This explains why the Nummulites accumulations have commonly 

been considered as biocoenoses even though the absence of matrix often indicates high-

energy depositional processes. The reasons for the scarcity or the poor expression of 

hydrodynamic structures will be discussed later. 

 

A complete review regarding the ecology of extant nummulitids and other LBF has been 

recently published by Beavington-Penney and Racey (2004) and by Hohenegger (2004) who 

gives a detailed discussion on depth coenoclines and environmental considerations regarding 

LBF from the Western Pacific. 

 

3. Diversity of depositional models in the fossil record 

 

Several depositional models have been proposed to characterize the nummulite-rich 

accumulations (Figure 2). In most of these case studies, the deposition of Nummulites 

sediment is located around palaeoreliefs (sedimentary or structural highs) or along homoclinal 

carbonate ramps. Different palaeo-depths are envisaged, from 10 to 60 m depth, and different 

depositional relief are described: 

 

- Nummulites banks that form convex-up structures. The so-called “bank” structure was 

first described by Nemkov (1962) and Arni (1965). These banks, which are 

characterized by a mono-specific association of Nummulites, separates a restricted area 

(back-bank environment) from an open marine zone (fore-bank settings). This model 

has been applied to the Tatra Eocene of Poland (Kulka, 1985), to the Middle Eocene 

build-ups in Egypt (Aigner, 1983), and to the Jdeir Formation in offshore Libya 

(Anketell and Mriheel, 2000); 

- low-relief banks or sheets, which are developed along a broad, gentle dipping 

homoclinal ramp (Comte and Lehman, 1974; Loucks et al., 1998; Moody et al., 2001; 
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Hasler, 2004). The petrographic composition of the sedimentary body is controlled by 

physical processes such as winnowing of both matrix and smaller A-forms (Aigner, 

1982, 1985; Racey, 2001). The resulting sedimentary textures, including size sorting, 

packing and imbrication of the tests, indicate para-autochthonous to allochthonous 

deposits. However, Wells (1986) and Loucks et al. (1998) consider that Nummulites 

monospecific deposits may rather result from biofactors such as environmental 

stresses. Imbrications can also be due to post-depositional processes such as 

bioturbation or burrowing (Loucks et al., 1998). 

- shoals formed in proximal up-ramp settings (Racey et al., 2001). This facies, showing 

large-scale cross-bedding structures, can be observed in Central Tunisia (Juggurta and 

Kesra Plateau: Jorry et al., 2003b; Jorry, 2004); 

- Nummulites «bars» developed in very shallow environments, in front of coralgal reefs 

bordering a carbonate ramp system (Eichenseer and Luterbacher, 1992). This model 

has been proposed for the Ager Formation in the south Pyrenees foreland basin 

(Spain). 

 

Depending on the model, Nummulites-rich sediments are considered as autochthonous 

deposits (biocoenoses) or para-autochthonous to allochthonous deposits (taphocoenoses) 

resulting from landward or seaward transportation. This diversity could be due to the 

configuration of the platform (type of depositional profile and irregularities of the sea floor), 

to adaptive life strategies of Nummulites according to changes in local light or hydrodynamic 

conditions, and/or to the ability of the tests to be transported seaward or landward by storm- 

or tide-induced currents. 

 

Although no equivalent accumulations of giant foraminifer tests can be observed in 

present-day seas, studies of modern benthic foraminifera confirm that the transportation of 

living and dead tests could have a significant impact upon the distribution of many species 

(Murray et al., 1982; Chapman and Jones, 1986; Murray, 1987; Davaud and Septfontaine, 

1995; Hohenegger and Yordonava, 2001a). However, the hydrodynamic behaviour of modern 

benthic foraminifera has received a little attention. Dead benthic foraminiferal tests can be 

found in suspension in the water column, as reported by Poizat (1970), Blanc-Vernet et al. 

(1979), Murray et al. (1982), Murray (1987) and Davaud and Septfontaine (1995). The first 

consequence is that the distribution of the tests is largely controlled by dominant marine 

currents, i.e. storm or tide-induced currents.  
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Long-distance transportation of the tests could be facilitated by the presence of trapped 

gases in the internal structure of the tests, which may confers very low densities. The presence 

of gases within foraminiferal chambers of dead organisms results from the decay of the 

organic material after the cell’s death (Severin and Lipps, 1989). This idea is supported by the 

fact that foraminifera may retain protoplasm for weeks or months after death (Bernhard, 1988; 

Hannah and Rogerson, 1997; Alve and Olsgard, 1999). In the present-day, the presence of 

dead protoplasm within tests can be explained by a disease or an adverse environmental 

change (Murray and Bowser, 2000). Moreover, if dead foraminifers are transported towards 

intertidal environments, tests could be dried out during low tide and later easily picked up by 

the incoming tide or the wind when the chambers remain filled up with air (Thomas and 

Schafer, 1982; Davaud and Septfontaine, 1995). Wang and Murray (1983) noticed a close 

correlation between the magnitude of the tides and the abundance of small transported 

foraminiferal tests. Concerning living foraminifers, their ability to be moved by currents may 

also depend of the nature of the fluid that filled porous network. For example, living forms 

such as Alveolinella quoyi have enough organic material to fill only about 39% of their 

chamber space in the ultimate whorl. If this space if partly filled up with gases (O2 produced 

by photosymbionts and CO2 resulting from respiration), overall test density decreases, and the 

test can be easily moved (Severin and Lipps, 1989). 

 

The ability of Eocene Nummulites to be transported has been already suggested by several 

authors (Wells, 1984; Wells, 1986; Loucks et al., 1998; Racey, 2001), but the hydrodynamic 

behaviour of Nummulites remains poorly documented. Aigner (1982) cites density 

measurements made on Nummulites going down to 1.28 g/cm3 and flume experiments 

conducted by Fütterer (unpublished data), who found threshold velocities ranging from 18 to 

77 cm/s. More recently, Racey (2001) mentions an internal report of British Gas in which 

critical shear velocities have been computed for large B-form Nummulites with a residual 

porosity reaching 40%. The low values obtained (7 cm/s) led this author to conclude that 

«Nummulites bank material could easily be moved in the outer shelf...». The aim of our paper 

is to give additional evidences concerning the hydrodynamic behaviour of Nummulites which 

could explain the diversity of the depositional environments in the fossil record. 

 

4. Methodology 
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This work is based on the observations made on samples from outcrops and subsurface 

which include 1200 thin sections, SEM observations and 40 porosity measurements (mercury, 

microtomography and image analysis). Different locations have been investigated in Spain 

(Tremp Basin), Tunisia (outcrops of the Kesra Plateau, Djebel Ousselat and Kef El Garia, 

onshore concession of Sit El Itayem), and Libya (outcrops from NE Cyrenaica, C137 license 

in NW offshore zones operated by Total). 

 

The SEM was used to characterize the micropores of Nummulites tests. Partially silicified 

Nummulites were dissolved, and resulting non-dissolved silicified fragments were selected for 

the analysis. The quantification of the macroporosity was obtained by coupling X-Ray 

microtomography (120 equatorial sections of a 1.5 cm thick Nummulites), computer image 

analysis and point counting on thin sections. 

 

Apparent densities of selected, isolated Nummulites were deduced from measurements of 

their weight and volume obtained by immersion within mercury (Hg). Hg was used because it 

is a non wetting fluid which allows no imbibitions within the porous network. The method 

was first calibrated using a pure calcite crystal. 

 

Settling velocity measurements were performed on 33 fossil Nummulites that have been 

collected in Cyrenaica (NE Libya). Nummulites were selected according to size, ranging from 

4 mm to 32 mm of diameter, types (micro- and megalo-spherical) and characterized by 

minimum diagenetic modifications and well-preserved intraskeletal porosity. Shape 

parameters (longest, intermediate and shortest orthogonal axis of the test) and apparent 

density (weight divided by external volume) were measured on these specimens. The settling 

velocities have been measured on a distance of 1.50 m, in a transparent plastic tube of 40 cm 

diameter, and the water salinity has been adjusted at 32 g/l. The water temperature which 

exerts a significant influence on the settling velocity by changing its density and dynamic 

viscosity (Bolton and Havenhand, 1997) was successively adjusted at 10°C, 20°C and 26,5°C. 

The measures were repeated alternatively on «full-water» (water injection) and «full-air» (air 

drying) Nummulites. 

 

Finally, theoretical settling velocities have been calculated using equations proposed by 

Le Roux (1997) and compared with experimental values. We have chosen not to use present 

day Palaeonummulites venosus in our measurements because the morphological parameters 
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(size and thickness) of living species differ significantly from the Eocene Nummulites which 

have developed much larger size.  

 

5. Results 

 

5.1. Porosity and apparent density measurements 

 

Primary, intraskeletal porosity may be a significant part of total porosity on Nummulites-

dominated reservoirs. Nummulites tests contain abundant chambers (macroscopic porosity) 

and dense network of micropores developed inside the chamber walls. 

These micropores was detected by Carpenter (1850) and confirmed by Schaub (1981) who 

described perforations in the walls of Nummulites (Figure 3a). The role of these 

microstructures is not explained for the fossil Nummulites but in modern environments, many 

foraminifera develop perforations for gas exchange, in particular of O2 and CO2, through the 

wall (Leutenegger and Hansen, 1979). Gas exchange is of particular significance when 

foraminifera are associated with endosymbiotic algae, which develop light-regulation devices 

in order to avoid photo-inhibition (Hottinger, 2000). However, this microporous network can 

be rapidly and partially sealed after the cell’s death, due to the precipitation of early marine 

cement within chambers. 

The quantification of the porosity amount of this microporous network has been achieved 

by image analyses on SEM pictures of etched silicified Nummulites from the Eocene Figols 

Formation (Spain). These micropores have 1-2 μm diameters, and consist of tubular holes 

perpendicular to the wall surface (Figure 3b-d). It ranges from 25 to 36% of the wall volume. 

The porosity of chambers, estimated by image analysis on successive microtomographic 

sections and by point counting on thin sections, ranges from 30 to 42% (Figure 4). As 

consequence, the total porosity of Nummulites varies from 47.5 to 62.9%. These results are 

very similar to those obtained on living foraminifera; porosity measurements on Amphisorus 

are as high as 72% (Aigner, 1982). 

Measured apparent density values of Nummulites range from 1.48 to 2.61 g/cm3 (Table 1). 

This large range of density is due to the presence of cement which partly seals intraskeletal 

porosity. Taking into account that benthic hyalin tests are mainly composed of low 

magnesium calcite (LMC), according to our measurements on Paleonummulites venosus from 

Papua New Guinea and to previous work published by Debenay et al.(1999), the same 
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mineralogical composition is expected for Eocene Nummulites tests. The apparent density (ρs) 

of Nummulites can be established as a function of intraskeletal porosity ( ), LMC density 

(ρLMC) and internal fluid density (ρfluid), following this equation: 

 

fluidLMCs )1(    

 

As after the cell’s death, chambers may be filled in by seawater or by gas (produced by 

the decay of organic material), two functions can be adjusted (Figure 5). Using the previous 

formula, the apparent density of Nummulites ranges from 1.7 to 1.9 g/cm3, when the porous 

network is filled in with seawater. Infilling gases induced a drastic fall of the apparent 

densities (1.1 to 1.4 g/cm3). These low values suggest that Nummulites tests can be 

transported as suspended load, as observed for several modern species of benthic foraminifers 

(Poizat, 1970; Blanc-Vernet et al., 1979; Murray et al., 1982; Murray, 1987; Severin and 

Lipps, 1989; Davaud and Septfontaine, 1995). 

 

5.2. The hydrodynamic behaviour of Nummulites 

 

Fossil Nummulites are known as having developed a large range of shapes, induced by 

reproductive strategies (small sexual A-forms and large asexual B-forms) and by 

environmental factors (light intensity and hydrodynamic conditions) which significantly 

control size, shape and thickness of the tests (Hallock, 1979, 1981; Hallock et al., 1986; 

Hohenegger et al., 2000). The hydrodynamic behaviour of Nummulites, which depends on 

their size, shape and density, is a fundamental parameter controlling their transport. 

The estimation of critical shear velocities of Nummulites was made using the equations 

and the Excel program developed by Le Roux (1997). This program computes the critical 

shear velocity (U*
c) from particles shape parameters (Dl, Di, Ds : longest, intermediate and 

shortest orthogonal axis of the particle [cm]) or from measured settling velocities (Wm). 

Thirty-three Nummulites of different size and density, and with intraskeletal porosity partly 

preserved, have been selected and their settling velocities were measured in a 2 m-high 

settling tube filled with seawater. These data were used as input to compute the critical shear 

velocities (Table 1). The values obtained from shape parameters (U*
cs) show a good 

correlation with those obtained from measured settling velocities U*
cw (Figure 6), but they are 

systematically higher. As the measured settling velocity is a hydrodynamic behavioural 
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measure incorporating the effects of particle size, shape and density (Le Roux, 1997) it seems 

reasonable to consider the values derived from the settling velocities as more realistic. 

Unfortunately it is not possible to find Nummulites in which the primary intraskeletal porosity 

has been totally preserved. The only way to estimate the critical shear velocities of 

Nummulites is to compute them from geometrical parameters and apparent densities obtained 

from porosity estimations (Figure 5). 

According to the data presented in Table 1, the equations proposed by Le Roux (1997) 

have been slightly modified to take into account the specific hydrodynamic behaviour of 

Nummulites. The critical shear velocity U*
c becomes: 

 

 
f
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where , the dimensional critical shear stress is derived from Wd, the dimensionless sphere 

settling velocity and Dd, the dimensionless size of equivalent sphere using the following 

equations:  

 

  0625.0Wlog0717.0 d10         for Wd < 2.5 

2
d

5
d W10935.9W003.0029.0          for Wd > 2.5 

3
d

62
ddd D10731.4D002.0D29.0375.0W          for Dd < 134.9 

160D531.2W dd          for Dd > 134.9 

 

Dd is directly linked to the shape and size of Nummulites (Dl , Di , Ds [cm]), to the 

apparent density of Nummulites and seawater (s and f  [g/cm3]), to the dynamic viscosity of 

seawater ( [g/cm/sec]) and to the gravity constant (g [cm/sec2]): 

 

3
2
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3
slid
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The obtained threshold shear velocities confirm that pluricentimetre-scale Nummulites can 

easily be moved by wave-driven currents (Figure 7a). Large B-forms Nummulites (2 cm in 

diameter) with an apparent density of 1.8 g/cm3 are transported when the shear velocity 
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reaches 3.3 cm/s (Figure 5 and Figure 7a). These values are is about the half of those 

proposed by Racey (2001), who used a flume tank measurements. Correspondence with 

quartz grains having equivalent threshold shear velocities shows that Nummulites behave as 

quartz grains of one-tenth to one-twentieth of their diameter (Table 1). By comparison with 

other carbonate particles, it is demonstrated from flume and -settling tube experiments that 

segments and fragments of segments of crinoids are hydraulically equivalent to quartz grain 

one-tenth of their diameter (Savarese et al., 1996; Ginsburg, 2005). 

Such shear velocities may occur at variable depth, depending on the length, the period and 

the height of waves. Using present-day wave parameters observed on a modern ramp along 

the coastline of Texas (station 42020, National Data Buoy Center), we computed the wave-

shear velocities for increasing water depth with the program proposed by Sherwood (2004), 

based on the equations established by Madsen (1994). The obtained values indicate a potential 

reworking of large B-form Nummulites (2 cm in diameter, density of 1.8 g/cm3) down to 50 m 

deep, which suggests a large range of possible depositional environments (Figure 7b). If 

chambers are filled in with gas, the potential reworking depth falls down to 60 m deep (Figure 

5 and Figure 7b). Considering that Nummulites may have lived in the lower photic zone (in 

comparison with a depth range of 30 to 80 m for the modern Palaeonummulites venosus), the 

test can be transported far away from the original biotope after the cell’s death. The distance 

of transportation also depends on the density of Nummulites, which is controlled by the 

intraskeletal porosity and by the nature of the fluid within chambers (seawater or gas). 

 

6. Discussion : implications in depositional processes 

 

6.1. Rare preservation of sedimentary structures 

 

In Nummulites facies, high-energy sedimentary structures are rarely developed or 

preserved, although all depositional models place the Nummulites accumulations between the 

fair-weather and the storm wave base. This paradox has been explained as follows: 

 

- the Nummulites accumulation results from a high prolific biocoenose and is not 

affected by bottom currents as suggested by Nemkov (1962), Arni (1965), Kulka 

(1985), and Anketell and Mriheel (2000); 
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- the Nummulites accumulations are controlled by reworking processes, but high-

energy primary structures are destroyed by bioturbation, which is often observed 

(Moody and Grant, 1989; Loucks et al., 1998; Moody et al., 2001; Racey, 2001; 

Racey et al., 2001); 

- the Nummulites deposits are formed in low-energy environments, i.e. either below 

the storm wave base or in a protected area, which could be created by the presence 

of a physical barrier or by the presence of dense sea-grass meadows (Blondeau, 

1972). 

 

Our experimental approach indicates that Nummulites of different sizes may have the 

same hydrodynamic behaviour depending on their shape, on the nature of the fluids filling up 

internal porosity, and on the degree of early intraskeletal cementation (Figure 8). 

Consequently, Nummulites of different size can be transported and deposited simultaneously, 

and the detection of sedimentary structures, which relies on the presence of subtle 

granulometric contrasts, will be difficult or even impossible. 

This could explain why hydrodynamic sedimentary structures are so rare in 

Nummulites-rich facies. They can be occasionally detected when bioclastic sands are enriched 

in quartz or argillaceous particles which may form drapes emphasizing stratifications. In 

Central Tunisia (Kesra Plateau, El Garia Formation), where large-scale dunes composed of 

large microspherical forms have been observed, the sedimentary structures are highlighted by 

solution seams, accentuating the original bedding (Jorry, 2003b, 2004).  

 

6.2. Preservation and fragmentation of Nummulites tests 

 

The Nummulites carbonate production is often associated with the production of 

significant amounts of nummulithoclasts in North Africa, especially in Tunisia. These silt-

sized particles were either exported down slope or may partially constitute the matrix of the 

inner ramp deposits and we rarely observe intermediate granulometry between complete 

Nummulites and silt-sized nummulithoclastic particles. 

 

Fragmentation processes are still a matter of debate, and they cannot only depend on the 

distance of transportation. Severin and Lipps (1987) clearly demonstate that living 

Alveolinella quoyi tests are relatively resistant to damage by abrasion. Beavington-Penney 
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(2004) shows that it is impossible to reproduce on Palaeonummulites venosus the degree of 

test damage seen in fossil forms, despite simulating transport up to approximately 71 km. 

Kotler et al. (1992) experimentally tested the abrasion of selected modern foraminifers 

(including Amphistegina gibbosa, Archaias angulatus, Peneroplis proteus, and Sorites 

orbiculus), and observed that pitting of the surface was the most common feature produced, 

even after 1000 hours of abrasion (corresponding very approximately to several hundred 

kilometres of transport). Beavington-Penney (2004) suggests that the formation of 

nummulithoclasts may result from the predation by large bioeroders such as fish and 

echinoids. 

However, based on SEM study of modern carbonate sediments from New Caledonia and 

French Polynesia, Debenay et al. (1999) demonstrate that the breakdown of foraminiferal 

tests can produce a noticeable part of the carbonate mud content. The mechanical erosion in 

high-energy environments is favoured by biological activity such as partial dissolution in 

predator guts (Hickmann and Lipps, 1983), and by bioerosion by boring algae, fungi and 

sponges (Kloos, 1982). In present-day dead benthic foraminifers that we collected in loose 

superficial sediment, fringes of early marine cements are also frequently observed (Figure 9a, 

9b). Similar thin fringes of cement lining the chambers are often present in well preserved 

Nummulites from Central Tunisia and more significantly in northern Cyrenaica Nummulites 

shell beds (Figure 9c, 9d). The pre-depositional character of this cement for the Eocene 

Nummulites is attested by its absence in interparticle pore spaces (Figure 9d). This early 

precipitation of cement within internal structures of Nummulites slightly increase the test 

density and their settling velocity. Consequently, Nummulites containing internal fringes are 

expected to be more resistant to abrasion damage than those devoid of fringes. When these 

fringes are absent, the Nummulites tests remain easily reworked and might be more easily 

fragmented under high-energy conditions. The formation of nummulithoclasts is probably 

inherited from the original texture of the Nummulites tests which contribute to produce silt-

size fragments (present-day hyaline tests include crystallites and needles, or large crystals 

with cleavages around the pores, which are present in great proportion in the mud fraction of 

carbonate sediments of New Caledonia and Polynesia) and from microporous architecture of 

the wall. 

The production of nummulithoclasts appears dominant in Tunisia (El Garia Formation) 

during the Early Eocene (Late Ypresian). The resulting fragments are either integrated within 

the shallow nummulite-rich facies or winnowed and exported toward the distal part of the 

carbonate platform. At Kesra Plateau, 15 m thick Nummulites rudstones pass laterally to 40 m 
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thick nummulithoclastic packstones over a distance of 2 km. Similar observation done in 

Djebel Ousselat demonstrates that if the carbonate production is more important in shallow 

water, a significant amount of fine particles are exported down dip the slope, and Nummulites 

grainstones accumulation may only represent stacked condensed layers, washed out of their 

fine content (Hasler, 2004). In other localities, such as Libya or Spain, the nummulithoclast 

production is negligible or absent during Early to Middle Eocene (Late Ypresian to 

Priabonian). 

 

6.3. Diversity of the depositional models 

 

The peculiar hydrodynamic behaviour of Nummulites explains the diversity of the 

depositional models. In comparison with the modern living LBF, we demonstrate that 

Nummulites tests had very low apparent densities because the chamber space was probably 

filled with seawater and/or gas. Considering typical sedimentary processes occurring on a 

carbonate platform, these tests can be transported landward or seaward by weak wave-driven 

currents far from their original biotope (Figure 10). Based on our observations in Central 

Tunisia and NE Libya, reworked facies can be accumulated as subtidal or shoreline deposits, 

characterized by local emersions (Jorry et al., 2003b). Large-microspheric Nummulites 

forming barrier-beach and lagoon-enclosing spit deposits in Pakistan has been reported by 

Wells (1986) and small-macrospheric Nummulites accumulations in the Eocene series from 

Northern Cyrenaica have been interpreted as supratidal deposits by Jorry (2004). 

These different types of skeletal accumulations are characterized by specific shape of 

sedimentary bodies and primary petrophysical properties, implying variable reservoir 

qualities. The morphologies of these LBF accumulations are often related to the 

palaeotopography and to relative sea-level fluctuation: observations from the Sidi El Itayem 

field (onshore Tunisia) show that small lenticular sedimentary bodies are developed during 

highstands on the top of the palaeo-shoal when the LBF biotope, and therefore the carbonate 

factory, is restricted to the top of the structure. Lowstand periods, by contrast, imply a wider 

photic zone, and therefore a larger habitat for Nummulites, thus contributing to the edification 

of wider and more or less barkanoid coarse grain bodies (Hasler and Davaud, 2001). In term 

of post-depositional processes, shallower deposits are susceptible to be preferentially affected 

by early diagenetic processes, which leads to reduce or increase the porosity. In Central 

Tunisia and NE Libya, Nummulites deposited in evaporitic zones are affected by 
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dolomitization and dissolution processes, which significantly contribute to increase the 

porosity (molds and intercrystalline pores) and the permeability. Coastal dunes are only 

cemented by meniscus cements (vadose diagenesis) and have good porosities and 

permeabilities (Jorry, 2004). Shoals and sand bars are characterized by a marine phreatic 

cementation, leading to well-cemented facies, therefore highly porous if the intranummulite 

porosity is preserved. The more distal Nummulites accumulations, i.e. the Nummulites banks, 

are generally floatstones, the porosity being dominated by primary intranummulite pores and 

vugs. The preservation of the porosity is furthered by the presence of early cementation in 

foraminiferal chambers, which contribute to preserve tests from fragmentation but decreases 

permeability. 

 

7. Conclusions 

 

Eocene Nummulites accumulations have no counterparts in present-day seas. Several 

depositional models have been proposed and most of them consider these bioaccumulations as 

the in situ record of prolific biocoenoses developed in a mid-ramp setting. The scarcity of 

high-energy sedimentary structures has contributed to support an autochthonous origin. 

Image analysis on thin sections and SEM views indicate that the intraskeletal porosity of 

Nummulites varies from 47.5 to 62.9%. Their apparent density ranges from 1.7 to 1.9 g/cm3, 

when the porous network is filled in with seawater, and may range from 1.1 to 1.4 g/cm3 in 

the case of gases infilling. 

Experimental measurements show that the high amount of porosity and the low density of 

Nummulites make them easily transportable by weak currents. Moreover, bottom currents can 

move tests which have the same hydrodynamic behaviour but not necessarily the same size, 

inducing the deposition of heterometric assemblages. The presence of such assemblages may 

explain the rarity of high-energy sedimentary structures in the Nummulites accumulations, the 

detection of which relies on the presence of subtle granulometric contrasts. In such cases, 

bioturbations are not necessarily needed to explain the absence of sedimentary structures. 

The mechanical erosion of Nummulites tests in high-energy environments may be 

favoured by biological activity such as partial dissolution in predator guts and by bioerosion 

by boring organisms. The bimodal characteristic of Nummulites deposits - with almost only 

entire Nummulites and silt-sized nummulithoclastic particles without intermediate grains - 

may be explained by the early precipitation of cement within the Nummulites chambers that 
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could significantly increase the rigidity of the shell (more resistant to abrasion damage) and 

favour to the preservation of complete tests in the fossil record. When these fringes are absent, 

the Nummulites tests remain easily reworked and might be more easily fragmented during  

high-energy events or by bioturbating organisms. 

The peculiar hydrodynamic behaviour of Nummulites tests can explain the diversity of the 

depositional models. Bottom and wave currents may induce the formation of in-situ 

winnowed bioaccumulations or newly deposited facies by offshore or onshore spreading, far 

form the original biocoenosis. These depositional processes determine the volume (thickness 

and aerial distribution) and the primary porosity and permeability of the Nummulites 

accumulations, that , in turn, may influence the diagenetic processes and, consequently 

control the final petrophysical properties of the Nummulites reservoir bodies. 
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Figure captions 

 

Table 1. Shape parameters (Dl, Di, Ds : large, intermediate, small diameter), density, settling 

velocity measured on Nummulites. Critical critical shear velocities (U*
c) have been 

computed by using the equations of Le Roux (2001) with the shape parameters and 

density as input for U*
cs and the measured settling velocity as input for U*

cw. Calculation 

of equivalent quartz grain diameter shows that a Nummulites-rich deposit behave like 

coarse sands (1.1 mm) to fine gravels (5.0 mm). 

 

Figure 1. Geographic distribution of the Eocene Nummulites carbonate deposits (modified 

from Racey, 2001). 

 

Figure 2. Comparison between different facies models proposed for interpreting the 

Nummulites accumulations. 

 

Figure 3. Internal structure of fossil Nummulites tests. 

 a: Illustration of the microporous test of Nummulites laevigatus (after Carpenter, 1850). 

 b, c: SEM microphotographs of the microporous walls of silicified Nummulites sp. (Figols 

Formation, Spain). 

 d: SEM microphotograph of a polished slab through two successive Nummulites turns, 

showing that the tubular holes (here filled with calcite) are connected between the turns. 

 

Figure 4. Quantification of the intraskeletal porosity (chambers and walls) of Nummulites 

gizehensis. Porosity values were obtained on numerous sections of Nummulites using 

image analysis (thin sections and SEM) and X-ray microtomography. 

 

Figure 5. Relationship between the intraskeletal porosity and the apparent density of 

Nummulites. The grey area represents the estimated range of porosity and the 

corresponding apparent density. 

 

Figure 6. Correspondence between threshold shear velocities, computed from size parameters 

and density (U*
cs), and threshold shear velocities derived from measured settling velocities 

(U*
cw) using the algorithm developed by Le Roux (1997). r: correlation coefficient. 
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Figure 7a. Relation between the apparent density of Nummulites of different sizes and 

computed threshold shear velocity. Gray area points out that a 2 cm B-Form 

Nummulites, which intraskeletal porosity (ranging from 47.5 to 62.9%) is filled with 

seawater, can be transported when the threshold shear velocity reaches 3.3 cm/s. 

 

Figure 7b. Relation between the water depth and the predicted bottom wave shear velocities 

for different wave heights and wave periods. The grey line indicates that the same large 

B-form Nummulites (2 cm in diameter, filled with seawater) can be removed down to 50 

m deep during storm conditions. If the intraskeletal porous network is filled with gas, 

they can be removed down to 60 m deep. 

 

Figure 8. Nummulites of different sizes may have the same hydrodynamic behaviour 

depending on their density. They will be gathered by current action and will form an 

heterometric grain assemblage. 

 

Figure 9. Predepositional fringes of marine cement in present day foraminifera collected in 

loose surficial sediments and comparison with those observed in fossil Nummulites. 

a: Quinqueloculina ? sp., Holocene washover deposit from the laguna of Zarzis, Tunisia 

b: Ammonia sp., Holocene loose superficial sediment from the laguna of Zarzis (2 m of 

water depth), Tunisia 

c: Nummulites gizehensis, Middle Eocene of Libya (NE Cyrenaica) 

d: Nummulites sp., Lower Eocene of Central Tunisia (Kesra Plateau) 

 

Figure 10. Synthetic facies model showing the diversity of Nummulites palaeoenvironments, 

according to the transport by currents. 
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(Nummulites grainstones)

after Racey et al., 2001
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The Nummulites bank is developed on the outer
platform margin, forming a convex-up topography.
This body separates a restricted environment where
back-bank facies are deposited, and more open-
marine settings (forebank Operculina-rich facies).

Large and robust Nummulites are preferentially
accumulated on the anticlines, contributing to the
edif ication of a convex-up topography. Small
Nummulites deposition is still active along the sub-
littoral zone as well as in deeper environment.

Nummulites facies are deposited on a gentle ramp,
between the fair-weather and the storm wave base.
The formation of a low-relief Nummulites bank is
induced by storm waves action. Nummulithoclast
d e p o s i t s a re e xp o r t e d t o wa rd t h e b a s in .
Discocyc l ina f ac ies are p laced beh ind the
Nummulites.

Two distinct depositional environments are pro-
posed in this model. Nummulites deposition takes
place in shallow water-depth, forming Nummulites
shoals. The reworking of these shallow sediments
leads to Nummulites-rich sediment transportation
d o wn d ip t h e p la t f o rm , f o rm in g lo w- re l i e f
Nummulites-bank.

Nummul i tes deposi ts are concentra ted on
palaeohighs, and nummulithoclast-rich facies are
accumulated within intra-shelf depression and/or
within the basin. Nummulites deposits are generally
found in sub-littoral large-scale dunes, which have
sometimes locally emerged.

The facies distribution is based on the model of
A rn i . The nummul i te bank fac ies shows a
monospecific assemblage of large and robust
nummulite (N. perforatus). As Nemkov, the foramini-
fers with large and flattened test are characteristic
of the fore-bank facies.

Nummulites deposition takes place on a complex
shallow ramp where marginal marine conditions are
prevailing. Nummulites bars are preferentially devel-
oped in front of coralgal reef facies, with increased
off-bank transport.

Nummulites were deposited on a relatively unstable
platform affected by syn-sedimentary tectonism.
Three major lithofacies are recognized in bank,
back-bank and fore-bank environments. The
authors noted a sub-aerial exposure at the top of
the last Nummulites bank sequence.

The Nummulites bank facies consists of coarse-
grained sediments, poor in muddy matrix, located
near the SWB. The fore-bank deposits are charac-
terized by the abundance of Nummulites debris.
The successive storm events create the stacking of
Nummulites bank deposits.

The Nummulites bank facies are developed on tec-
tonic highs, adjacent to intra-shelf basin or
embayments. Positive structural features associat-
ed with halokinetic movements may also be suffi-
cient to act as nucleation points for Nummulites
bank development.

(FWB: Fair-weather Wave Base; SWB: Storm Wave Base)

Localities Synthetic Facies Models Comments
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chamber porosity:
30 to 42% wall microporosity: 25 to 36%
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Samples Sexual 
Generation 

Nummulites measured 
settling 
velocity 

U*cs 
computed 

U*cw 
computed equivalent 

quartz grain 
diameter shape and size 

parameters density from Dl, Di,Ds from Wm 

Dl Di (mm) DS (mm) s (g/cm3) Wm  (cm/s) and s (cm/s) (cm/s) (mm) 

SJ10 B-Form 25.2 4.8 2.33 28.2 7.8 3.9 2.9 

SJ11 B-Form 28.3 7.4 2.28 40.3 8.5 5.1 5.0 

SJ12 B-Form 29.1 6.5 2.51 32.4 9.2 4.4 3.7 

SJ14 B-Form 30.7 6.6 2.58 35.6 9.6 4.7 4.2 

SJ15 B-Form 32.2 6.9 2.58 33.7 9.8 4.5 3.9 

SJ18 B-Form 25.8 4.5 2.31 25.1 7.7 3.6 2.5 

SJ19 B-Form 26.8 5.6 2.47 32.3 8.6 4.4 3.7 

SJ21 B-Form 31.5 6.6 2.40 31.2 9.1 4.2 3.4 

SJ22 B-Form 26.3 3.6 2.45 23.4 7.9 3.4 2.2 

SJ23 B-Form 27.7 5.6 2.42 28.2 8.5 3.9 2.9 

SJ24 B-Form 22 4.4 2.58 27.6 8.0 3.9 2.9 

SJ25 B-Form 21.1 5.3 2.42 27.0 7.7 3.8 2.8 

SJ26 A-Form 11.6 4.8 2.31 31.9 6.0 4.3 3.5 

SJ27 B-Form 21.5 4 2.39 28.8 7.4 4.0 3.1 

SJ28 A-Form 10.5 3.1 2.19 23.1 5.1 3.3 2.1 

SJ29 A-Form 12.2 4.4 2.38 22.8 6.2 3.3 2.1 

SJ30 A-Form 8.1 4 1.95 26.2 4.4 3.6 2.5 

SJ31 A-Form 7 3.6 2.32 23.9 4.8 3.5 2.3 

SJ32 A-Form 6.6 2.9 1.99 25.5 3.9 3.6 2.5 

SJ33 A-Form 6.8 2.7 1.48 19.9 2.7 2.8 1.5 

SJ34 A-Form 7 2.4 1.48 19.6 2.7 2.7 1.4 

N3b B-Form 20.3 3.3 2.28 20.2 6.7 3.0 1.8 

SJ710 B-Form 24.7 4.7 2.19 24.1 7.3 3.4 2.2 

SJ724-2 B-Form 30.4 5.5 2.37 27.0 8.7 3.8 2.8 

N2a B-Form 20.6 4.2 2.01 19.7 6.2 2.9 1.6 

N2b B-Form 16.5 2.9 2.05 19.4 5.5 2.9 1.6 

SJ668 B-Form 20.8 6.6 2.24 30.5 7.5 4.1 3.2 

SJ724-1 B-Form 21.7 5.5 2.61 27.1 8.4 3.9 2.9 

SJ10 A-Form 12.6 3.7 2.57 26.2 6.5 3.8 2.8 

SJ7 A-Form 5.1 2.52 2.57 21.7 4.5 3.2 2.0 

SJ3 A-Form 5.2 1.9 2.03 15.3 3.5 2.3 1.1 

SJ5 A-Form 5 2 1.80 15.8 3.0 2.4 1.2 

SJ6 A-Form 5 2.4 2.54 20.2 4.4 3.0 1.8 
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