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Abstract:  
 

 
In aquaculture, particularly in bivalve hatcheries, the biochemical composition of algal diets has a 
strong influence on larval and post-larval development. Biochemical composition is known to be 
related to culture conditions, among which light represents a major source of variation. The effects of 
blue light on biochemical composition and photosynthetic rate of Isochrysis sp. (T-iso) CCAP 927/14 
were assessed in chemostat at a single irradiance (300 μmol photons m−2 s−1) and compared with 
white light. Two different dilution (renewal) rates were also tested: 0.7 and 0.2 d−1. Relative 
carbohydrate content was lower under blue light than under white light at both dilution rates, whereas 
chlorophyll a and photosynthesis activity were higher. In contrast, carbon quota was lower and protein 
content higher under blue light than under white light, but only at 0.7 d−1. Despite these metabolic 
differences, cell productivity was not significantly affected by the spectrum. However, the nitrogen to 
carbon ratio and photosynthetic activity were higher at 0.7 d−1 than at 0.2 d−1, while carbon quota and 
carbohydrate content were lower. Our results show that blue light may influence microalgal 
metabolism without reducing productivity for a given growth rate, a result that should be of great 
interest for microalgal production in aquaculture. 
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1. Introduction 
 
The applications of microalgae have expanded and diversified in recent years. As these 
organisms have found uses in a broad range of fields, such as healthcare, cosmetics, 
environmental management, energy production and aquaculture, microalgal metabolic 
orientation has become a major concern for the scientific community and industry. Indeed, by 
the manipulation of metabolic pathways through the modulation of environmental factors or 
genetic engineering, cellular functions can be redirected toward the synthesis of desired end-
products and expand the processing capabilities of microalgae (Rosenberg et al., 2008). In 
aquaculture, a supply of live microalgae is essential for growth and survival of aquatic 
species of commercial interest. Cultured shellfish larvae require microalgae in the form of 
multi-species diets (O' Connor and Heasman, 1997; Rico-Villa et al., 2006), but qualitative 
specifications of their needs are still lacking. This complicates the task of choosing the 
appropriate proportions of different microalgal species, and a further level of complexity is 
introduced by variation in nutritional values between cultures of the same species. Many 
environmental factors affect the metabolism of cultured microalgae and, thus, their nutritional 
qualities: temperature (Berges et al., 2002; Chen et al., 2008), nutriment source (Fabregas et 
al., 1986) and concentration in the medium (Fabregas et al., 1985; Durmaz, 2007), and 
irradiance (Falkowski et al., 1985; Sukenik and Wahnon, 1991; Anning et al., 2000).  
Most studies on the effects of light have focused exclusively on the influence of irradiance, 
although it has been shown that algal metabolism and gr owth can be also affected by 
spectrum (Gostan et al., 1986; Wynne and Rhee, 1986; Rivkin, 1989). Furthermore, 
spectrum quality is known to influence biochemical composition, pigment content and 
photosynthesis rate of various species (Voskresenskaya, 1972; Humphrey, 1983; Sanchez-
Saavedra and Voltolina, 1996). More specifically, when compared with red or white light, blue 
light radiation induces a higher production of amino acids and lower carbohydrate content 
(Wynne and Rhee, 1986; Sanchez-Saavedra and Voltolina, 2006).  
In our approach for light effects, the experimental design must avoid any confounding effects 
between light spectrum distribution and any other factor, particularly irradiance itself. 
Adequately controlled conditions would be nearly impossible to achieve in batch cultures, 
where irradiance, ambient nutrient concentration and growth rate continuously vary with time. 
While most of the previous studies were conducted in batch cultures, here we propose to 
assess the effect of the light spectrum distribution under continuous-flow cultures where the 
growth conditions can be more readily and independently controlled. Specifically, chemostat 
cultures of Isochrysis sp. (T-iso) were used to compare the influence of blue and white light 
on the biochemical composition, photosynthetic activity and growth performances of this 
microalga at two different dilution (renewal) rates. T-iso is a small Prymnesiophyceae (4-6 
µm) commonly used in shellfish hatcheries (Borowitzka, 1997; Brown, 2002), where it is often 
used as part of a mixed diet with other microalgae such as Chaetoceros sp. 
 

2. Materials and methods 
 

2.1. Culture of microalgae 

The effects of blue light on biochemical composition and photosynthesis of Isochrysis sp. (T-
iso) CCAP 927/14 in continuous culture was determined using two 3.5-L photobioreactors 
(PBR). These PBR were made of two transparent Polymethylmetacrylate (PMMA) columns 
(60 mm diameter) connected by two flanges (for design reference, see the single module in 
Loubiere et al. (2009)).  
Inocula were pre-acclimated to the experimental spectra for 5 day s at 25°C in 2-L glass-
flasks containing 1.5 L natural 0.22-µm filtered seawater enriched with 1 mL L-1 Conway 
medium (Walne, 1966). Inocula were continuously aerated and maintained under constant 
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irradiance from white (OSRAM FQ54W/965HO cool daylight) or blue (OSRAM FQ54W/67HO 
blue) fluorescent tubes at 100 µmol photons m-2 s-1.  
PBRs were sterilized with 5‰ peroxyacetic solution for 20 min before use and then filled with 
pre-acclimated cultures at 106 cell mL-1 in Conway-enriched sea water (3 mL L-1, in order to 
prevent nutrient limitation). One culture was conducted for each dilution and light condition. 
Cultures were thermoregulated at 26±1°C by air conditioning and pH was maintained by 
automated CO2 injections at 7.2±0.1 with a pH measurement loop (electrode Inpro 
4800/225/PT1000, Mettler Toledo and HPT 63, LTH electronics LTD). Light was continuously 
delivered by six dimmable fluorescent tubes (blue or white ; for reference, see above), which 
incident irradiance was set at 300 µmol photons m-2 s-1 using a dimming device. This amount 
of irradiance was selected on the basis of  the results of  Marchetti et al. (2012) who reported 
that, under 300 µmol photons m-2 s-1, growth rate was more than 90% of maximal growth rate 
and that no photoinhibition occurred. Irradiance and s pectral distribution (Figure 1) were 
measured outside the PBR, between columns and at middle height of the PBR, using a 
spherical quantum sensor (LI-250 light meter, LI-COR, 3 m m diameter) and a 
spectroradiometer (USB 200+, Ocean Optic Inc, equipped with a L2 collection lens ; detector 
range : 200-1000 nm), respectively. Additionally, attenuation was checked for PMMA for both 
light sources and did not notably modify the emission spectrum. PBR illuminated with white 
daylight was considered as a control, while PBR illuminated with blue light was the 
experimental PBR. In order to evaluate the effect of dilution rate on metabolism under the 
two light conditions, two dilution rates (0.7 d-1 or 0.2 d-1) were applied with a dosing pump 
(KNF stepdos), for both light conditions and checked daily by weighing the harvested 
volume. 
Cellular concentration was assessed daily by two methods (cell counts and light absorbance 
measurements) to provide accurate growth monitoring and establish steady state reliably. 
Cell counting was performed by image analysis (IPS 32, Unilog and microscope Diaplan, 
307-148001, Leitz; 3CCD color vision camera module, Donpisha) with Malassez slides and 
Lugol staining solution. To evaluate chlorophyll a (chl a) content and cellular concentration, 
absorbances were measured at 680 and 800 nm, respectively (µQuant spectrophotometer, 
Bio-tek instruments. Inc). Cultures were assumed to be at steady state when the cellular 
concentration and absorbances were stable for at least three consecutive days with less than 
10% variation. Once at steady state, cultures were sampled daily for biochemical analyses 
for 3 consecutive days, at least.  

 

2.2. Productivity 

For each dilution rate (D), 0.2 and 0.7 d-1, cellular productivity (Pc) was calculated at steady 
state according to equation 1.  
Pc = X.D equation 1 

Where X is the steady-state cell concentration (cell mL-1) measured by image analysis. 
 

2.3. Total carbon and nitrogen 

At steady state, approximately 100 106 cells were filtered through pre-combusted Whatman 
GF/C glass filters and dried at 70°C for 48 h. Particulate nitrogen (QN) and carbon (QC) were 
determined by elemental analysis (EAGER 300, Thermo Scientific, CHN analyzer) and QN 
and QC were computed on the basis of the mean cell concentration at steady state (X). 
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2.4. Total chlorophyll a 

Chlorophyll a (Chl a) was determined using 150 106 cells previously filtered on a GF/C pre-
combusted (450°C) glass-filter. Filter was introduced in a 15mL–tube with 10 mL 90% 
acetone. Then, filter was grinded and sample was further kept 24 hours in dark at 4°C for 
complete pigment extraction. Quantification was performed following the Lorenzen (1967) 
spectrophotometric method.  
 

2.5. Photosynthetic activity 

Photosynthetic activity was measured at steady state using a DW3 Oxylab unit (Hansatech, 
UK) fitted with a C lark electrode disc and a 36 red LED array LH36/2R (λ=660 nm). After 
electrode calibration, nitrogen was flushed for 1 min into the sample to lower oxygen 
concentration to 50% of saturation. Oxygen production was measured in 1.3 mL of sample (5 
106 cells mL-1) mixed with 0.055 mL of a 144 mmol L-1 NaHCO3 solution. Then, 20 min-
light/10 min-dark cycles were applied, with different levels of irradiance (I) ranging from 0 to 
361 µmol photons m-2 s-1 within the sample. 
To evaluate photosynthetic activity (P) and to take photoinhibition into account, experimental 
data were fitted with a Haldane model, as modified by Papacek et al. (2010) (equation 2).  

RKIIK
IPP d

iS
m −

++
×= 2

 
equation 2 

where Pm is the maximal photosynthetic capacity (µmol O2 chl a-1 h-1), Ki the inhibition 
constant (µmol photons m-2 s-1), Ks the half-saturation constant (µmol photons m-2 s-1) and Rd

 

the dark respiration, expressed as an oxygen consumption (µmol O2 chl a-1 h-1). 
Light-saturated photosynthetic rate Pmax (µmol O2 chl a-1 h-1), initial slope of the P-I curve at 
limiting irradiance α (µmol O2 chl a-1 h-1 (µmol photons m-2 s-1)-1), light saturation index Ik 
(µmol photons m-2 s-1), light saturation irradiance Is, and compensation irradiance Ic were 
then calculated according to equations 3 to 7 (Papacek et al., 2010).  
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2.6. Total carbohydrates 

At steady state, 60 106 cells were sampled and carbohydrate content was analyzed 
according to the sulfuric acid colorimetric method (Dubois et al., 1956), based on 
phenolphthalein absorbance at 490 nm.  
 



5 
 

2.7. Total proteins 

Protein extraction was more complex than expected due to T-iso pigment content. A new 
method for protein evaluation was therefore used, based on the protocol of Barbarino and 
Lourenço (2005), whereby samples (60 106 cells) were first centrifuged at 2,500 g for 20 min 
(5°C) to remove the culture medium and then stored at -20°C.  
To collect total cellular protein content, cells had to be broken: 0.5 mL ultra-pure water and 
up to 2% SDS were added to each defrosted sample, which was then sonicated for 10 min in 
an iced bath. After a 10-min centrifugation step at 15,000 g (5°C), the proteins in the 
supernatant were collected and stored at 4°C for 12 h.  
Proteins were then precipitated by the addition of 100% acetone (2.5:1, v:v), sonicated for 30 
min in an iced bath, and collected following re-centrifugation and elimination of the 
supernatant. The proteins were then rinsed with 70% acetone (2.5:1, v:v) and centrifuged for 
2 min at 15,000 g (5°C) followed by supernatant elimination. The proteins were finally 
solubilized in 0.5 mL of ultra-pure water. 
Solubilized proteins were quantified with a BCA protein assay kit (Pierce) based on alkaline 
copper colorimetric quantification at 562 nm (Lowry et al., 1951).  
 

2.8. Total lipids  

Samples of 300 106 cells were filtered through 450°C pre-combusted GF/C glass-filters 
(Whatman, diameter 47 mm). Lipids were extracted with 6 mL chloroform-methanol mix (2:1 
v/v), following Folch et al. (1957), and stored at -20°C under nitrogen. The Bligh and Dyer 
protocol (1959) was used, in which, dichloromethane and ethanol were replaced by 
chloroform and methanol, respectively, in the same solvent-mixing proportions. Hence, 1 mL 
CHCl3 and 0.9 mL water were added to 1 m L of Folch extract. After centrifugation, the 
organic phase was recovered. The water/methanol phase was rinsed twice with 1 mL CHCl3 
in order to collect the residual organic phases, which were then added to the previous one. 
The whole collected organic phase was then totally dried under nitrogen flow and stored in a 
desiccator for 24-48 h. Lipids were weighed to 0.01 mg precision. 
 

2.9. Statistical analysis 

Following an examination of homogeneity of variance and normal distribution, a multi-factor   
analysis of variance (5% significance level) was used to assess effects of light quality (white 
and blue) and dilution rate (D = 0.2 and 0.7 d-1) treatments, as well as interactions. Then, a 
Fisher’s least significant difference (LSD) procedure was run to determine which of the 
experimental conditions were significantly different. To compare chlorophyll a content and 
biochemical composition on per-carbon and per-cell bases, linear least square regressions 
were performed with Statgraphics centurion XV software. The same procedure was used for 
comparison of photosynthesis normalized to chlorophyll a, carbon or cells. The correlation 
coefficient, p-value and number of observations were calculated for each regression 
analysis. 
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3. Results 
 

As shown in Figure 2, cell concentration mean was significantly affected (Table 1) by dilution 
rate D and was 1.5 fold lower at 0.7 d-1 than at 0.2 d-1 (32 vs 48 106 cell mL-1). In contrast, 
light quality did not significantly influence cell concentration (Table 1). 
This difference in cell concentration resulted in a 2.5-fold increase in productivity at 0.7 d-1 
compared with 0.2 d-1 (data not shown: 22 vs 10 109 cell L-1 d-1). Indeed, despite the lower 
cell concentration, productivity was higher at 0.7 d-1 because of the increased volume 
collected.  In contrast, productivity remained unaffected by light spectrum. 
 
Cellular carbon quota QC was significantly enhanced at high D (0.7 d-1), as shown in Figure 
3a. Thus, QC was 508 fmol C cell-1 and 673 fmol C cell-1 for 0.2 and 0.7 d-1, respectively, 
under white light, while it was 507 fmol C cell-1 and 563 fmol C cell-1 under blue light. 
Additionally a significant interaction was found between spectrum and dilution resulting in QC 
significantly lower under blue light than under white light at 0.7 d-1 (Table 1).  
Nitrogen cell quota QN (Figure 3b) was significantly enhanced at 0.7 d-1 (32 fmol N cell-1 at 
0.2 d-1 and 80 fmol N cell-1 at 0.7 d-1) but remained unaffected by light quality (Table 1: 
p>0.05). Conversely, when nitrogen quota was expressed per carbon unit (qN) (Figure 3c), 
the same significant effect was recorded for D (0.063 mol N mol C-1 at 0.2 d-1 and twice as 
much at 0.7 d-1) as well as a significant effect for light quality (Table 1) under the high dilution 
rate, as a c onsequence of carbon quota enhancement under the same conditions. A 
significant interaction demonstrated that spectrum induced differences for qN were 
significantly increased under the high dilution rate . 

 

Chlorophyll a per  carbon unit (chl a:C) was significantly lower under blue light than under 
white light (Figure 4a). Again, a significant interaction (Table 1)  was found for Chl a:C : 
indeed, Chl a:C was only 60% of the value obtained under white light at 0.2 d-1 and this 
difference was reduced at 0.7 d-1. In contrast, when normalized to a per-cell basis (Figure 
4b), chlorophyll a was significantly affected by light quality only.  

 

Regardless of the calculation basis (carbon, cell or chlorophyll a), the same overall trends 
were recorded for photosynthesis. Therefore, only the chlorophyll a-normalized results are 
discussed hereafter.  
In general, photosynthetic activity increased with D, though the difference was more marked 
for cultures grown under blue light (Figure 5).  
Datasets of photosynthesis on irradiance were fitted with the Haldane model (equation 2) 
and the resulting parameters are given in Table 2. Rd, Pmax and α increased with D while Ic 
decreased by a factor of 3. Increase in dilution rate resulted in striking enhancements in Pmax 
and α, which were more than 10 fold and 3.8 fold higher, respectively, at 0.7 d-1 compared 
with 0.2 d-1.  
Only Rd and Pmax were significantly affected by light quality, while other parameters were not 
modified. We recorded a significant interaction for Pmax , reflecting that Pmax was more 
sensitive to D under blue light. Besides, photoinhibition was more pronounced under blue 
light (Figure 5) and this was confirmed by the low Ki recorded under blue light at 0.7 d-1 
(Table 2).  

 

Biochemical composition is presented both on a per-cell basis (pg cell-1) and on a per-carbon 
basis (pg pg C-1) in Table 3. A significant linear correlation was found between the two 
calculation basis used for the biochemical composition (lipids: p<0.05, r=0.65, n=12; 
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carbohydrates: p<0.01, r=0.92, n=12; proteins: p<0.01, r=0.89 and n=12); therefore, all 
subsequent analyses are presented on a per-carbon basis only. 
Carbohydrate content was significantly affected by D (Table 3), being reduced by more than 
40 % at high D (0.7 d-1) under both blue (from 0.85 to 0.47 g gC-1) and white light (from 1.08 
to 0.64 g gC-1). Light quality also significantly influenced carbohydrate content, since it was 
depressed under blue light for both dilution rates (from 1.08 to 0.85 g g C-1 at D=0.2 d-1 and 
from 0.64 to 0.47 g g C-1 at D=0.7 d-1). No significant interaction was found for carbohydrate. 
This reflected that light spectrum and dilution rate acted independently on carbohydrate 
content. 
When expressed on a per carbon basis, protein content was not significantly affected by D, 
while a s ignificant difference was recorded for protein content per cell (Table 3). This 
discrepancy may result from higher SD for protein on a per carbon basis. Protein content on 
a per carbon basis was significantly affected by light spectrum, being higher under blue light. 
A significant interaction was also found for protein on a per carbon basis, resulting in higher 
protein content under high D and blue light. 
Finally, neither D nor light quality had a significant effect on lipid content (Table 3).  

Thus, relative carbohydrate content (percentage of the total proximate composition) 
decreased strongly with D. This resulted in a 6% increase in relative lipid content for both 
light qualities. A 10% increase in relative protein content was recorded under blue light, while 
the increase was only 2% under white light (Figure 6). 
In summary, protein was the least abundant biochemical component in T-iso (roughly 20%) 
under all conditions. For the high dilution rate under blue light (Table 3, and Figure 6), protein 
content increased to 34% of the total proximate composition, whereas carbohydrate content 
decreased to 22%. 
 

4. Discussion 
 
In the present study, potential changes of biochemical composition and photosynthetic 
activity of T-iso were investigated at steady state under different qualities of light (blue or 
white) and at two dilution rates (0.2 and 0.7 d-1). The effects of the two factors and their 
interactions are discussed hereafter. Indeed interaction between spectrum and dilution rate 
were significant for the maximum photosynthetic rate as well as for most carbon based 
quotas. It is stressed, however, that the interactions resulted in different response intensities 
but not in reversal trends. 
 

4.1. Growth performances 

Under both light spectra, productivity increased with D. Since productivity depends on algal 
species and light attenuation, i.e., geometry of PBR (Fernandes et al. 2010), and particularly 
surface to volume ratio (Yongmanitchai and Ward, 1991), it was difficult to compare our 
results with most earlier studies because these had been done on other species. However, 
Loubière et al. (2009), who carried out their experiments with T-iso in a similar PBR, reported 
a hyperbolic function for volumetric productivity according to D under daylight, with an 
optimal value close to 0.84 d-1 (column diameter D=0.06 m). Our results are therefore 
consistent with those of Loubière et al. (2009) as we found productivity to be an increasing 
function of D, the higher volume collected compensating for the lower cell concentration in 
the range we investigated.  
In contrast, cellular concentration and productivity did not vary significantly with spectrum 
quality at steady state. Biomass production was therefore unaffected by the use of blue light, 
as already reported for a number of different diatoms (Wallen and Geen, 1971; Gostan et al., 
1986; Aidar et al., 1994; Mercado et al., 2004), Tetraselmis gracilis (Aidar et al., 1994) and 
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Dunaliella tertiolecta (Wallen and Geen, 1971). Although these studies were carried out in 
batch culture where light changed continuously during growth, preventing rigorous light 
measurement, similar biomasses were produced under blue and white light. 

 
4.2. Proximate composition 
 
In the following, carbon and nitrogen quota are discussed through qN, the nitrogen quota on a 
per-carbon basis. The range of variation we found for qN  was consistent with previous results 
recorded for Isochrysis galbana, where qN ranged from 0.10 to 0.08 mole N mole C-1 in batch 
cultures (Fidalgo et al., 1998).  
In the present study, qN increased with D, slightly more under blue light than under white light  
(0.06 at 0.2 d-1 for both spectra and 0.12 and 0.15 at 0.7 d-1 under white and blue light, 
respectively). These  trends were difficult to compare with other studies, since most that dealt 
with qN concerned nutrient-limited (Chalup and Laws, 1990; Elrifi and Turpin, 1985; 
Sakshaug et al., 1989; Terry, 1980; Terry et al., 1985). Increase for qN resulted from the 
differential increase in QN and QC. Indeed, we recorded that QC also increased with D, mainly 
under white light. This result has already been reported by Laws and Bannister (1980) for 
Thalassiosira fluviatilis under light limitation, where a linear relationship was found. We can 
assume that, since cultures were light-limited in the present study, increase in D  (i.e. 
increase in light availability) resulted in higher C fixation rate, and higher QC. This assumption 
was further confirmed by increased Pmax under high D. It is unclear why increase in QC was 
lower under blue light, as highlighted by the significant interaction (Table 1), although Pmax 
was higher. The apparent discrepancy could be solved assuming that stocked Carbon was 
utilized to support the higher metabolic rate under blue light, as suggested by the lower 
carbohydrate content. 
Changes in qN were consistent with the biochemical alteration we recorded. Under white 
light, qN increased with D, while the relative amount of carbohydrate, the main energy 
storage material in T-iso (Sukenik and Wahnon, 1991), decreased with D. Similarly, qN 
increased with D under blue light and was closely related to protein enhancement and a 
concomitant reduction in carbohydrate, whereas lipids were unchanged. These results are in 
agreement with observations reported elsewhere for higher plants (Voskresenskaya, 1972), 
macroalgae (Korbee et al., 2005), diatoms (Gostan et al., 1986; Sanchez-Saavedra and 
Voltolina, 1994) and other marine phytoplanktonic species (Wynne and Rhee, 1986; Rivkin, 
1989). Decrease in carbohydrate content  under blue light was already reported by Sanchez-
Saavedra and Voltolina (1994) for Chaetoceros sp. Besides, Rivkin (1989) observed in 
Dunaliella tertiolecta and Thalassiosira rotula, that blue light allows higher photosynthetic 
carbon incorporation into protein than white light. According to Zhou et al. (2009), the protein 
increase under blue light could be related to the enhancement of the light collection system, 
i.e., the structural protein of PSII (Miyachi et al., 1978). However, this phenomenon has not 
been conclusively demonstrated and must be treated with caution.  
The changes in proximate composition we recorded here agree with earlier studies 
performed in semi-continuous cultures at different D (Chrismadha and Borowitzka, 1994 ; 
Fabregas et al., 1996 ; Otero et al., 1997 ), although light-limited cultures have rarely been 
used to measure the effect of D on biochemical composition. Other studies using light-limited 
cultures reported conflicting results on the influence of irradiance on biochemical composition 
of different microalgae: carbohydrate content strongly increased with irradiance in 
Chaetoceros protuberans (Gostan et al., 1986; Rivkin, 1989), but decreased in Thalassiosira 
rotula and Dunaliella tertiolecta (Rivkin 1989); in T-iso, protein content could be negatively 
affected by irradiance (Rivkin, 1989) or not at all (Sukenik et al., 1990). However, these 
differing modifications in biochemical composition in relation to irradiance could be 
interpreted as being due to (1) species-dependent photo-acclimation, as already 
demonstrated by (Falkowski et al., 1985; Dubinsky and Stambler, 2009)), and/or (2) the 
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different bases used for computation of the biochemical composition (per C, per cell or as a 
percentage of dry weight).  
 

4.3. Photosynthesis activity 
 
In the opposite way to qN, a decreasing chla:C ratio was observed under white light when D 
was higher, i.e., with increasing light availability, as it has already been reported by other 
authors (Laws and Bannister, 1980; Rivkin, 1989 ; Anning et al., 2000; Dubinsky and 
Stambler, 2009). Indeed, under low irradiance, the light collection apparatus (mainly chla:C) 
is enhanced, as previously reported in Phaeodactylum tricornutum and Skeletonema 
costatum (Beardall and Morris, 1976; Anning et al., 2000). However, no significant change 
could be recorded for chla:C under blue light. This difference between the effects of the two 
light spectra was already reported for Thalassiosira rotula and Dunaliella tertiolecta by Rivkin 
(1989), who recorded a smaller difference in chla:C ratio in relation to light availability under 
blue light than under white light. In the present work, we found that chl a content (per cell and 
per C) was higher under white light than under blue light, which contrasts with some previous 
studies (Wynne and Rhee, 1986; Rivkin, 1989 ; Sanchez-Saavedra and Voltolina, 1994 ; 
Mercado et al., 2004). However, Aidar et al. (1994) reported that blue light resulted in 
chlorophyll a decrease in Tetraselmis gracilis, while it remained constant in Thalassiosira 
gravida and Phaeodactylum tricornutum (Holdsworth (1985). As far as we know, there is no 
consensus on chl a content behaviour among microalgal species with respect to their 
potential for chromatic adaptation. 
Results associated to PI curves demonstrated that under high D, the irradiance amount used 
in our experiment was photoinhibiting. It is unclear why photoinhibition occurred here for 
irradiance higher than 150 µmol photons m-2 s-1, since previous study demonstrated that 
photoinhibition did not occur for irradiance as high as 300 µmol photons m-2 s-1 (Marchetti et 
al., 2012). However, direct comparison between these two experiments suffers from 
methodological differences (such as different light spectra, long-term turbidostat  v ersus 
short-term photosynthesis experiments) that may give rise to inconsistencies. Nevertheless, 
from the results reported here, we may assume that reducing irradiance to 150 µmol photons 
m-2 s-1 would increase productivity as well as protein content. Indeed, Terry et al (1983) 
reported that photoinhibiting conditions decreased synthesis rate for protein in  
 
4.4. Phaeodactylum tricornutum 
 
Photosynthetic activity increased with D, revealing a higher carbon fixation rate at higher 
dilution. Photosynthetic parameters showed different trends with D. First, Pmax was enhanced 
at high D, as previously reported for Skeletonema costatum (Anning et al., 2000). Since light 
availability and D are closely related in light-limited chemostat, this result is consistent with 
the report by (Dubinsky and Stambler, 2009) that Pmax increases under bright light in 
correlation with the decreasing quantity of photosynthetic units. 
On the other hand, we recorded a negative correlation between chl a specific photosynthesis 
efficiency (α) and chla:C. Increase in α was due to variation in both Ic and Rd. Indeed, Ic 
decrease with increasing D was concomitant with Rd enhancement. The sensitivity of Rd to 
D has already been shown in several studies, with a positive correlation between Rd and D at 
steady state for light-limited cultures (Laws and Bannister, 1980; Falkowski et al., 1985; 
Anning et al., 2000). The increase of Rd and the parallel decrease in carbohydrate content is 
thus consistent with the use of carbohydrate as energy to support high growth rates. 
A general enhancement in photosynthetic activity was recorded when microalgae were 
exposed to the blue spectrum. The highest Pmax was recorded under blue light, as already 
reported for some other marine microalgae (Wallen and Geen, 1971; Humphrey, 1983; Vogel 
and Sager, 1985), indicating that cultures grown under blue light were more 
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photosynthetically active at saturating irradiance. According to Voskresenskaya (1972), this 
might result from activation of photosynthetic electron transfer chain reactions and a high 
activity of ribulose-1,5-diphosphate carboxylase (Rubisco). Indeed, the increase in Rubisco 
synthesis under blue light has already been shown in plants and microorganisms (Senger, 
1982), but also in green algae (Roscher and Zetsche, 1986) where the light promoter effect 
was confirmed for wavelengths ranging from 430 to 510 nm and the maximal effect was at 
460 nm. Blue light also increased the amount of mRNA for the large and small subunits of 
this enzyme (Roscher and Zetsche, 1986) and nitrate-reductase activity (Figueroa et al., 
1995), explaining the higher protein and nitrogen quota reported here.  
In the literature, modeling of the P on I curve often relies on the Michaelis-Menten model, 
where the initial slope α  is computed from the ratio of Pmax to Ik  (Aidar et al., 1994; Anning et 
al., 2000; Dubinsky and Stambler, 2009). Using this modeling approach, computation of 
α from our data set resulted in higher α under blue relative to white light, as already reported 
in Scenedesmus obliqus (Brinkmann and Senger, 1978), Prorocentrum mariae lebouriae 
(Vogel and Sager, 1985), Dunaliella tertiolecta and Cyclotella nana (Wallen and Geen, 
1971). Conversely, use of the Haldane model (equation 2) did not reveal any significant 
effect of spectrum on α. According to equation 6, this result is in contradiction with the 
constancy of Ic and the increase in Rd under blue light. However, it should be stressed that α 
increased significantly in blue light at 0.7 d-1 (Table 2). Hence, the lack of an overall 
significant effect of spectrum on α might reflect the strongly reduced photosynthetic activity at 
0.2 d-1 and the resulting lack of precision in α assessment. An increased number of 
observations in the subsaturating region would have circumvented this issue.  
Thus, in the present study, Pmax and α were enhanced by blue light at 0.7 d-1 while Ik was not 
affected, showing the “Ik-independent” variability of the P vs I curve for T-iso (Behrenfeld et 
al., 2004). Physiological bases of this phenomenon are poorly known but appear to result 
from growth-rate-dependent variability in the metabolic processing of photosynthetically 
generated reducing agents (Behrenfeld et al., 2004). Blue light also enhanced Rd under blue 
light, as previously reported for Scenedesmus obliquus (Brinkmann and Senger, 1978), 
Rhodomonas salina (Hammer et al., 2002) or Dunaliella tertiolecta and Thalassiosira rotula 
(Rivkin, 1989), confirming a higher rate of carbohydrate degradation in blue light. 
In summary, blue light resulted in an enhancement of photosynthetic activity as well as an 
alteration in carbon metabolism in close relation with an increase in protein synthesis. Newly-
synthesized proteins that allow high growth rate and favour photosynthetic structures could 
be involved in enzyme production (Senger, 1982; Mercado et al., 2004).  
 

4.5. Implications for mollusk feeding 
 
In spite of numerous studies on mollusk requirements, optimal biochemical composition of 
microalgae required for improving mollusks rearing is still unclear (Brown et al., 1989; Knauer 
et al., 1999). However, requirement of mollusk larvae for proteins seems to be higher relative 
to that required by adults. In addition, protein-enriched microalgae  (30-60% of cell weight) 
seem to meet requirement for larvae (Brown et al., 1989; Utting, 1986). Therefore, we 
assume that protein increase in T-iso, resulting from a high D under blue light, will be 
appropriate for feeding mollusks, especially larvae. In order to increase rearing performance, 
aquaculturist faces two possibilities : first, a high cell concentration with a low protein content 
and, second, a lower cell concentration but protein-enriched. It was previously shown that 
larval ingestion rate was an hyperbolic function of the phytoplankton density, with a 
maximum ingestion rate of 50 103 cells larvae-1 d-1 for a density of 25 phytopklankton cells 
mL-1 (Rico-Villa et al., 2009). Hence, we may assume that the maximum density of protein-
enriched cells, should favour larval rearing. Further experiments on larvae remain to be 
carried out in order to test this assumption. 
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Conclusions 
 
The effects of light quality and dilution rate on the biochemical composition of T-iso were 
assessed at steady state. Spectrum quality did not alter T-iso productivity, but resulted in 
metabolic changes. Indeed, under blue light, chlorophyll a-specific photosynthetic activity and 
respiration were enhanced, resulting in higher carbon fixation rates, with photosynthates 
preferentially incorporated into proteins. Protein synthesis was consequently enhanced at the 
expense of carbon storage compounds.  
Growing T-iso at high D resulted in enhanced productivity, with biomass containing more 

protein and less carbohydrate than at low D.  

Different combinations of light quality and D resulted could lead to a 3-fold increase in the 
carbohydrate to protein ratio. This large change in biochemical composition could be a 
starting point for future studies aiming to examine the nutritional needs of mollusks, since the 
nutritional value of microalgae is a key point for larval development and survival (Brown et 
al., 1993) . 
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Figures 
 

Figure 1 

Figure 1 White and blue light spectra of the fluorescent sources used during the experiment. 
Blue light (solid line) showed higher photon counts in the range 420-500 nm, while white  
light source (dashed line) mainly emitted radiation below 580 nm. 
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Figure 2 

Figure 2 Cell concentration as a f unction of dilution rate D (0.2 or 0.7 d-1) and spectrum 
quality. White bars :  white light ; grey bars : blue light. 
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Figure 3 

Figure 3 Cellular carbon quota QC  (a), cellular nitrogen quota QN  (b) and nitrogen quota per 
carbon qN (c) as a function of D (0.7 or 0.2 d-1) and spectrum quality. White bars :  white light 
; grey bars : blue light. Values with the same letter are not significantly different (p>0.05).  
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Figure 4 

Figure 4 Chlorophyll a content expressed on a per-carbon basis (a) or on a per-cell basis (b) 
as a function of D (0.7 or 0.2 d-1) and spectrum quality (white or blue). White bars :  white 
light ; grey bars : blue light. Values with the same letter are not significantly different 
(p>0.05). 
 

0

0.01

0.02

0.03

0.2 0.7
D  (d-1)

C
hl

 a
:C

 (
g 

g-1
) a

b b

c

a

 

0

0.05

0.1

0.15

0.2

0.2 0.7
D (d-1)

C
hl

a 
(p

g 
ce

ll-1
)

a

b
b

a

b

 
 



16 
 

Figure 5 

Figure 5 Photosynthetic activity (μmol O2 mg chl a-1 h-1) for the four conditions as a function 
of irradiance. Data points and error bars represent mean values and standard errors of three 
independent replicates. Solid and dotted lines represent the fitting of the Haldane model 
(equation 3) to experimental data for blue and white light, respectively. 
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Figure 6 

 

Figure 6 Relative gross biochemical composition of T-iso as a function of D (0.2 or 0.7 d-1) 
and spectrum quality (blue or white). Dark grey : lipids ; light grey : carbohydrates ; white : 
proteins. 
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Tables 
 

Table 1 Multifactor ANOVA for cell concentration, cellular quota and chlorophyll a content. 
Probabilities (p) are given for α=0.05; numbers in bold type denote a significant effect of the 
corresponding factor. 
 
  X QC QN N :C Chl a:C 
D (d-1) p (α=0.05) 0.0000 0.0001 0.0000 0.0000 0.0143 
Spectrum p (α=0.05) 0.7043 0.0051 0.9271 0.0041 0.0001 
Interaction p (α=0.05) 0.0830 0.0057 0.1855 0.00432 0.0157 
 

Table 2 Estimated parameters (Ks, Ki, Rd and Pm) from Haldane modeling for the four 
experimental conditions. Pmax, α, Ek, Is and Ic were computed according to equations 14 to 
18. Standard deviations are presented in brackets. A multifactor ANOVA analysis provided 
the probabilities (p) for α = 0.05. Numbers in bold type denote a significant effect for the 
corresponding factor. 
 
D (d-1) Spectrum Ks Ki Rd Pm Pmax α Ik Is Ic 

0.2 
B 16 (15) 62132 

(5069) 
27 (2) 49 (17) 12 (6) 1.4 (0.6) 58 (21) 211 (88) 21 (8) 

W 11 (5) 13172 (692) 13 (3) 23 (1) 6 (4) 1.1 (0.9) 49 (32) 120 (56) 19 (14) 

0.7 
B 74 (37) 279 (97) 36 (4) 422 

(136) 
163 (14) 5.4 (0.7) 88 (40) 135 (5) 7 (1) 

W 45 (17) 8192 (781) 29 (6) 204 (31) 100 (2) 4.2 (0.9) 59 (17) 164 (39) 7(1) 
Multifactor ANOVA          

D (d-1) p(α = 0.05) 0.0061 0.0634 0.0009 0.0001 0.0000 0.0001 0.2716 0.6474 0.0239 
Spectrum p(α = 0.05) 0.2036 0.1827 0.0022 0.0171 0.0001 0.1313 0.2914 0.3601 0.8709 
Interaction p(α = 0.05) 0.3518 0.1063 0.2311 0.0454 0.0002 0.3339 0.5486 0.1017 0.8500 
1 µmol photons m-2 s-1; 2 µmol O2. mg chl a-1 h-1 ; 3 µmol O2 mg chl a-1 h-1 (µmol photons m-2 s-1) 
2 high values for Ki indicate that no photoinhibition occured. In these cases a Monod model would advantageously 
replace the Haldane formulation 

 

Table 3 Gross composition of T-iso as a function of dilution rate (0.2 and 0.7 d-1) and light 
spectral quality (blue, B, and white, W). Results are expressed on a per-cell and a per-
carbon basis and standard deviations given in brackets. Numbers in bold type denote a 
significant effect for the corresponding factor. 
 

    pg cell-1  pg pg C-1 
D (d-1) Spectrum Lipids Carbohyd. Proteins  Lipids Carbohyd. Proteins 

0.2 

B 
5.19 (0.30) 5.16 (0.57) 3.25 (0.14)  0.85 (0.05) 0.85 (0.11) 

0.53 
(0.04) 

W 
5.81 (0.50) 6.58 (0.17) 2.86 (0.13)  0.95 (0.07) 1.08 (0.06) 

0.47 
(0.03) 

0.7 

B 
6.26 (1.30) 3.19 (0.33) 4.81 (0.40)  0.92 (0.14) 0.47 (0.03) 

0.72 
(0.10) 

W 
6.74 (1.28) 5.15 (0.40) 3.23 (0.47)  0.83 (0.16) 0.64 (0.06) 

0.40 
(0.06) 

Multifactor ANOVA               
D (d-1) p (α=0.05) 0.1066 0.0001 0.0020  0.7243 0.0000 0.2132 
Spectrum p (α=0.05) 0.3509 0.0001 0.0017  0.9323 0.0017 0.0014 
Interaction p (α=0.05) 0.9073 0.3041 0.0240  0.2023 0.4772 0.0134 
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