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[1] Ashmore Trough in the western Gulf of Papua (GoP) represents an outstanding modern
example of a tropical mixed siliciclastic-carbonate depositional system where significant
masses of both river-borne silicates and bank-derived neritic carbonates accumulate. In this
study, we examine how benthic foraminiferal populations within Ashmore Trough vary in
response to sea level–driven paleoenvironmental changes, particularly organic matter and
sediment supply. Two 11.3-m-long piston cores and a trigger core were collected from the
slope of Ashmore Trough and dated using radiocarbon and oxygen isotope measurements of
planktic foraminifera. Relative abundances, principal component analyses, and cluster
analyses of benthic foraminiferal assemblages in sediment samples identify three distinct
assemblages whose proportions changed over time. Assemblage 1, with high abundances of
Uvigerina peregrina and Bolivina robusta, dominated between �83 and 70 ka (early
regression); assemblage 2, with high abundances ofGlobocassidulina subglobosa, dominated
between �70 and 11 ka (late regression through lowstand and early transgression); and
assemblage 3, with high abundances of neritic benthic species such as Planorbulina
mediterranensis, dominated from �11 ka to the present (late transgression through early
highstand). Assemblage 1 represents heightened organic carbon flux or lowered bottom water
oxygen concentration, and corresponds to a time of maximum siliciclastic fluxes to the slope
with falling sea level. Assemblage 2 reflects lowered organic carbon flux or elevated bottom
water oxygen concentration, and corresponds to an interval of lowered siliciclastic fluxes
to the slope due to sediment bypass during sea level lowstand. Assemblage 3 signals increased
off-shelf delivery of neritic carbonates, likely when carbonate productivity on the outer shelf
(Great Barrier Reef) increased significantly when it was reflooded. Benthic foraminiferal
assemblages in the sediment sink (slopes of Ashmore Trough) likely respond to the amount
and type of sediment supplied from the proximal source (outer GoP shelf).
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1. Introduction

[2] The greater Gulf of Papua (GoP) region (Figure 1)
extends over �100,000 km2 between southern Papua New

Guinea (PNG), northeast Australia and the Coral Sea. The
region has been selected as one of two focus areas for the
MARGINS Source-to-Sink (S2S) Initiative because of its
semienclosed nature, low-latitude location, relatively undis-
turbed environment, and significant siliciclastic and carbon-
ate sediment sources [National Science Foundation, 2003].
Several major rivers, most notably the Fly, drain into the
GoP on the northwest coast, delivering some 200 to 300
megatonnes per year of siliciclastic sediment to the inner
shelf [Harris et al., 1993; Milliman, 1995]. At present day,
currents preferentially transport this fluvially derived sedi-
ment along the shelf in a clockwise manner [Wolanski and
Alongi, 1995; Wolanski et al., 1995], leaving much of the
middle and outer GoP shelf southwest of the Fly River
devoid of Holocene siliciclastic sediment [Harris et al.,
1996]. In the southwest GoP, the Great Barrier Reef (GBR)
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on the middle to outer shelf and several atoll systems on
isolated offshore platforms produce substantial amounts of
carbonate material [e.g., Harris et al., 1993; Jorrey et al.,
2008; Francis et al., 2006]. Both siliciclastic and neritic
carbonate sediments escape the shelf and platforms to
adjacent slopes and basins of the GoP, although at different
rates depending on location [Brunskill et al., 1995; Walsh
and Nittrouer, 2003; Jorry et al., 2008]. Crucially, the
amounts and types of sediment reaching the slope have
varied significantly over time in response to environmental
changes, particularly sea level [Jorry et al., 2008; Francis et
al., 2006].
[3] A primary goal of the MARGINS S2S NSF program

is to quantify how variations in sediment production,
transport, and accumulation are preserved in the stratigraph-
ic record [National Science Foundation, 2003]. Fossils of

foraminifera are important components of the stratigraphic
record, being widely utilized to reconstruct paleoenviron-
mental conditions, including water depth, temperature,
salinity, dissolved oxygen, and organic carbon supply
[e.g., Murray, 1991; Sen Gupta, 1999a; Culver and Buzas,
2000]. Along continental margins, changes in sea level can
greatly alter environmental conditions at the seafloor and in
the water column, significantly influencing foraminiferal
communities [e.g., Murray, 1991; Leckie and Olson, 2003,
and references therein]. However, few studies have exam-
ined foraminiferal communities along the slopes of tropical
mixed siliciclastic-carbonate margins, common depositional
environments both today and in the past. Evaluating sedi-
ment accumulation, including foraminiferal assemblages, in
recent sediments (e.g., late Pleistocene to Holocene) where
the timing and magnitude of sea level change are relatively

Figure 1. Bathymetric map of the Gulf of Papua showing the location of the two cores used in this
study, MV-74 and MV-07/06, as well as Core MD05-2949 (MD-49) used in chronostratigraphic control
of cores MV-74 and MV-07/06. Abbreviations used are GoP (Gulf of Papua), PNG (Papua New Guinea),
Aust (Australia), and Fly (Fly River). Contours are 500 m on regional inset map of GoP. Figure is from
Francis et al. [2006].
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well constrained and high-resolution chronostratigraphy can
be established using a combination of absolute dating
techniques [e.g., Chappell, 2002; Lambeck et al., 2002] is
critical for interpreting ancient mixed depositional settings.
[4] Ashmore Trough in the western GoP (Figure 1)

represents an outstanding modern example of a tropical
mixed siliciclastic-carbonate system. Recent studies dem-
onstrate that siliciclastic and carbonate fluxes to Ashmore
Trough varied considerably during the late Quaternary in
response to sea level [Francis et al., 2006]. Consequently,
this area provides an intriguing location to test the sensi-
tivity of the benthic foraminiferal assemblages to paleo-
environmental changes in a poorly studied but relatively
common depositional setting. In this work, we examine
benthic foraminiferal assemblages in two well-dated sedi-
ment cores from slopes of Ashmore Trough. Additionally,
we determine sedimentary fluxes of organic carbon, typical-
ly a limiting factor for benthic organisms living in the deep
ocean [e.g., Gooday, 1988; Jorissen et al., 1995; Thomas
and Gooday, 1996; Schmiedl et al., 1997; Jorissen, 1999;
Kaiho, 1999; Loubere and Fariduddin, 1999]. These results
provide better understanding of late Pleistocene to Holocene
sediment accumulation and paleoenvironmental change in
Ashmore Trough. Here we demonstrate that benthic forami-
niferal assemblages provide an important proxy record of
sea level-forced changes in sediment and organic carbon
fluxes. Our results complement earlier studies of foraminif-
eral response to organic matter availability and additionally,
provide the added dimension of fluctuating inputs of silici-
clastic and carbonate platform sediments as sea level fell
and subsequently rose during the last glacioeustatic cycle.

2. Study Area and Oceanographic Setting

2.1. Ashmore Trough

[5] Ashmore Trough is the smallest and westernmost
basin in the GoP, representing an upper slope environment
with maximum depths of �800 m (Figure 1). The PNG
continental shelf lies to the north, where the shelf-slope
break varies between �110 and 130 m. Ashmore Trough is

bounded by extensive reef systems of the GBR to the west
and Ashmore and Boot Atolls to the east. The barrier along
the GBR and the rims of the offshore atolls have aggraded
almost to sea level, whereas the depths of the surrounding
shelf and lagoons average 50-60 m. The little amount of
siliciclastic sediment (10 to 20% [Muhammad et al., 2008])
presently entering Ashmore Trough through the water
column probably comes from the north, while neritic
carbonates are sourced from the reef systems to the west
and east.

2.2. Modern Oceanography

[6] Surface waters of the GoP lie within the latitudinal
band of tropical waters characterized by relatively high
temperatures of 25�–29�C. The surface waters of the outer
shelf and GoP basin are generally well mixed to a depth of
�100 m and typically express normal marine salinities of
�34.5–35.5% (Figure 2) [Pickard et al., 1977; Wolanski et
al., 1995]. These waters are predominately brought into the
GoP by the westward flowing South Equatorial Current
(SEC), producing overall convergence in the region [Wyrtki,
1960; Pickard et al., 1977]. Surface circulation in the GoP is
dominated by a clockwise gyre generated under the influence
the Coral Sea Coastal Current [Wolanski et al., 1995].
[7] Two subsurface water masses are recognized in the

GoP, Subtropical Lower Water (SLW) and Antarctic Inter-
mediate Water (AAIW). SLW has a core depth between 100
and 250 m and contains maximum salinities (�35.5–
36.0%) and minimum dissolved oxygen concentrations
(�3.0 mL/L) [Wyrtki, 1962; Pickard et al., 1977; Wolanski
et al., 1995]. Below SLW, there is a transitional zone and
AAIW, which forms the ‘‘bottom’’ water in the region.
AAIW has a core depth of �650 to 1150 m and contains
minimum salinities (�34.4–34.5%) and maximum dis-
solved oxygen concentrations (�4.0 mL/L) [Wyrtki, 1962;
Pickard et al., 1977; Wolanski et al., 1995].

2.3. Sea Level Change and Past Sediment Fluxes

[8] The last glacial cycle (�130 ka to the present) was a
time of large climate fluctuations and high-amplitude eu-

Figure 2. Schematic representation of temperature, salinity, and dissolved oxygen profiles in the Gulf of
Papua shown with modern water masses, after Wyrtki [1962], Pickard et al. [1977], and Wolanski et al.
[1995]. MV-74 and MV-07/06 are indicated at their modern water depths.
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static sea level changes (Figure 3), which undoubtedly
impacted carbonate and siliciclastic deposition in Ashmore
Trough. Along margins with tropical reef systems, neritic
carbonate fluxes to adjacent slopes are generally highest
during late transgressions and highstands [e.g., Droxler,
1984; Droxler and Schlager, 1985; Handford and Loucks,
1993; Schlager et al., 1994]. This is clearly the case along
the northeast Australian margin south of the study area
[Dunbar et al., 2000; Page et al., 2003], as well as within
Ashmore Trough [Francis et al., 2006] and Pandora Trough
[Jorry et al., 2008]. Past siliciclastic accumulation on slopes
and basins adjacent to tropical reef systems is not so
straightforward. Often, it has been suggested that siliciclas-
tic accumulation is highest during lowstands, which may be
the case in some locations [Handford and Loucks, 1993;
Schlager et al., 1994]. However, south of Ashmore Trough
and for at least the last glacioeustatic cycle, siliciclastic
fluxes to slopes east of the GBR were at a minimum during
lowstand and at a maximum during late transgression
[Dunbar et al., 2000; Page et al., 2003]. Our work in

Ashmore Trough suggests a somewhat different response:
low siliciclastic fluxes during lowstand, highest siliciclastic
fluxes during early sea level regression, and high siliciclas-
tic fluxes during late transgression [Francis et al., 2006].
Possible causes for this siliciclastic response to sea level are
discussed elsewhere [Dunbar et al., 2000; Page et al., 2003;
Harris et al., 2005; Francis et al., 2006] and below.
[9] Following Lambeck et al. [2002], we categorize

various stages of sea level over the past 130 ka as follows
(Figure 3). The interval between �130 and 115 ka is the last
interglacial highstand, when sea level is mostly within 20 m
of, or slightly higher than, present day. The interval between
�115 and 71 ka corresponds to early regression, when sea
level oscillated between �20 and 50 m below modern sea
level. The interval between �71 and 30 ka represents late
regression, when sea level was between �50 and 75 m
below present day. Eustatic sea level was at lowstand
between �30 and 14 ka, which included the Last Glacial
Maximum (LGM, 25–19 ka), when sea level reached
�120 m below present-day levels and never exceeded

Figure 3. Eustatic sea level curve for the last glacial cycle [Lambeck et al., 2002], the stacked record
of benthic foraminifera oxygen isotopes [Lisiecki and Raymo, 2005], and the Globigerinoides ruber
oxygen isotope records from Ashmore Trough (this study). The chronology for MV-74 and MV-07/06
is based on correlation with oxygen isotope excursions (open triangles) and calibrated radiocarbon ages
(open circles). Additional chronostratigraphic control, including the ages of the base of MV-74 and
MV-07/06, is provided by comparison with the planktic oxygen isotope record of a 36.5 m core taken
in Ashmore Trough, MD05-2949 (MD-49, shown on far right). Data obtained from MV-06 are
indicated in gray.
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Table 1. The d18O Values of the Planktic Foraminifer Globiger-

inoides ruber (250- to 300-mm-Size Fraction) and Total Organic

Contents and Mass Accumulation Rates for MV-74, MV-06, and

MV-07a

Sample Depth, cm d18O, % TOC, weight% TOC MAR, g/cm2ka

MV-74
0–2 �2.52 0.450 0.056
10–12 �2.58 - -
20–22 �2.60 0.330 0.048
30–32 �2.73 - -
40–42 �2.57 0.250 0.038
50–52 �2.51 - -
60–62 �2.61 0.230 0.035
70–72 �2.44 - -
80–82 �2.51 0.270 0.042
90–92 �2.27 - -
100–102 �2.43 0.350 0.090
110–112 �2.30 - -
120–122 �2.41 0.490 0.099
125–127 �2.06 - -
130–132 �2.46 0.480 0.097
135–137 �2.05 - -
140–142 �2.36 0.790 0.184
145–147 �2.05 - -
150–152 �2.30 0.770 0.053
155–157 �1.58 - -
160–162 �1.39 0.450 0.035
165–167 �1.66 - -
170–172 �1.59 0.230 0.009
180–182 �1.39 0.200 0.007
190–192 �1.15 - -
200–202 �1.81 0.220 0.005
210–212 �1.88 - -
215–217 �1.73 - -
220–222 �1.79 0.230 0.005
225–227 �1.54 - -
230–232 �1.73 - -
235–237 �1.19 - -
240–242 �1.61 0.280 0.003
245–247 �1.37 - -
250–252 �1.82 - -
255–257 �1.57 - -
260–262 �1.69 0.380 0.007
265–267 �1.40 - -
270–272 �1.44 - -
280–282 �1.85 0.620 0.314
290–292 �2.06 - -
300–302 �2.07 0.720 0.413
310–312 �1.85 - -
320–322 �1.85 0.610 0.350
330–332 �1.69 - -
340–342 �2.26 0.680 0.379
350–352 �2.08 - -
360–362 �2.10 - -
370–372 �1.75 - -
380–382 �2.10 - -
390–392 �2.01 0.610 0.361
400–402 �2.21 - -
410–412 �1.86 - -
420–422 �2.15 - -
430–432 � - -
440–442 �2.30 0.540 0.319
450–452 �2.17 - -
460–462 �1.98 - -
470-472 �2.19 - -
480–482 �2.29 - -
490–492 �2.27 0.560 0.322
500–502 �2.13 - -
510–512 �2.19 - -
520–522 �2.14 - -
530–532 �1.81 - -
540–542 �1.99 0.580 0.333
550–552 �1.71 - -
560–562 �2.03 - -

Table 1. (continued)

Sample Depth, cm d18O, % TOC, weight% TOC MAR, g/cm2ka

570–572 �1.73 - -
580–582 �1.79 - -
590–592 �1.63 0.610 0.350
600–602 �2.05 - -
610–612 �1.72 - -
620–622 �1.85 - -
630–632 �1.70 - -
640–642 �1.82 0.510 0.300
650–652 �1.57 - -
660–662 �1.96 - -
670–672 �1.71 - -
680–682 �1.87 - -
690–692 �1.49 0.550 0.320
700–702 �1.76 - -
710–712 �1.72 - -
720–722 �1.67 - -
730–732 �1.69 - -
740–742 �1.99 0.510 0.293
750–752 �2.00 - -
760–762 �1.86 - -
770–772 �1.79 - -
780–782 �1.79 - -
790–792 �1.66 0.450 0.270
800–802 �1.75 - -
810–812 �1.94 - -
820–822 �1.83 - -
830–832 �1.82 - -
840–842 �2.16 0.560 0.343
850-852 �1.98 - -
860–862 �2.03 - -
870–872 �2.09 - -
880–882 �2.08 - -
890–892 �1.95 0.380 0.240
900–902 �1.87 - -
910–912 �1.90 - -
920–922 �1.88 - -
930–932 �2.08 - -
940–942 �1.86 0.290 0.189
950–952 �1.94 - -
960–962 �1.93 - -
970–972 �1.96 - -
980–982 �1.99 - –
990–992 �2.10 0.260 0.171
1000-1002 �1.96 - -
1010–1012 �2.15 - -
1020–1022 �2.14 - -
1030–1032 �2.09 - -
1040–1042 �2.12 0.480 0.331
1050–1052 �1.97 - -
1060–1062 �2.18 - -
1070–1072 �2.03 - -
1080–1082 �2.08 - -
1090–1092 �2.07 0.470 0.305
1100–1102 �2.07 - -
1110–1112 �2.13 - -
1120–1122 �2.08 - -
1130–1132 �2.06 1.050 0.267

MV-06
0–2 �2.64 0.340 0.019
10–12 �2.58 0.260 0.017
20–22 �2.41 0.250 0.019
30–32 �2.53 0.230 0.017
40–42 �2.53 0.190 0.014
50–52 �2.40 0.380 0.027
60–62 –2.26 0.500 0.033
70�72 –2.21 0.620 0.044
80�82 –2.25 0.620 0.043
90�92 –1.80 0.370 0.026
100�102 –1.78 0.300 0.011
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75 m below modern sea level. The LGM is followed by a
relatively rapid, though punctuated, sea level transgression,
which culminates in the present sea level highstand by
�6 ka.

3. Samples and Methods

3.1. Sediment Cores

[10] Two piston cores, MV24-0403-74JPC (MV-74) and
MV26-0403-07JPC (MV-07), and one trigger gravity core,
MV24-0403-06GC (MV-06), from southern Ashmore
Trough were examined in this study (Figure 1). All three
cores were taken during the PANASH cruise of RV Mel-
ville in March and April, 2004. MV-74 was retrieved in
684 m water depth from the steep upper slope (10.73�S,
144.08�E) 8 km east of the Great Barrier Reef. MV-07 and
MV-06 were retrieved in 773 m water depth at the same
location (10.44�S, 144.31�E), about 35 km to the northeast
of MV-74 and at about mid distance (30 km) between the
GBR and the southern tip of Ashmore Reef. Both piston
cores are 11.3 m long, while the gravity core is 2.6 m long.
The cores consist of varying amounts of siliciclastic

Table 1. (continued)

Sample Depth, cm d18O, % TOC, weight% TOC MAR, g/cm2ka

MV-07
10–102 �1.71 - -
20–22 �1.10 0.240 0.007
30–32 �0.87 0.290 0.021
40–42 �1.26 0.210 0.017
50–52 �1.33 0.260 0.007
60–62 �1.26 0.320 0.009
70–72 �1.55 0.340 0.009
80–82 �1.44 0.390 0.011
90–92 �1.59 0.370 0.008
100–102 �1.57 0.390 0.009
110–112 �1.65 0.440 0.010
120–122 �1.51 0.390 0.007
130–132 �1.61 0.350 0.007
140–142 �1.63 0.330 0.007
150–152 �1.79 - -
160–162 �1.63 - -
170–172 �1.75 - -
180–182 �1.71 - -
190-192 �1.63 - -
200–202 �1.42 0.390 0.030
210–212 �1.33 - -
220–222 �1.26 0.340 0.021
230–232 �1.30 - -
240–242 �1.37 0.380 0.024
250–252 �1.34 - -
260–262 �1.44 0.400 0.024
270–272 �1.53 - -
280–282 �1.87 0.370 0.023
290–292 �1.29 0.530 0.123
300–302 �1.65 - -
310–312 �1.82 - -
320–322 �2.00 - -
330–332 �1.90 0.530 0.116
340–342 �2.05 - -
350–352 �1.95 - -
360–362 �2.27 - -
370–372 �1.95 - -
380–382 �2.15 - -
390–392 �1.88 0.450 0.096
400–402 �1.99 - -
410–412 �1.84 - -
420–422 �1.58 - -
430–432 �1.81 - -
440–442 �1.90 0.450 0.114
450–452 �1.82 - -
460–462 �1.80 - -
470–472 �1.86 - -
480–482 �1.68 - -
490–492 �1.82 0.320 0.082
500–502 �1.96 - -
510–512 �1.95 - -
520–522 �1.93 - -
530–532 �1.90 - -
540–542 �2.07 0.340 0.070
550–552 �2.04 - -
560–562 �1.91 - -
570–572 �1.84 - -
580–582 �1.74 - -
590–592 �1.86 0.260 0.071
600–602 �2.16 - -
610–612 �2.18 - -
620–622 �1.96 - -
630–632 �1.94 - -
640–642 �2.05 0.430 0.190
650–652 �2.08 - -
660–662 �1.89 - -
670–672 �2.06 - -
680–682 �2.23 - -
690–692 �1.99 0.360 0.131
700–702 �2.16 - -
710–712 �1.94 - -
720–722 �2.14 - -

Table 1. (continued)

Sample Depth, cm d18O, % TOC, weight% TOC MAR, g/cm2ka

730–732 �1.82 - -
740–742 �2.03 0.410 0.176
750–752 �1.89 - -
760–762 �1.86 - -
770–772 �1.95 - -
780–782 �2.04 - -
790–792 �2.30 0.440 0.190
800–802 �2.20 - -
810–812 �2.10 - -
820–822 �1.92 - -
830–832 �1.89 - -
840–842 �1.65 0.360 0.135
850–852 �2.06 - -
860–862 �1.85 - -
870–872 �2.01 - -
880–882 �2.09 - -
890–892 �1.90 0.370 0.171
900–902 �1.88 - -
910–912 �1.96 - -
920–922 �2.11 - -
930–932 �2.00 - -
940–942 �2.01 0.400 0.181
950–952 �2.21 - -
960–962 �1.91 - -
970–972 �2.17 - -
980–982 �1.92 - -
990–992 �2.22 0.430 0.163
1000–1002 �2.11 - -
1010–1012 �2.06 - -
1020–1022 �1.88 - -
1030–1032 �1.97 - -
1040–1042 �1.89 0.370 0.164
1050–1052 �2.17 - -
1060–1062 �1.92 - -
1070–1072 �1.92 - -
1080–1082 �2.22 - -
1090–1092 �1.76 0.330 0.148
1100–1102 �1.50 - -
1110–1112 �1.88 - -
1120–1122 �1.85 - -
1126–1128 �1.80 0.290 0.039

aIsotope values are reported in delta notation relative to V-PDB.
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material and pelagic and neritic carbonate [Francis et al.,
2006].

3.2. Sampling and Processing

[11] All whole cores were run through a GeoTek Sensor
Core Logger at Louisiana State University to obtain phys-
ical properties data (e.g., fractional porosity, impedance,
magnetic susceptibility, density P wave velocity, P wave
amplitude). They were then split and sampled at 10-cm
intervals. Bulk samples were freeze dried to remove pore
water. Small portions of dried bulk samples were crushed
with mortar and pestle, and reserved for certain analyses
(e.g., organic carbon content). The remaining dried samples
were weighed, placed in a solution of buffered hydrogen
peroxide to remove organic matter, and sonicated to disag-
gregate grains (especially small calcite or calcareous ooze
particles adhering to foraminiferal tests). All samples were
then wet sieved over a 63-mm mesh sieve to separate coarse
(>63 mm) and fine (<63 mm) components, and dried
overnight in an oven at approximately 60�C. The coarse
component was weighed and its mass was subtracted from
the mass of the bulk sample to determine the percentage of
coarse and fine components. Subsamples of the coarse
component, obtained by dry sieving the sediment over
various sieve sizes (e.g., 150 mm, 250 mm, and 300 mm),
were examined using a Leica MZ6 stereomicroscope and
used to extract foraminifera.

3.3. Oxygen Isotope and Radiocarbon Analyses

[12] Between four and eight specimens of the planktic
foraminifer Globigerinoides ruber (white) were picked from
the 250- to 300-mm-size fraction of every sample for
isotopic analyses. Specimens with obvious indications of
dissolution (e.g., partial tests and/or holes in tests) and
secondary calcification were rejected. Stable oxygen and
carbon isotope analyses were performed at the University of
California, Davis using a GV Instruments Optima mass
spectrometer. Isotope values are reported in delta notation
relative to V-PDB (Table 1), and have an analytical preci-
sion of ±0.05% for d18O and ±0.0% for d13C (D. Winter,
personal communication, 2006).
[13] Accelerator mass spectrometry (AMS) radiocarbon

analysis was performed on five sediment samples from each

of the MV-74 and MV-07/06 cores. Approximately 8 to
12 mg of mixed planktic foraminifers (Globigerinoides
ruber and Globigerinoides sacculifer, representing �500
to 600 tests) were picked from the >150-mm fraction using a
binocular microscope. The foraminifer batches were soni-
cated in deionized water, and excess water and suspended
particles were removed by pipette. Specimens with obvious
dissolution features and secondary calcite were rejected.
Analyses were performed at the University of California,
Irvine AMS facility. Ages are reported as conventional 14C
years before present and as corrected calendar years (Table 2).
Corrected ages account for marine reservoir effects using
CALIB 5.0.2 [Stuiver and Reimer, 1993], and secular varia-
tions in 14C using an online calibration program [Fairbanks
et al., 2005].

3.4. Total Organic Carbon Analyses

[14] Total organic carbon (TOC) contents (wt%) were
determined on �0.8-g samples of crushed bulk sediment
taken every 10 to 50 cm down all three cores (Table 1). The
sampling interval was varied because the stratigraphy indi-
cates major changes in sedimentation rate, and we wanted to
obtain a sufficient number of representative samples across
variations in time and lithologies. Analyses were performed
using a LECO C230 TOC Analyzer at Baseline Resolution
Analytical Laboratories, Houston, Texas, with analytical
precision of 0.01 wt%.

3.5. Foraminiferal Assemblages

[15] A microsplitter was used to obtain subsamples from
the >150-mm-size fraction of selected samples. These sub-
samples were distributed across a gridded tray from which
approximately 300 benthic tests were picked from random
squares and identified under a binocular microscope. Key
benthic taxa were identified to species level, while remain-
ing taxa were divided into genera or distinct groups
(Appendix A). The abundance (percent of population) of
various species and groups were determined relative to the
benthic population. Additionally, the abundance of benthic
and planktic tests was determined relative to the total
foraminiferal populations. Samples used for foraminiferal
population analyses were chosen to represent the full
ranges of eustatic sea level, siliciclastic and carbonate
fluxes, and organic carbon contents. Although at fairly
low sample resolution, foraminiferal population analyses
presented here clearly change in concert with variations in
these parameters.

3.6. Statistical Analysis

[16] The relative abundance data of benthic foraminifera
were analyzed by R-mode (species versus species) principal
component analysis (PCA) and Q-mode (sample versus
sample) cluster analysis. Only key species, those that
accounted for >2% of the population in at least one sample,
were used (Appendix A). Multivariate analyses were per-
formed using SAS 9.1 procedures (SAS Institute Inc., SAS
OnlineDoc 9.1, 2003, available at http://support.sas.com/
91doc/docMainpage.jsp) (hereinafter referred to as SAS
Institute online documentation).
[17] The goals of the two statistical methods differ. PCA

determines correlated variables (components) that account
for as much data variance as possible [Harman, 1976] and is

Table 2. Conventional and Corrected 14C Years Before Presenta

Sample Depth, cm 14C Ag, BP Corrected 14C Age, Cal years BP

MV-06
10–12 1680 ± 25 1278 ± 20
80–82 9265 ± 20 10080 ± 89

MV-07
10–12 11295 ± 25 12865 ± 78
50–52 26710 ± 140 21412 ± 32
120–122 39300 ± 360 43291 ± 445

MV-74
10–12 2215 ± 20 1819 ± 31
100–102 8095 ± 25 8534 ± 33
150–152 9825 ± 25 10719 ± 36
165–167 11005 ± 25 12632 ± 35
235–237 37420 ± 270 42001 ± 175

aCorrected ages account for marine reservoir effects using CALIB 5.0.2
[Stuiver and Reimer, 1993], and secular variations in 14C using an online
calibration program [Fairbanks et al., 2005].
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particularly well suited for R-mode analyses [Parker and
Arnold, 1999]. Significant components were identified by
evaluation of the eigenvalue scores for each component
[Parker and Arnold, 1999]. By contrast, cluster analysis
separates data into groups that are relatively homogenous
and distinct from other groups [Davis, 1986]. Several
cluster procedures were employed, including Ward’s min-
imum variance method, unweighted paired group method
with arithmetic averaging (UPGMA or average linkage),
and weighted paired group method (WPGMA or cen-
troid). For each set of analyses, very similar results were
obtained using the three clustering methods. It is as-
sumed, therefore, that clusters are true representations of
the data rather than artifacts of clustering procedures.
Significant clusters were identified on the basis of cluster

dendrograms and pseudo-t2 statistics (SAS Institute online
documentation).

4. Results

4.1. Sediment Composition

[18] Cores used in this study (MV-74 and MV-07/06)
consist of hemipelagic ooze and mud comprising siliciclas-
tic material and pelagic and neritic carbonate. The coarse
fraction (>63 mm) varies between 1 and 44% of the total
sediment, and is dominated by pelagic carbonate (primarily
planktic foraminifers and pteropods) with various amounts
of benthic microfossils (benthic foraminifers, ostracods),
echinoderm fragments, and sponge spicules. Siliciclastic
material is minimal in the coarse fraction but abundant in
the fine fraction (<63 mm), especially in samples from lower

Figure 4. Linear sedimentation rates (LSRs), total organic carbon (TOC) content, and TOC Mass
accumulation rates (MARs) shown with oxygen isotope records and MIS boundaries for (a) MV-74 and
(b) MV-07/06.
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depth intervals of the cores. Carbonate content in the fine
fraction can be as high as 90% and as low as 5% [Francis et
al., 2006]. Carbonate material in the fine fraction includes
aragonite, high magnesium calcite, and low magnesium
calcite. In general, the abundance of aragonite and high
magnesium calcite is greatest in the upper 0.5 to 1.5 m
[Francis et al., 2006].

4.2. Chronostratigraphy

[19] Chronologies for the two piston cores were estab-
lished using the planktic foraminiferal oxygen isotope values
(Table 1) and the corrected radiocarbon ages (Table 2).
Prominent down core excursions in d18O from MV-74
and MV-07/06 were correlated to those of a well-dated
stacked benthic oxygen isotope curve [Lisiecki and Raymo,
2005], as well as the planktic oxygen isotope record of a
36.5-m core that represents a full glacial cycle (or the last
�140 ka) taken in Ashmore Trough, MD05-2949 [Jorry
et al., 2008]. The oxygen isotope record for MV-07
demonstrates that sediment deposited between �12.9 ka
and the present is missing. Therefore a more complete
oxygen isotope record for this location was obtained using
samples from MV-06 (trigger core for the coring operation
of piston core MV-07) and splicing the component records
together. Sediment recovered at MV-74 and at MV-07/06
represents the last 83 ka and 93 ka, respectively (Figure 3).

4.3. Sediment and Organic Carbon Accumulation

[20] The TOC content varies between 0.2 and 1.1% in
MV-74, and between 0.2 and 0.6% in MV-07/06 (Figure 4).
For both cores, the highest TOC values are found in
sediment deposited between �75 and 70 ka, and between
�10.5 and 8.5 ka.
[21] The accumulation rate of sediment components,

including organic carbon, can be calculated by

MARTOC ¼ X wt%ð Þ*LSR*rdb;

where X is the component of interest (e.g., TOC), LSR is
the linear sedimentation rate, and rdb is the dry bulk density.
LSRs can be determined over discrete intervals down cores
by dividing thicknesses of sediment by the time they
represent. LSRs varied between 1.7 and 80 cm/ka in MV-
74, and between 2.6 and 47 cm/ka in MV-07/06 (Figure 4).
In both cores, the highest LSRs occurred between �83 and
70 ka (end of MIS 5, or MIS 5.1), while low to moderate
LSRs characterize the remaining records. The rdb can be
determined by

rdb ¼ rbulk � FP*rwaterð Þ;

where bulk density (rbulk) and fractional porosity (FP) are
measured on the GeoTek Core Logger, and 1.025 g/cm3 is
the average density of seawater (rwater).
[22] MARs of TOC also changed significantly over the

last �83 ka, varying between 0.003 to 0.4 g cm�2 ka�1 in
MV-74 and 0.007 to 0.2 g cm�2ka�1 inMV-07/06 (Figure 4).
The highest TOC accumulations occur between �83 and
70 ka (MIS 5), while much lower accumulations charac-
terize the remaining records. A prominent increase in TOC
accumulations is observed at �10.5 and 8.5 ka in both
cores. Organic carbon MARs generally fluctuate in parallel

with siliciclastic MARs (Figure 5), which were calculated
using data presented elsewhere [Francis et al., 2006].

4.4. Foraminiferal Assemblages

4.4.1. General Overview
[23] Throughout the study interval, planktic taxa are more

abundant than benthic taxa, accounting for between 55 and
95% of the total foraminiferal assemblages in MV-74, and
between 83 and 97% of the total foraminiferal assemblages
in MV-07/06 (Figure 6). The highest planktic (and lowest
benthic) abundances occur in sediment deposited between

Figure 5. Mass accumulation rates (MARs) of bulk
siliciclastic sediment and bulk carbonate sediment for (a)
MV-74 and (b) MV-07/06 [from Francis et al., 2006]. The
shaded gray region of the bulk carbonate accumulation
represents the accumulation of fine aragonite (<63 mm)
sediment. Sediment accumulations are shown with a relative
sea level curve for the last glacial cycle [from Lambeck et al.,
2002], as well as oxygen isotope records andMIS boundaries.
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�70 and 11 ka (i.e., late regression through lowstand and
early transgression).
[24] Benthic assemblages contain diverse mixtures of taxa

that inhabit shelf to lower slope settings, and epifaunal to
deep infaunal microhabitats. Calcareous forms (as opposed
to agglutinated forms) dominate benthic assemblages, ac-
counting for 88% or greater of the benthic populations in
both cores (Figure 6).
[25] Benthic taxa of key importance were determined by

evaluation of down core relative abundances and PCA
(Appendix A) and include Uvigerina peregrina, Bolivina
robusta, Sphaeroidina bulloides, Bulimina marginata, Globo-
cassidulina subglobosa, Globocassidulina cf. G. subglobosa,
Siphouvigerina porrecta,Planorbulinamediterranensis,Rosa-
lina spp. +Discorbis spp., Reussella hayasakai, and species of
the family Miliolidae. Benthic relative abundances and
multivariate techniques indicate three well-defined benthic
foraminiferal assemblages. These assemblages are named
for their most diagnostic taxa: Uvigerina peregrina-Bolivina
robusta, Globocassidulina subglobosa, and Planorbulina
mediterranensis.

4.4.2. Down-Core Benthic Relative Abundances
[26] The relative abundances of key benthic taxa change

significantly over the time represented by MV-74 (Figure 7)
and MV-07/06 (Figure 8). Uvigerina peregrina and Bolivina
robusta occur in low abundances, except in sediment
deposited between 83 and 70 ka (early regression), where
they are as high as 37% and 19% of the benthic populations,
respectively. Sphaeroidina bulloides and Bulimina margin-
ata also have increased abundances in this interval. Globo-
cassidulina subglobosa, which represents 0–14% of the
benthic assemblages down the cores, has its highest abun-
dances between 70 and 11 ka (late regression through
lowstand and early transgression). Globocassidulina cf. G.
subglobosa is most abundant in MV-07/06, and its relative
abundance generally tracks that of Globocassidulina sub-
globosa. In MV-74, Planorbulina mediterranensis has a
low abundance in most sediment (<3%), with the exception
of that deposited from 11 ka to the present (late transgres-
sion through early highstand), where it reaches 20%. A
similar, though less pronounced increase is observed in MV-
07/06. In all three cores, peak abundances of the Rosalina

Figure 6. Planktic taxa abundances relative to the entire foraminiferal populations (planktic + benthic
taxa) and the abundances of calcareous benthic taxa relative to the entire benthic populations shown with
oxygen isotope records and MIS boundaries for (a) MV-74 and (b) MV-07/06. Also indicated are the
benthic foraminiferal assemblages determined by this study, as well as generalized relative sea level.
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spp. + Discorbis spp. group and Reussella hayasakai
coincide with peak abundances of Planorbulina mediterra-
nensis during late transgression and early highstand.
Siphouvigerina porrecta accounts for 1% or less of the
benthic populations in sediment deposited before �9 ka, but
upward of 6% in uppermost sediment. Miliolidae abundan-
ces range between �11 and 22% of the benthic populations
in all cores, with the exception of very low abundances (4–
9%) in sediment deposited between �83 and 70 ka.
4.4.3. Benthic Multivariate Analyses
[27] Statistical analyses illuminate these down core

changes in benthic foraminiferal assemblages. R-mode
PCA reveals two significant components, while Q-mode
cluster analysis reveals three significant clusters. This is true
for both MV-74 (Table 3 and Figure 9) and MV-07/06
(Table 4 and Figure 10).
[28] At both locations, R-mode ‘‘component 1’’ explains

most (�65–72%) of the variance. It is dominated by strong
positive loadings of Uvigerina peregrina and Bolivina
robusta. In MV-74, Sphaeroidina bulloides, Bulimina mar-
ginata, and Cassidulina teretis are also common to this

component, while Planorbulina mediterranensis, Globocas-
sidulina subglobosa, and Reussella hayasakai have negative
loadings. Samples defined by R-mode ‘‘component 1’’ are
typically associated with samples that fall into Q-mode
‘‘cluster A’’. We refer to this as the Uvigerina peregrina-
Bolivina robusta assemblage owing to the dominance of
these two species, and it characterized by samples dated
between �80 and 70 ka (early regression).
[29] R-mode ‘‘component 2’’ explains �13% of the

variance in MV-74. It is characterized by high positive
loadings of Planorbulina mediterranensis and to a lesser
extent Reussella hayasakai, and strong negative loadings of
Globocassidulina subglobosa. Samples defined by this
component are associated with those defined by Q-mode
‘‘cluster C’’. We refer to this as the Planorbulina mediter-
ranensis assemblage. Although this assemblage was not
distinguished by R-mode PCA in MV-07/06, Q-mode
cluster analysis identified ‘‘cluster C’’ in this core, which
also principally occurs in samples dated from �11 ka to the
present (late transgression through early highstand).

Figure 7. MV-74 key benthic taxa abundances relative to the entire benthic population shown with the
oxygen isotope record and MIS boundaries. Also indicated are the benthic foraminiferal assemblages
determined by this study, as well as generalized relative sea level.
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Figure 8. MV-07/06 key benthic taxa abundances relative to the entire benthic population shown with
the oxygen isotope record and MIS boundaries. Also indicated are the benthic foraminiferal assemblages
determined by this study, as well as generalized relative sea level.
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[30] MV-07/06 R-mode ‘‘component 2’’ explains �10%
of the variance and expresses positive loadings of Globo-
cassidulina subglobosa, Globocassidulina cf. G. subglo-
bosa, and Bolivina robusta. Negative loadings are shown by
Siphouvigerina porrecta, Uvigerina peregrina, Reussella
hayasakai, and Planorbulina mediterranensis. These sam-
ples typically fall into ‘‘cluster B’’. We refer to this
assemblage as the Globocassidulina subglobosa assem-
blage, and it is characterized by samples dated from �71
to 11 ka, as well as a sample from �81 ka (late regression
through early transgression).

5. Discussion

5.1. Organic Carbon

[31] Accumulation of organic carbon (Figure 4) and
siliciclastic material (Figure 5) have fluctuated in parallel
on the slopes of Ashmore Trough. The greatest organic
carbon and siliciclastic fluxes occurred between �83 and
70 ka (early regression), and between �10.5 and 8.5 ka
(transgression). These intervals of high siliciclastic delivery
likely reflect remobilization and redeposition of sediments
previously deposited on the shelf, direct input of fluvial
material to the outer shelf and upper slope, or both [Jorry et
al., 2008; Francis et al., 2006]. In either case, terrestrial
organic carbon delivery to slopes of Ashmore Trough would
have also increased. Additionally, riverine delivery of

nutrients during intervals of increased fluvial discharge
potentially heightened surface water productivity, elevating
marine organic carbon flux to the seafloor. Generally low
organic carbon accumulations occur between�70 and 11 ka.
This is when siliciclastic delivery to slopes of Ashmore
Trough was at a minimum, perhaps because fluvially
derived material bypassed slopes to deeper parts of the
GoP [Francis et al., 2006]. Most of the Holocene record
(�8.5 to 0 ka) is characterized by low to moderate organic
carbon accumulation, corresponding to an interval of low to
moderate siliciclastic accumulation. During this interval of
sea level highstand, most fluvially derived sediment has
remained on the shelf [Walsh and Nittrouer, 2003], although
a small portion has leaked to the slopes of Ashmore Trough
[Francis et al., 2006].
[32] The flux of organic carbon to the seafloor and the

dissolved oxygen concentrations in bottom water and shal-
low sediments are limiting resources for benthic foraminif-
eral communities [e.g., Gooday, 1988; Jorissen et al., 1995;
Thomas and Gooday, 1996; Schmiedl et al., 1997; Jorissen,
1999; Loubere and Fariduddin, 1999]. These factors are
also related, as high organic carbon inputs to the seafloor
lead to microbial consumption of dissolved oxygen at or
immediately below the sediment-water interface [e.g.,
Jorissen et al., 1995; Bernhard and Sen Gupta, 1999;
Loubere and Fariduddin, 1999]. Consequently, it is hard
to distinguish the relative influence of these parameters on
infaunal community structure [e.g., Jorissen et al., 1992;
Jorissen, 1999; Loubere and Fariduddin, 1999]. Nonethe-
less, some combination of organic carbon flux and dis-
solved oxygen concentrations appears to strongly influence
benthic foraminiferal populations in sediment on slopes of
Ashmore Trough.

5.2. Uvigerina peregrina-Bolivina robusta
Assemblage (Early Regression)

[33] The Uvigerina peregrina-Bolivina robusta benthic
foraminiferal assemblage is the most distinct foraminiferal
assemblage recognized in Ashmore Trough through the
study interval. This assemblage is most prevalent between
�83 and 70 ka (early regression), an interval when organic
carbon accumulations were the highest on the slopes of
Ashmore Trough (Figure 4). Taxa characterizing this group
are typically shallow infaunal species with tests of high
surface-to-volume ratio and ornamented walls (i.e., Uviger-
ina peregrina), or with tests of flattened elongated shapes
containing abundant pores (i.e., Bolivina robusta). These
elongate test morphologies are associated with infaunal
lifestyles and environments characterized by high organic
carbon flux [Corliss and Chen, 1988; Corliss and Fois,
1990; Rosoff and Corliss, 1992; Jorissen et al., 1995;
Jorissen, 1999; Loubere and Fariduddin, 1999], and/or
dysoxic to anoxic conditions on the seafloor or within the
seafloor sediments [e.g., Kaiho, 1994, 1999; Bernhard and
Sen Gupta, 1999]. In particular, Uvigerina peregrina is a
common and well documented bathyal species that is
associated with heightened organic carbon content [e.g.,
Miller and Lohmann, 1982; Rathburn and Corliss, 1994],
elevated productivity [e.g., Loubere, 1994, 1998; Loubere
and Fariduddin, 1999], and depleted bottom water oxygen
concentration [e.g., Lohmann, 1978; Kaiho, 1994]. Studies
involving well constrained ecologic parameters suggest that

Table 3. Benthic MV-74 R-Mode PCA Significant Component

Loadings

Benthic Species Component 1 Component 2

Amphistegina lessonii �0.022625 0.055093
Aphelophragmina semilineata 0.002444 �0.029627
Bolivina compacta �0.032077 0.147248
Bolivina robusta 0.361842 0.088798
Bolivinitia quadrilatera 0.03542 �0.013055
Bulimina aculeata 0.010368 �0.036489
Bulimina marginata 0.182029 �0.044191
Bulimina striata �0.001474 �0.065741
Cassidulina teretis 0.204252 �0.013288
Ehrenbergina pacifica �0.043276 �0.042675
Eggerella bradyi �0.011137 �0.013067
Globocassidulina crassa �0.042077 �0.055179
Globocassidulina subglobosa �0.155347 �0.521215
Globocassidulina c.f. subglobosa �0.029293 �0.038791
Globocassidulina c.f. elegans �0.015962 �0.099132
Gyroidina altiformis �0.024265 �0.000916
Gyroidina obicularis �0.019195 �0.009459
Gyroidina sp. 0.015807 �0.016297
Hoeglundina elegans �0.017461 �0.023303
Hyalinea baltica �0.017957 �0.036043
Melonis barleeanus �0.009992 �0.048459
Melonis pompilioides �0.011312 �0.014189
Neouvigerina ampullacea 0.056094 �0.051599
Oridorsalis tener 0.00434 �0.019083
Planorbulina mediterranensis �0.211476 0.74463
Pullenia bulloides 0.010674 �0.065032
Pullenia subcarinata �0.004056 �0.013203
Rectobolivina bifrons 0.044887 0.0002
Reussella hayasakai �0.109997 0.266749
Sigmavirgulina turtosa �0.05902 0.059443
Sigmoilina schlumbergeri 0.087092 �0.009172
Siphogenerina pacifica 0.007422 �0.047729
Siphonina bradyana �0.040236 0.021277
Siphouvigerina porrecta �0.037279 0.10464
Sphaeroidina bulloides 0.173834 �0.020119
Uvigerina peregrina 0.808547 0.122571
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the distribution of Uvigerina peregrina is dominantly con-
trolled by organic carbon supply and, secondarily, by
oxygen levels [Miller and Lohmann, 1982; Rathburn and
Corliss, 1994]. Studies have also associated Bulimina
marginata and Sphaeroidina bulloides, common species
of the Uvigerina peregrina-Bolivina robusta assemblage,
with heightened productivity and/or low oxygen conditions
[e.g., Linke and Lutze, 1993; Mackensen et al., 1993;
Bernhard and Alve, 1996; Loubere, 1996; Jorissen et al.,
1999]. In Ashmore Trough, the Uvigerina peregrina-
Bolivina robusta assemblage appeared in response to
heightened organic carbon flux to the seabed, associated
with increased siliciclastic fluxes to the slopes (Figure 5),
and perhaps with a concomitant decrease in oxygen con-
centrations in bottom water or shallow sediments.

5.3. Globocassidulina subglobosa Assemblage
(Late Regression Through Lowstand and
Early Transgression)

[34] The Globocassidulina subglobosa assemblage is
most prevalent in Ashmore Trough between �70 and
11 ka (late regression through lowstand and early transgres-
sion), an interval when organic carbon fluxes were generally
very low. Globocassidulina subglobosa is a broadly dis-
tributed species whose occurrence has been reported from
the upper slope to abyssal plain [e.g., Phleger and Parker,
1951; Poag, 1981; Murray, 1991; Loubere et al., 1988]. Its
distribution has been associated with low organic carbon
flux [e.g., Loubere et al., 1998; Gooday, 1993; Schmiedl et
al., 1997], low productivity [e.g., Loubere et al., 1988;
Loubere and Fariduddin, 1999], or well-oxygenated bot-
tom waters [e.g., Murray, 1991; Schmiedl et al., 1997]. In
Ashmore Trough, the Globocassidulina subglobosa assem-
blage appeared in response to the low organic carbon flux,
associated with low siliciclastic input, to the seafloor or

well-oxygenated waters that developed at the sediment-
water interface and/or within the sediments.

5.4. Planorbulina mediterranensis Assemblage
(Late Transgression Through Early Highstand)

[35] The Planorbulina mediterranensis assemblage is
characterized by an increase in genera typically associated
with shallow (<200 m) shelf environments [e.g., Phleger
and Parker, 1951; Murray, 1991; Loeblich and Tappan,
1994; Leckie and Olson, 2003]. The taxa exemplifying this
assemblage are generally epifaunal, attached or temporally
attached forms (e.g., Planorbulina mediterranensis, Rosa-
lina spp. and Discorbis spp.) that prefer substrates found in
nearshore waters such as seagrasses, corals, and shells [e.g.,
Phleger and Parker, 1951; Phleger, 1960; Poag, 1981;
Murray, 1991; Sen Gupta, 1999b]. The Planorbulina med-
iterranensis assemblage prevails in Ashmore Trough sedi-
ment deposited from �11 ka to the present day (late
transgression through early highstand). Significant off-shelf
and off-bank transport of neritic carbonate during late
transgression and highstand, often termed ‘‘highstand shed-
ding’’, typifies tropical reef systems and carbonate plat-
forms submerged within the photic zone [Droxler and
Schlager, 1985; Schlager et al., 1994], including the GBR
[Dunbar et al., 2000; Page et al., 2003]. Indeed, this
phenomenon appears to occur in Ashmore Trough, as
indicated by large increases in the supply of fine-grained
carbonate (Figure 5), primarily aragonite and high magne-
sium calcite, beginning �11 ka [Francis et al., 2006] and
corresponding to the initial reflooding of the shelf and bank
tops; a calci-turbidite and onset of fine-grained aragonite
also marks �11 ka in neighboring Pandora Trough [Jorry et
al., 2008]. Consequently, the Planorbulina mediterranensis
assemblage likely indicates substantial displacement of
benthic foraminifera produced on the GBR and offshore

Figure 9. MV-74 benthic assemblage cluster diagram using Q-mode Ward’s Minimum Variance
method. The three significant benthic clusters determined by this study are indicated.
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atolls in the GOP. Furthermore, the Planorbulina mediter-
ranensis assemblage is more abundant at MV-74, located on
the steep upper slope, proximal (8 km) to neritic carbonate
sources (Figure 1) and where carbonate flux is greatest
(Figure 5).

5.5. Benthic to Planktic Relative Abundances

[36] In sediment deposited in outer neritic to bathyal
depths of the modern ocean, planktic taxa typically com-
prise >80% of the foraminiferal assemblage [e.g., Gibson,
1989; Leckie and Olson, 2003]. However, variations in
organic carbon flux can alter the ratio of benthic to planktic
foraminifera. Spurred by increased food supply, the relative
abundance of benthic foraminifera increase with heightened
organic carbon flux to the seafloor [e.g., Diester-Haass,
1978; Berger and Diester-Haass, 1988; Herguera and
Berger, 1991]. This seems to be observed on slopes of
Ashmore Trough. Relative abundances of benthic forami-
nifera were generally high between �83 and 70 ka, a time
when the Uvigerina peregrina-Bolivina robusta assemblage
dominates (Figures 7 and 8) and organic carbon fluxes to
the slopes are greatest (Figure 4). By contrast, the lowest
benthic relative abundances occurred between �70 and
11 ka, a time when the Globocassidulina subglobosa
assemblage is most abundant (Figures 7 and 8) and organic
carbon fluxes to the slopes are the lowest (Figure 4).

[37] The trend to higher relative abundances of benthic
foraminifera from �11 ka to the present, particularly in MV-
74, coincided with modest organic carbon flux and height-
ened carbonate flux. This observation can be explained by
increased shedding of benthic foraminifera from the outer
shelf and atolls, corresponding to reflooding of the shelf and
bank tops and production of neritic sediments, typically
containing higher relative abundances of benthic foraminif-
era [e.g., Buzas and Gibson, 1969; Boltovskoy and Wright,
1976; Gibson, 1989]. This is consistent with the dominance
and composition of the Planorbulina mediterranensis as-
semblage in these sediments.

5.6. Summary

[38] Late Pleistocene to Holocene (�83 ka to the present)
benthic foraminiferal communities in Ashmore Trough are
clearly influenced by changing organic carbon and sediment
input along the margin. Previous studies have documented
the influence of organic carbon flux to the seafloor on
benthic foraminiferal communities, including the affinity of
Uvigerina peregrina with high organic carbon flux [e.g.,
Miller and Lohmann, 1982; Rathburn and Corliss, 1994]
and the association of Globocassidulina subglobosa with
low organic carbon flux [e.g., Loubere et al., 1988; Gooday,
1993; Schmiedl et al., 1997]. Previous studies have also
documented distinct differences in benthic foraminiferal
species composition and abundance in purely siliciclastic
and purely carbonate regions [e.g., Poag, 1981; Murray,
1991]. This study clearly documents the importance of both
siliciclastic and carbonate components on the benthic fora-
miniferal populations adjacent the Ashmore Trough mixed
siliciclastic-carbonate margin. The interplay of organic car-
bon flux, coupled with siliciclastic and carbonate sediment
inputs along the margin significantly influences the benthic
foraminiferal communities on the slope. Ashmore Trough
provides an analogue for ancient mixed siliciclastic-carbon-

Table 4. Benthic MV-07/06 R-Mode PCA Significant Component

Loadings

Benthic Species Component 1 Component 2

Amphistegina lessonii �0.003234 �0.00739
Aphelophragmina semilineata �0.000495 0.006704
Bolivina compacta �0.000803 �0.016746
Bolivina robusta 0.502064 0.543894
Bolivinitia quadrilatera 0.032348 �0.035552
Bulimina aculeata 0.003472 0.003026
Bulimina marginata 0.070983 0.051883
Bulimina striata �0.046883 �0.066219
Cassidulina teretis 0.013786 0.128336
Ehrenbergina pacifica �0.088474 0.117865
Eggerella bradyi �0.013437 0.088299
Globocassidulina crassa �0.033275 �0.116491
Globocassidulina subglobosa �0.096361 0.481112
Globocassidulina c.f. subglobosa �0.032823 0.243017
Globocassidulina c.f. elegans �0.001589 0.002693
Gyroidina altiformis �0.022927 �0.054976
Gyroidina obicularis �0.022975 �0.006014
Gyroidina sp. �0.003695 0.038762
Hoeglundina elegans 0.007835 �0.009644
Hyalinea baltica �0.022145 0.026986
Melonis barleeanus �0.025164 0.145172
Melonis pompilioides 0 0
Neouvigerina ampullacea �0.031213 0.118579
Oridorsalis tener �0.004647 0.074115
Planorbulina mediterranensis �0.016601 �0.168627
Pullenia bulloides 0.002159 0.073097
Pullenia subcarinata �0.022748 0.008745
Rectobolivina bifrons �0.006055 �0.004184
Reussella hayasakai �0.042561 �0.248689
Sigmavirgulina turtosa 0 0
Sigmoilina schlumbergeri 0.028273 0.017641
Siphogenerina pacifica �0.021352 �0.048015
Siphonina bradyana �0.025287 �0.104693
Siphouvigerina porrecta �0.045684 �0.337404
Sphaeroidina bulloides 0.002864 �0.002825
Uvigerina peregrina 0.842657 �0.28988

Figure 10. MV-07/06 benthic assemblage cluster dia-
grams using Q-mode Ward’s Minimum Variance method.
The three significant benthic clusters determined by this
study are indicated.
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Table A1. List of Key Benthic Taxa That Account for >2% of the Assemblages in at Least One Samplea

Taxa Details Description/Discussion

Agglutinated taxa RA species such as Karreriella bradyi Cushman, Migros flintii (Cushman),
Sahulia lutzei Langer, Siphotextularia mestayerae Vella,
Siphotextularia foliosa Zheng,
and Textularia conica d’Orbigny are typical of this group

Amphistegina lessonii d’Orbigny PCA, CA
Aphelophragmina semilineata (Belford) PCA, CA test biserial, elongate, compressed, gradually tapered, perforate, longitudinal costae;

differentiated from Bolivina by smoother surface and presence of costae
Bolivina compacta Sidebottom PCA, CA test biserial, elongate, compressed, gradually tapered, coarsely perforate;

distinguished from B. robusta by more abundant pores and lack of terminal spine
Bolivina robusta Brady RA, PCA, CA test biserial, elongate, compressed, gradually tapered, coarsely perforate;

well-developed terminal spine, variable in length
Bolivinitia quadrilatera (Schwager) PCA, CA very distinct species; test biserial, elongate, broad chambers, box-like

shape in peripheral view, well developed terminal spine
Bulimina aculeata d’Orbigny PCA, CA test triserial, inflated chambers, finely perforate, numerous spines covering

early chambers and base of final chambers; shows significant variability in
length and thickness of spines

Bulimina marginata d’Orbigny RA, PCA, CA test triserial, inflated chambers, finely perforate, distinct chamber margins rimmed
with fairly uniform spines; distinguished from B. aculeata by distinct ‘‘ledge like’’
chamber margins containing shorter, more uniform spines

Bulimina striata d’Orbigny PCA, CA test triserial, inflated chambers, finely perforate, distinct longitudinal costae ending
in tiny spines; distinguished from other species of Bulimina by costae

Cassidulina teretis Tappan PCA, CA
Cibicides spp. species such as Cibicides lobatulus (Walker and Jacob) are typical of this group
Cibicidoides spp. species such as Cibicidoides bradi (Trauth) and Cibicidoides robertsoniansus (Brady)

are typical of this group
Eggerella bradyi (Cushman) PCA, CA
Ehrenbergina pacifica Cushman PCA, CA
Elphidium spp. rare; however, typically occur with the Planorbulina mediterranensis assemblage
Globobulimina spp. occurrence almost exclusively with the Uvigerina peregrina-Bolivina robusta assemblage
Globocassidulina crassa d’Orbigny PCA, CA test subspherical, flatted in periphery, perforate, with slit-like aperture;

considerable range in size; distinguished from G. subglobosa by more flatted
periphery and slit-like aperture

Globocassidulina subglobosa (Brady) RA, PCA,
CA

test subspherical, inflated chambers, perforate, with distinct loop-like aperture;
considerable range in size

Globocassidulina cf. G. subglobosa (Brady) RA, PCA,
CA

this species very similar to G. subglobosa, but with a more slit-like aperture resembling
that of G. crassa versus the typical loop-like aperture of G. subglobosa

Globocassidulina cf. G. elegans (Sidebottom) PCA, CA test subspherical, enrolled, inflated chambers, with distinct tiny thick spine-like
ornamentation on sutures

Gyroidina altiformis Stewart & Stewart PCA, CA test biconvex, slightly convex dorsal side, and highly vaulted spiral side,
finely perforate, numerous chambers

Gyroidina obicularis d’Orbigny PCA, CA test biconvex, slightly convex dorsal side, to moderately convex spiral side,
finely perforate, numerous chambers; differentiated from G. altiformis by smoother
test and less vaulted umbilical side

Gyroidina sp. PCA, CA similar to Gyroidina altiformis, but with fewer chambers (generally 5 to 6 chambers
in final whorl)

Hoeglundina elegans (d’Orbigny) PCA, CA
Hyalinea baltica (Schrorter) PCA, CA
Melonis barleeanus (Williamson) PCA, CA
Melonis pompilioides (Fichtel and Moll) PCA, CA
Miliolidae RA this family includes a diverse array of species with porcellaneous tests
Nonionella spp.
Nodosariidae this family includes a diverse array of rare species
Neouvigerina ampullacea (Brady) PCA, CA test triserial, ovate, finely perforate, finely hispid, same as Uvigerina ampullacea Brady;

distinguished from other uvigerinids by its finely hispid surface
Oridorsalis tener (Brady) PCA, CA
Planorbulina mediterranensis d’Orbigny RA, PCA, CA very distinct species; test discoidal, concavo-convex, coarsely perforate
Planulina spp. species such as Planulina bradyi Tolmachoff and Planulina wuellerstorfi (Schwager)

are typical of this group
Pullenia bulloides (d’Orbigny) RA, PCA, CA test planispiral, spherical, finely perforate, few chambers, narrow crescent-shaped

aperture extending almost entirely from one side to the other
Pullenia subcarinata (d’Orbigny) PCA, CA test planispiral, compressed, finely perforate, few chambers. Similar to P. bulloides,

but compressed
Rosalina spp. + Discorbis spp. RA includes a number of ‘‘attached’’ or ‘‘temporarily attached’’ species
Rectobolivina bifrons (Brady) PCA, CA
Reussella hayasakai Ôki RA, PCA, CA test triserial, triangular, gradually enlarging, coarsely perforate, raised sutures with fine

spines extending from margins
Sigmavirgulina turtosa (Brady) PCA, CA test biserial, elongate, compressed, gradually twisting chambers, coarsely perforate

with highest concentration of pores on latter chambers
Sigmoilina schlumbergeri (Silvestri) PCA, CA
Siphogenerina pacifica (Cushman) PCA, CA
Siphonina bradyana Cushman PCA, CA
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ate margins where the timing and magnitude of sea level
change and sediment flux are not always well constrained.

6. Conclusions

[39] Analysis of benthic foraminiferal populations in two
well-dated piston cores from the slopes of Ashmore Trough
provide insights into the paleoenvironmental history of this
modern tropical mixed siliciclastic-carbonate system. In
particular, over the past �83 ka, benthic foraminiferal
populations indicate three major assemblages, which appear
to be linked to sea level-driven changes in the fluxes of
siliciclastic, carbonate, and organic matter. The Uvigerina
peregrina-Bolivina robusta assemblage is characterized by
infaunal taxa indicative of increased carbon flux and/or
decreased bottom water oxygen concentrations. This assem-
blage dominates during early regression (�83 to 70 ka), a
time of greatly elevated siliciclastic and organic carbon flux
into Ashmore Trough. In contrast, the Globocassidulina
subglobosa assemblage is dominated by Globocassidulina
subglobosa, a species associated with decreased carbon flux
and/or increased bottom water oxygen concentrations. This
assemblage dominates from late regression through early
transgression (�70 to 11 ka), when siliciclastic and organic
carbon fluxes to slopes of Ashmore Trough were at a
minimum. The Planorbulina mediterranensis assemblage
is characterized by epifaunal, attached or temporally at-
tached taxa typical of neritic waters. This assemblage
prevailed from late transgression to highstand (�11 ka to
present), coincident with elevated fluxes of neritic carbon-
ate, attributed to ‘‘highstand shedding’’, to the slopes of
Ashmore Trough.

Appendix A

[40] Table A1 lists key benthic taxa that account for >2%
of the assemblages in at least one sample. Indicated are taxa
whose relative abundances are depicted in this paper, as
well as taxa used in the principal components analyses and
cluster analyses. Taxonomic descriptions and/or discussion
are provided for select taxa.
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