Coastal wave reflection, directional spread, and seismoacoustic noise sources

Type Publication
Publication date 2012-06
Language English
Copyright 2012. American Geophysical Union. All Rights Reserved.
Author(s) Ardhuin FabriceORCID1, Roland Aron2
Affiliation(s) 1 : IFREMER, Ctr Brest, Lab Oceanog Spatiale, F-29280 Plouzane, France.
2 : Tech Univ Darmstadt, Inst Hydraul & Water Resources Engn, Darmstadt, Germany.
Source Journal Of Geophysical Research-oceans (0148-0227) (Amer Geophysical Union), 2012-06 , Vol. 117 , N. C00J20 , P. 16 pp.
DOI 10.1029/2011JC007832
WOS© Times Cited 15
Abstract Coastal reflection is introduced in a phase-averaged numerical wave model, first with a constant coefficient, and then with a reflection coefficient defined from the shoreface slope and that depends on the incident wave height and mean frequency. This parameterization is used in both regular and unstructured grids. The calibration involves a site-specific shoreface slope that is associated with the local geomorphology of the shoreline. Using wave buoy data off Hawaii and the U.S. West Coast, it is found that coastal reflection is necessary to reproduce observed directional properties of coastal sea states. Errors on the mean directional spread are reduced by up to 30% for the frequency band 0.04 to 0.30 Hz with, at most locations, very little impact on the mean direction and energy levels. The most accurate results are obtained using the parameterization based on the shoreface slope, provided that this slope is estimated accurately. These parameterizations are validated using seismic noise data. Using data from the U. S. West Coast it is shown that the reflection defined from the shoreface slope can improve the correlation between measured and modeled seismic noise.
Full Text
File Pages Size Access
Publisher's official version 16 7 MB Open access
Top of the page