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Abstract:  

A wavelet-based method was presented in a previous work to introduce multiscale seismic attributes 
for high-resolution seismic data. Because of the limited frequency bandwidth of the seismic source, we 
observed distortions in the seismic attributes based on the wavelet response of the subsurface 
discontinuities (Le Gonidec et al.). In this paper, we go further in the seismic source-correction by 
considering Lévy alpha-stable distributions introduced in the formalism of the continuous wavelet 
transform (CWT). The wavelets are Gaussian derivative functions (GDF), characterized by a derivative 
order. We show that a high-resolution seismic source, after a classical signature processing, can be 
taken into account with a GDF. We demonstrate that in the framework of the Born approximation, the 
CWT of a seismic trace involving such a finite frequency bandwidth can be made equivalent to the 
CWT of the impulse response of the subsurface and is defined for a reduced range of dilations. We 
apply the method for the SYSIF seismic device (Marsset et al.; Ker et al.) and show that the source-
corrections allow to define seismic attributes for layer thicknesses in the range [24; 115 cm]. We 
present the analysis for two seismic reflectors identified on a SYSIF profile, and we show that the 
source-corrected multiscale analysis quantifies their complex geometries. 
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1 INTRODUCTION 
 
The geophysical characterization of marine sediments over large areas is generally greatly 
improved when seismic data are joined with local ground truth measurements providing 
information on the physical properties of the geological materials constituting the subseabed 
(e.g. Sherrif, 1992; Pennington, 2001; Sultan et al., 2007). This joined interpretation 
extensively uses various seismic attributes from which the interpreters derive quantitative 
relations between attributes and sediments properties (Fomel, 2007; Barnes, 2001; Gastaldi 
et al., 1997). Such interpretations are faced with a noticeable difficulty when relating seismic 
attributes to in situ measurements because of the huge discrepancy in the scale ranges 
associated with both kind of data, i.e. seismic wavelengths and layer thickness ranges 
(Widess, 1973; Morlet et al., 1982; Banik et al., 1985; Burridge et al., 1988). Recent 
technological improvements of seismic devices result in a significant extension of the 
frequency range available toward the high-frequencies (Wood et al., 2003; Marsset et al., 
2010; Ker et al., 2010). The availability of seismic data spanning several octaves of 
wavelengths motivates developments of analysis methods relying on the multiscale analysis 
of seismic traces such as the windowed Fourier transform and the wavelet transform (Le 
Gonidec et al., 2002; Castagna et al., 2003; Chopra et al., 2006, Gesret et al., 2010; Ker et 
al., 2011). Introduced by Le Gonidec et al. (2002), the wavelet response (WR) is a promising 
method to perform a multiscale characterization of complex discontinuities. Assuming the 
validity of the Born approximation, the authors demonstrate that the wavelet response (WR) 
is equivalent to the continuous wavelet transform (CWT), i.e. the analysis from the WR 
benefit by the properties of the CWT. In particular, the method has already been 
experimented to study granular interfaces from the analysis of the ridge functions (Le 
Gonidec et al., 2006; Le Gonidec et al., 2007). Remarkably, all information necessary to 
characterize the discontinuities forming the reflector is brought by the ridge functions 
connecting the extrema of the wavelet transform and forming a sparse support (Mallat & 
Hwang, 1992; Alexandrescu et al. 1995; Mallat, 1998; Le Gonidec et al. 2002). 
For laboratory studies in acoustics, Le Gonidec et al. (2002, 2003) uses a family of dilated 
wavelets as source signals to record the experimental WR of random media. The wavelet 
based method contributes efficiently to the understanding of the wavelet decomposition 
ofreflected signals by exploit- 
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ing wave propagation phenomena. From this point of view, the WR represents the collection of traces

which would be obtained by sounding the medium with an ensemble of wavelet signals forming a

wavelet family. However, such an ideal approach is not possible when dealing with general source sig-

nals, i.e. the limited frequency band of such sources should produce distortions of the ridge functions.

Indeed, the first time the WR method has been performed to seismic data by using the ridge functions

as new multiscale seismic attributes, strong distortions of the ridge function were clearly observed

(Ker et al., 2011).

To go further into this original multiscale seismic analysis, recalled in Section 2, the present paper

aims at fully correcting the ridge functions according to the specific processing method described in

Section 3. The method is based on the properties of Lévy alpha-stable distributions L(t) (Voit, 2003)

and we show that effective analysing wavelets, required for the source-corrected wavelet response,

may be obtained if both the analysing wavelet ξ(t) and the source filter b(t) are derivatives of L(t).

Section 4 is dedicated to determine the Gaussian wavelet model for a real seismic source so as to

apply the mathematical development to seismic experiments. In Section 5, the methodology is applied

to the deep-towed seismic SYSIF sources. We discuss the dilation range of the best gaussian filters

related to the band-limited seismic sources to perform the source-corrected wavelet response of a thin

homogeneous layer. In the last section, we process real field data according to this approach and we

demonstrate and discuss the validity of the method on complex seismic traces.

2 REMINDER OF THE WAVELET-BASED METHOD

In a previous paper (Ker et al., 2011), we propose a wavelet transform approach to perform a multiscale

characterization of acoustic impedance discontinuities from seismic data. This method contributes to

the understanding of the wavelet decomposition of seismic signals by exploiting wave propagation

phenomena and it is based on the wavelet response (WR) introduced by Le Gonidec et al. (2002). The

wavelet response is a natural extension of the classical continuous wavelet transform (CWT) where

the convolution operator is replaced by the propagating operator involved by seismic waves. The WR

is expressed by:

R [ξ, p] (t, a) ≡ (Daξ ⊗ p) (t) (1a)

= Daξ(t) ∗ r(t) (1b)

= W [ξ, r] (t, a) , (1c)

where ξ is the analysing wavelet and Da is the dilation operator such that Daξ (t) = a−1ξ(t/a)

with the dilation factor a ∈ R+. The operator ⊗ represents the 1-D propagation of the wavelet fam-
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ily through the medium with impedance p(z), and ∗ stands for convolution. The introduction of the

Green’s function of the medium r(t) instead of p(z) allows to write the wavelet response R as the

wavelet transform W of r(t) in eq. 1c.

From the point of view of wave propagation, R [ξ, p] (t, a) represents the collection of the seismic

traces which would be obtained by sounding the medium with an ensemble of seismic source signals

forming a wavelet family. Le Gonidec et al. (2002, 2003) have shown that, assuming the validity of

the Born approximation, the WR provides the same information on the structure of the medium than

the CWT directly applied on the impedance profile p(z). The full equivalence is obtained if the CWT

of the impedance profile is computed with the time derivative, ξ′, of the analysing wavelet, ξ, used in

the WR,

a×R [ξ, p] (t, a)⇔W
[
ξ′, p

]
(z, a) . (2)

The ⇔ symbol is used instead of the = symbol to emphasize the fact that the WR and the CWT of

p(z) share the same multiscale properties although they do not belong to the same physical spaces,

i.e. time t for the WR and space z for the CWT. This equivalence relationship (2) allows to apply the

properties of the CWT to the WR.

The concepts recalled above are illustrated in fig. 1 which considers the case of a reflector formed

by a layer of finite thickness, ∆z, embedded in a homogeneous half-space. This reflector corresponds

to a window impedance profile p(z) (fig. 1a-1) whose CWT (fig. 1a-2) has a global cone-like structure

pointing onto the seismic reflector. In the small-dilation domain, this conical pattern splits into two

sub-cones, each pointing on an edge of the window. All information necessary to characterize discon-

tinuities is brought by the ridge functions connecting the extrema of the CWT and forming a sparse

support in the (z, a) half-plane (Mallat & Hwang, 1992; Alexandrescu et al. 1995; Mallat, 1998; Le

Gonidec et al. 2002). The useful information is obtained through the analysis of the amplitude of the

ridges as a function of a as shown in fig. 1a-3. For this particular example, the ridge function of fig. 1a-

3 is typical of a step-like discontinuity at small dilations (i.e. slope = 0) and of a Dirac-like singularity

at large dilations (i.e. slope = −1). The complicated behaviour of the ridge for intermediate dilations

comes from the finite width of the window which controls the dilation ac where the ridge amplitude

has a maximum. More discussion concerning the interpretation of the ridge functions is given by Le

Gonidec et al. (2002) and Ker et al. (2011).

The WR of the same reflector is shown in fig. 1b and, according to eq. (2), it has been multiplied

by a and computed with the integral ξ of the wavelet ξ′ used to computed the CWT of p(z). By this

way, both transforms are equivalent (compare figs. 1a-3 and 1b-3).

In a previous paper, we propose to use the ridge functions as new multiscale seismic attributes to

quantify the geometrical characteristics (e.g. thickness) of superficial sediment layers (Ker et al., 2010;
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Ker et al., 2011). To achieve this goal, it is of paramount importance that the WR be equivalent to a

CWT as stated in eq. (1c). However, such an approach is not possible when dealing with real seismic

data, and the limited frequency band of the seismic sources produces distortions of the ridge functions

as shown in fig. 1c-3 which represents the WR obtained with a source with a finite bandwidth. These

dramatic distortions are due to the fact that the dilated versions of the mother wavelet are no more of

the same shape all over the frequency range because of the presence of the seismic source signal b(t)

which modifies eq. (1b),

R [ξ, p] (t, a) ≡ Daξ(t) ∗ [r(t) ∗ b(t)] (3a)

= [Daξ(t) ∗ b(t)] ∗ r(t) (3b)

= W [ξ, b] (t, a) ∗ r(t). (3c)

These equations show that the experimental WR (eq. 3a), which takes into account the limited source

bandwidth, is no more a simple wavelet transform (compare eq. 1b with eq. 3b).

In a first step, Ker et al. (2011) dealt with the ridge distortion by performing an empirical cor-

rection to validate the relationship between the CWT and the WR methods and estimate reflector

thicknesses with the ridge function attributes. This correction consists in normalizing the experimental

distorted ridge functions by using the distorted synthetic ridge function of an Heaviside discontinuity.

In the present paper, we propose a more rigorous procedure to correct the experimental ridges like

the one in fig. 1c-3 in order to retrieve undistorted ridges as in fig. 1b-3.

3 SOURCE-CORRECTED WAVELET RESPONSE: PRINCIPLES OF THE METHOD

Our approach is similar to the one developed for the wavelet analysis of potential fields to characterize

their causative sources by using analysing wavelet belonging to the Poisson semi-group (Moreau et

al. 1997, 1999; Sailhac et al. 2009). The main idea at the root of the method detailed below is to find

wavelets ξ such that,

Daξ(t) ∗ b(t) = A×Daeξe(t), (4)

where ξe is an effective analysing wavelet accounting for the effects of the finite frequency band of

the seismic source, A is an amplitude function, and ae is an effective dilation accounting for the time-

widening of the initial wavelet ξ produced by the convolution with the filter b (eq. 3b).
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3.1 Lévy alpha-stable distribution model for ξ(t) and b(t)

We now address the derivation of analysing wavelets ξ(t) satisfying eq. (4), i.e. such that the action of

the source filter, b(t), onto the wavelet family Daξ(t) produces the wavelet family Daeξe(t) where the

dilations a map on a range of effective dilations ae. We have the following theorem:

Theorem 3.1. Eq. (4) is satisfied if ξ(t) and b(t) are derivatives of order n and m of a Lévy alpha-

stable distribution L(t).

Proof. Taking

ξ(t) =
dn

dtn
L(t), (5)

and

b(t) =
dm

dtm
L(t), (6)

where L(t) satisfies the stability property,

L

(
t

a1

)
∗ L
(
t

a2

)
= α× L

(
t

ae

)
, (7)

the left-hand term of eq. (4) becomes:

Daξ(t) ∗ b(t) =
1

a
× dn

d(t/a)n
L

(
t

a

)
∗ dm

d(t/ab)m
L

(
t

ab

)
(8a)

=
1

a
×
amb
am
× dn+m

d(t/a)n+m

[
L

(
t

a

)
∗ L
(
t

a

a

ab

)]
(8b)

=
α

a
×
anamb
an+m
e

× dn+m

d(t/ae)n+m
L

(
t

ae

)
(8c)

= A×Daeξe(t), (8d)

where A = α × ae
a ×

anamb
an+m
e

and ξe(t) is defined as the (n + m)th derivative of L(t). The proof

terminates by observing that eq. (8d) is equivalent to eq. (4).

3.2 Gaussian models for ξ(t) and b(t)

We now apply the theory explained above with the Lévy alpha-stable Gaussian wavelet family. For

this purpose, we derive Gaussian models for both the analysing wavelet, ξ(t), and the source filter,

b(t), to satisfy eq. (4). The choice of Gaussian derivative function (GDF) is of a particular interest in

the framework of the wavelet transform (Goupillaud et al., 1984; Holschneider, 1995; n = 2, 3 or 4

are commonly used, see Le Gonidec et al., 2002, 2003 and Ker et al., 2011). Consequently, we take

both ξ(t) and b(t) as GDF of order n and m respectively:

Daξ(t) =
1

a

dn

dtn
exp

(
− t

2

a2

)
, (9)
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and

b(t) = b0
dm

dtm
exp

(
− t

2

a2
b

)
, (10)

where b0 is an amplitude factor and ab controls the frequency bandwidth of b(t).

Using these expressions, eq. (4) gives,

Daξ(t) ∗ b(t) =
2b0ab

√
π√

a2 + a2
b

dl

dtl
exp

(
− t2

a2 + a2
b

)
(11a)

= A×Daeξe(t), (11b)

where,

l = n+m, (12a)

ae =
√
a2 + a2

b , (12b)

A = 2b0ab
√
π, (12c)

and the effective analysing wavelet

ξe(t) =
dl

dtl
exp

(
−t2
)

(13a)

= (−1)lHl(t) exp(−t2). (13b)

The Hermite polynomial is defined as (Abramowitz & Stegun, 1972),

Hl(t) = (−1)l exp
(
t2
) dl

dtl
exp

(
−t2
)
. (14)

Expressions for ξe(t) up to l = 10 are given in appendix A.

Using Gaussian models for both ξ(t) and b(t) allows to further simplify eq. (3b) which rewrites

in a form equivalent to eq. (1c),

R [ξ, p] (t, a) = A×Daeξe(t) ∗ r(t) (15a)

= A×W [ξe, r] (t, ae) . (15b)

The equations above show that the CWT of a seismic trace with finite frequency bandwidth can

be made equivalent to the CWT of the reflectivity function, i.e. the impulse response of the medium

p(z), through the rescaling given by eq. (12b). This practically corresponds to the removal of the

distortions induced by the source signal b(t) that differs from an impulse signal δ(t). The rescaling

of eq. (12b) accounts for the low-pass nature of the source signal in the sense that the effective CWT,

W [ξe, r], spans the reduced range of dilations ae ≥ ab instead of R+. Such a result is analogous

to what happens for the multiscale analysis of potential fields where the undistorted CWT obtained
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with wavelets belonging to the Poisson semi-group is limited to dilations larger than the depth of the

causative sources (Moreau et al., 1997 and 1999; Sailhac et al., 2009).

3.3 Example: ridge function topology of a homogeneous layer

We now complete the example of fig. 1 to illustrate the theoretical developments on a homogeneous

layer of thickness ∆z, i.e. we take into account a limited frequency bandwidth source to perform the

WR including the term b(t) (eq. (3a)). For this purpose, we consider a Ricker wavelet, which is a GDF

of order 2, for both ξ(t) and b(t) (i.e. n = m = 2). The modulus of the WR (fig. 1c2), i.e. the absolute

value of eq. (3a), shows distortions procuded by b(t) on the WR defined by eq. (1b) (fig. 1b2). In

particular, the ridge function (fig. 1c3) is strongly affected by b(t): at small dilations, the asymptotic

behaviour does not correspond to a Heaviside-like discontinuity and the location of the maximum has

been shifted.

When we process the WR according to the processing method (eq. (11a), with l = n+m = 4), we

obtain the WR plotted in fig. 1d2 after amplitude and dilation range corrections. The source-corrected

ridge function of fig. 1d3 looks very similar to fig. 1b3 where b(t) is not considered. In particular, the

asymptotic behaviour is retrieved with a slope∼ −1 typical of a Dirac discontinuity at large dilations.

But the small-dilation domain is reduced by the rescaling given by eq. (12b) and, consequently, the

horizontal slope observed in the ridge of fig. 1b3 is not recovered. Other discrepancies are observed in

the medium-dilation domain with a more pronounced maximum and the appearance of a tiny minimum

which is not present in the ridge of fig. 1b3. These discrepancies must not be attributed to a defect of

either the rescaling (eq. 12b) or the amplitude correction (eq. 12c) but, instead, to the fact that the

WR is now obtained with the effective wavelet ξe(t) (eq. 13a), i.e. a GDF of order l = 4 with more

oscillations than the analysing wavelet ξ(t).

Depending on the derivative order l of the analysing GDF (figs. 2a-d), the ridge function shows

some changes, as illustrated in figs. 2e-h computed for l = 4, 6, 8, 10, respectively. Note that the

number of extrema in a GDF of order l is l + 1 . For all ridges, the asymptotic behaviours at small

and large scales remain the same, but differences can be observed at intermediate dilations: both the

number, the location and the amplitude of the extrema increase with l because of interferences between

the wavelet family and the multiscale structure of the discontinuity. In particular, slight shifts of the

dilation ac of the absolute maximum amplitude are due to changes of the shape of ξe(t) with l, and the

relation between ac and ∆z depends on the wavelet actually used, as detailed in Section 5.3.2 (see eq.

24). As a consequence, the reference WR associated to the source-corrected WR must be a GDF of

the same order (l = 4), i.e. the efficiency of the source-correction method is highlighted by the perfect

agreement between ridge functions of fig. 1d3 and fig. 2e.
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4 GAUSSIAN WAVELET MODEL b(t) FOR A HIGH RESOLUTION SEISMIC SOURCE

4.1 Methodology to determine the derivative order m

In the example of section 3.3, the source signal is supposed to be – and indeed is – a perfect GDF,

and we now consider the case of real source signals, s(t), whose complicated shape makes impossible

to directly find a GDF source model b(t) ≈ s(t). The seismic devices used in marine surveys use

sources emitting modulated chirps (Quinn et al., 1998) which allow to deconvolve the data so that the

resulting post-deconvolution source, s(t), has a flat spectrum in a wide frequency band (see Ker et al.,

2010, for explanations on this seismic processing). Now, we instead search for a GDF whose spectrum

may be considered contained in the frequency band where the spectrum ŝ(f) of s(t) is constant and

zero-phase. For such a b(t) we have,

b(t) ∗ s(t) ≈ b(t), (16)

which, in the Fourier domain reads,

b̂(f)[1− ŝ(f)] ≈ 0. (17)

This eq. is satisfied whenever b̂(f) has a compact support contained in the frequency band where

ŝ(f) = 1. For GDF, eq. (16) will be more or less respected depending on the value of ab and m which

control the roll-off of b̂(f) outside the source bandwidth. In a certain sense, b(t) may be considered as

a shaping filter which transforms the source s(t) into the desired GDF. In the present case, s(t) can be

considered as an identity element for the convolution in a limited frequency bandwidth (i.e zero-phase

and flat spectrum), thus both the shaping filter and the GDF are the same b(t).

The determination of b0, m and ab (eq. 10) is constrained by the fact that l = n + m must be as

low as possible in order to reduce the number of oscillations in the effective wavelet ξe(t) (see fig. 2).

The retained GDF must also be such that the source model b(t) has a spectrum very near the one of

the real seismic source s(t). By this way, we ensure that as much as possible information contained in

the original source signal is preserved in the source filter. In practice, we determine ab and m in the

frequency domain by minimizing the quadratic misfit,

RMS(ab,m) =

∫
|b̂(f) [1− ŝ(f)] |2df. (18)

Using the expression of b(t) given by eq. (10), we obtain,

RMS(ab,m) =
√
πb0ab

∫
|(2iπf)m exp[−(πabf)2] [1− S(f)] |2df. (19)

It is worth to highlight the non-unicity of b(t) as several GDF can respect eq. 16. The choice of the

GDF can be fixed by the respect of a threshold of the RMS value and by considering the complexity

of the GDF related to its derivative order.
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4.2 Particular case of a high resolution seismic source

Even if the processing method described in previous sections can be applied to any kind of source sig-

nal, we discuss here the method by considering the example of a high resolution seismic source. Gen-

erated by transducers in marine seismics, such a seismic source typically emits a linearly-modulated

chirp signal spanning frequencies from flow to fhigh. According to Ker et al. (2010), we suppose a sig-

nature deconvolution that compacts the source duration and flattens the frequency spectrum inside the

bandwidth [flow; fhigh]. From now, it is obviously necessary to better conform with the terminology

used in seismic practice, i.e. a correspondence between dilation and frequency is required.

As described above, we consider a Gaussian derivative function of order m defined by a dilated

wavelet of dilation a (dimension of time). Recalling that the Fourier transform of such a Gaussian is

a Gaussian, and that the time-derivative translates into a multiplication of the spectrum by (2iπf)m

(e.g. Bracewell 1999), the frequency fpeak of the GDF is determined from its Fourier transform which

has a maximum at (Heigl, 2007):

fpeak =
1

πa

√
m

2
, (20)

The frequency bandwidth ∆f is also a function of both the derivative order m and the dilation a

(Ravela & Manmatha; 1999): ∆f is larger when m is high and a is low.

In practice, the limits amin and amax are determined in such a way that their corresponding fre-

quencies fhigh and flow, respectively, given by eq. (20), correctly covers the source spectrum. It is

important to observe that the constant frequency range, determined from the source bandwidth, corre-

sponds to a variable dilation range depending on m, as discussed below.

5 SYSIF SOURCE-CORRECTED ANALYSIS OF A HOMOGENEOUS THIN LAYER

The SYSIF seismic device is a deep-towed system developed by Ifremer to image the subseabed with a

metric (HR) to sub-metric (VHR) resolution for depth penetrations up to 350 m in a silty clay sediment

type. The reader is referred to Ker et al. (2010) and Marsset et al. (2010) for a detailed presentation

of the SYSIF system and the processing of SYSIF seismic data. Actually, two sources are involved in

the SYSIF device, so two source filters b(t) have to be defined according to the method proposed in

the previous sections, one for the HR and one for the VHR seismic sources. As noted in the previous

section, the processing method deals with the deconvolved source signatures: fig. 3 shows these source

signals and frequency spectra involved in the present study. We also introduce the effective wavelet

ξe(t) associated to the seismic SYSIF source and we use it to analyse a synthetic window function

discontinuity in order to discuss the method and its limitations when a real seismic source is involved.
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5.1 Effective wavelet ξe(t) of the SYSIF seismic source

The SYSIF deep-towed seismic device is equipped with two seismic sources covering the high-

resolution (HR: 220 < f < 1050 Hz) and very-high-resolution (VHR: 580 < f < 2200 Hz)

frequency bands. The aim of this section is to determine the parameters ab and m of the best GDF

source wavelet b(t) by computing the RMS of eq. (19) for a range of dilation amin ≤ ab ≤ amax and

for a range of derivation order m = 1, . . . , 10 of the GDF b(t). Following the method described in

section 4, we compute the minimum value of the RMS errors (fig. 4a) and the dilations ab (figs. 4b,c)

for both SYSIF sources. We remember that the dilation range depends on m: for the HR source for

instance, m = 1 implies amin = 214 µs and amax = 1023 µs and m = 10 gives amin = 678 µs and

amax = 3235 µs. In fig. 4a, we observe that both sources follow similar behaviours, with a strong de-

crease of the RMS error atm = 3. In figs. 4b,c, we observe that ab increases in the range [430; 1224µs]

for the HR source and [250; 549µs] for the VHR source. To shape the seismic source, b(t) is defined

by a derivative order m that is a trade-off between a small value of the RMS error and a low value of

ab: m = 3 and m = 4 appear as good candidates. The final choice for m may also rely on a visual

inspection of the fit in the time domain as in figs. 5a-d where the approximation b(t) ∗ s(t) ≈ b(t)

appears much better for m = 4 than for m = 3. In the frequency domain (figs. 5e-h), one can observe

the good match between the spectra of b(t) and b(t) ∗ s(t) for both sources excepted at the lower and

upper bounds of the bandwidth. This mismatch at the bounds is more pronounced for m = 3 than for

m = 4. The dilation ab of the source filter of order m = 4 is ab = 776µs for HR and ab = 357µs for

VHR.

With these parameters, the source filters b(t) take into account the frequency bandwidth limitations

of the SYSIF source and can be considered for a multiscale analysis of a discontinuity in the framework

of the processed WR (eq. 11b). In order to assimilate the two SYSIF sources as a single seismic source

which covers a very large frequency range, we merge both the HR and VHR WRs. To do so, a common

order m is mandatory for both b(t) models of the SYSIF device.

The WR analysis deals with both the source filter b(t) and the analysing wavelet ξ(t), through the

effective wavelet ξe(t) which complexity is related to its derivative order l. The analysing wavelet ξ(t)

is taken as GDF of order n = 1 to minimize the order l. As a conclusion, the effective wavelet ξe(t)

of the merged SYSIF sources is a GDF of order l = 5.

5.2 Discussions on the effective dilation range of the merged SYSIF source

At this stage of the discussion, it is worth recalling that dimensionless relative dilations ar are often

more comfortable to use for practical computations instead of absolute dilations a. In the previous

paper Ker et al. (2011), we defined ar = λ/λ0 with λ and λ0 the wavelengths of the dilated and
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mother wavelets, respectively, i.e. ar = a/a0 where a0 is a reference time unit related to a frequency

sampling rate. In the following, we present the results in terms of dimensionless relative dilations,

with the sampling rate involved in the SYSIF device (1/a0 = 10kHz).

In the remaining of this paper, the effective wavelet ξe(t) is a GDF of order l = 5 with a frequency

fpeak = 5033 Hz given by eq. 20 with a = a0 and m = l. In this section, the wavelength is λpeak =

29.8 cm (for a P-wave velocity Vp = 1500 m/s). The effective dilation ae depends on the dilation

ab of the source filter, different for the HR and for the VHR b(t) models (eq. 10). This leads to two

different dilation ranges, noted RHR
ar and RVHR

ar , where ar refers now to the dimensionless dilation

ae/a0 according to Ker et al. (2011). Similarly, we note RHR
f and RVHR

f the associated frequency

ranges, which represent the physical peak frequency of the effective wavelet ξe(t). When both SYSIF

sources are merged into one broadband source, we note:

Rar = RHR
ar ∪R

VHR
ar , (21a)

Rf = RHR
f ∪RVHR

f (21b)

for the global effective dilation range (eq. 21a) and accordingly, the associated frequency ranges (eq.

21b).

It is important to remember that the lower bounds of RHR
ar and RVHR

ar are fixed by the dilations

ab of the source filters b(t). On the other hand, the upper bounds are not constraint but the lack of

low frequency content of b(t) ∗ s(t) for both SYSIF sources (see Figs. (5g,h)) introduces distortions

in the dilated wavelets. These distortions, more and more pronounced when dilations increase, can be

quantified with a relative rms error related to the consideration of ξe(t), a GDF of order l = 5 and

an effective dilation ae ≥ ab, instead of an analysing wavelet ξ(t) of the same order n = l but with

dilations a ∈ R+. We define the maximum value of this relative rms error such thatRar is continuous,

i.e. the upper bound of RHR
ar joins the lower band of RVHR

ar : this condition RHR
ar,max ∼ RVHR

ar,min is

satisfied with a threshold of 20% on the relative error.

The relation between the absolute dilation a, detailed in the formalism of section 3 and expressed

in µs, versus the dimensionless dilation ar = ae/a0, is shown in figs. 6a,b. With a rms threshold of

20%, RHR
ar = [7.84; 17.64] and RVHR

ar = [3.74; 7.61]. According to eq. 20, the associated frequency

ranges are shown in figs. 6c,d: RHR
f = [285; 642 Hz] and RVHR

f = [600; 1345 Hz]. It is interesting

to note that the effective frequency ranges overlap, even if the dilation ranges do not. As a conclusion,

we get:

Rar = [3.74; 17.64], (22a)

Rf = [285; 1345Hz]. (22b)
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5.3 Source-corrected seismic attributes of a thin homogeneous layer

5.3.1 Processed WR and ridge function of the thin layer

In this section, we compute the synthetic seismic dataset of a window function discontinuity analysed

simultaneously with the HR and the VHR sources of the SYSIF device. The synthetic seismic dataset

is computed for a homogeneous layer thickness ∆z = 45cm, which associated Green’s function is

computed from a method based on the Goupillaud’s model (1961) (see Ker et al. 2011 for details on

the forward modelling). The reference continuous WR of the discontinuity, defined for a ∈ R+, is

performed with an analysing wavelet ξ(t) with a derivative order n = 5 (fig. 7a). When the SYSIF

source is taken into account, the corresponding WRe is computed with an effective wavelet ξe(t) of

order l = 5 which dimensionless effective dilation is ar ∈ Rar , shown in fig. 7b. Since ξ and ξe are

both based on a GDF of the fifth order (fpeak = 5033 Hz), WR and WRe can be directly compared in

the common dilation rangeRar .

As discussed in the previous section, the transition between the HR and the VHR components

shows some imperfections (fig. 7b), i.e. the amplitude continuity and the distortions of the analysing

wavelets in the intermediate band correspond to larger errors of the correction processing. Neverthe-

less, we observe a very good agreement between both time-scale maps, WR and WRe. The shapes of

the raw HR and VHR ridge functions of WRe, i.e. ridge functions not corrected from the distortions

induced by the source, are shown in fig. 8a. When we apply the amplitude factor correction (eq. 12c)

and display the results versus the effective dilation ae (eq. 12b), the processed ridge functions are in

perfect agreement with the reference, even for rms errors up to 20% (fig. 8b): the solid line corre-

sponds to the reference WR and the symbols to the WRe (HR in red, VHR in blue). This illustrates the

efficiency of the method developed here to remove the WR distortions induced by limited frequency

bandwidth sources.

We remember that in section 5.1, the derivative order m of the Gaussian filter b(t) of the source

has been justified by a better match with a GDF for m = 4 than for m = 3. Compare to the case

m = 4 shown in fig. 8b, the processing quality for m = 3 fails to reproduce exactly the shape of the

reference ridge function, computed for n = 4, as shown in fig. (9). This mismatch confirms that the

fourth derivative order is the smallest order that can be used to obtain an appropriate Gaussian filter

adapted to SYSIF sources. The methodology to select the derivative order m is efficient and enables

to remove the WR distortions induced by SYSIF seismic sources: this analysis of a window function

may be included in the processing workflow used to define this filter as a final quality control.
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5.3.2 Thin layer thickness based on the seismic attributes

In Ker et al. (2011), we have suggested that a multiscale attribute based on the ridge function can

inform about the structure of a discontinuity which characteristic size ∆z is identified from the di-

mensionless dilation ac associated to the maximum amplitude of the ridge function, easier to point

when dealing with real seismic data. According to this previous work, we can write:

∆z = λc/β (23)

where β is a dimensionless proportionality factor specific to the considered wavelet, and the wave-

length λc = Vp/fpeak,c = Vpπaca0

√
2
l (eq. 20 with a = ac×a0). We can then relate the characteristic

size of the reflector to the dimensionless dilation ac:

∆z =
ac
β
λpeak, (24)

For ∆z = 45cm, we identify ln(ac) = 1.93 from the ridge function shown in fig. 8b, i.e. we are

able to define β = 4.57 for a GDF of order l = 5. Note that in Ker et al. (2011), we worked with

β = 2.61 in the CWT with Ricker wavelets (l = 2), in agreement with the literature on such seismic

wavelets (Kallweit & Wood, 1982 and Chung & Lawton, 1995): for a GDF wavelet l = 5, no literature

exists on the subject but the approach is the same to define the associated β value. In the remaining

of this section, we use the relation ∆z = ac/15.33 to define the characteristic size of a complex

discontinuity in the framework of the wavelet transform (see Appendix B for an extension to the

dominant wavelength representation).

In the present work, we show that the merged WRe of the SYSIF sources is defined in the effective

dilation range Rar , i.e. ac ∈ [3.74; 17.64]. Accordingly, the SYSIF device can be used to identify

seismic reflector thicknesses ∆z ∈ R∆z , where the range is defined by

R∆z = [24; 115cm]. (25)

Thicknesses smaller than 24 cm, as illustrated in Fig. 10a for ∆z = 22 cm, can not be estimated

from ac as the effective dilation is restricted to the decreasing part of the ridge function with a slope

close to -1. In that case, a thin layer can be approximated to a Dirac discontinuity with no characteristic

size. Nevertheless, the segment of ridge function limited toRar is not a perfect straight line, suggesting

the presence of a complex structure rather than a pure Dirac discontinuity.

In the range R∆z , the layer thickness is determined from the dilation ac of the maximum of the

ridge function following eq. (24). Within this range, the location of ac can be correctly identified (see

fig. 8b for ∆z = 45 cm and the associated WRe in fig. 7b). Consequently, good estimation of ac

can be attempted when accepting correction rms errors up to 20%. Close to the upper bound, the case

∆z = 112 cm is shown in fig. 10b where a very good agreement between the reference and the
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source-corrected ridge functions is still observed, even in the complex part of the ridge function where

interference phenomena occur. From such seismic attributes, the layer thickness ∆z is perfectly given

by the dilation located at ln(ac) = 2.84, according to eq. 24. Note that it is theoretically possible to

relate ∆z to other extrema of the ridge function, such as the minimum amplitude (Le Gonidec et al.,

2003), but a maximum is easier to identify in real seismic data.

For thicknesses larger than 115 cm, the dilation ac can not be identified since it is out of the

effective dilation range which is on the left hand side of the maximum amplitude, i.e. where the

internal structure is detected. This dilation range covers the Heaviside asymptotic behaviour and the

multiscale attributes analysis may become useless as a direct estimation of the thickness can be made

by a straightforward interpretation of the seismograms.

6 APPLICATION TO COMPLEX SUB-SURFACE SEDIMENTARY LAYERS

We now assess the multiscale seismic attributes to analyse superficial deep-sea hemipelagic sediments

from the seismic datasets detailed in Ker et al. (2011): one concerns synthetic seismic traces, computed

with a forward modelling on in situ and core measurements, and the other concerns seismic traces

acquired at sea by the SYSIF deep-towed device in the close vicinity of the ground truth data. In Ker

et al. (2011), this case study shows a very good match between the subsurface structure described

from the ground truth data and the seismic reflectors.

6.1 Source-corrected seismic attributes of the impedance log defined from ground truth data

In this section, we work on a synthetic WR of the subseabed: from ground truth data, we define the

in situ acoustic impedance log of the subsurface used to compute the Green’s function of the structure

(fig. 11a). The analysis is based on two steps, presented in section 5.3 for a window discontinuity.

First, we use eq. 1a to compute the reference continuous WR of the subsurface with an unlimited

frequency bandwidth seismic source, i.e. for dilations a ∈ R+. This WR, displayed in fig. 11b, shows

numerous cone-like structures pointing toward the position of seismic reflectors. Second, we use eq. 3a

to numerically sound the subsurface with the SYSIF device, taken into account with b(t), which lim-

ited frequency bandwidth induces distortions in the seismic attributes: we apply the source-correction

method to remove these distortions and perform the effective wavelet response WRe (fig. 11c). Note

that WRe is defined in the limited and dimensionless dilation range Rar , which corresponds to the

frequency range [285; 1345Hz] (see eqs. 22a and 22b).

In the common dilation range, we observe a very good agreement between the reference WR and

the source-corrected WRe maps (figs. 11b and 11c, respectively). In particular, the two reflectorsA and
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B already introduced in Ker et al. (2011) can be identified (dashed lines) from cone-like structures that

point towards them. Since the WR and the WRe are associated to the same GDF (l = 5), the associated

ridge functions can be plotted versus the same dimensionless dilation, the reference curve in solid line

and the source-corrected curve in symbols (figs. 11(d,e)). The very good agreement between the curves

puts in evidence the efficiency of the source-correction method which allows to analyse a complex

structure with quantitative descriptions based on the multiscale seismic attributes. For instance, the

maximum of the ridge function indicates the characteristic size of the seismic reflectors A and B:

according to eq. 24, ∆zA = 85 cm and ∆zB = 99 cm, respectively (uncertainties estimated to

±2 cm and Vp = 1485m/s).

6.2 Source-corrected seismic attributes of superficial sediment structures: SYSIF seismic data

In this section, we work on field seismic traces, i.e. the data acquired at sea with the SYSIF seismic

device and we perform the source-correction processing to compute the effective wavelet response

WRe of superficial structures (fig. 12a). As in the previous synthetic analysis, reflectors A and B can

be identified, plotted in dashed lines in the WRe map. Note that in this case, no continuous reference

wavelet response can be associated to the results. Nevertheless, since the seismic traces have been

acquired at the same site than the ground truth data used in the previous analysis, the results can

be compared to the synthetic results displayed in fig. 11b. We observe a good agreement between

both approaches. In particular, the ridge functions associated to reflectors A and B (figs. 11b,c) are

in good agreement with the synthetic results and the characteristic sizes are ∆zA = 89 cm and

∆zB = 100 cm, respectively.

6.3 Discussions

Results obtained in section 6.1 validate the source-correction processing and even in the case of com-

plex seismic signals, we are able to remove the distortions induced by real seismic sources. We high-

light that the analysis based on both seismic and ground truth data are in very good agreement, which

indicates the robustness of the method. In particular, the characteristic sizes of reflectors A and B

estimated from these two approaches are in good accordance. In the previous work (Ker et al., 2011),

the empirical correction gives a satisfactory thickness estimation for both reflectors, ∆zA = 81 cm

and ∆zB = 99 cm (to compare with the present source-corrected results ∆zA = 89 cm and

∆zB = 100 cm) but the distortion residuals of the ridge function remain strong and do not allow

to use the whole ridge function as a correct multiscale seismic attributes.

The source-corrected method applied on seismic SYSIF data confirms the efficiency of the multi-

scale analysis, despite the structure complexity of the subsurface and the limited frequency bandwidth
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of the seismic sources. It is important to highlight that this powerful data processing allows to work not

only with the characteristic size of a seismic reflector but also with the global shape of the processed

ridge function, i.e. with the full content of the multiscale attributes.

7 CONCLUDING REMARKS

Real seismic sources are characterized by limited frequency bandwidths, i.e. they act as band-pass

filters b(t) which distort the multiscale seismic attributes based on the wavelet response (WR), as

introduced in Ker et al. (2011). In the present paper, we present a source-corrected method used to

remove such distortions induced by a seismic source. In a way similar to the wavelet analysis of

potential field performed with the Poisson wavelet semi-group (Moreau et al., 1997 and 1999; Sailhac

et al., 2009), we work with Lévy alpha-stable distributions in order to define an effective analysing

wavelet ξe(t) accounting for the source effects. The wavelets considered here are Gaussian derivative

functions (GDF), both for the analysing wavelet family Daξ(t) (order n and dilation a) and for the

source filter b(t) (order m and dilation ab), i.e. the convolution Daξ(t) ∗ b(t) results in an effective

wavelet familyDaeξe(t) which is a GDF of order l = n+mwith an effective dilation ae =
√
a2 + a2

b .

Note that ae does not span in R+ but ae > ab. The multiscale analysis based on this effective GDF

- scaled with an amplitude factor depending on ab and displayed versus ae accounting for the time-

widening of ξ(t) when convolved with the source filter b(t) - allows to work with source-corrected

ridge functions.

In order to define the Gaussian filter that reshapes the seismic source, i.e. the GDF required to

perform the undistorted WR, two parameters have to be determined: the derivative order m and the

dilation ab. For both SYSIF deep-towed seismic sources (HR and VHR), we find that the associated

GDF are both defined with m = 4 and different ab. We consider n = 1 for ξ(t) to minimize the

complexity of the effective analysing wavelet, which order is then l = 5 and ae spans in a reduced

dilatation range. To cover all dilations between the HR and VHR sources, which frequency bandwidths

overlap, we define a maximum rms error value of 20% between the effective wavelet associated to the

SYSIF sources (GDF of order l = 5 and ae > ab) and the associated equivalent ξ(t) (GDF of order

l = 5 and a ∈ R+), i.e. we accept some disagreements of the dilated wavelets. Applied on a window

function, the SYSIF WR is in very good accordance with a reference WR computed without the source

limitation. This agreement is highlighted by the comparison of the ridge functions which are similar

in the dilation range covered by the SYSIF sources and associated to layer thicknesses in the range

[24;115 cm].

We work on both synthetic and field seismic traces. We define the former from ground truth data

related to deep-water hemipelagic sediments and we take into account the SYSIF source properties to
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perform the source-corrected WR. We compare the results with a reference WR, i.e. without any source

limitation, and we show very good accordances. In particular, the seismic attributes of reflectors A

and B indicate layer thicknesses of 85 and 99 cm, respectively: the multiscale analysis of the acoustic

impedance log is in perfect agreement with the synthetic WR corrected from distortions induced by

the SYSIF sources. In the close vicinity of the ground truth data, SYSIF field seismic data are also

available to perform the undistorted WR analysis: the ridge functions associated to reflectors A and B

are very similar to the ones performed with the synthetic traces, providing the same layer thicknesses.

The theoretical context of the source-corrected wavelet response, enhanced by the first application

on seismic data, evidences a major improvement to quantify multiscale seismic attributes, despite the

complexity of the reflectors and the limited frequency bandwidth of the source. This multiscale pro-

cessing allows to work with the global shape of the source-corrected ridge function and is promising

to go further into such seismic attributes analysis.

Actually, we highlight that the WR source-corrected processing can be applied not only with the

SYSIF device but with any kind of source signal device which signature is well known and stable.

This method, based on the theoretical framework of the wavelet transform, has potentiel interests for

many physical applications, such as Non Destructive Testing (NDT) performed with ultrasonics or

electromagnetic measurements. In particular, the method can be used to perform a source-corrected

experimental WR by the use of a single broad-band source signal, i.e. an extension of the wavelet

response introduced by Le Gonidec et al. (2002).

APPENDIX A

The effective wavelet can be expressed as eq. 13a and 13b:

ξe(t) =
dl

dtl
exp

(
−t2
)

(26a)

= (−1)lHl(t) exp(−t2). (26b)

The Hermite polynomial is defined as (Abramowitz & Stegun, 1972),

Hl(t) = (−1)l exp
(
t2
) dl

dtl
exp

(
−t2
)
. (27)

The expressions of the first tenth Hermite polynomials are now given in eqs. 28 to 37.

H1(t) = (2t) (28)
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H2(t) =
(
4t2 − 2

)
(29)

H3(t) =
(
8t3 − 12t

)
(30)

H4(t) =
(
16t4 − 48t2 + 12

)
(31)

H5(t) =
(
32t5 − 160t3 + 120t

)
(32)

H6(t) =
(
64t6 − 480t4 + 720t2 − 120

)
(33)

H7(t) =
(
128t7 − 1344t5 + 3360t3 − 1680t

)
(34)

H8(t) =
(
256t8 − 3584t6 + 13440t4 − 13440t2 + 1680

)
(35)

H9(t) =
(
512t9 − 9216t7 + 48384t5 − 80640t3 + 30240t

)
(36)

H10(t) =
(
1024t10 − 23040t8 + 161280t6 − 403200t4 + 302400t2 − 30240

)
(37)

A mathematical framework on Hermite polynomials can be found in Kreyszig (1978).

Appendix B

In the framework of the wavelet transform, ridge functions correspond to the extrema of the CWT as a

function of the dilation a of the dilated wavelet. This is the representation chosen in the present work

but it is interesting to plot the results with respect to the peak wavelength λpeak, inversely proportional

to fpeak (see eq. 20), and to the dominant wavelength λd, commonly used in seismology. For λpeak,

the peak frequency fpeak is uniquely defined in the wavelet spectrum as the frequency of the largest

amplitude. The dominant wavelength λd is related to the breadth of the wavelet (Kallweit & Wood,

1982) which is defined as the time between two secondary extrema close to the central lobe of a

symmetrical wavelet (even derivative order l, i.e. for a Ricker wavelet l = 2, the breadth is defined
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by a trough-to-trough time). For asymmetrical wavelets (odd l values), we define the breadth of the

wavelet as twice the time between the two primary extrema.

To illustrate the three representations, we plot the ridge function of a thin homogeneous layer (see

Fig. 1) analyzed with GDF wavelets of orders l = 2, 3, 4, 5, respectively. For the natural representation

of the ridge function plotted versus a (figs. B1(a-d)), the location of the maximum shifts with respect

to the derivative order l, in accordance with fig. 2. This shift also exists when the ridge function is

plotted versus λpeak (figs. B1(e-h)). In the last representation, we observe that the maximum of the

ridge function plotted versus the dominant wavelength λd remains at a position independent of the

derivative order l (figs. B1(i-l)) and corresponds to λd,max = 4∆z.
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FIGURE CAPTIONS

Figure 1: Multiscale analysis of a window discontinuity of thickness ∆z = 60cm. (a, left to right):

Complex discontinuity, modulus of the continuous wavelet transform (CWT) in the depth-dilation

domain with a GDF of order n = 3, and ridge function. (b, left to right): Complex discontinuity,

modulus of the wavelet response (WR) in the time-dilation domain with a GDF of order n = 2, and

ridge function. (c, left to right): Complex discontinuity, modulus of the WR when a limited frequency

bandwidth source is taken into account (n = 2, m = 2, ab = 318µs and b0 = 1), and raw ridge

function. (d, left to right): Complex discontinuity, modulus of the source-corrected WR (l = 4) versus

the effective dilation ae, and source-corrected ridge function.

Figure 2: (a-d) Analysing wavelets with derivative orders n = 4, 6, 8, 10, respectively. (e-h) Asso-

ciated ridge functions computed for a window function.

Figure 3: SYSIF seismic sources: The HR (a) and the VHR (b) deconvolved signatures cover the

220− 1050Hz (b) and 580− 2200Hz (d) frequency bands, respectively.

Figure 4: a) Minimum RMS errors versus the derivative order m, for both the SYSIF HR source

(stars) and the SYSIF VHR source (circles) and (b,c) the corresponding dilation ab.

Figure 5: Comparison between b(t)∗s(t) (blue) and b(t) (red). In the time domain: (a) HR,m = 3;

(b) VHR, m = 3; (c) HR, m = 4; (d) VHR, m = 4. In the frequency domain: (e) HR, m = 3; (f)

VHR, m = 3; (g) HR, m = 4; (h) VHR, m = 4.

Figure 6: Absolute dilation and peak frequency ranges of the SYSIF HR (on the left) and VHR

(on the right) sources, plotted versus the dimensionless dilation ar = a/a0 for a rms threshold of 20%.

Figure 7: WR of a window function ∆z = 45 cm analysed (a) with the reference wavelet (n = 5,

a ∈ R+), and (b) with the effective wavelet (l = 5, ar ∈ Rar = RHR
ar ∪ R

VHR
ar ) wich takes into

account the limited frequency bandwidth of the HR and VHR SYSIF sources.

Figure 8: Ridge functions extracted from the SYSIF WRe (l = 5) for a window function ∆z =

45 cm (HR in red, VHR in blue, reference (n = 5) in solid line): (a) raw version in the reference

dilation range and (b) source-corrected version in the effective dilation range (m = 4).

Figure 9: Ridge function extracted from the effective WRe (l = 4) for a window function ∆z =

45 cm computed with a source filtering b(t) of the third order (m = 3) (HR in red, VHR in blue,

reference (n = 4) in solid line).

Figure 10: Ridge functions extracted from the SYSIF WRe (l = 5) for window functions of

thicknesses (a) ∆z = 22 cm and (b) ∆z = 112 cm (HR in red, VHR in blue, reference (n = 5) in

solid line).

Figure 11: Seismic attributes from the Green’s function of hemipelagic sediment impedance (syn-

thetic seismic data): (a) impedance profile, (b) reference WR (n = 5, a ∈ R+), (c) effective SYSIF
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WRe (l = 5, ar ∈ Rar ) and (d,e) ridge functions of reflectors A and B (WR in solid line and source-

corrected WRe in symbols: HR in red and VHR in blue).

Figure 12: Seismic attributes from field SYSIF data: (a) effective SYSIF WRe (l = 5, ar ∈ Rar )

and (b,c) source-corrected ridge functions of reflectors A and B (HR in red and VHR in blue).

Figure 13: Ridge functions of a window discontinuity analyzed with wavelets of derivative orders

l = 2, 3, 4, 5 (from top to bottom). The curves are plotted versus the dilation (left), the peak wavelength

(middle) and the dominant wavelength (right). Black crosses indicate the location of the maximum:

note that for the left and middle columns, this location depends on l whereas it is fixed when the ridge

function is plotted versus the dominant wavelength.
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Figure 1. Multiscale analysis of a window discontinuity of thickness ∆z = 60cm. (a, left to right): Complex

discontinuity, modulus of the continuous wavelet transform (CWT) in the depth-dilation domain with a GDF

of order n = 3, and ridge function. (b, left to right): Complex discontinuity, modulus of the wavelet response

(WR) in the time-dilation domain with a GDF of order n = 2, and ridge function. (c, left to right): Complex

discontinuity, modulus of the WR when a limited frequency bandwidth source is taken into account (n = 2,

m = 2, ab = 318µs and b0 = 1), and raw ridge function. (d, left to right): Complex discontinuity, modulus of

the source-corrected WR (l = 4) versus the effective dilation ae, and source-corrected ridge function.
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Figure 2. (a-d) Analysing wavelets with derivative orders n = 4, 6, 8, 10, respectively. (e-h) Associated ridge

functions computed for a window function.
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Figure 3. SYSIF seismic sources: The HR (a) and the VHR (b) deconvolved signatures cover the 220−1050Hz

(b) and 580− 2200Hz (d) frequency bands, respectively.
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Figure 4. a) Minimum RMS errors versus the derivative order m, for both the SYSIF HR source (stars) and the

SYSIF VHR source (circles) and (b,c) the corresponding dilation ab.
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Figure 5. Comparison between b(t) ∗ s(t) (blue) and b(t) (red). In the time domain: (a) HR, m = 3; (b) VHR,

m = 3; (c) HR, m = 4; (d) VHR, m = 4. In the frequency domain: (e) HR, m = 3; (f) VHR, m = 3; (g) HR,

m = 4; (h) VHR, m = 4.
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Figure 6. Absolute dilation and peak frequency ranges of the SYSIF HR (on the left) and VHR (on the right)

sources, plotted versus the dimensionless dilation ar = a/a0 for a rms threshold of 20%.
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Figure 7. WR of a window function ∆z = 45 cm analysed (a) with the reference wavelet (n = 5, a ∈ R+), and

(b) with the effective wavelet (l = 5, ar ∈ Rar
= RHR

ar
∪RVHR

ar
) wich takes into account the limited frequency

bandwidth of the HR and VHR SYSIF sources.
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Figure 8. Ridge functions extracted from the SYSIF WRe (l = 5) for a window function ∆z = 45 cm (HR

in red, VHR in blue, reference (n = 5) in solid line): (a) raw version in the reference dilation range and (b)

source-corrected version in the effective dilation range (m = 4).
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Figure 9. Ridge function extracted from the effective WRe (l = 4) for a window function ∆z = 45 cm

computed with a source filtering b(t) of the third order (m = 3) (HR in red, VHR in blue, reference (n = 4) in

solid line).
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Figure 10. Ridge functions extracted from the SYSIF WRe (l = 5) for window functions of thicknesses (a)

∆z = 22 cm and (b) ∆z = 112 cm (HR in red, VHR in blue, reference (n = 5) in solid line).
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Figure 11. Seismic attributes from the Green’s function of hemipelagic sediment impedance (synthetic seismic

data): (a) impedance profile, (b) reference WR (n = 5, a ∈ R+), (c) effective SYSIF WRe (l = 5, ar ∈ Rar
)

and (d,e) ridge functions of reflectors A and B (WR in solid line and source-corrected WRe in symbols: HR in

red and VHR in blue).
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Figure 12. Seismic attributes from field SYSIF data: (a) effective SYSIF WRe (l = 5, ar ∈ Rar
) and (b,c)

source-corrected ridge functions of reflectors A and B (HR in red and VHR in blue).
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Figure 13. Ridge functions of a window discontinuity analyzed with wavelets of derivative orders l = 2, 3, 4, 5

(from top to bottom). The curves are plotted versus the dilation (left), the peak wavelength (middle) and the

dominant wavelength (right). Black crosses indicate the location of the maximum: note that for the left and

middle columns, this location depends on l whereas it is fixed when the ridge function is plotted versus the

dominant wavelength.
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