Diel changes of the Benthic Boundary Layer macrofauna over coarse sand sediment in the western English Channel

Macrofauna Benthic Boundary Layer Diel changes Coarse sand Western English Channel

Macrofaune Couche d'eau adjacente au fond Migrations nycthémérales Sable grossier Manche occidentale

Souaad ZOUHIRI and Jean-Claude DAUVIN

Muséum National d'Histoire Naturelle, Laboratoire de Biologie des Invertébrés Marins et Malacologie, CNRS URA 699, 57, rue Cuvier, 75231 Paris Cedex 05.

Received 22/03/95, in revised form 11/07/95, accepted 18/07/95.

ABSTRACT

The Benthic Boundary Laver (BBL) macrofauna over a coarse sand community at Trezen Vraz (western English Channel) was sampled with a modified Macer-GIROQ hyperbenthic sledge to analyse its diel changes on two occasions, in November 1988 (9 hauls), and in July 1990 (11 hauls). Species composition of the fauna, swimming activities, daily vertical migrations, biomass of the principal taxa, and biomass exchanges between the BBL, the benthos, and the pelagos were studied. Sixty-one taxa in November and 129 taxa in July were sorted, counted, and classified into three groups: mesozooplankton, macrozooplankton, and hyperbenthos. In the mesozooplankton, copepods and crustacean larvae were very abundant in July. In the macrozooplankton, the chaetognath Sagitta *elegans* was abundant in both sets of samples, while the euphausiids were only abundant in November, and fish larvae and the amphipod Apherusa clevei were only abundant in July. In both sets of samples the most abundant taxon of the hyperbenthos was the mysid Anchialina agilis. The densities of all collected taxa fluctuated with daily vertical migrations: higher densities of mysids and euphausiids were present in daytime, whereas amphipods and decapods were more abundant at night. The biomasses in each haul varied from 72 to $303 \text{ mg}/100 \text{ m}^3$ (mean: 154 mg/100 m³) in November, and from 160 to 1943 mg/100 m³ (mean: 638 mg/100 m³) in July. Biomass exchanges between pelagos, BBL and benthos appeared important around sunset and sunrise.

RÉSUMÉ

Variations nycthémérales de la macrofaune de la couche d'eau adjacente au fond du peuplement de sables grossiers de la Manche occidentale.

La macrofaune hyperbenthique du peuplement des sables grossiers de la station Trezen Vraz (Manche occidentale) a été échantillonnée avec une nouvelle version du traîneau Macer-GIROQ en deux occasions, en novembre 1988 (9 traits) et juillet 1990 (11 traits) afin d'en étudier ses variations nycthémérales. La composition spécifique de la faune collectée, son activité natatoire et ses migrations nycthémérales, la biomasse des principaux taxons, et les échanges de biomasses entre la couche d'eau adjacente au fond, le benthos et le pélagos, ont été précisés. Les taxons identifiés, 61 en novembre et 129 en juillet, ont été répartis en trois grands groupes : le mésozooplancton, le macrozooplancton, et l'hyperbenthos. Les Copépodes et les larves de Crustacés sont très abondants en juillet ; dans le macrozooplancton, les Chaetognathes sont abondants dans les deux séries, tandis que les Euphausiacés ne sont abondants qu'au mois de novembre et les larves de Poissons et l'Amphipode Apherusa clevei qu'en été. Dans les deux séries, le Mysidacé Anchialina agilis est l'espèce dominante de l'hyperbenthos. Les densités montrent des variations journalières : celles des Mysidacés et des Euphausiacés sont plus élevées le jour, et à l'inverse celles des Amphipodes et des Décapodes sont plus élevées la nuit. Les biomasses mesurées dans chaque trait varient entre 72 et 303 mg/100 m³ (moyenne 154 mg/100 m³) en novembre, et entre 160 et 1943 mg/100 m³ (moyenne 638 mg/100 m³) en juillet. Les échanges de biomasse entre la couche d'eau adjacente au fond, le benthos et le pélagos ne semblent importants qu'au crépuscule et à l'aube.

Oceanologica Acta, 1996, 19, 2, 141-153.

INTRODUCTION

Several studies have shown that there is a particular biological compartment in the Benthic Boundary Layer (BBL), dominated by Peracarida and Decapoda crustaceans which are food sources for demersal fishes. So the BBL fauna probably constitutes an important link in the food web of the coarse sand community which covers a large area in the English Channel. This fauna has been defined using different terms: nectobenthos, benthopelagic plankton, benthoplankton, demersal zooplankton, hyperbenthos, suprabenthos, and BBL fauna (see reviews in Sorbe, 1984 and Mees, 1994). Brunel et al. (1978) included in the suprabenthos (= hyperbenthos, Mees, 1994) all swimming, bottom-dependent animals; mainly crustaceans which perform, with varying amplitude, intensity and regularity, seasonal or daily vertical migrations above the sea-floor. Wildish et al. (1992) included in the BBL macrofauna, the epi-endofauna, zooplankton, fish larvae and all the species considered by Brunel et al. (1978) as suprabenthos. In the English Channel, the first information on the hyperbenthos was provided by Dauvin and Lorgeré (1989), and Dauvin et al. (1994) on the coarse sand community off Roscoff (western English Channel), excluding the planktonic components. Wang and Dauvin (1994) and Wang et al. (1994) provided data on the hyperbenthic and demersal macrozooplanktonic community from a station offshore from the Seine estuary (eastern English Channel). The objectives of the present study of an offshore coarse sand community in the western English Channel were: (1) to describe the fauna in the BBL sampled with a modified Macer-GIROQ between 0.10 and 1.45 cm above the seafloor; (2) to assess the diurnal vertical migrations of the dominant species; (3) to estimate densities and biomasses of the BBL macrofauna; and (4) to use the available information to calculate biomass exchanges between benthic and pelagic environments separated by the BBL.

MATERIAL AND METHODS

Study site

The station "Trezen Vraz" (48° 51.20' N; 3° 53.42' W), located in the north of Roscoff harbour, consists of bioclastic coarse sand with a benthic macrofauna belonging to the *Venus fasciata* community (Dauvin *et al.*, 1994). The station depth is about 75 m and it lies within a thermoho-

mogenous area characterized by low annual variations in salinity, without a thermocline. Bottom-water temperature is about 8°C in winter and 15.5°C in summer (annual mean = 12°C), and the salinity varies from 34.80 in winter to 35.30 at the beginning of autumn (Dauvin *et al.*, 1989, 1991).

Sampling and analysis

The samples were collected with a modified Macer-GIROQ hyperbenthic sledge (Brunel *et al.*, 1978; Dauvin and Lorgeré, 1989; Dauvin *et al.*, 1995). This sledge simultaneously sampled the fauna at four levels: 0.10-0.40 (net N1), 0.45-0.75 (net N2), 0.80-1.10 (net N3) and 1.15-1.45 m (net N4) above the sea-floor. Each net (WP2, 0.5 mm mesh size) was equipped with a "T.S.K." flowmeter to measure the volume of filtered water.

Two sets of hauls were made, the first on 14-15 November 1988 with nine hauls (TV01-TV09) and the second on 17-18 July 1990 with 11 hauls (TV22-TV32). The water volume filtered by each net varied from 203 to 254 m³ for the first set and from 177 to 254 m³ for the second (Tab.1). Organisms collected in each net were separately fixed in 10% neutral formalin immediately on board. A week later, the samples were washed and transferred to 70% ethanol. All the individuals were sorted, counted and determined to the species level (when possible), except for the adult copepods and for the crustacean larvae which were very numerous. Their densities were estimated using the following steps: (1) measure of the biovolume of each sample after extracting individuals of the other species; (2) count of copepods and crustacean larvae in three duplicates of 1 ml; and (3) multiplication of the mean number per ml by the biovolume of the sample. The numbers of individuals in each net were standardized to 100 m³ [mean density in the four nets = $(\Sigma DN1 + DN2 + DN3 + DN4)/4$; DN1, DN2, DN3, DN4, density values (ind./100 m³) in nets N1, N2, N3, and N4] and the total number in a haul (4 nets) was standardized to 400 m^3 .

Swimming activities during the day and night were measured with three coefficients: K1 = DN2/tD, K2 = DN3/tD, K3 = DN4/tD, with DN2, DN3, DN4: density values (ind./100 m³) in nets N2, N3, N4, and tD = total density (ind./400 m³) in the four nets of the sledge (Dauvin *et al.*, 1994). The Wilcoxon-Mann-Whitney U test (Scherrer, 1984) was used to determine whether there was a significant difference between daytime and night-time densities.

Information for samples collected, and volume of water filtered by the nets. D: day, N: night, SS: sunset, SR: sunrise. (1): volume not measured in these nets, and considered as equal to the mean volume of the 11/14/1988 hauls.

Principales caractéristiques de l'échantillonnage, et volume d'eau filtrée par les filets. D : jour, N : nuit, SS : crépuscule, SR : aube. (1) volume d'eau filtrée non disponible et considéré comme étant égal au volume moyen d'eau filtrée au cours de la campagne du 14 novembre 1988.

				Volume of filtered water							
Hauts	Date	Hour	Day/night	Net1	Net 2	Net 3	Net 4				
1701	11/14/1988	15h45	D	0	(1)	(1)	(1)	251			
TV02	11/14/1988	17h30	D	(1)	(1)	(1)	(1)	251			
TV03	11/14/1988	18h30	SS	262	236	265	284	261			
TV04	11/14/1988	19h30	N	237	203	238	271	237			
TV05	11/14/1988	24h00	N	255	260	220	284	254			
TV06	11/15/1988	6h00	N	239	214	233	271	239			
TV07	11/15/1988	7h00	N	241	240	220	262	241			
TV08	11/15/1988	7h50	SR	256	232	275	261	256			
TV09	11/15/1988	8h30	D	234	205	268	228	233			
TV22	07/17/1990	17h15	D	200	177	186	177	185			
TV23	07/17/1990	18h45	D	196	179	203	196	193			
TV24	07/17/1990	20h45	D	243	201	216	213	218			
TV25	07/17/1990	22h00	SS	223	205	222	216	216			
TV26	07/17/1990	23h00	N	232	219	245	267	241			
TV27	07/17/1990	24h00	N	212	181	202	194	197			
TV28	07/18/1990	4h45	N	207	186	207	200	200			
TV29	07/18/1990	5h35	N	191	202	209	213	204			
TV30	07/18/1990	6h45	SR	240	211	224	228	226			
TV31	07/18/1990	8h45	D	254	226	234	231	236			
TV32	07/18/1990	10h45	D	242	222	201	230	223			

The dry weight of each taxon was measured after ovendrying at 80°C for 48 h and the ash weight after further heating at 550°C for 2 h. Both weights were measured with a precision of 0.001 mg. The ash-free dry weight (AFDW) was the difference between these two values. Biomasses of each species or taxon in each net were calculated and expressed in mg of AFDW per 100 m³ [mean biomass in the four nets = $(\Sigma BN1 + BN2 + BN3 + BN4)/4$; BN1, BN2, BN3 et BN4, biomass mg AFDW/100 m³ in nets N1, N2, N3, and N4].

Vertical biomass (mean biomass in the four nets in mg $AFDW/100 \text{ m}^3$) exchanges between pelagos (water column above the hyperbenthic environment) and BBL (water layer sampled by the sledge), corresponding to migration of planktonic organisms, and between BBL and benthos, corresponding to migration of benthic organisms, were estimated by comparing biomasses of successive hauls. We considered positive exchanges when the biomasses in the BBL increased, and negative exchanges when the biomasses in the BBL decreased.

RESULTS

Faunistic composition

Sixty-one taxa were collected in the samples of November 1988 and 129 taxa in the samples of July 1990 (Zouhiri, 1993), for a total of 133 taxa (Tab. 2). The fauna could be classified into three groups of organisms according to their size and their bottom dependence: (1) two mesozooplanktonic taxa, Copepoda and crustacean larvae; (2) 24 macro-zooplanktonic taxa, Chaetognatha, Euphausiacea, the holo-

pelagic amphipod *Apherusa clevei*, which was present throughout the water column in the Roscoff area (Toulmond and Truchot, 1964), Mollusca Cephalopoda and fish larvae; and (3) 102 hyperbenthic taxa: Amphipoda, Mysidacea, Isopoda, Pycnogonida, and Leptostracea.

In November 1988, Copepoda, crustacean larvae, Euphausiacea, Chaetognatha, four families of fish larvae, 31 species of Amphipoda, 10 species of Mysidacea, two species of Cumacea, four species of Isopoda, five species of Decapoda, and one species of Leptostracea were collected in nine hauls (Tab. 2). A total of 75,653 individuals were counted, excluding copepods and crustacean larvae. Macrozooplanctonic taxa, Euphausiacea and Chaetognatha, were dominant. Three other species accounted for more than 500 individuals: *Anchialina agilis, Apherusa clevei*, and *Eusirus longipes*. Only four taxa were found in all samples, and 12 taxa had a frequency higher than 50%. Four taxa were present in the nine lower nets, and 12 taxa were found in at least five of the lower nets.

In July 1990, the fauna was more diversified: Copepoda, crustacean larvae, Euphausiacea, Chaetognatha, 19 families of fish larvae, 57 species of Amphipoda, 16 species of Decapoda, 15 species of Mysidacea, eight species of Isopoda, five species of Cumacea, two species of Mollusca Cephalopoda, two species of Pycnogonida and one species of Leptostracea were collected in 11 hauls (Tab. 2). A total of 751,497 individuals were counted, excluding copepods and crustacean larvae. The Apherusa species, and Sagitta elegans were dominant, 12 other taxa accounted for more than 1000 individuals (Tab. 2). Five taxa were found in all samples, and 22 taxa had a frequency $\geq 50\%$. Seven taxa were present in all 11 lower nets, and 26 taxa were found in at least six of the lower nets. In both series of hauls, the most diversified group was Amphipoda; a great number of taxa was collected but abundances were low, often fewer than 10 individuals (Tab. 2).

Density

The density of meso- and macrozooplankton showed an increase from the lower to the upper net. Inversely, hyperbenthos was more abundant in the lower net (Tab. 3). The density of organisms varied greatly from one haul to another and from one net to another (Tab. 2, 3). In July, the mean density of organisms was much higher than those of November (10,018 ind./100 m³ vs. 1164 ind./100 m³).

Macrozooplanktonic organisms dominated in both series; they represented 69.1% of the total organisms in November (mean density: 804 ind./100 m³), and more than 55.7% in July (mean density: 5,777 ind./100 m³). The proportions of mesozooplanktonic organisms were respectively 25.7% (mean density: 299 ind./100 m³) in November and 34.9% (mean density: 3494 ind./100 m³) in July, and hyperbenthic organisms 5.2% (mean density: 61 ind./100 m³) in November and 9.4% (mean density: 947 ind./100 m³) in July. In November, higher densities, especially for macrozooplanktonic organisms, were found during daytime (Tab. 4), whereas in July the higher densities were found during darkness (Tab. 5). The highest values of mesozooplankton and hyperbenthos in the July hauls were observed

Frequency of occurrence (F), number (N) and density of collected specimens in July 1990 and November 1988. tD: ind./400 m^3 , cumulative values from the four nets of the sledge. DN1: ind./100 m^3 , density in N1. Amp., Amphipoda, Cep., Cephalopoda, Cha., Chaetognatha, Cum., Cumacea, Iso., Isopoda, Dec., Decapoda, Eup. Euphausiacea, Lep., Leptostracea, Mys., Mysidacea, Pis., Pisces, Pyc., Pycnogonida.

Fréquence de capture de 0 à 1, nombre (N) et densité des espèces collectées en juillet 1990 et novembre 1988. tD : ind./400 m³, cumul des densités des quatre filets du traîneau, DN1 : ind./100 m³ densité dans le filet 1.

	- · · · · · · · · · · · · · · · · · · ·		17-18 July 1990						14-15 November 1988						
			ΣN1N	12N3N4 (44 nets)		N1(11 n	ets)	ΣΝ1Ν	2N3N4	(36 nets)	N1 (9 nets)			
			F	N	tD	F	N	DN1	F	N	tD	F N D		DN1	
Apherusa clevei	Sars, 1904	Amp.	1,00	450019	14702,90	1,00	56701	2360,00	1,00	2258	101,60	1,00	288	15,57	
Sagitt a eleg ans	Verrill, 1873	Cha.	1,00	158076	7128,00	1,00	49991	2017,00	1,00	46181	2111.80	1,00	10902	496,60	
Anchialina agilis	(Sars, 1877)	Mys.	1,00	29594	1327,30	1,00	8523	340,06	1,00	3066	138,60	1,00	612	30,23	
Stenothoe marina	(Bate, 1856)	Amp.	1,00	12564	592,70	1,00	3129	280.00	0,94	148	6,73	0,88	47	2,13	
Leptomysis gracilis	(Sars, 1864)	Mys.	1,00	2311	98,76	1,00	1081	44,75	0,77	99	4.44	0.77	38	1.92	
Gastrosaccus normani	Sars, 1877	Mys.	0,97	8026	349,78	0,90	1625	72,42	0,97	257	11,98	0,88	72	2,80	
Siriella jaltensis	Czerniavsky, 1868	Mys.	0,93	1348	59,02	0,90	341	13,86	0,14	6	0,25	0,11	2	0,08	
Paramysis nouveli	Labat, 1953	Mys.	0,93	986	42,18	1,00	550	22,62	0,86	177	8,00	1.00	45	2,72	
Nyctiphanes couchi	(Bell, 1853)	Eup.	0,90	2164	91,38	0,90	504 2	20,12	0.00	21754	0.00	0.00	0413	293,00	
Gobiidae		P13.	0,88	3246	340.43	0,90	577	0,12	0,00	32	1.41	0.11	2	0.08	
Mullidae		ris. Die	0,01	240	10 41	0.81	63	3.40	0.02	1	0.08	0.00	0	0.00	
Pseudocuma longicornis	(Bate 1858)	Cum.	0.77	176	7.03	0.90	56	2.28	0,14	8	0,41	0,11	2	0,08	
Melnhidinnella macra	(Norman, 1869)	Amp.	0.72	2193	117.51	0,81	417	24,24	0,69	332	15,24	0,88	50	2,98	
Atvlus vedlomensis	(Bate & Westwood, 1862)	Amp.	0,72	493	32,40	0,72	123	7,70	0,39	34	1,57	0,22	5	0,21	
Sepiola atlantica	Orbigny, 1939	Cep.	0,63	96	4,06	0,72	38	1,63	0,00	0	0,00	0,00	0	0,00	
Pandalina brevirostris	(Rathke, 1843)	Dec.	0,61	1450	63,60	1,00	600	27,41	0,47	50	2,51	0,33	10	0,43	
Mysidopsis angusta	Sars, 1864	Mys.	0,61	259	11,71	0,81	148	6,16	0,00	0	0,00	0,00	0	0,00	
Gadidae		Pis.	0,59	152	8,68	0,54	36	1,47	0,02	1	0.04	0,00	0	0,00	
Siriella norvegica	Sars, 1869	Mys.	0,56	287	12,50	0,63	129	5,34	0,00	0	0,00	0,00	0	0,00	
Eusirus longipes	Boeck, 1861	Amp.	0,52	1659	48,36	0,63	584	16.93	0,75	788	35,34	0,77	186	8,13	
Iphimedia obesa	Rathke, 1843	Amp.	0,50	203	8.80	0,45	99	1,20	0.19	10	0,46	0,33	4	0,18	
Atylus swammerdami	(Milne-Edwards, 1830)	Amp.	0,47	207	8.15	0,54	60 27	2,80	0,00	0	0,00	0.00	0	0.00	
Phtisica marina	Slabber, 1769	Amp.	0,47	51	2,17	0,72	27	0,10	0.00	141	0,00 5 9 5	0,00	40	1.80	
Apherusa bispinosa	(Bate, 1856)	Amp.	0,45	6/320 5078	071,00	0,45	616	28.00	0.00	141	0,00	0,00		0.00	
Apherusa cirrus	Bate, 1802	Amp. Dia	0,45	3978 80	3 74	0,45	24	0.96	0,00	0	0.00	0.00	0	0.00	
Califorymus reliculatus	(Norman 1868)	4 mp	0,45	44	1 55	0.45	13	0.72	0.36	43	2.36	0.55	25	1.33	
Guernea coama	Steentrup 1856	Cen.	0.45	34	1.47	0.45	6	0.25	0,00	0	0,00	0,00	0	0,00	
Pisidia longicornis	(I 1767)	Dec.	0.43	294	10.31	0.54	77	1,25	0,00	0	0,00	0,00	0	0,00	
Synchelidium maculatum	Stebbing, 1906	Amp.	0.40	192	7,30	0,45	51	2,20	0,36	37	1,65	0,22	13	0,36	
Eurvdice pulchra	Leach, 1815	Iso.	0,36	122	5,58	0,27	44	2,01	0,05	2	0,08	0,11	1	0,04	
Pontophilus sculptus	(Bell, 1853)	Dec.	0,36	33	2,06	0,54	10	0,86	0,05	2	0,09	0,00	0	0,00	
Megamphopus cornutus	(Johnston, 1828)	Amp.	0,31	58	2,23	0,72	45	1,65	0,14	8	0,34	0,22	5	0,22	
Orchomene nana	Kröyer, 1846	Amp.	0,31	31	1,34	0,45	17	0,76	0,16	13	0,54	0,11	5	0,22	
Galathea intermedia	Lilljeborg, 1851	Dec.	0,29	95	4,12	0,36	17	0,72	0,03	1	0,04	0,00	0	0,00	
Mysidopsis gibbosa	Sars, 1864	Mys.	0,29	30	1,36	0,27	13	0.59	0,19	8	0,35	0,22	3	0.12	
Pontocrates arenarius	(Bate, 1858)	Amp.	0,29	28	1,35	0,45	13	0,56	0.03	2	0,08	0,11	2	0,08	
Erythrops elegans	Sars, 1876	Mys.	0,27	50	2,10	0,45	29	1.22	0,08	د	0,15	0.00	0	0,00	
Bodotria scorpioides	(Montagu, 1804)	Cum.	0,27	20	0,75	0,45	4	0,12	0,00	0	0,00	0.00	0	0,00	
Trachinus draco	L., 1758	P15.	0,27	14	1.01	0,09	1	1 27	0,00	17	0,00	0.44	15	0.68	
Gammaropsis macuala	Norman, 1809	Myr	0.25	31	1,71	0.18	9	0.47	0,14	7	0.44	0.11	1	0.04	
Gastrosaccus tovatus Recudementalia nhasma	(Montagu 1804)	Amn.	0.22	38	1.81	0.45	26	1.30	0.00	0	0,00	0.00	0	0,00	
F seudoproteita phasma Sabaaramatidae sa?	(1004)	Iso.	0.22	16	0.64	0.36	4	0.17	0.00	0	0,00	0,00	0	0,00	
Calipallene brevirostris	(Johnston, 1837)	Pyc.	0.22	15	0,48	0,36	6	0,19	0,00	0	0,00	0,00	0	0,00	
Nymphon brevirostris	Hodge, 1863	Pyc.	0,22	9	0,55	0,09	2	0,07	0,00	0	0,00	0,00	0	0,00	
Labrus mixtus	L., 1758	Pis.	0,20	54	2,16	0,18	17	0,68	0,00	0	0,00	0,00	0	0,00	
Gnathia oxyuraea	(Lilljeborg, 1855)	Iso.	0,20	15	0,53	0,27	5	0.20	0,16	6	0,26	0,22	2	0,09	
Gitana sarsi	Boeck, 1871	Amp.	0,20	13	0,55	0,45	8	0,33	0,14	7	0,35	0,33	3	0.14	
Amphilochus neapolitanus	Della Valle, 1893	Amp.	0,20	11	0,46	0,27	5	0,17	0,03	1	0,04	0,00	0	0,00	
Syngnathidae		Pis.	0,20	10	0,40	0,09	1	0,04	0,00	0	0,00	0.00	0	0,00	
Cheirocratus assimilis	(Lilljeborg, 1852)	Amp.	0,18	23	0,71	0,45	13	0,72	0,27	27	1,18	0,33	10	0,46	
Astacilla longicornis	(Sowerby)(Sars, 1899)	Iso.	0,18	11	0,41	0,36	5	0,20	0,00	0 ^	0,00	0,00	0	0,00	
Ampelisca spinipes	Boeck, 1861	Amp.	0,18	8	0,33	0,09	1	0,04	0,00	0	0,00	0,00	0	0,00	
Liocarcinus pusillus	(Leach, 1816)	Dec.	0,15	41	0,73	0,27	11	0,45	0,10	11	0,48	0,00	U K	0,00	
Leptomysis lingvura	(Sars, 1866)	Mys.	0,15	38	1,00	0,27	y ⊿	0,37	0,23	13	0,28	0,00	n	0,20	
Dicentrachus labrax	L., 1738 (Bata 1856)	1*18. A	0,15	10	1,08	0,18	2	0.10	0,00	2	0.13	0.00	o	0.00	
Monocuodes carinatus	(Date, 1030) Heilstone 1825	Amp.	0,13	17	0.75	0.09	4	0.17	0.00	õ	0.00	0,00	õ	0,00	
r ontopnitus irispinosus Callionumus hura	1 1758	Dec. Pie	0,13	10	0,40	0.18	3	0.12	0.00	0	0,00	0,00	0	0,00	
Tmetonyr similie	Sars. 1891	Amo.	0.13	9	0.38	0.27	5	0.22	0,00	0	0,00	0,00	0	0,00	
Interony A dimina				-				• • •	· · ·						

				1	17-18 Jul				14-15	Novembe	er 1988			
			ΣN1N	2N3N4 (4	44 nets)	N	V1(11 ne	ets)	ΣN1N2	2N3N4	(36 nets)	N1 (9 nets)		
			F	N	tD	F	N	DN1	F	N	tD	F	N	DN1
Tmetonyx similis	Sars. 1891	Amp.	0,13	9	0,38	0,27	5	0,22	0,00	0	0,00	0,00	0	0,00
Macropodia tenuirostris	(Leach, 1814)	Dec.	0,13	6	0,52	0,18	5	0.21	0,00	0	0,00	0,00	0	0,00
Processa nouveli holthuisi	Al-Adhub & Williamson, 1975	Dec.	0,13	5	0,25	0,09	1	0,04	0,00	0	0,00	0,00	0	0,00
Conilera cylindracea	(Montagu, 1803)	Iso.	0,11	26	0,71	0,18	19	0,48	0,05	2	0,08	0,11	1	0,04
Hippomedon denticulatus	(Bate, 1857)	Amp.	0,11	16	0,50	0,27	13	0,37	0,05	2	0,13	0,11	2	0,08
Hippolyte varians	Leach, 1814	Dec.	0,11	13	0,58	0,09	4	0,19	0,00	0	0,00	0,00	2	0,00
Parametopa kervillei	Chevreux, 1901	Amp.	0,11	5	0,22	0,18	2	0.07	0,11	5	0.20	0.11	1	0.04
Euryaice spinigera Inhimedia neva	(Myers & McGrath 1982)	Amn.	0.11	4	0.24	0.27	3	0.14	0.03	1	0.04	0.00	0	0.00
Leucothoe spinicarpa	(Abildgaard, 1789)	Amp.	0.09	15	0,30	0,09	7	0.26	0,16	12	0,53	0,33	6	0,26
Socarnes filicornis	(Heller, 1866)	Amp.	0,09	8	0,34	0,36	8	0,34	0,00	0	0,00	0,00	0	0,00
Ischyrocerus anguipes	Kröyer, 1838	Amp.	0,09	5	0,20	0,18	3	0,12	0,00	0	0,00	0,00	0	0,00
Urothoe elegans	(Bate, 1856)	Amp.	0,09	4	0,16	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00
Nannastacus brevicaudatus	Calman, 1905	Cum.	0,09	4	0.18	0,09	2	0,08	0,00	0	0,00	0,00	0	0,00
Soleidae		Pis.	0,09	4	0.18	0,09	1	0,04	0,00	0	0,00	0,00	0	0,00
Aora typica	Kröyer, 1845	Amp.	0,06	25	0,44	0,18	18	0,11	0,00	0	0,00	0,00	0	0,00
Schistomysis spiritus	Norman, 1860	Mys.	0,06	15	0,68	0,09	11	0,47	0,00	0	0,00	0,00	0	0,00
Tritaeta gibbosa	(Baic, 1802) Robertson 1802	Amp.	0,00	5	0.28	0,09	1	0.03	0,00	3	0.13	0.00	0	0.00
Leucothoe Incisa	(Montagu)(Sexton 1014)	Amp.	0,00	5	0.22	0.27	5	0.21	0.00	0	0.00	0.00	õ	0,00
Ericthonius punctatus	(Bate, 1857)	Amp.	0.06	4	0.22	0,06	4	0,20	0,00	0	0,00	0,00	0	0,00
Tryphosella minima	Lillieborg, 1852	Amp.	0.06	4	0.26	0,18	2	0.09	0,00	0	0,00	0,00	0	0,00
Ammodytidae	y 0.	Pis.	0,06	4	0.20	0,09	3	0,12	0,22	18	0,80	0,22	2	0,08
Argentinidae		Pis.	0,06	4	0.20	0,09	3	0,12	0,00	0	0,00	0,00	0	0,00
Iphimedia eblanae	Bate, 1857	Amp.	0,06	3	0.14	0,27	3	0,16	0,00	0	0,00	0,00	0	0,00
Argissa hamatipes	Norman, 1869	Атр.	0,06	3	0,12	0,09	1	0,04	0,08	3	0.13	0,11	2	0,09
Atylus falcatus	Metzger, 1871	Amp.	0,06	3	0,12	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00
Processa edulis	Nouvel & Hothuis, 1957	Dec.	0,04	8	0,31	0,18	7	0,31	0,00	0	0,00	0,00	0	0,00
Ipnimedia spatula	(Myers & McGrain, 1982) Waker 1880	Amp.	0,04	2	0,08	0,09	1	0,03	0,00	0	0,00	0,00	0	0,00
Normanion chevreuxi	Divisco & Vader, 1988	Amp.	0.04	2	0.08	0.18	2	0.08	0.03	1	0.04	0.11	1	0.04
Perrierella audouiniana	(Bate, 1857)	Amp.	0,04	2	0,11	0.09	1	0,04	0,08	2	0,14	0,00	0	0,00
Perioculodes longimanus	(Bate & Westwood, 1868)	Amp.	0,04	2	0,08	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00
Stenopleustes nodifer	(Sars, 1882)	Amp.	0,04	2	0,08	0,00	0	0,00	0,14	6	0.24	0,22	3	0,13
Siriella clausii	Sars, 1876	Mys.	0,04	2	0,08	0,09	1	0,04	0,16	10	0,43	0,11	2	0,08
Iphinoe trispinosa	(Goodsir, 1843)	Cum.	0,04	2	0,08	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00
Nannastacus unguiculatus	(Bate, 1859)	Cum.	0,04	2	0,08	0,00	0,00	0,00	0,00	0	0,00	0,00	0	0,00
Pagurus bernhardus	(L., 1758)	Dec.	0,04	2	0,08	0,18	2	0,08	0,00	0	0,00	0,00	0	0,00
Nebalia bipes	(Fabricius, 1780)	Lep.	0,04	2	0.11	0,18	2	0,13	0,05	2	0,08	0,11	1	0,04
Ampeusca spooneri Scomber scomber	1 1758	Die	0.04	17	0.68	0,00	3	0,00	0,00	0	0,00	0,00	0	0,00
Schistomysis parkeri	Norman, 1860	Mys.	0.02	11	0.47	0.09	11	0,12	0.00	0	0.00	0.00	õ	0.00
Aspitrigla cuculus	L., 1758	Pis.	0.02	3	0.12	0,00	0	0,00	0.00	0	0,00	0,00	0	0,00
Gastrosaccus spinifer	(Goes, 1864)	Mys.	0,02	2	0,08	0,09	2	0,08	0,00	0	0,00	0,00	0	0,00
Iphimedia minuta	Sars, 1882	Amp.	0,02	1	0,03	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00
Ampelisca diadema	Costa, 1853	Amp.	0,02	1	0,03	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00
Leptocheirus bispinosus	Norman, 1908	Amp.	0,02	1	0,04	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00
Leptocheirus pectinatus	Norman, 1869	Amp.	0,02	1	0,03	0,09	1	0,03	0,00	0	0,00	0,00	0	0,00
Ceradocus semiserratus	(Bate, 1862)	Amp.	0,02	1	0,04	0,00	0	0,00	0,00	0	0,00	0,00	1	0,00
Liljeborgia pallida	(Bate, 1857) Boack 1871	Amp.	0,02	1	0,04	0,00	0	0,00	0,03	1	0,04	0,11	0	0,40
Lysianassa piumosa Lysianassa so	DOCCK, 18/1	Amp.	0,02	1	0,03	0,09	0	0,03	0,00	0	0,00	0,00	0	0.00
Orchomene humilis	(Costa, 1853)	Amp.	0.02	1	0.04	0.00	0	0.00	0.00	õ	0.00	0.00	õ	0.00
Austrosyrrhoe fimbriatus	(Stebbing & Robertson, 1891)	Amp.	0,02	1	0,04	0,09	1	0,04	0,00	0	0,00	0,00	0	0,00
Metaphoxus fultoni	(Scott, 1890)	Amp.	0,02	1	0,03	0,00	0	0,00	0,03	1	0,04	0,11	1	0,04
Colomastrix pusilla	Grube, 1861	Amp.	0,02	1	0,04	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00
Sphaeromatidae sp1		Iso.	0,02	1	0,03	0,09	1	0,03	0,00	0	0,00	0,00	0	0,00
Pagurus prideauxi	Leach, 1815	Dec.	0,02	1	0,04	0,09	1	0,04	0,00	0	0,00	0,00	0	0,00
Achaeus cranchii	Leach, 1815	Dec.	0,02	1	0,04	0,00	0	0,00	0,03	1	0,04	0,00	0	0,00
Ebalia tuberosa	(Pennant, 1777)	Dec.	0,02	1	0,04	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00
Liocarcinus depurator	(L., 1758)	Dec.	0,02	1	0,04	0,09	1	0,04	0,00	0	0,00	0,00	0	0,00
Finnotheres pisum	(L., 1767) (L. 1766)	Dec.	0,02	1	0,04	0,09	1	0,04	0,00	0	0,00	0,00	0	0,00
Liparis ilparis Hippoglosoides platerraid	(L., 1/00) Bloch 1787	115. Die	0,02	1 1	0,04	0.00	1	5,40 0.04	0,00	U A	0,00	0,00	0	0,00
Myoxocephalus scornius	a 1750)	Pis.	0.02	1	0.04	0.09	1	0.04	0.00	0 0	0,00	0.00	õ	0.00
Zeus faber	(1		0,02	-	0,04	0,07		0.00	0.00	ő	0.00	0.00	õ	0.00
I wath a smaring	(L., 1758) L., 1758	Pis	0.02	1	0.04	0.00	U	0.00	0.00	0	0.00	0.00	•	
Oromoe marina	(L., 1758) L., 1758 (Bate, 1857)	Pis. Amp.	0,02 0,00	1 0	0,04 0,00	0,00 0,00	0	0,00	0,00	3	0,14	0,11	1	0,04
Maerella tenuimana	(L., 1758) L., 1758 (Bate, 1857) (Bate, 1862)	Pis. Amp. Amp.	0,02 0,00 0,00	1 0 0	0,04 0,00 0,00	0,00 0,00 0,00	0	0,00 0,00 0,00	0,08 0,11	3 5	0,14 0,22	0,11 0,11	1 1	0,04 0,04
Maerella tenuimana Scopelocheirus hopei	(L., 1758) L., 1758 (Bate, 1857) (Bate, 1862) (Costa, 1851)	Pis. Amp. Amp. Amp.	0,02 0,00 0,00 0,00	1 0 0 0	0,04 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0 0 0	0,00 0,00 0,00 0,00	0,08 0,11 0,30	3 5 16	0,14 0,22 0,70	0,11 0,11 0,33	1 1 4	0,04 0,04 0,17

Minimum (Dmin), mean (Dm) and maximum (Dmax) densities (ind./100 m^3) of organisms collected in the four nets during the two sets of hauls in November 1988 and July 1990. N1: net 1, N2: net 2, N3: net 3, and N4: net 4.

Densité minimale (Dmin), maximale (Dmax) et moyenne (Dm)(N. ind./100 m³) des individus récoltés dans chacun des quatre filets au cours des deux séries de traits en novembre 1988 et juillet 1990. N1 : filet 1, N2 : filet 2 ; N3 : filet 3 et N4 filet 4.

			14-15 Nove	mber 1988		17-18 July 1990					
		N1	N2	N3	N4	N1	N2	N3	N4		
Mesozooplankton	Dmin	23	37	29	37	86	97	683	989		
	Dm	101	408	294	393	1797	3794	4260	4510		
	Dmax	246	1135	540	1554	3704	7310	9304	12212		
Macrozooplankton	Dmin	201	388	267	420	871	669	1932	1952		
	Dm	805	911	931	761	4504	5335	6249	5781		
	Dmax	2095	1954	2918	1558	11993	14303	13944	9821		
Hyperbenthos	Dmin	20	24	17	22	332	70	58	48		
	Dm	61	70	59	53	1400	1003	840	733		
	Dmax	113	138	117	101	4256	3551	1531	1644		
Total	Dmin	226	578	507	567	3228	4956	6942	4063		
	Dm	967	1390	1284	1208	7701	10132	11348	11023		
	Dmax	2342	2812	3081	3013	13598	16391	16197	21971		

around sunset and sunrise, while in November hyperbenthos abundances were more variable (Tab. 4, 5).

Swimming activity and vertical distribution

Table 6 gives the swimming activity coefficients in day and night hauls of the 19 dominant macrozooplanktonic, meso-zooplanktonic and hyperbenthic taxa with a mean density higher than 1 ind./100 m³ which were found in one or both sets of samples. These taxa could be classified into four groups according to their swimming behaviour and their vertical distribution in the BBL (Dauvin *et al.*, 1994).

Group 1: organisms with a strong swimming activity occupying the whole BBL, $K1 \approx K2 \approx K3 \approx 0.25$ all day although some of them had slightly higher abundances in the lower nets in July night hauls.

Group 1 included chaetognaths (Fig. 1a, b), Anchialina agilis (Fig. 1c, d), Eusirus longipes (Fig. 1e, f), Gastrosaccus normani, and Siriella jaltensis.

Group 2: upper hyperbenthic species with an exceptionally strong swimming activity were found mainly in the upper nets, K1+K2+K3 > 0.80. Abundances were low in net 1, and they could be concentrated in different upper nets depending on the time of collection. Group 2 included Euphausiacea

Table 4

Mean density D (ind./100 m^3) and mean biomass B (mg AFDW/100 m^3) of organisms collected in the four nets during the November sampling.

Densité moyenne D (ind./100 m³) et biomasse moyenne B (Poids Sec Libre de Cendres en $mg/100 m^3$) des organismes collectés dans les quatre filets du traîneau au cours de la campagne de novembre 1988.

Haul	TV	/01	TV	/02	T	/03	TV	04	τı	/05	T	/06	TV	/07	TV	/08	TV	709
Taxa	D	В	D	B	D	B	D	В	D	B	D	В	D	B	D	B	D	В
Sagitta elegans	840,00	63,00	709,75	53,23	364,00	27,30	298,00	22,40	456,00	34,20	480,00	36,00	327.00	24,56	614,00	46,10	663,00	49,76
Apherusa clevei	13,00	0,58	17,21	0,79	19,00	0,86	44,00	2,03	28,00	1,31	17,00	0,77	20,00	0,91	14,00	0,63	56,40	2,59
Stenothoe marina	1,00	0,04	0,62	0,02	2,20	0,09	0,54	0,02	5,26	0,21	1,35	0,05	1,45	0,06	0,60	0,02	2,13	0,09
Others amphipoda	1,24	0,56	0,40	0,18	47,78	6,83	17,77	2,60	55,47	7,84	12,48	2,54	8,64	0,98	0,60	0,09	1,14	0,06
Cumacea	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,67	2,19	0,20	0.64	0,00	0,00	0,40	0,30	0,00	0,00
Isopoda	0,41	2,07	0,10	0,11	0,50	1,43	0,25	2,51	0,40	3,93	0,00	0,00	0,10	1,06	0,09	0,96	0,00	0,00
Anchialina agilis	66,00	6,00	58,00	3,59	18,00	1,60	19,00	1,70	10,00	0,90	13,00	1,20	13,00	1,20	38,00	3,43	77,00	7,00
Others Mysidacea	12,00	1,07	6,73	0,76	8,20	1,22	5,02	0,42	5,76	1,53	6,51	0,62	5,70	0,77	4,32	3,94	7,54	0,65
Pandalina brevirostris	0.00	0,00	0.00	0,00	2,25	13,13	0,55	3,20	1,15	6,70	1,40	8,10	0,30	1,73	0,00	0.00	0,00	0,00
Others Decapoda	0,00	0,00	0,00	0,00	0,21	3,65	0,23	0,86	0,69	1,45	0,27	0,09	0,19	0,07	0,10	0,04	0,09	0,03
Euphausiacea adult	790,00	132,70	310,75	42,72	15,50	2,60	72,50	12,18	21,00	3,53	62,25	10,46	65,75	11,05	5 61,00	94,25	347,50	58,38
Euphausiacea larvae	61,00	15,20	30,25	7,62	9,75	2,43	25,50	6,40	41,50	10,40	39,75	9,90	67,00	16,70	99,75	24,94	430,75	107,68
Copepoda	52,70	7,40	21.75	3,04	44,70	5,14	170,00	23,80	65,70	9,20	275,70	38,60	412,75	57,78	213,20	29,85	370,70	51,90
Crustacean larvae	13,75	4,80	8,51	3,00	14,00	4,90	31,75	11,11	21,25	7,44	35,00	12,25	44,75	15,66	21,75	7,61	67,25	23,54
Mollusca Cephalopoda	0.00	0.00	0,00	0,00	0,00	0,00	0,56	0,92	0,20	0,33	0,10	0,15	0,93	1,48	0,30	0,48	0,00	0,00
Fish larvae	0,00	0,00	0,00	0,00	0,45	1,18	1,78	3,77	1,45	1,83	1,14	2,24	1,75	3,46	0,48	0,32	0,69	1,48
Total	1851,10	233,42	1164.07	115,06	546,54	72,36	687,45	93,92	714,50	92,99	946,15	123,61	969,31	137,47	1568,59	212,96	2024,19	303,16
Macrozooplankton	1643,00	196,28	1037,71	96,74	398,95	31,94	416,84	41,30	506,65	41,20	560,49	49,62	415,43	41,46	1189,78	141,78	1067,59	112,21
Mesoplankton	127,45	27,40	60,51	13,66	68,45	12,47	227,25	41,31	128,45	27.04	350,45	60,75	524,50	90,14	334,70	62,40	868,70	183,12
Hyperbenthos	80,65	9,74	65,85	4,66	79,14	27,95	43,36	11,31	79,40	24,75	35,21	13,24	29,38	5,87	44,11	8,78	87,90	7,83

Mean density D (ind./100 m^3) and mean biomass B (mg AFDW/100 m^3) of organisms collected in the four nets during the July sampling.

Densité moyenne D (ind./100 m³) et biomasse moyenne B (Poids Sec Libre de Cendres en mg/100 m³) des organismes collectés dans les quatre filets du traîneau au cours de la campagne de juillet 1990.

<u></u>	τv	/22	T	V23	T	/24	Т	V25	τv	/26	тν	/27	т	/28	т	729	T۱	/30	T	/31	Т	/32
Sagitta elegans	1981,00	7,90	3031,00	12,10	1557,00	4,60	926,00	3,70	1336,00	7,30	2862,00	11,50	938,00	3,75	699,00	2,80	273,00	1,60	1980,00	7,90	4020,00	16,10
Apherusa clevei	753,00	52,70	1173,00	82,10	1599,00	111,90	6723,00	470,60	8157,00	545,70	10081,00	705,80	2117,00	148,20	2927,00	204,90	1000,00	70,00	2811,00	196,80	3092,00	216,40
Stenothoe marina	12,00	0,60	22,00	1,00	48,00	2,30	127,00	5,90	187,00	8,80	321,00	15,20	400,00	18,80	397,00	18,70	90,00	4,20	12,00	0,60	14,00	0,70
[•] Others Amphipoda	4,00	0,40	3,80	0,10	5,98	0,07	708,64	118,60	821,60	195,70	996,60	199,10	278,00	217,90	408,90	63,30	30,20	18,75	4,90	0,03	0,60	0,00
Cumacea	0,40	0,04	1,20	0,10	0,50	0,05	1,70	0,20	0,80	80,0	3,20	0,30	1,70	0,20	3,90	0,40	3,80	0,40	2,20	0,20	0,00	0,00
Isopoda	0,00	0,00	0,00	0,00	0,00	0,00	0,30	0,50	0,60	0,70	1,10	12,30	3,10	17,40	0,60	1,90	0,90	0,07	0,40	08,0	0,00	0,00
Anchialina agilis	63,00	1,40	475,00	10,90	342,00	7,90	578,00	85,50	32,00	4,80	9,00	1,30	10,00	1,50	33,00	4,90	1738,00	39,90	346,00	7,90	24,00	0,90
Others mysidacea	93,00	6,50	159,40	17,40	153,40	9,90	208,90	114,30	44,70	57,15	59,20	8,50	29,50	8,90	95,10	36,00	415,40	28,60	296,90	20,10	43,10	4,00
Pandalina brevirostris	3,00	0,50	2,00	0,40	3,00	0,50	3,00	0,50	83,00	13,30	49,00	7,90	19,00	3,10	11,00	1,70	1,00	0,08	0,00	0,00	1,00	0,00
Others Decapoda	5,10	0,60	2,80	0,04	0,00	0,00	3,20	0,50	7,10	9,60	7,30	5,90	25,30	4,90	6,20	14,40	9,80	8,10	0,00	0,20	0,00	11.00
Euphausiacea	91,00	11,80	6,00	0,80	1,00	0,10	0,30	0,04	1,00	60,0	2,00	0,20	2,00	0,20	1,00	0,20	9,00	1,20	52,00	0,70	00,00	3.60
Clupeidae	0,00	0,00	2,00	3,80	30,00	59,70	540,00	1074,90	23,00	46,20	13,00	25,40	20,00	39,70	54,00	106,80	214,00	426,70	5,00	9,20	2,00	3,50
Others fish larvae	5,70	1,00	10,30	6,50	7,80	6,90	18,90	8,90	10,80	8,80	17,90	6,40	7,70	6,00	18,20	12,10	13,20	12,10	17,90	12,30	9,00	0.03
Pycnogonida	0,00	0,00	0,41	0,04	0,11	0,01	0,00	0,00	0,10	0,01	0,90	0,07	0,61	0,05	0,47	0,04	0,33	0,03	0,31	0,03	0,30	0,03
Mollusca Cephalopoda	0,28	0,62	0,00	0,00	0,69	1,51	4,30	9,52	1,83	4,03	1,37	2,8/	1,17	2,23	2,37	5,10	1,22	2,03	4577 70	0,07	2006 50	61.45
Copepoda	2799,70	47,59	1493,70	25,39	3172,70	53,93	1404,00	23,86	580,50	9,86	363,70	6,18	979,50	10,05	1034,20	17,58	2764,00	47,32	45/7,70	AD 70	3020,00	31.00
Crustacean larvae	1416,00	28,32	1968,50	39,37	2581,70	51,63	1245,00	24,90	153,00	3,06	165,70	3,31	3//,/0	/,55	830,70	10,01	2/9/,20	717 40	12042 04	407.17	11960 52	3/7 77
Total	7227,18	159,97	8351,11	200,04	9502,88	311,01	12492,24	1942,42	11440,03	915,14	14953,97	1012,23	5210,28	497,03	0522,04	307,49	9301,05	F14.02	13243,94	036 70	7000 80	050 61
Macrozooplankton	2830,98	74,02	4222,30	105,30	3195,49	184,71	8212,50	1567,66	9529,63	612,09	12977,27	/52,1/	3085,87	200,08	3/01,5/	331,90	1510,42	303.04	7710.00	140.50	1576 70	82.45
Mesozoopiankton	4215,70	75,91	3462,20	64,76	5754,40	105,56	2649,00	48,76	733,50	12,92	529,40	9,49	1357,20	24,20	056.17	34,19	0001,20	100,20	1112,7U	20.84	83.00	571
Hyperbenthos	180,50	10,04	666,61	29,98	552,99	20,73	1630,74	326,00	1176,90	290,14	1447,30	250,57	/0/,21	2/2,/5	400,17	141,94	2207,43	100,13	0.03,01	27,00	00.00	0,71

Day/night mean densities of Sagitta elegans: (a, b); Anchialina agilis: (c, d); Eusirus longipes: (e, f) s. \Box day; \blacksquare night. N1, N2, N3, and N4: net1, net 2, net 3 and net 4.

Densités diurnes ou nocturnes (ind./100 m³) de : Sagitta elegans (a, b); Anchialina agilis (c, d); Eusirus longipes (e, f). \Box jour; \blacksquare nuit. N1, N2, N3, et N4 : filet 1, filet 2, filet 3 et filet 4.

(Fig. 2a, b), Apherusa clevei (Fig. 2c, d), Copepoda (Fig. 2e, f), Atylus vedlomensis and crustacean larvae.

Group 3: lower hyperbenthic species with a limited swimming activity which were more abundant in the two lower nets, K1 > K2 > K3, K1 + K2 + K3 < 0.60 including *Lep*tomysis gracilis, Mysidopsis angusta, Paramysis nouveli, Melphidipella macra, Stenothoe marina and Pandalina brevirostris (Fig. 2g, h). The latter showed a strong swimming activity in the November night samples.

Group 4: organisms with strong swimming activity which occupied the whole BBL during the daytime with $K1 \approx K2 \approx K3 \approx 0.25$ and concentrated in the lower nets at night with K1 + K2 + K3 < 0.70. Group 4 included Clupeidae, Gobiidae, and Mullidae larvae.

Daily changes

Organisms showed active vertical migrations from the endobenthos to the water column, or from the BBL to the pelagos. Three main patterns of daily changes could be identified:

Pattern 1: taxa with high abundances during the day, and low abundances during the night. Their abundances increased at sunrise to a maximum during the day then decreased at sunset. This behaviour was found in chaetognaths, euphausiids (Fig. 3a, b) and larvae, and two species of mysids Anchialina agilis (Fig. 3c, d) and Gastrosaccus normani. Nevertheless, in July, A. agilis showed two peaks of abundance at sunset and at sunrise, and very low abundances in dark hauls (Fig. 3d). Abundances during daytime were generally significantly higher than those observed at night (Tab. 6).

Figure 2

Day/night mean densities (ind./100 m^3) of Euphausiacea: (a, b); Apherusa clevei: (c, d); Copepoda (e, f), and Pandalina brevirostris (g, h). \Box day; \blacksquare night. N1, N2, N3, and N4: net1, net 2, net 3, and net 4.

Densités diurnes ou nocturnes (ind./100 m³) de : Euphausiacés (a, b); Apherusa clevei (c, d); copépodes (e, f); Pandalina brevirostris (g, h). \Box jour ; \blacksquare nuit. N1, N2, N3, et N4 : filet 1, filet 2, filet 3 et filet 4.

Figure 3

Daily variation of mean density in the four nets (ind./100 m^3) of Euphausiacea: (a, b); Anchialina agilis (c, d), and (e): clupeidae larvae.

Variations nycthémérales de la densité moyenne (ind./100 m³) dans les quatre filets du traîneau de : Euphausiacés (a, b); Anchialina agilis (c, d) et (e) larves de clupeidés.

Coefficients of swimming activity K1, K2 and K3 for dominant species, and U test: * significant at 5% level, ** significant at 1% level. D: day; N: night

Coefficients d'activité natatoire K1, K2 et K3 des espèces dominantes et test U:	* significatif à 5 %.	** significatif à 1	% . D: jour ; N: nuit.

Sampling date		-	14-15	Novembe	r 1988					1'	7-18 July 1	990		
Number of samples Volume of filtered water (m ³)		Day 4 5150			Night 5 4233		U test D/N		Day 6 3883]	Night 5 4935		U test D/N ;
	К1	K2	— КЗ	K1	K2	К3		 K1	K2	К3	K1	K2	К3	
Chaetoapatha							<u></u>							
Sagitta elegans	0,28	0.22	0,24	0,26	0,25	0,28	D>N*	0,23	0,26	0,22	0,27	0,22	0,17	NS
Euphauciacea														
Euphauciacea adult	0,28	0,24	0,15	0,39	0,24	0,27	D>N**	0,22	0,29	0,25	0,40	0,16	0,30	D>N**
Euphauciacea larvae	0,27	0,12	0,44	0,33	0,30	0,29	D>N**	-	•	-	-	-	-	-
Mysidacea														
Anchialina agilis	0,31	0,21	0,23	0,25	0,35	0,30	D>N**	0,37	0,18	0,18	0,30	0,20	0,22	D>N**
Gastrosaccus normani	0,30	0,17	0,22	0,39	0,33	0,19	D>N**	0,31	0,22	0.28	0,25	0,25	0,21	D>N**
Leptomysis gracilis	0,19	0,18	0,20	0,22	0,19	0,16	N>D*	0,19	0,18	0,19	0,20	0,18	0,10	N>D*
Mysidopsis angusta	-	•	•	-	-	-	-	0,22	0,19	0,10	0,13	0,18	0,08	N>D**
Paramysis nouveli	0,33	0,10	0,07	0,22	0,32	0,25	NS	0,22	0,07	0,05	0,26	0,11	0,08	NS
Siriella jaltensis	-	-	-	-	-	-	-	0.24	0,26	0,26	0,46	0,20	0,12	NS
Decapoda														
Pandalina brevirostris	-	-	•	0,24	0,34	0,25	N>D**	0 ,01	9,09	0,00	0,25	0,21	0,13	N>D**
Fish larvae														
Clupeidae	-	-	-	-	-	-	-	0,25	0,27	0,31	0,26	0,24	0,17	N>D**
Gobiidae	-	-	-	-	-	-	-	0,21	0,25	0,33	0,28	0,17	0,23	NS
Mullidae	-	•	-	-	-	-	-	0,31	0,18	0,24	0,23	0,16	0,14	NS
Amphipoda														
Apherusa clevei	0,38	0,18	0,31	0,44	0,23	0,19	NS	0,18	0,27	0,41	0,26	0,31	0,25	N>D**
Atylus vediomensis	-	-	•	0,40	0,22	0,23	N>D**	0 <i>A</i> 9	0,18	0,14	0,29	0,24	0,23	N>D**
Eustrus longipes	-	-	-	0,30	0,30	0,17	N>D**	-	-	-	0,28	0,20	0,16	N>D**
Melphidippeila macra	0,28	0,12	0,00	0,21	0,36	0,25	N>D**	0,22	0,22	0,16	0,37	0,25	0,02	N>D**
Stenothoe marina	0,35	0,09	0,28	0,33	0,22	0,12	N>D**	0,27	0,12	0,17	0,26	0,17	0,09	N>D**
Copepoda	0,37	0,30	0,25	0,34	0,28	0,34	NS	0,26	0,29	0,35	0,36	0,26	0,29	D>N**
Crustacean larvae	0,56	0,16	0,16	0,32	0,27	0,30	N>D*	0,24	0,30	0,26	0,24	0,30	0,28	D>N**

Pattern 2: fish larvae which performed an active migration and were present in the BBL only at sunrise and sunset. In addition to these movements, they swam in the upper water column and showed low abundances in the BBL: e.g. clupeid larvae were present with high abundances (around sunrise and sunset) in July hauls (Fig. 3e). The night abundance was significantly higher than the day abundance only in clupeid larvae (Tab. 6).

Pattern 3: the reverse of pattern 1, these taxa were present in the BBL during darkness. They migrated actively from the bottom to the BBL at sunset, their abundances reached a maximum around midnight and then decreased at sunrise. Four mysids *Leptomysis gracilis, Mysidopsis angusta, Paramysis nouveli*, and *Siriella jaltensis, Pandalina brevirostris,* and two amphipods: *e.g. Eusirus longipes* (Fig. 4a, b) and *Stenothoe marina* showed this behaviour (Fig. 4c, d). Night densities were generally significantly higher than those observed during the daytime (Tab. 6).

Copepods and crustacean larvae showed different behaviour in the two sets of samples. In November, no daily change was observed, similar low abundances were found in all samples (Fig. 4e). In July, daily changes were found in the BBL, highest abundances being observed during the daytime and only low abundances at night (Fig. 4f), as in pattern 1. The abundances were thus significantly higher during the daytime than at night (Tab. 6).

Biomasses

Biomasses of each taxon (species or family) in both sets of samples are shown in table 7. For the mysids *Anchialina agilis* and *Gastrosaccus normani*, day and night biomasses were measured separately because individual sizes of collected organisms varied greatly. During the daytime, individuals were smaller, mainly comprising juveniles, while at night, they were larger and mainly composed of adults.

Generally, the biomass was higher in November than in July. This means that the population was composed of adults in November and juveniles in July. Nevertheless, in some cases, *e.g.* amphipods *Cheirocratus assimilis* and *Stenothoe marina*, the biomass was higher in July.

The mean total biomass (Tab. 4, 5) in each haul varied from 72 to 303 mg/100 m³ (mean: 154 mg/100 m³) in November and from 160 to 1943 mg/100 m³ (mean: 638 mg/100 m³) in July. The mean biomasses of meso-plankton were similar in the two sets: 58 mg/100 m³ in November and 64 mg/100 m³ in July. In contrast, the mean biomass of macrozooplankton was five times higher

Figure 4

Daily variation of mean density in the four nets (ind./100 m^3) of Eusirus longipes (a, b); Stenothoe marina: (c, d), and copepoda: (e, f).

Variations nycthémérales de la densité moyenne (ind./100 m³) dans les quatre filets du traîneau de *Eusirus longipes* (a, b); *Stenothoe marina* (c, d), et des copépodes (e, f).

in July than in November ($84 vs. 440 mg/100 m^3$), and the mean biomass of hyperbenthos was 10 times higher in July than in November ($13 vs. 134 mg/100 m^3$, Tab. 8). In July the high biomass of hyperbenthos at night was due to the presence of the mysid *Anchialina agilis*. There were two peaks of total biomass in July: one at sunset (TV25 = $1943 mg/100 m^3$) and the other at sunrise (TV30 = $718 mg/100 m^3$), corresponding to biomass peaks of the macrozooplankton, especially clupeid larvae and *Apherusa*

clevei. In November, when the higher values of total biomass were found during daytime, a large number of mesoplanktonic organisms was present in the BBL.

Biomass exchanges

In both sets of hauls, total mesozooplankton biomass exchanges between the pelagic environment and the BBL sampled by the sledge were positive: respectively 157 mg/100 m³ in November and 6.5 mg/100 m³ in July (Fig. 5a, b). In November, except for an important positive exchange of mesozooplankton biomass between the water column and the BBL sampled by the sledge (about 120 mg/100 m³, between 8 and 9 *a.m.*), exchanges were very low. In July, there were alternately positive and negative exchanges (around 40 to 60 mg/100 m³), at sunset and sunrise (Fig. 5b).

The total macrozooplankton biomass exchanges between the pelagic environment and the BBL sampled by the sledge (Fig. 5c, d) were negative in November (84 mg/100 m³) and positive in July (185 mg/100 m³). In November, there was an important exchange of macrozooplankton biomass from the BBL to the water column around sunset (\approx 100 mg/100 m³), and a positive biomass exchange around sunrise (\approx 100 mg/100 m³). In July, a positive biomass exchange occurred at sunset (>1300 mg/ 100 m³) due to the migration of Clupeidae larvae, followed by a negative biomass exchange (\approx 1000 mg/100 m³), at the beginning of the night (Fig. 5b), and then a second one later at night. Low positive and negative biomass exchanges were also observed around sunrise.

Conversely, total biomass exchanges between the BBL sampled by the sledge and the benthic environment were slightly negative in the two series, respectively 1.9 mg/100 m³ in November and 2.3 mg/100 m³ in July. This means that there is a daily balance between the input and the ouput of hyperbenthic organisms in the BBL. Nevertheless the values of the biomass exchanges were more important in July, *e.g.* the maximum positive biomass exchange reached 300 mg/100 m³ in July and only

Figure 5

Biomass exchanges in November 1988 and July 1990 during successive time intervals in hours between pelagos, BBL sampled by the sledge and benthos: a, b, mesozooplankton; c, d, macrozooplankton, and c, f, hyperbenthos. Biomasses in mg AFDW/100 m³.

Transfert de biomasses entre le pélagos, la couche d'eau adjacente au fond échantillonnée par le traîneau et le benthos (en mg de Poids Sec Libre de Cendres par 100 m³) durant des intervalles de temps successifs en heures, en novembre 1988 et juillet 1990. *a*, *b* : mésozooplancton; *c*, *d* : macrozooplancton, et *e*, *f* : hyperbenthos.

25 mg/100 m³ in November. At sunrise, important exchanges between the two compartments were found in both series. In November, positive and negative biomass exchanges occurred alternately around sunset (Fig. 5e) due to the swimming activity of amphipods and the decapod *Pandalina brevirostris*. In July, there was an important positive biomass exchange when peracarids and decapods migrated into the BBL (Fig. 5f). The following negative biomass exchanges lasted several hours the next morning.

DISCUSSION

Fauna composition

The BBL fauna collected at Trezen Vraz was composed of three groups of organisms: (1) mesozooplankton; (2) macrozooplankton, both groups of these organisms possessing good swimming ability and concentrated in the BBL in daytime then migrating up into the water column at night; and (3) hyperbenthic organisms which showed nocturnal migration in the near-bottom water. The BBL macrofauna of Trezen Vraz sampled by the Macer-GIROQ sledge was as diversified as the fauna in the Bay of Biscay described by Sorbe (1984), and more diversified than that found in the Bay of Seine (Wang and Dauvin, 1994; Wang *et al.*, 1994) and on Browns Banks, off the coast of Nova Scotia (Wildish *et al.*, 1992).

Swimming activity and daily changes

Daily vertical migrations and swimming activities of many zooplanktonic species were thoroughly documented by Sainte-Marie and Brunel (1985). By studying our samples four models of swimming behaviour and vertical distribution could be identified in the BBL fauna: (1) occupying the entire BBL; (2) found essentially in the upper nets; (3) concentrating near the bottom; and (4), occupying the entire BBL during the day and concentrating near the bottom during the night. Two main types of daily changes were observed: (1) amphipods, decapods and some mysids migrated from the bottom to the BBL at sunset and during the night; while (2) planktonic organisms such as euphausiids, copepods and the dominant mysid Anchialina agilis and Gastrosaccus normani concentrated near the bottom during the day and migrated from the BBL to the water column at night. This daily rhythm has been often observed in the BBL (e.g Sorbe, 1984; Fosså, 1986; Kaartvedt, 1985; Wang and Dauvin, 1994). Change in light intensity was the most important factor determining migratory activities (Hesthagen, 1973; Anger et al., 1976; Macquart-Moulin, 1973; Sainte-Marie and Brunel, 1985; Macquart-Moulin et al., 1987; Kaartvedt 1989; Elizalde et al. 1991). It was probably the determinant factor in diel changes of Trezen Vraz BBL macrofauna; but changes in intensity on the sea bottom and in the water column should be measured in order to determine their relationship to diel change of the BBL macrofauna. Other factors, such as food (Hesthagen, 1973; Brunel, 1979; Sorbe, 1984; Jones, 1986; Silbert, 1981), sex (Elizalde et al., 1991, 1993), and maturity state Table 7

Individual biomass of main species mg AFDW in November 1988 and July 1990 hauls; d = day; n = night.

Biomasse individuelle des principales espèces en mg de Poids Sec Libre de Cendres dans les deux séries de novembre 1988 et juillet 1990; d = jour; n = nuit.

	14-15 November 1988	17-18 July 1990
Chaetoanatha		
Sagitta elegans	0.075	0.004
Euphausiacea		
Euphausiacea adult	0.160	0.130
Mysidacea		
Anchialina agilis (d)	0.062	0.023
Anchialina agilis (n)	0.114	0.148
Gastrosaccus normani (d)	0.028	0.066
Gastrosaccus normani (n)	0.068	0.225
Other Mysidacea	0.974	0.339
Decapoda		
Pandalina brevirostris	5.820	0.160
Galathea intermedia	10,8	0.140
Hippolyte varians	-	0.620
Pontophilus sculptus	3.800	2.010
Pontophilus trispinosus	-	0.930
Processa sp.	-	6.500
Fish larvae		
Clupeidae	0.820	1.990
Gobiidae	2.860	0.640
Others	1.370	2.670
Amphipoda		
Apherusa clevei	0.046	0.070
Atylus vedlomensis	0.073	0.008
Cheirocratus assimilis	0.170	0.440
Eusirus Ionaipes	0.190	0.036
Gammaropsis maculata	0.700	0.230
Hippomedon denticulatus	2.230	2.410
Melohidiopella macra	0.043	0.007
Stenothoe marina	0.040	0.470
Others amphipoda	0.092	0.078
Cumacea	1.012	0.092
Isopoda	1,130	1,670
Mollusca Cephalopoda	1.555	2.073
Copepoda	0.040	0,070
Crustacean lawae	0.350	0.020
	0.000	

(Elizalde *et al.*, 1991; Macquart-Moulin *et al.*, 1987) were also important in explaining daily and seasonal changes of the BBL macrofauna in other areas.

Density and biomass

In November, the mean total faunal density in the four nets varied between 547 and 2,024 ind./100 m³ (mean: 1164 ind./100 m³), while in July, it varied between 5,210 and 14,954 ind./100 m³ (mean: 10,018 ind./100 m³). The total density of BBL macrofauna collected with a hyperbenthic sledge and a 0.5 mm sieve mesh varied strongly from one area to another. High densities were present in areas with important nutrient flux. In the Bay of Seine, in an area about 10 m deep, under the influence of the high input of nutrients from the Seine, the total density varied

Mean biomass in the four nets (mg AFDW/100 m^3) of the three groups of organisms and of the total fauna in the two sets of hauls.

Biomasses moyennes dans les quatre filets du traîneau des trois principaux groupes d'organismes et biomasses totales (mg en Poids Sec Libre de Cendres/100 m³) de la faune collectée en novembre 1988 et juillet 1990.

	November 1988	July 1990
Macrozooplankton	83.6	440.0
Mesozooplankton	57.6	63.8
Hyperbenthos	12.7	134.3
Total organisms	153.9	638.0

between 3.8 and 85.9×10^3 ind./100 m³ with a daily mean reaching 21.6×10^3 ind./100 m³ in June (Wang *et al.*, 1994). On Browns Banks (34 stations sampled in summer during daytime at the depth of about 80 m), the total density varied between 187 and 26,894 ind./100 m³, the overall mean was 3,574 ind./100 m³ (Wildish et al., 1992). On the Atlantic seamount, the summer density was very low on Josephine Bank with daily mean of seven stations, 199-271 m deep: 187 ind./100 m³, but higher on Meteor Bank with daily mean of eight stations, 290-313 m deep: 1,111 ind./100 m³ (Hesthagen, 1970). The values of available density of the BBL zooplankton more or less close to the ocean floor estimated by reentry trap and 95-153 µm sieve mesh were recorded by Cahoon and Tronzo (1992). They varied strongly from one area to another from 23 and 54,000 ind. m⁻², mostly between 2 and 20×10^3 ind. m⁻². The abundances observed in this study, respectively 3.5 ind. m^{-2} in November and 30 ind. m^{-2} in July, were among the lowest probably because the use of 0.5 mm mesh underestimated demersal zooplankton abundances. Nevertheless, above the coarse bottom, fish larvae were quite abundant in July hauls, a maximum of 570 ind./100 m³ being collected around sunset. In the Bay of Seine, fish larvae were also abundant around sunset with a density higher than 1000 ind./100 m³ (Wang et al., 1994). Such high concentrations of fish larvae near the sea bottom have not been reported in other studies.

The average faunal density of hyperbenthos in the four nets was 58 ind./100 m³ in November 1988 and 947 ind./100 m³ in July. The most abundant species was the mysid Anchialina agilis. The abundance of hyperbenthic organisms has been reported more often than abundances of the total BBL fauna. Total BBL fauna also varied strongly from one area to another, being highest on muddy substrata (Dauvin et al., 1994; Wang and Dauvin, 1994). The mean annual values found by Dauvin et al. (1994) on the Trezen Vraz station were 240 ind./100 m^3 . The abundance of summer hauls (July) was higher than those reported by Wildish et al. (1992) on Browns Banks (about 75 ind./100 m³) and by Wang and Dauvin (1994), in the Bay of Seine (476 ind./100 m³ but it was lower than the faunal density in Gullmarfjord and Bay of Biscay where the abundance reached about $3,000 \text{ ind.}/100 \text{ m}^3$ (Buhl-Jensen and Fosså, 1991; Elizalde et al., 1993).

Mean total biomass in the four nets showed temporal changes, being respectively 154 and 638 mg AFDW/100 m³ in November and July (185 and 766 mg DW/100 m³). Biomasses were lower than at the Browns Banks stations where summer biomass varied between 118 and 15,047 mg DW/100 m³, with an overall mean of 2,944 mg/100 m³ (Wildish *et al.*, 1992), and those estimated by Sorbe (1984) at a 31 m depth: 2,130 mg DW/100 m³, and at a a 91 m depth station: 1,050 (day-time) and 3,120 (nighttime) mg DW/100 m³ (annual mean values). At the Trezen Vraz station, the biomass found in July was of the same order of magnitude as the biomass of zooplankton sampled with a WP2 net with a 0.5 mm mesh size in the water column in June 1992: 1,400 mg DW/100 m³ (Le Hoerff, pers. comm.).

In the western English Channel, the BBL macrofauna on coarse sand community was affected by seasonal variation of density and biomass, as were the benthic community (Dauvin, 1988) and the zooplankton (Colebrook, 1986), in relation to the concentration of the period of recruitment and growth of organisms in Spring (May-June), and high mortality of organisms at the beginning of Autumn (October-November).

Vertical biomass exchange

Interactions among the BBL macrofauna, benthos and pelagos are very important in the study of pelago-benthic flux (Sainte-Marie and Brunel, 1985; Chevrier et al., 1991). In this study, the biomass exchanges of live matter between the water column and the benthos, and the BBL sampled by the sledge were estimated for the first time. The biomass exchanges between the three compartments (benthic, BBL and pelagos) occurred mostly at sunset and sunrise. Other than at these times, the biomass exchanges were limited, e.g. in July the biomass of macrozooplankton sampled in the BBL was multiplied by 6 around sunset, and the biomass exchanges was higher than 1,600 mg/100 m³ within an hour. But the lack of hauls collected in the middle of the night did not permit determination of the intensity of nocturnal exchanges of biomasses. Positive biomass exchanges between benthos and BBL were 39 mg/100 m³ (0.1 mg m⁻²) in November and $347 \text{ mg}/100 \text{ m}^3$ (1.0 mg m⁻²) in July. Positive biomass exchanges between pelagos and BBL were 317 mg/100 m³ (0.9 mg m^{-2}) in November and 2,142 mg/100 m³ in July (6.4 mg m^{-2}) . These values were of an order of magnitude lower than those estimated by Hammer (1981) who, by using emergence traps (153 µm sieve mesh), found a mean total biomass of 94.2 mg AFDW m⁻² of total demersal zooplankton emerged from the sand substrate in a kelp forest over a diel cycle. As the organisms of the BBL are known to be important food sources for demersal fishes, it is clear that these available prey changed considerably between day and night, both qualitatively and quantitatively. Our future objectives will be to quantify the impact of such changes of the BBL macrofauna on demersal fishes and on the whole community.

Acknowledgements

This study was carried out under the 'GDR Manche' programme and the "Programme National d'Océanographie Côtière" supported by CNRS/IFREMER. The authors

REFERENCES

Anger K., C. Valentin (1976). In situ studies of the diurnal activity of *Diastylis rathkei* (Cumacea. Crustacea) and its importance for the "Hyperbenthos". *Helgolander Wiss. Meeresunters.* 28, 138-144.

Brunel P., M. Besner, D. Messier, L. Poirier, D. Granger, M. Weinstein (1978). Le traîneau Macer-GIROQ: appareil amélioré pour l'échantillonnage quantitatif de la petite faune nageuse au voisinage du fond. *Inter. Revue. Ges. Hydrobiol.* **63**, 815-829.

Brunel P. (1979). Seasonal changes of daily vertical migrations in a hyperbenthic cold layer shelf community in the Gulf of St Lawrence, in: *Cyclic phenomena in marine plants and animals*, E. Naylor and R.G. Hartnoll, eds. Proceedings of the 13th European Symposium on Marine Biology. Pergamon Press, Oxford, 383-390.

Buhl-Jensen L., J.H. Fosså (1991). Hyperbenthic crustacean fauna of the Gullmarfjord area (western Sweden): species richness, seasonal variation and long-term changes. *Mar. Biol.* **109**, 245-248.

Cahon L.B., C.R. Tronzo (1992). Quantitative estimates of demersal zooplankton abundance in Onslow Bay, North Carolina, U.S.A. *Mar. Ecol. Prog. Ser.* 87, 197-200.

Chevrier A., P. Brunel, D. Wildish (1991). Structure of a suprabenthic shelf sub-community of gammaridean Amphipoda in the bay of Fundy compared with similar sub-communities in the Gulf of St Lawrence. *Hydrobiologia* 223, 81-104.

Colebrook J.M. (1986). Environmental influences on long-term variability in marine plankton. *Hydrobiologia* **142**, 309-325.

Dauvin J.C. (1988). Evolution temporelle (août 1977-août 1980) du peuplement des sables grossiers à *Amphioxus lanceolatus - Venus fasciata* de la baie de Morlaix. *Oceanologica Acta* 11, 173-183.

Dauvin J.C., J.C. Lorgeré. (1989). Modifications du traîneau Macer-GIROQ pour l'amélioration de l'échantillonnage quantitatif étagé de la faune suprabenthique. *J. Rech. Océanogr.* **14**, 65-67.

Dauvin J.C., M. Joncourt, D. Latrouite, G. Raguénès (1989). Température et salinité de l'eau de mer au large de Roscoff de 1983 à 1987. *Cah. Biol. mar.* **30**, 5-10.

Dauvin J.C., M. Joncourt, J.L. Birrien, Le Service Mer de la Station Biologique (1991). Température et salinité de l'eau de mer au large de Roscoff de 1988 à 1990. Cah. Biol. mar. **32**, 545-550

Dauvin J.C., A. Iglesias, J.C. Lorgeré (1994). Circalittoral suprabenthic coarse sand community from the western English Channel. J. mar. biol. Ass. U. K. 74, 543-562.

Dauvin J.C., J.C. Sorbe, J.C. Lorgeré (1995). Benthic Boundary Layer macrofauna from the upper continental slope and the Cap-Ferret canyon (Bay of Biscay). *Oceanologica Acta* 18, 113-122.

Elizalde M., J.C. Dauvin, J.C. Sorbe (1991). Les Mysidacés suprabenthiques de la marge sud du canyon du Cap-Ferret (Golfe de Gascogne): répartition bathymétrique et activité natatoire. Ann. Inst. Océanogr. 67, 129-144.

Elizalde, M., J.C. Sorbe, J.C. Dauvin (1993). Las communidades suprabentónicas batiales del golfo de Vizcaya (margen sur del cañon de Cap-Ferret): Composición faunística y estructura. *Publ. Espec. Inst. Esp. Oceanogr.* **11**, 247-258.

Fosså J.H. (1986). Aquarium observations on vertical zonation and bottom relationships of some deep-living hyperbenthic mysids (Crustacea: Mysidacea). *Ophelia* 25, 107-117.

thank the crew of the N.O. *Pluteus II* for their valuable assistance in field-work, and J.C. Lorgeré for his technical help, J. Lamshead, British Museum, for help in English proofreading, and three anonymous referees for their very useful comments on the first version.

Hammer R.M. (1981). Day-night differences in the emergence of demersal zooplankton from a sand substrate in a kelp forest. *Mar. Biol.* 62, 275-280.

Hesthagen I.H. (1970). On the near-bottom plankton and benthic invertebrate fauna of the Josephine seamount and the Great Meteor seamount. *«Meteor» Forsch. Ergben.* **8**, 61-70.

Hesthagen I.H. (1973). Diurnal and seasonal variations in the nearbottom fauna -the hyperbenthos- in one of the deeper channels of the Kieler Bucht (Western Baltic). *Kieler Meeresforsch.* **29**, 116-140.

Jones A.R. (1986). Spatial and temporal variations in a community of nektobenthic invertebrates from Moreton Bay, Queensland. *Estuar. Coast. Shelf Sci.* 23, 131-146.

Kaartvedt S. (1985). Diel changes in small-scale vertical distribution of hyperbenthic mysids. *Sarsia* 70, 287-295.

Kaartvedt S. (1989). Nocturnal swimming of gammaridean amphipod and cumacean Crustacea in Masfjorden, Norway. *Sarsia* 74, 187-193.

Macquart-Moulin C. (1973). L'activité natatoire rythmique chez les Péracarides benthoplanctoniques. Déterminisme endogène des rythmes nycthéméraux. *Tethys* 5, 209-231.

Macquart-Moulin C., A. Bourdillon, F. Cubizolles, F. Passelaige, R. Rasoanarivo (1987). Un cas typique de migration verticale "retard" chez l'amphipode *Ampelisca typica. J. Plank. Res.* 9, 785-809.

Mees J. (1994). The hyperbenthos of shallow coastal waters and estuaries: community structure and biology of the dominant species. *Ph D., University of Gent, Zoology Institute, Marine Biology Section*, 212 p.

Sainte-Marie B., P. Brunel (1985). Suprabenthic gradients of swimming activity by cold-water gammaridean amphipod Crustacea over a muddy shelf in the Gulf of Saint Lawrence. *Mar. Ecol. Prog. Ser.* 23, 57-69.

Scherrer B. (1984). Biostatistique. Gaëtan Morin Editeur, 850 p.

Silbert J.R. (1981). Intertidal hyperbenthic population in the Nanaimo Estuary. *Mar. Biol.* 64, 259-265.

Sorbe J.C. (1984). Contribution à la connaissance des peuplements suprabenthiques néritiques sud-Gascogne. *Thèse Doctorat d'Etat, Université de Bordeaux I*, 265 p.

Toulmond A., J.P. Truchot (1964). Inventaire de la faune marine de Roscoff. Amphipodes. Trav. Sta. Biol. Roscoff 15, 1-42.

Wang Z., J.C. Dauvin (1994). The suprabenthic crustacean fauna of the infralittoral fine sand community from the Bay of Seine (Eastern English Channel): composition, swimming activity and diurnal variation. *Cah. Biol. mar.* **35**, 135-155.

Wang Z., J.C. Dauvin, E. Thićbaut (1994). Preliminary data on the near-bottom meso- and macrozooplanktonic fauna from the eastern Bay of Seine: faunistic composition, vertical distribution and density variation. *Cah. Biol. mar.* **35**, 157-176.

Wildish D.J., A.J. Wilson, B. Frost (1992). Benthic Boundary Layer macrofauna of Browns Banks, northwest Altantic, as potential prey of juvenile benthic fish. *Can. J. Fish. Aqua. Sci.* **49**, 91-98.

Zouhiri S. (1993). Transferts verticaux benthos/pélagos: rôle du suprabenthos et du macrozooplancton démersal. D.E.A. d'*Océanologie Biologique. Université Pierre et Marie Curie, Paris VI*, 30 p.