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The Kuroshio subsurface waters upwell onto the East China Sea (ECS) shelf and 
contribute a large amount of nutrients to the ECS. This contribution is many 
times more than the inputs from the Yangtze and the Yellow Rivers. 
The residence time of the ECS shelf water is estimated at 1.3 ± 0.4 years. The 
new production rate of phytoplankton is 73 ± 22 mg C/m2/day and the net burial 
rate of organic carbon is 41 ± 23 mg C/m2/day. 

L'eau intermédiaire du Kuroshio, principale source de nutriments 
sur le plateau continental de la mer de Chine orientale. 

La remontée des eaux subsuperficielles du Kuroshio sur le plateau continental de 
la mer de Chine orientale constitue un apport considérable de nutriments, 
supérieur aux apports des fleuves, Yangtze et Fleuve Jaune. 
Le temps de résidence de l'eau du plateau continental de la mer de Chine 
orientale est estimé à 1,3 ± 0,4 années. La production nouvelle du phytoplancton 
est de 73 ± 22 mg C/m2/jour et le taux net de sédimentation du carbone 
organique est de 41 ± 23 mg C/m2/jour. 

Oceanologica Acta, 1996, 19, 5, 523-527. 

The continental shelf of the Yellow and East China Seas bas 
a total area of about 0.9 x 106 km2 and is one of the largest 
in the world. lt is also one of the most productive areas of 
the world oceans. Two of the largest ri vers in the world, the 
Yangtze River (Changjiang) and the Yellow River 
(Huanghe), empty into the shelfwith large nutrient inputs. 

et al., 1990, 1991; Ruo and Chen, 1991; Liu et al., 1992; 
lto et al., 1994). These results provide a strong indication 
that the subsurface water of the Kuroshio is upwelled 
along the shelf slope. But this conclusion is only 
qualitative rather than quantitative. 

Since the Kuroshio originates from the subtropical and 
tropical regions with low nutrient contents near surface, if 
only near-surface Kuroshio water mo v es onto the shelf the 
water would not contribute much to the high productivity 
of the East China Sea (ECS). Chen et al. ( 1990, 1995) and 
lto et al. (1994), however, have shown that even the North 
Pacifie Intermediate Water (NPIW) contributes up to 30% 
in the upwelling and cross-shelf mixing. This would 
provide a significant source of nutrients since NPIW is 
high in nutrients. 

On the slope side of the shelf is the Kuroshio which tlows 
northeastward along the eastern margin of the continental 
shelf. Water around the shelf edge is often found to form 
isotherms, isohalines, and iso-nutrient contours that shoal 
westward near the shelf then concave upward near the 
shelf break (Ruo, 1989; Wang et al., 1989a, b, 1991; Chen 
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However, previous mass balance calculations for the East 
China Sea did not take into consideration that NPIW plays 
a significant role in the fresh water, salt and nutrient fluxes 
(e.g. Li, 1995). Further, the fresh water fluxes show a large 
seasonal variation in the ECS thus it would be expected 
that the upwelling rate would too, heretofore unstudied. 
Recognizing that the waters on the ECS are never at a 
steady state, I nevertheless divided the year into two 
seasons. With the ability to calculate the mixing 
percentages of various water masses across the continental 
shelf (Chen et al., 1990, 1995), it is now possible to 
quantitative! y estimate Kuroshio' s contribution of nutrients 
to the shelf in the dry and raining seasons separately. The 
study areas of Chen et al. (1990, 1995; September, 1988 
and December, 1988, 1989 data) and Ito et al. ( 1994; May­
June, 1987 data) are given on Figure 1. 

METHOD 

The Kuroshio surface water (SW), Kuroshio Tropical 
Water (TW), Kuroshio Intermediate Water (lW) and the 
Shelf Surface Water (SSW) make up the major water 
masses near the shclf break (Chen, 1988; Chen et al., 
1995). Although the major currents are parallel to the 
isobath the SSW has a net transport offshore because of 
the fresh water discharge from rivers, while SW, TW 
and lW have net onshore transports. River input, preci­
pitation and evaporation also contribute to the water 
budget (Fig. 2). 

ao· 

The water balance for the shelf at a steady state is: 

QRi + Qp+ Qsw+ QTW + Q,w = QE + Qssw (l) 

where Q is the water flux, subscripts Ri. P, SW, TW, lW, 
E and SSW denote river input, precipitation, Kuroshio 
Surface Water, Kuroshio Tropical Water, Kuroshio 
Intermediate Water, evaporation and Shelf Surface Water, 
respectively. 

The salt balance is: 

QRi ·SRi+ Qsw • Ssw + ~ • STW + Q,w · S,w = Qssw • Sssw (2) 

where S is salinity, subscripts denote the same waters as 
for eq. (1) 

As an example, the percentages of SSW, SW, TW and lW at 
a cross-section off the northeast corner of Taiwan in 
September and December, 1988 and in December, 1989 
have been calculated and can roughly represent the raining 
season and the dry season respectively, assumed to be 
constant during the six months (Chen et al., 1990, 1995). 
Chen et al. ( 1995) estimated that 70 % of the water near the 
shelf break northeast of Taiwan come from Kuroshio with 
SW contributing 30 % out of the 70 %; TW contributing 
25 % and lW contributing 15 %. Thus for the Kuroshio 
water that move onto the shelf the fluxes are in the same pro­
portions, i.e. in the raining season (May through October) 

Qsw=2QJW• 

QTW = 1.5 Q1w. Qp- QE = 420 km3 1 6 months (Oberhuber, 
1988; Fang, 1992; Zhang and Yao, 1992; Yanagi, 1994) and 

QRi = 813 km3 16 months (Kim, 1992). 
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Figure 1 

The study areas of (a): Chen et al. 
(1990, 1995) and (b): lto et al. (1994). 
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Figure 2 

Schematic diagramfor the water budget. 

The salinities for the water masses, also assumed to be 
constant during the raining season are as follows: 

SRi = 0.18 (Gan et al., 1983), Sssw = 33.1, Ssw = 34.5, 
STw = 34.9 and S1w = 34.3 (Chen et al., 1995). 

RESULTS 

With the above information and solving for eqs (l) and 
(2), Qssw = 28 593 km 3, Qsw = 12 160 km3, QTw = 
9 120 km3 and Q1w = 6 080 km3 for the six-month wet 
season. Qssw includes the outflow through the Tsushima 
Strait but the exchange through the Taiwan Strait is 
neglected. 

Chen et al. (1990, 1995) calculated the mixing ratios of 
SSW, SW, TW and lW at two cross-sections northeast of 
Taiwan in the dry season. Kuroshio water made up 90 % of 
the shelf water with SW contributing 63 % out of the 90 %; 
TW contributed 20 % and lW contributed 7 %. Assuming 
the fluxes of each component were in the same proportion, 
they were as follows: in the dry season (November-April) 
Qsw = 8 QIW• QTW = 3 QIW• QRi = 404 km3/6 months (Kim, 
1992) and Qp- QE= -280 km3/6 months for six months 
(Oberhuber, 1988; Fang, 1992; Zhang and Yao, 1992; 
Yanagi, 1994), SRi= 0.18 (Gan et al., 1983), Sssw = 33.8, 
Ssw = 34.5, STW = 34.9, S1w = 34.3. The resulting Qssw = 
5 380 km3, Qsw = 3 504 km3, QTW = 1 314 km3 and Q1w = 
438 km3 for six months. Note the upwelling is much 
reduced because of the much smaller fresh-water influx. 

Since the Kuroshio Surface Water is very low in nutrient 
contents (N03 :::; 0.1 ~mol/kg, P04:::; 0.02 ~mol/kg, Si02 :::; 

l~mollkg), the onshore fluxes of nutrients due to SW are 
small: QNoJ in summer and in winter are roughly 1.22 x 
109 mol and 0.35 x 109 mol, respectively; Qp04 is 0.24 x 
109 mol and 0.07 x 109 mol, respectively; Qsioz is roughly 
12.2 x 109 mol and 3.5 x 109 mol, respectively, ali for six 
months. The Kuroshio Tropical Water has smaller water 
fluxes than the Kuroshio Surface Water but since the 
nutrient concentrations are much higher (N03 - 4 ~mol/kg, 
P04- 0.3 ~mol/kg, Si02 - 4 ~mol/kg), the nutrient fluxes 
due to TW are larger than that due to SW: QN03 in the 
su~mer and in the winter are roughly 36.5 x 109 -mol and 
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5.2 x 109 mol for six months, respectively; Qp04 are 
roughly 2.7 x 109 mol and 0.4 x 109 mol for six months, 
respectively; Qsioz are roughly 36.5 x 109 mol and 
5.2 x 109 mol for six months, respectively. 
The Kuroshio lntermediate W ater con tri butes the least to 
the upwelled water but has the highest nutrient 
concentrations (N03 - 25 ~mol/kg, P04 - 1.7 ~mol/kg, 
SiOz - 60 ~mol/kg), thus contributing the most to the 
nutrient fluxes. The summer and winter fluxes are 
respectively: QN03 = 150 x 109 mol and 11 x 109 mol; 
Qpo4 = 10.2 X 109 mol and 0.7 x 109 mol; QsiOZ = 360 x 
109 mol and 25 x 109 mol, ali for six months. Altogether, 
the annual contributions by the Kuroshio are as follows: 
Qsw +TW + IW = 32 616 km3/yr or 1.04 Sverdrups; QNoJ = 
205 x 109 mol/yr; Qro4 = 14.3 x 109 mol/yr; QsioZ = 
442 x 109 mol/yr. These values compare with the river 
fluxes of 29 x 109 mol/yr for N03 and NH4 together; 
0.23 x 109 mol/yr for P04 and 87 x 109 mol/yr for Si02 
(Gan et al., 1983). 

The above estimations for Kuroshio were based on two 
croises off northeast Taiwan. This is the region where the 
Kuroshio inpinges upon the East China Sea and where 
most exchanges are expected, thus the data collected in 
this region are perhaps the most representative. An 
investigation of the cross-sections of T, S and nutrients 
along the ECS shelf indicate that they are ali similar 
(Stommel and Yoshida, 1972; Chen et al., 1990, 1992; lto 
et al., 1994). These fluxes have an error of approximately 
30 %. But even changing these fluxes by a factor of 2 or 
more would not affect the conclusion that the Kuroshio 
contributes severa) times more nutrients to the East China 
Sea than the rivers. 

1t is also possible to use the simple box mode! to calculate 
the offshore transport of particu1ate organic matter from 
the East China Sea shelf (Fig. 3): 

QRi · NRi + QRe • NRe + Qsw • Nsw 
+ QTW.NTW + Qiw'Niw + Qp•Np 
= Qssw • Nssw + Qs • Ns + Qss · Nss· (3) 

where N denotes nutrients, Re denotes the release 
from sediments, B denotes the nutrients buried, and SS 
denotes suspended sediments transported offshore. 

Qp 
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Figure 3 

Schematic diagramfor the nutrient budget. 
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By rearranging eq (3), we can obtain the net offshore 
sediment transport as: 

Oss • Nss = 0Ri • NRi +ORe· NRe 
+ Osw·Nsw + OTw·NTW + 0Jw•NJw 
+ OP· NP- Ossw • N ssw- Os • N s (4) 

where NR; is taken as 33 flmollkg for N03 and NH4 together, 
0.26 flmol/kg for P04 and 98 flmol/kg for Si02 (Huang et 
al., 1983); Qp is roughly 1 400 km3/yr (Kim, 1992), Np is 
roughly 10 flmol/kg for nitrate and ammonia together, and is 
negligible for P04 and Si02 (Chen et al., 1994); Nssw is 0.1, 
0.02 and 2flmollkg for N03, P04 and Si02 respectively. The 
sum of the offshore transport and the net annual burial rates 
are thus 245 ± 75 x 109 mol, 13.8 ± 5 x 109 mol and 492 ± 
190 x 109 mol for nitrogen, phosphorus and silica, 
respectively. Most of these originate from the Kuroshio 
instead of the ri vers. Note the evasion of N20 is neglected as 
the rate (2.79 f.1moVm2/day; S. Tsunogai, pers. comm. 1995) 
is less than 0.5 % of the burial rate. 

By taking a C/N ratio of 8.2 for suspended sediments 
(Chen et al., 1996) a net of 2 009 ± 600 x 109 mol organic 
carbon is buried or transported offshore per year, which is 
73 ± 22 mgC/m2/day. This is equivalent to the new 
production rate, or is approximately 15 % of the primary 
production rate (Fei et al., 1987; Guo, 1994; Chen, 1995; 
Shi ah et al., 1995). Li ( 1995) estimated the new 
production rate at 80 mg C/m2/day. 

By taking a sedimentation rate of about 0.3 ± 0.12 g/ 
cm2/year and the organic carbon content of about 0.5 ± 
0.2 % (Huang et al., 1983; Demaster et al., 1985; Yanagi, 
1994; Hong et al., 1995), the resulting amount of net 
organic carbon burial rate is 1 125 ± 550 x 109 mol C per 
year or 41 ± 23 mg C/m2/day. The difference between 
2 009 x 109 and 1 125 x 109 mol/yr is the offshore 
transport of suspended materials, at 884 ± 800 x 1 o9 mol 
organic carbon per year or 32 ± 30 mg C/m2/day. The 
precisions of the above estimates are, however, 
insufficient to accurately quantify this transport. 

Residence Time 

Nozaki et al. ( 1989) claimed to have provided the first time 
constraint for the ECS shelf water to exchangc with the 
Kuroshio based on the 228 Ra/226 Ra data. They believed that 
«There is no evidence that a significant amount of the shelf 
water is transported to the east of Kyushu so that the shelf 
water is mainly lost by mixing into the Tsushima Current». 
Consequently they divided the volume of shelf water 
( 4.5 x 1 if km3) by the outflow of the shelf-derived water, and 
reported 2.3 ± 0.8 years as the mean residence time of the 
ECS shelf water. Nozaki et al. ( 1991) confirmed this estimate 
but we believe that this is the upper limit as the ECS shelf 
water clearly mixes into the Kuroshio (Chen et al. 1995). 
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(1.59 x 1012 eq/yr) and the buried (0.45 x 1012 eq/yr) 
gives the residence time of 0.95 ± 0.3 years. 

The above calculations did not consider the seasonal effect. 
lt is evident from the mass balance of the preceding section 
that the ECS shelf is flushed more efficiently in summer 
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