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The turbulent boundary-layer flow over flat rough beds due to a wave or to 
combined wave-current interaction is studied using a numerical turbulence 
closure mode! of K-L type. Different cases of modelling are discussed and 
illustrated by numerical examples. The model was run for a wide range of 
parameters of wave, current, bed roughness and angle of interaction. The curves 
of dimensionless mean and maximum bed shear stresses obtained present the 
non-linearity of the wave-current interaction. The parameterization of results is 
realized in order to facilitate the incorporation of bed shear stresses into coastal 
morphodynamic models. 

Contraintes de cisaillement dans la couche limite turbulente sous 
l'interaction houle-courant. 

La couche limite turbulente engendrée par la houle ou par l'interaction houle­
courant est étudiée en utilisant un modèle numérique de fermeture turbulente du 
type K-L. Les différents cas de modélisation sont discutés et illustrés à travers 
des exemples numériques. L'exploitation du modèle pour une gamme importante 
des paramètres de la houle, du courant, de la rugosité du fond et de l'angle d'in­
teraction est effectuée. Les courbes adimensionnelles représentant les contraintes 
de cisaillement moyenne et maximale obtenues avec le modèle montrent l'impor­
tance de la non-linéarité du problème. La paramétrisation des résultats est faite 
afin de faciliter l'incorporation des contraintes de cisaillement dans les modèles 
de morphodynamique côtière. 

Oceanologica Acta, 1995, 18, 1, 19-27. 

One of the important problems of coastal engineering is to 
study the oscillatory turbulent boundary layer near the sea 
bed, in which the shear stresses are important, perrnitting 
the movement of sediments. Under the force of waves, cur­
rents or wave-current combinations, the bed cao be flat or 
rippled and sediments can be transported by rolling or sus-

pension. Studies of the turbulent boundary layer generated 
by a sinusoïdal wave or a wave-current interaction are not 
recent. A complete review can be found in Sleath (1989), 
Davies (1990) or Huynh-Thanh and Temperville (1990b, 
1990c). 

A detailed study of the turbulent bed boundary layer gene­
rated by combined wave-current flow, with a one-equation 
model, has been presented by Davies (1990). In this paper, 

19 



S. HUYNH-THANH, A. TEMPERVILLE 

we concentrate on investigating the non-linearity effect of 
the wave-current interaction in the boundary layer over a 
flat sea bed using the turbulence closure model of K-L type 
developed in Huynh-Thanh and Temperville (1990b, 
1990c). After the model formulation and the numerical 
method, a short presentation for the cases of a current 
al one and a wave al one will be given. W e shaH discuss the 
different types of modelling in the case of wave-current 
interaction through numerical examples. We devote special 
attention to the upper, boudary conditions. Sorne results 
which are obtained by running the model for various para­
meters of wave, current, bed roughness and angle of inter­
action will be presented. These results are theo parameteri­
zed in the form of algebraic functions. 

MODEL FORMULATION AND NUMERICAL METHOD 

In the system of Cartesian coordinates (x, y, z) (Fig. 1), the 
current is supposed to flow in the x-direction and the wave 
is supposed to propagate in a direction which makes an 
angle f with the x-axis. We only consider here the case of a 
rough bed, bence the flat horizontal bottom is fixed at z = 
zo = kN/30, where kN represents the equivalent Nikuradse 
roughness. The value of kN can be estimated by using 
empirical formulas such as kN = 2 ~o (Kamphuis, 1975), 
where d90 is the diameter of particles in excess of 10 % of 
the weight of a grain sample. The still water depth is equal 
to h. 
The system of equations is established with the following 
assumptions: (i) the thickness of the boundary layer is 
much smaller than the wavelength of the wave, (ii) the 
amplitude of the wave velocity Ûh and of the mean current 
Uc is much smaller than the wave celerity C and (iii) the 
turbulence is fully developed on the total depth of the flow. 
Under these assumptions, the two horizontal components 
of velocity u and v (along x and y, respectively) are gover­
ned by the two linearized momentum equations: 

du=_.!_ ()p +~(-u' w') 
dt p dx dz 

(l) 

av=-.! é)p +~(-v'w') 
dt p dy dz 

(2) 

where- u'w' and- u'w' are the Reynolds stresses and Pis 
the pressure of the flow. 

The Reynolds stresses are modelled in the form: 

-,-, au 
-u w =V-

t é)z' 

-,-, av 
-v w =V-

t é)z 
(3) 

where Vt represents the turbulent viscosity. 

In order to close the above system of equations, a particu­
lar turbulence closure model is required (Launder and 
Spalding, 1972; Rodi, 1980). For analytical models, the 
turbulent viscosity is often expressed in the form: 

Vt = KÛ*f (z) (4) 

where x:= 0.4 is von Karman's constant, û* is the maxi­
mum bed shear velocity and f(z) is a function of the 
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wave direction 

Ze = (0.1 + 0,15) h 

Figure 1 

Scheme of the wave-current interaction system. 

Schéma du système d'interaction houle-courant. 

y 

depth z. For numerical models, the simplest form of Vt is 
the following: 

(5) 

where lis Prandtl's mixing length (Schlichting, 1979). 

In general, for the closure problem, one can use an equa­
tion for the turbulent kinetic energy K and another for the 
quantity Km Ln (for example, the viscous dissipation E 

which is proportional to K312 L-1, or the vorticity fluctua­
tion which can be taken as proportional to K 112 L-1). Here 
L represents a macroscale of the turbulent eddies. lt should 
be emphasized that L is equal neither to the integral scale 
of the flow, nor to Prandtl's rnixing length. There exist two 
approaches to the determination of L. Firstly, L can be 
empirically deterrnined by the fact that it cannot exceed 
sorne fraction of the total spread of the turbulent region 
and that, close to a wall, it should be proportional to the 
distance from the wall. These are two boundary conditions 
for L that will be expressed later. The second approach 
consists in building up a dynarnic equation for L with coef­
ficients that are independent of flow geometry. The turbu­
lence model originally proposed by Lewellen (1977) is a 
second-order closure model (or a Reynolds stress model). 
If the turbulence is assumed to be in local equilibrium so 
that there is no time evolution nor spatial diffusion, one 
can obtain the algebraic relationships between the Rey­
nolds stresses and the gradients of the mean velocity. 
Under this local equilibrium approximation, Sheng (1984) 
and Sheng and Villaret (1989) have found the following 
form ofvt: 

(6) 

The turbulent energy K is calculated from Equation (7): 

(7) 
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and, for the second approach, L is determined from Equa­
tion (8): 

aL =O,I7s~[(au)
2 

+(av)
2

]L+O,o7s.f2K 
at Kaz az 

+ 1,2 i_(v
1 
aL)- o,375...fi[a(..JKL )]

2 

( 8) 
az az {K àz 

The empirical coefficients appear in Equations (7) and (8). 
Each coefficient was evaluated from a critical flow experi­
ment involving only that coefficient (Lewellen, 1977). lt is 
also noted that the last term in Equation (8) is the addi­
tional term in comparison with the classic equation 
for e (Rodi, 1980). 

The pressure gradients in (1) and (2) are expressed as the 
sum of the pressure gradient due to the wave and that due 
to the current, in accordance with the scheme given in 
Figure 1: 

1 ap 1 ap w 1 apc 
---=-------, 

pax pax pax 
_ _!_aP = _ _! apw 

pày p ay 
(9) 

where P w is the pressure due to wave and Pc represents the 
pressure due to current. 

At the bottom (z = zo). the boundary conditions in ali cases 
are the following: 

u = v = 0; aK 1 az = 0; 
L = a zo with a = 1.68K = 0.67 (10) 

The conditions at the upper limit of the boundary layer 
depend on each case studied and will be described later. 

The above set of equations is discretized using the implicit 
finite control volume method (Patankar, 1980) on a vertical 
grid whose step size increases exponentially from bottom 
to top, thus giving good resolution near the bed where 
velocity gradients are important. The time step is taken to 
be constant over the who le period T of the flow. Each dis­
cretized equation corresponds to a tridiagonal matrix which 
can be so1ved by means of Thomas's algorithm (Roache, 
1976). The criterion of convergence is imposed on 
the velocity calculation: when the absolute error of velo­
chies corresponding to the instant t and t + T is smaller 
than 104, the convergence is obtained. 

CASE OF CURRENT ALONE AND WA VE ALONE 

Because the goal of this paper is essentially relative to the 
wave-current interaction, we only present here sorne prin-

The scale L can be calculated by two ways: 

- either L is directly imposed as a function of z: L = a z. 

- or L is determined from Equation (8) with the condition 
aL 1 az = 0 at z = h. 

The x momentum equation obtained by averaging the 
depth gives the pressure gradient: 

1 apc 'tc ---=-
p ax ph 

(12) 

where 'tc is the bed shear stress of the current. 

In reality, these two ways give the same result because 
the difference of L in the upper region of the flow does 
not have a considerable effect on the near-bed region. 
The shear stress 'tc is related to the depth-averaged velo­
city Ucm by the friction coefficient fe in the following 
way: 

1 -,-, 1 fU 2 
'tc p = -U W = 2 c cm (13) 

We have run the model for many values of hlzo and the 
Figure 2 shows the variation of fe in terms of h/zo with 
numerical result for three values. 

1t is also necessary to note that in the inertiallayer neac the 
bed, the energy K and the Reynolds stress - u'v' are 
constant. In order to model this layer where the pressure 
gradient due to current vanishes, one only bas to get the 
conditions aK 1 az = 0, L = a z and u = Uc at the upper 
lirnit of the layer z = zc. The value of Zc may be estirnated 
to be equal to (0.10 + 0.15) h (Dyer, 1986). 

For a uniform steady flow, the vertical velocity profile is 
logarithmic and the depth-averaged velocity Ucm is obtai­
ned at the level Zcm = hie. 

h/zo ~ leP 10
4 

Ilf 
.................................... -------·-----------------------------
0.5 1& fe 4.818 2.373 1.413 

cipal results for current al one and wave alone. ~ 

Current alone 

The modelling of a unidirectional steady current is made 
by putting v = 0 in the above set of equations. At the free 
surface z = h, the following conditions for u and K are 
imposed: 

au 1 az = 0; aK 1 az = 0 (11) 
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h/zo 

Figure 2 

Variation of the friction coefficient fe of eurre nt a/one in function of 
hiZ(). 

Variation du coefficient de frottement fe du courant seul en fonction 
de hlz.o. 



S. HUYNH-THANH, A. TEMPERVILLE 

Wave alone 

In the case of a unidirectional wave propagating in the 
x direction, the above set of equations is solved by ta­
king v = O. The pressure gradient is given by: 

1 oP oUW ---=--
p ox Jt 

(14) 

where Uw is the wave velocity at the upper limit z = Zw of 
the wave boundary layer. With regard to the compatibility 
of the whole study, the value of Zw is taken to be equal to 
Zcm = hie even though the true value of Zw is much smaller 
than Zcm in reality. For a sinusoïdal wave, we have: 

Uw = Ûw sin rot (15) 

with ro = 27t!f w• T w being the period of the wave and Ûw is 
the maximum velocity. 

At z = Zw the boundary conditions are: 

K=L=O and U=Uw (16) 

In investigations of the wave boundary layer, the friction 
coefficient fw introduced by Jonsson (1963) is often used: 

1 -,-, 1 f u2 'tw P = -u W =- w w 
2 

(17) 

where 'tw =- pu'w' is the maximum shear stress at the bed. 

Many empirical and theoretical formulas for fw exist that 
depend on the experimental data, and on the analytical or 
numerical models used. The variation of fw obtained by the 
present mode! in function of A/z0 (with A= Ûwlro) is pre­
sented on Figure 3 in comparison with Jonsson's result. A 
quantitative comparison with experimental data of Jonsson 
and Carlsen (1976), Sumer et al. (1986) and Sleath (1987) 
can be found in Huynh-Thanh (l990a). Huynh-Thanh and 
Temperville (1990b, 1990c). 

Nzo ~ to2 leP t<f 10
5 

--------- -----------------------------------------
102fw 7.5 2.72 1.21 0.616 

Fig.3 

Variation of the friction coefficient fw of wave a/one in function of 
Alzo-

Variation du coefficient de frottement fw de la houle seule en fonc­
tion de Nzo. 
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CASE OF WA VE AND CURRENT INTERACTION 

The investigation of the boundary layer in wave-current 
interaction is performed in detail using the complete set of 
Equations (1) to (10). 

Different cases of modelling 

We consider here the simplest case in which a sinusoïdal 
wave is superposed on a current. Let Ucm be the depth­
averaged velocity of the current alone at the leve! Zcm = 
0.368 h (Yalin, 1977) and Uw be the wave alone orbital 
velocity. As is weil known, a current may be formed by 
giving either the discharge Qc =hU cm or the mean free sur­
face slope le. From the last quantity, the bed shear stress of 
the current can be obtained (Y alin, 1977): 

(18) 

and then the pressure gradient of the current is deterrnined 
from (12). 

These two ways of formulation for a current alone suggest 
two ways of formulating the boundary layer problem under 
wave-current interaction, as discussed by Van Doorn 
( 1981) and Da vies et al. ( 1988): either the discharge Qc (or 
the velocity Ucm) of the current alone is conserved or the 
pressure gradient - oP c 1 pox is conserved. For the frrst 
way, the mean bed shear stress of the current after interac­
tion will increase in comparison with that of the current 
alone because of the presence of wave. lt follows that the 
mean pressure gradient of the current must increase. For 
the second way, the velocity Ucm of the current alone will 
be decreased in order to compensate for the friction gene­
rated by the wave, which corresponds to a reduction of the 
discharge. The last way of modelling was studied by 
Davies et al. (1988). 

In this paper, we propose to analyse the problem based on the 
conservation of the discharge Qc =hU cm of the current alone. 
Results of experiments conceming the boundary layer in 
wave-current interaction cited in introduction show that when 
the wave is superposed on the current, the zone close to the 
bed of the current alone is affected by the turbulence due to 
the wave; in consequence the velocity profile has to be chan­
ged. Renee, it may be that the velocity Ucm of the current 
alone is different from the velocity Ucml of the current after 
interaction at the same leve! Zcm = 0.368 h. Nevertheless, the 
change of mean velocity profiles is such that the discharge 
Qc must be constant. The possible difference between Ucm 
and Ucml is expected to depend on various parameters of 
wave, current, bed roughess and angle of interaction. In reali­
ty, if the velocity Ucml is given, there is no difficulty for 
modelling: this value will be directly introduced in the 
mode!. On the other band, the value of Ucm may be used at 
first approximation. In order to verify the validity of this 
approximation, we propose a modelling process as follows: 

- First stage: we take Ucml = Ucm where Ucm was obtained 
for a current alone calculated up to the free surface. The upper 
limit is put at the level Zcm = 0.368 h with the conditions: 

oK 1 oz = 0; L = a z; 
u = Ucml + Uw cosq>; v = Uw sinq> (19) 
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and with the pressure gradient of the initial current deterrni­
ned by (12). The model run gives the mean shear stress 'tm· 

- Second stage: from the value of 'tm obtained, we calcula­
te the pressure gradient of the current after interaction by: 

_.!.. apc = 'tm (20) 
p ax ph 

Now, the upper limit is treated at the free surface z = h 
with the pressure gradient (20) and with the conditions: 

au/az=O; avtaz=O; aKtaz=O; L=az (21) 

From the mean velocity profile obtained, we calculate the 
discharge Qc~. If Qcl is different from Qc, another value of 
the pressure gradient will be chosen for the next run, 
beginning at the second stage. The process may be conti­
nued until the calculated discharge is equal to Qc. 

For illustration purpose, we shaH present sorne numerical 
results with the following parameters: 

Initial current: Ucm = 39.25 emis and 392.5 emis; 

Wave: Ûw = 157 emis and 78.5 emis; Tw = 8 s; 

Bed roughness: zo = 0.2 cm; 

Water depth: h = 20 rn; 

Angle of interaction: <!> = oo, 45°, 90°. 

These values are combined so that we obtain: 

Alzo= 103; zo/h= 10"4; Ucm1Ûw=0.25 and 5. 

Table 1 presents results for sorne model runs. The relative 
errors are defined by: 

Err 1 = 1 'tm - 'tm tl l'tm 

Err2=1 Qc-Qctl /Qc 

with 'tml being the mean bed shear stress corresponding to 
every run in each example. 

It can be seen from Table 1 that, in order to obtain the same 
discharge Qc, it is necessary to use a pressure gradient grea­
ter than that calculated with the mean bed shear stress 'tm 
(the maximum difference is inferior to 5 %). For ail the 
cases of calculation, a maximum relative error less than 1 % 
is found between the discharge Qcl obtained from the second 
run and the exact discharge Qc obtained from the initial cur­
rent. The maximum relative error between the mean bed 
shear stresses 'tm obtained from the calculation at z = Zcm 

Table 1 

Ex. U..JÛw 'tdp Oc ~0 t,./p Run .laP, tmt/P C2<t Err! Err2 
Pilx 

m2/r m2/s m2/r n• m/s2 m2/sl m2/s % % 

0.25 3.66 7.64 0 15.2 0.00760 15.8 7.51 4.0 1.7 

2 0.00785 16.0 7.66 5.2 0.3 

2 45 13.7 1 0.00685 13.8 7.47 0.7 2.2 

2 0.00710 14.3 7.67 4.4 0.4 

3 90 11.8 0.00590 11.9 7.38 0.8 3.4 

2 0.00650 12.3 7.68 4.2 0.5 

4 5 366 77.8 0 381 0.19100 368 76.4 3.4 1.8 

2 0.19700 380 77.6 0.3 0.3 

5 45 378 1 0.18900 364 76.4 3.5 1.8 

2 0.19500 376 77.6 0.4 0.3 

6 90 373 1 0.18700 360 76.3 3.7 1.9 

2 0.19400 373 77.8 0.1 0.0 
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and the exact mean bed shear stress 'tm! is less than 5 %. 

Hence, if an error in the order of 5 % on the discharge as 
weil as on the mean bed shear stress of current after inter­
action is accepted for practical purposes, one can use the 
value of Ucm determined from the current alone for the cal­
culation in the case wave-current interaction. 

Figures 4, 5 and 6 present the mean profiles of velocity, 
kinetic energy and turbulent viscosity of the current bef ore 
and after interaction. The departure of the calculated profi­
le of current alone from the straight line which represents 
the logarithmic law is due to the condition au 1 az = 0 
applied at the free surface in the model. 

From the above analysis, we distinguish the following 
cases of modelling, according to the position of the upper 
limit of the boundary layer z = z1: 

- Case 1: the upper lirnit is treated at the mean depth z1 = 
Zcm· At this level, the current velocity is taken to be equal 
to that of the current alone Ucm• and the pressure gradient 
due to current is determined from the current alone. The 
validity of this approximation was verified as above. 

- Case 2: the upper limit is treated at the free surface z1 = h. 
The pressure gradient due to current must be determined 
with the mean shear stress of the current after interaction, 
which is difficult to estimate a priori, particularly for small 
values of the ratio Ucm 1 Ûw. 

Another case of modelling is envisaged, arising from the 
fact that the boundary layer can be investigated as an inter­
tiallayer, from which we have: 

- Case 3: the upper lirnit is chosen at the top of the inertial 
layer ZJ = Zc = (0.10 + 0.15) h. In this case, the pressure gra-

" "' 0 
-' 

0.000 

Figure4 

10.0 20.0 30.0 10.0 50.0 
u (co/sl 

Mean velocity profiles of current (Ucm = 39.25 emis, Ow = 157 emis, 
Tw = 8 S, zo = 0.2 cm, h = 20 m, tP = 0°). 
Current a/one -·-·-·- with z1 = h 
Current after interaction --------- with z1 = Zc = 0.15 h, 

with ZJ = Zcm = 0.368 h, 
___ withz=h. 

Profils de vitesse moyenne du courant. 
Courant seul -·-·-·-
Courant après l'interaction 

avec z1 = h 
avec z1 = Zc = 0,15 h, 
avec Zt = Zcm = 0,368 h. 
avec z = h. 
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Figure 5 

Mean kinetic energy profiles of current. See Fig. 4 for symbols. 

Profils de l'énergie cinétique moyenne du courant. Voir Fig. 4 pour 
les symboles. 

dient associated with the current vanishes but it is necessary 
to know the exact value of the mean velocity of current ater 
interaction at this level. This unknown value is very diffe­
rent from the velocity of current alone at this level, particu­
larly for the case in which current is dominated by wave. 

Figures 4, 5 and 6 also illustrate the third case of modelling 
in which the velocity of current Uct at z = Zc = 0.15 h is 
chosen to be equal to the value obtained from the mean 
velocity profile of current after interaction in case 2. Note 
that the relative difference (Uc- Uct)!Uc is equal to 10 %, 
being the current alone velocity at z = Zc· 

Very good agreement between results from the three cases 
of calcu1ation shows that they are physically equivalent, 
provided, of course, that they are weil formulated. Howe­
ver, from a numerical viewpoint, case 2 requires much 
more calculation time than the others because of the Neu­
mann conditions at the free surface and the vertical grid 
extended on the total water depth; case 3 takes the least 
CPU time due to the Dirichlet conditions at z = Zc as well as 
the grid that occupies only a small portion of water depth. 
Our numerical experiments give a ratio equal to 10 for CPU 
time between case 2 and case 1 and a ratio equal to 0.5 bet­
ween case 3 and case 1. Regarding advantages, disadvan­
tages and precision of these cases, we see that case 1 is 
most appropriate to run the model. The results presented in 
the following were obtained with this case of modelling. 
The model validity was verified by the quantitative compa­
rison with the experimental data of Van Doom (1981) (see 
for example Huynh-Thanh and Temperville, 1990b ). 

Mean and maximum bed shear stress for a simple velo­
city signal 

One of the aims of a wave-current interaction model is to 
supply information on the variation of mean and maximum 
bed shear stress for different parameters of wave, current, 
bed roughness and angle of interaction. Here a simple 
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0.000 

Figure6 

---

1.000[•03 

-------

2.000[•03 
VÎSCO (c,.2/S) 

Mean turbulent viscosity profiles of current. See Fig. 4 for symbols. 

Profils de la viscosité turbulente moyenne du courant. Voir Fig. 4 
pour les symboles. 

signal means that a sinusoïdal wave is superposed on a cur­
rent. The model was run for the following combinations of 
parameters which cover a wide range of real cases: 

<1> = 0°, 15°, 30°, 45°, 60°, 75°, 90°; 
zofh = 10-5, 10-4, w-3; 
Alzo = 102, 103, 104, loS 
Ucm!Ûw = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 
4, 5, 7, 10. 
For reasons of space, only sorne results are presented here. 
Plots for the dimensionless mean bed shear stress 
'tm/ ('tc+ 'tw) and the dimensionless maximum bed shear stress 
'tmax 1 ('tc + 'tw) over a wave period are shown in Figure 7 in 
terms of 'tel ('tc+ 'tw). Values of the bed shear stress 'tc of cur­
rent alone and the bed shear stress 'tw of wave alone can be 
determined from the curves in Figures 2 and 3. 

Three remarks are called for conceming the variables cho­
sen: firstly, 'tc 1 ('tc + 'tw) varies only from 0 (wave alone) 
to 1 (current alone); secondly, the linear superposition of a 
wave on a current corresponds to a linear variation from 
0 to 1 for 'tm/( 'tc+ 'tw); and thirdly, for 'tmaxf('tc + 'tw), the 
linear superposition gives a constant variation equal to 1 
for f = oo and a parabolic variation equal to 

~'t~+'t;., /('tc+'tw)for=90°. 

One of advantages of this graphie representation method is 
that it shows directly the nonlinearity nature of the pro­
blem. lt is proposed by Soulsby et al. ( 1992) and utilized 
for the intercomparison between different models of wave­
current interaction boundary layer, including the present, in 
the framework of the european program MAST 1. lt can be 
seen that the nonlinear enhancement increases 'tmax by up 
to 60 % and 'tm by up to 15 % for colinear flows. This non­
linearity decreases when f increases. For the same values 
of <1> and zJh, the maximum values of 'tmax and 'tm reduce 
when A/z0 decreases. The variation of 'tmax for <1> = 90° is 
interesting: 'tmax is larger than the value obtained without 

nonlinear superposition ~ 't~ + 't;_, but smaller than the 
value of ('tc+ 'tw). 
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Table2 

b p 

phi. 0 degree 

l. 

2 
3 
4 

5 
6 
7 
8 

0.3891. -0.3877 
0.5191. -0.4381 
0.6797 -0.4745 
0.2404 -0.4706 
0.4067 -0.4697 
0.5986 -0.4988 
0.3163 -0.4977 
0 • 5 3"1 7 -0 - 51 7 3 

phi. 13 degree 

1 

3 
4 
5 
6 
7 

8 

0.3575 -0.4042 
0.4920 -0.4493 
0.6421 -0.4860 
0.2300 -0.4750 
0.3869 -0.4722 
0.5706 -0.5052 
0.3007 -0.5088 
0.5073 -0.5248 

phi. 30 degree 

l. 
2 
3 
4 
5 
6 
7 

8 

phi. 

1 
2 
3 
4 
5 
6 
7 

8 

0.3198 -0.4136 
0.4306 -0.4668 
0.5655 -0.5001. 
0.2000 -0.5041 
0.3338 -0.4996 
0.5059 -0.5180 
0.2612 -0.5379 
0.4475 -0.5419 

45 degree 

0.2239 -0.5324 
0.3441 -0.5013 
0.4663 -0.5168 
0.1659 -0.5371 
0.2707 -0.5352 
0.4154 -0.5397 
0.2130 -0.5778 
0.3715 -0.5653 

phi. 60 degree 

l. 

3 
4 

5 
6 
7 

8 

0.1.845 -0.5548 
0.2707 -0.541.1 
0.3687 -0.5471 
0.1.285 -0.5939 
0.2114 -0.5792 
0.3300 -0.5657 
0.1.680 -0.6265 
0.2927 -0.5921 

phi. 75 degree 

l. 
2 
3 
4 
5 
6 
7 
8 

0.1588 -0.5748 
0.2212 -0.5767 
0.2978 -0.5739 
0.1041 -0.6394 
0.1.699 -0.61.82 
0.2669 -0.5909 
0.1.394 -0.6520 
0.2371 -0.6212 

phi. 90 degree 

l. 
2 
3 
4 
5 
6 
7 

8 

0.1.594 -0.5658 
0.2056 -0.5923 
0.27Ïl. -0.5883 
0.0927 -0.6699 
0.1540 -0.6350 
0.2448 -0.5989 
0.1264 -0.6669 
0.2146 -0.6313 

q 

1.6000 
1.6000 
1.6000 
1.6000 
1..6000 
1.6000 
1.6000 
1..6000 

1.6000 
1.6000 
1.6000 
1.6000 
1.6000 
1.6000 
1..6000 
1..6000 

1.6000 
1.6000 
1.6000 
1.6000 
1..6000 
1.6000 
1.6000 
1.6000 

1.6000 
1.6000 
1.6000 
1.6000 
1.6000 
1.6000 
1.6000 
1.6000 

1.6000 
1.6000 
l..6000 
1.6000 
1.6000 
1.6000 
1.6000 
1.6000 

1.6000 
1..6000 
1.6000 
1.6000 
1.6000 
1.6000 
1..6000 
1..6000 

1..6000 
1.6000 
1.6000 
1.6000 
1.6000 
1.6000 
1.6000 
1.6000 

rnaxerr 

3.5 
3.8 
1.3 
1.7 
2.2 
1.2 
0.5 
0.9 

1.0 
0.6 
1.4 
1.7 
1.0 
1.6 
0.8 
0.9 

1 • 0 
1.8 
1.3 
2.0 
1.3 
1..2 
1.7 
0.9 

0.9 
5.0 
l. • 8 
2.0 
1. 4 
1.2 
2.3 
1. 6 

0.9 
1 • 0 
1..2 
3.0 
1.7 
~ .. 2 
3.7 
1.2 

0.9 
1.6 
1.8 
4.0 
2.0 
1.1 
2.9 
1.0 

a n 

1.4197 1.0601. 
1.6460 0.9207 
1.7865 0.7801 
1 . .2284 1.0478 
1.4496 0.9335 
1.6441 0.7828 
1.2176 0.9172 
1.3992 0.7230 

1.3759 
1.5933 
1.7186 
1.1801 
1.3916 
1.5963 
1.1596 
1.3451 

1.2105 
1.3966 
1.5143 
1..0372 
1..2238 
1.4184 
1..0265 
1.1865 

0.9467 
1.1.058 
1.2258 
0.8088 
0.9585 
1..1294 
0.8006 
0.9332 

0.6064 
0.7470 
0.8127 
0.5074 
0.6322 
0.7509 
0.5027 
0.6001 

1..1.057 
0.9340 
0.7828 
1.0630 
0.9400 
0.7960 
0.9154 
0.7286 

1.1498 
0.9449 
0.7854 
1.1103 
0. 962 9 
0.8256 
0.9876 
0.7455 

1.2323 
0.9826 
0.8211 
1.2124 
1.0088 
0.8530 
1.0640 
0.7749 

1.4753 
1.1.243 
0.8393 
1.5270 
1.1885 
0.9104 
1.2967 
0.8366 

0.1840 2.7000 
0.3279 1..8529 
0.3487 0.9836 
0.0956 4.8t)00 
0.2824 2.7058 
0.3079 1.1.702 
0.1.257 3.0000 
0.2125 1.2530 

0.9 -0.3016 
0.6 -0.2247 
1.7 -0.1758 
5.0 -0.3429 
2.0 -0.2820 
1.0 -0.2153 
3.7 -0.3399 
1-1 ·-0. 2501 

0.5228 
0.4977 
0.5631 
0.5265 
0.5277 
0.5564 
0.5771. 
0.5212 
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rn 

0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 

0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 

0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 

0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 

0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 

0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 

0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 
0.6000 

maxerr 

2.4 
3.5 
4.5 
1.7 
3.0 
4.0 
2.0 
2.7 

3.6 
2.9 
4.5 
1.8 
2.9 
4.3 
2.0 
2.8 

3 .. 3 
2.7 
4.2 
1.8 
2.8 
4.5 
2.5 
2. 9 

3.0 
2.3 
3.9 
1.5 
2.5 
4.0 
2.3 
2.8 

2.6 
1.4 
2.9 
0.8 
2.1 
3.2 
1 . 8 
2.5 

1 - 0 
1 . 8 
1.9 
0.5 
·o. 5 
2.0 
1.9 
1 . 8 

1.6 
2.2 
l..O 
2.8 
2.1 
1.2 
2.0 
2.1 



BED SHEAR STRESSES IN THE TURBULENT BOUNDARY LAYER 

For <1> = 75°, sorne curves of 'tmax present an "oscillation" 
about the linear value ('tc + 'tw), as seen on Figure 7b. For 
practical purpose, it can be considered that these values of 
'tmax are equal to ('tc + tw). because the relative error bet­
ween the exact values of tmax and those of ('tc + 'tw) is 
smaller th an 5 %. 

It is important to parameterize the mean and maximum bed 
shear stress to facilitate the incorporation of results in a 
coastal morphodynamic mode!. For this, Soulsby et al. 
(1992) have suggested two following algebraic functions: 

y max = 1 + aXm (1 - X)"; 

Y rn = X [ 1 + bXP (1 - X)q] (22) 

with Y max= 'tmax 1 (tc+ 'tw); 

Ym =tm/ ('tc+ 'tw); X= 'tc/ ('tc+ 'tw) (23) 

and the coefficients a, rn, n, b, p, q are functions of zofh, 
Alzo and <j>. 

The values of these coefficients obtained with the present 
mode! are given in Table 2, with the estimation of maxi­
mum error (maxerr) between the exact and fitted curves. 
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SUMMARY AND CONCLUSION 

In this paper, we have analysed different cases of model­
ling for the turbulent boundary layer due to wave-current 
interaction. The case which is suitable for the modelling is 
that in which the calculation is carried out at the mean­
depth z = Zcm = h/e. For a simple combination of a sinusoï­
dal wave and a current, the mode! results present clearly 
the non-linearity effect of the interaction. The mode! will 
be applied to a more complex velocity signal in the 
MAST 2 programme. 
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