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ABSTRACT

The simple analytical two-strait and two-basin model built by (Candela et al.,
1989), which well describes the barotropic flow through the Strait of Gibraltar for-
ced by homogeneous fields of oscillating atmospheric pressure over the Eastern
and Western Mediterranean, was improved by allowing the coefficient of linear
bottom friction A to be frequency-dependent. The coefficient A is here proportio-
nal to the magnitude of the volume flow through the Strait of Gibraltar, and there-
fore increases with the frequency at very low frequencies, starting from zero.
After reaching the extreme, which was tuned to be close to the value of frequency-
independent A, the coefficient slowly decreases with frequency. Both approaches,
with frequency-dependent and independent A give almost the same frequency
dependence for all variables, therefore the disagreement between model values
and cross-spectral analysis remains at high frequencies. Using the values of cross-
section dimensions proposed by Candela et al. the estimates of the drag coeffi-
cient are by about two orders of magnitude too high in both approaches. If the
geostrophic control of the flow through the Strait of Gibraltar plays a role at low
frequency range also when friction is included, then its upper frequency limit is
estimated to be ~ 4 x 1073 cph.

Oceanologica Acta, 1993. 16, 2, 101-106.

RESUME

Frottement non linéaire di au forgage de la pression de 1’air sur le
flux dans le détroit de Gibraltar

Le modéle analytique simple du détroit de Gibraltar proposé par Candela et al.
(1989), avec deux détroits et deux bassins, décrit correctement le flux barotrope

forcé par des champs homogeénes de pression atmosphérique qui oscillent entre ,-

I’est et I’ouest de la Méditerranée. Ce modele est amélioré lorsque le coefficient
linéaire de frottement sur le fond varie avec la fréquence. Ici le coefficient est pro-
portionnel au flux traversant le détroit de Gibraltar ; il augmente donc avec la fré-
quence aux trés bassses fréquences, en partant de z€ro. Aprés avoir atteint un
maximum proche de la valeur indépendante de la fréquence, le coefficient décroit
1égerement lorsque 1a fréquence continue 2 augmenter. Les deux approches, avec
coefficient variable ou indépendant de la fréquence, donnent pour tous les autres
parametres la méme loi de variation avec la fréquence ; par conséquent, la diffé-
rence entre les valeurs du modele et I’analyse spectrale persiste aux fréquences
élevées. Les valeurs des dimensions de la section proposés par Candela et al.
conduisent 2 des estimations du coefficient de frottement qui sont trop élevées
d'environ deux ordres de grandeur dans les deux approches. Si le contrdle géostro-
phique du flux 2 travers le détroit de Gibraltar joue un role dans la gamme des
basses fréquences, méme lorsque le frottement est pris en compte, 1a limite supé-
rieure de la fréquence est estimée de 1’ordre de 4 x 1073 cycles par heure.

’ Oceanologica Acta, 1993. 16, 2, 101-106.
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INTRODUCTION

Nonlinear friction has mainly been invoked in the tidal
analysis of shallow seas. In tidal spectroscopy in 1D chan-
nels closed at one end, odd harmonics due to bottom fric-
~ tion were evaluated approximately by Gallagher and
Munk (1971) and a perturbation method was applied for
them by Kabbaj and Le Provost (1980). They also compa-
red both analytical approximations with numerical solu-
tions of equations of motion. Iterative procedure, the renor-
malization, was used by Zimmerman (1982) for a quadrati-
cally-damped forced oscillator, and for a co-oscillated
~ basin connected with an open sea through a narrow strait
with nonlinear friction, which also behaves like an oscilla-
tor (Zimmerman, 1991; 1992).

All the above-mentioned methods concerning nonlinear fric-
tion were applied to problems, which reduce to an oscillator
of some kind. Here, an attempt has been made to make the
nonlinear correction of the model built by Candela, Winant
and Bryden (1989), hereafter referred as CWB, which seems
to the author to be one of the most accomplished of the
“two-strait, two-basin” series of models, developed for des-
cribing the barotropic subinertial flows through straits of the
Mediterranean Sea forced by an oscillated atmospheric pres-
sure field. From the linearization of the bottom friction stress
it follows that the coefficient of the linearized friction stress
is proportional to the amplitude of velocity of the rectilinear
flow. Therefore the coefficient involved in linearized friction
stress is frequency-dependent. This last relaxation of the
coefficient out from the constant value was also suggested
by CWB in their conclusions as a possible next step in the
parametrization of the model.

For the rectilinear flow, quadratic bottom friction stress
produces higher (odd) harmonics. From the Fourier analy-
sis of bottom friction stress it follows that only the first six
of them are reasonably significant. We shall require that the
bottom stress of the rectilinear motion should be correctly
approximated for the fundamental harmonic. This means
also that the average energy loss within one cycle of rectili-
near motion is the same in both approaches, with and
without linearization (Bowden, 1983). This goal is also
achieved with a linear approximation of the first term in the
Fourier series of the bottom friction stress for the rectili-
near flow. The well-known relation between friction para-
meters (Zimmerman, 1991) is then obtained

8C4U
A=
3nH

8))

where Cj is the drag coefficient and U is the amplitude of
the vertically averaged velocity of the rectilinear flow of
the water column of depth H.

MODEL PRESENTATION

The simple model developed by CWB satisfactory des-
cribes the barotropic volume flow through the Strait of
Gibraltar, where the forcing agent is the first mode of EOF

- gos = R{Qo;s €i®*}

analysis of the atmospheric pressure field over the
Mediterranean Sea. We shall adopt their model in our
consideration of nonlinear friction. The conservations of
volume in the first (W Mediterranean) and the second (E
Mediterranean) basin are therefore given as

A ? = Ga-ds @1
"=
A% g @22

t

where qG = u1AG, qs = u2As are the volume flows through
the first (Gibraltar) strait, and the second (Sicily) strait, Ag
and Ag are their cross-section areas, while 13 and A; (12
and Aj) are the uniform sea-level elevation and the surface
area of the first (second) basin. The subsurface uniform
pressure in each basin is written simply as

P1 = pa1 +pgNy 2.3)
p2 =pa+pgn2 24)
where pa1 and paz are the spatially averaged atmospheric
pressures over basin 1 and 2, respectively. The last two
equations are the equations of motion through straits

9 _ -Ap:

=S =2 ) S
3 oL dc 2.5)
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In the equation of motion through the Strait of Sicily the
pressure gradient was approximated with (p, - py)/Ls, where
Ls is the length of the strait. For this strait, following the
same argument of CWB of six times larger cross-sectional
area of Sicily than of Gibraltar, the water velocities and fric-
tional effects should be small, therefore the frictional term
was omitted as in the CWB model. Further clarification of
this approximation will follow in the discussion. The pressu-
re gradient along the Strait of Gibraltar was approximated
with py/Lg, where Lg is the length of the Strait of Gibraltar,
meaning that isostatic pressure variations due to the atmos-
phere are ignored on the Atlantic side of Gibraltar. All
dimensions of straits and basins used by CWB will also be
used here. CWB analyzed observations of atmospheric pres-
sure sampled every six hours from 64 coastal meteorologi-
cal stations using the EOF method. They revealed that 65 %
of the variance accounts for the spatial structure of the first
mode, which represents a homogeneous, standing pattern
without sign change. In our case the only forcing agent at

subinertial frequencies are the atmospheric pressure fields

averaged over each of the basins. So we shall write them as

Pa1 = RA{Pa eio)t}
Pa2 = R {Py i}

We shall again look for the solutions in the form of trigono-
metric functions :

Ni2 = R{Z; ei™}
P12=R{Pyei®}

2.7

(2.8)
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Inserting them in (2.1) to (2.6), together with forcing func-

tions (2.7), for which amplitudes P,, and P, are real, we

obtain coupled equations for the complex amplitudes
2.9)

Only the real parts of all quantities written in a complex
form are considered at the end of the derivation procedure.
The above system of amplitude equations is linear if the
coefficient A is not a function of the flow through Gibraltar
Strait, and was estimated by CWB from A = CqU/H; to be
1.27 x 10-5s"1 where for the hydraulic depth of the Strait of
Gibraltar Hg of 120 m was used, the drag coefficient Cg =3
x 1073 and the amplitude of velocity U, = 0.5 m/s. But, as
will be pointed out later, four times larger value had to be
used to adjust the model with the data of the flow through

iwAZ =Qs-Q
iw AyZ, = Qs 2100
Py =Py +pgZ,; .11)
P, =Py +pgZ, . @1
Achi
=-—0 2.13
i0Qg = olo Qs | (2.13)
_ As(®-P) _
iwQs oLs 2.14)

the Strait of Gibraltar. Here, according to (1.1), A will be -

proportional to the amplitude of the volume flow Qg, but
since this is shifted in phase with regard to the atmospheric
pressure fields, the modulus IQg! should be used

h= 3nAcHG Ach TraoHg | 21= v
where Cp = 7.2 x 10712 m™3 if we use Ag = 2.95 x 10% m2,
Hg = 120 m, and Cy4 = 3 x 1073, Later, different values of
Cp will be considered to obtain model results similar to
results of CWB. Inserting Z, from (2.9) and P, from (2.11)
into (2.13) we obtain the first relation between Qg and Qg

ColQsl

_8As ik

_8AQ | iAchi
L(;Al(!)2 (6]

(2.16)
Awlls | polg |

Qs [1-

(2.15)

For the second relation we put Z2 from (2.12), P2 from )

(2.14), and P1 from (2.13) into (2.10)

0)21-.A2] __Lo0A; Qg [0—-iA] I(DAz a2

1-
& gA, gAc P8

2.17)

Before solving the system of (2.16) and (2.17) it seems to

~ be more appropriate to introduce another two constants

le=——gAG ;Qn’ = A

For values of Lé = 6 x 104 m, Ls = 105 m, Ac = 2.951 x 106
m2, As = 1.8926 x 107 m2, A1 = 8.646 x 101! m2, and A2 =
1.6703 x 1012 m2 (Tab. 2 of CWB) they become: Q2 =
0.558 x 1079 572 and Q2 = 1.11 x 1079 s72. Considering
them as angular frequencies, they correspond to the periods
of ~ 2.2 days and ~ 3.1 days. We shall express the ampli-
tudes of the atmospheric pressure fields in elevation units
Za1 = Pa1 /(pg) and Zay = Pa2 /(pg), where p is the density of

’ IQal* (Cp0? +1QaR B2 - 22=0

the sea water. The resulting equation for Qg may be written
in a similar form to that obtained by CWB '

. ?
Qg [B +iLc] = i0[A1Zy (1-5;1—2-) + AyZ,;] (2.18)
with
) A, 1 .@*
=- —(1 + —] -
1+(o[ ( +A1) Qr12] Q2Qy2
o o0 _ _ﬂ]

where Dy in CWB was replaced with . Now, we shall
multiply both sides of the above complex equation with

their conjugate expressions, and we shall introduce A from
(2.15). The amplitude equation for IQgl finally follows as

2.19)
where coefﬁgient A is

®? :
?L:AlZ,',I (1"‘—2-;1—2)+A2232.

Coefficient C=0 when 0 = Qp(1 + Ay/A)/2=5.7x105 571
and the corresponding period is around 30.6 hours. We shall
denote this particular angular frequency with wg. The solu-
tion for IQg! for this angular frequency does not depend on
the friction coefficient Cp

Qg = woA1Z;; - Zyyl.

For C # 0 the single positive solutlon of (2. 19) is easily
obtained as

ﬁl +y B +4(ACCp )
exelal

In the above expression the volume flow through the Strait

Q| = (220

. of Gibraltar is a more complicated function of angular fre-

quency than IQgl obtained by CWB for A mdependent of ®,
whlch follows dlrectly from (2.18)

o |4
v B2+ (A0)?

Multiplication of (2.20) by a constant Cj; gives us the
dependence of A on @, according to (2.15), and also on the
forcing amplitudes Z,, and Z,,, which is a charactensuc of
nonlinear friction law.

1Qasl = 2.21)

DISCUSSION-CONCLUSION

The derivation of all unknowns for A being a function of
frequency, may start with Qg from (2.18), in which we

. insert A = ¢colQal, with IQal from (2.20). Plots of their abso-
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Figure 1
Coefficient of friction . as a function of frequency for Cp= 5.6 x 1010 m-3

(solid line), Cp=1.85 x 10-10 m3, and Cp = 13.0 x 10-10 m™3. Thin hori-
zontal lines represent constant values of A used by CWB (see text).

lute values, and phase shifts with regard to the oscillations
of the atmospheric pressure as a function of frequency will
be presented here. Atmospheric pressure amplitudes will be
normalized P,; = Py = 1 mbar since we intend to compare
the model results with the cross-spectral analysis. In Figure
1 the coefficient of friction is plotted against frequency for
three values of parameter Cy These have been chosen on
the criteria of satisfactory agreement between the magni-
tudes (gains) IQal calculated for frequency-dependent A and
those calculated for frequency-independent A (Fig. 2). It tur-
ned out that the satisfactory agreement was achieved for C,,
of 5.6 x 1010 m-3, 1.85 x 10-10 m-3, and 13.0 x 10-10 m-3,

Values of frequency-independent A used by CWB in the
model are 5.17x 105 s1,3.0x 10551, and 8.0x 105571,
They have been also used here. The coefficient of linear
friction increases with frequency (together with 1Qgl)
almost linearly at very low frequencies, with a smaller rate
for large values of C,. After reaching the extreme, which is
very close to the adequate value of A used by CWB, the
coefficient slowly decreases with frequency, this time with a
higher rate for large values of ¢, Bearing in mind the value
for AgHg = 3.54 x 108 m3, used by CWB, this implies that -
values for the drag coefficient Cd are to be 0.198, 0.065, and
0.462, respectively, which is certainly by about two orders

of magnitude too high.

Let the frequency-dependent A be equal to the frequency-

independent value, say A = 5.17 x 10-5 s°1, From Figure 1

we can easily obtain the two frequencies at which this hap-
pens as 0.0048 and 0.0113 cph. Also at these frequencies,
gains IQgl (Fig. 2) of both models exactly meet and are
equal (solid lines) to 0.092 Sv (1 Sv = 108 m? s1), Using
this value for the volume flow in (2.15) C4 = 0.23 which is
again by two orders of magnitude too high. A pronounced
reduction of the “hydraulic” depth Hg by about one order
of magnitude would give us reasonable values for the drag
coefficient for both models using different concepts of A.

Nonetheless, both approaches give quite similar behaviour
for the volume flow through the Strait of Gibraltar, and they
both fail in describing the flow at frequencies higher than 8
x 1073 cph. At these frequencies the barotropic flow at
Gibraltar, according to EOF analysis of CWB, is not related
to the first EOF mode of atmospheric pressure, supposed to
be in forcing function, over the Mediterranean. The cohe-
rence between atmospheric pressure and the flow through
Gibraltar is small in this frequency range. The values of the
cross-spectral analysis of the volume flow through the
Strait of Gibraltar and air pressure were digitized from
figures of CWB and may therefore be considered as indica-
tive only. Careful comparison of our model results for IQgl
with frequency-independent A, with values calculated by
CWB show that our model values are about 9 % higher.
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Figure 3

Magnitudes and phase shifts of the volume 014 :
flows QG (full lines), OS (long dashes) and ; ,
sea-level elevations Z1 (dashed lines), and Z; &

(dotted lines) for A being a function of fre- 012 |
quency (thick lines), where Cp: = 5.6 x 10-10

m-3, and for A = 5.17 x 10°% 571 (thin lines).

Lines of phase shifts between the atmospheric o1
pressure signal and both sea-level elevations
for hvarying with frequency (thick dashed and
thick dotted line) are one above the other.
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The reason for this discrepancy is unknown to the author.
Still, the shape of variations of IQg! certainly follows the
same curve, and we are again faced in this simple model
with almost the same response as in CWB. An introduction
of the variations of friction coefficient with frequency,
which is based on the use of quadratic friction in the basic
harmonic, obviously does not lead to a better agreement of
the model with already mentioned cross-spectral analysis.
Unfortunately, the time series of the relevant data used for
the cross-spectral analysis were not long enough (thirteen
months of data) to provide the frequency resolution necessa-
ry for checking abrupt variations in A at low frequency
range. Magnitudes of the volume flow through the Strait of
Sicily (Qg; Fig. 3), and of average elevation of the Western
(Zy) and Eastern (Z,) Mediterranean, follow curves which
are almost covered for both cases, with A being frequency-
dependent, or independent. There are some differences in

magnitude of Z;. At frequenmes around 7 x 10 cph 1Zy!
~yavphanta th

raonONCS O - hor~saatas bt o av¢ 1A O

L " L 0
0012 0.018 0 0.004 0.008 0.012 0.018

Frequency (cph)

flow through the Strait of Gibraltar. The arguments of
CWB for dropping the friction term through the Strait of
Sicily, based on the geometry (Ag > Ag) of this strait,
which is much wider than the Strait of Gibraltar, are not
too convincing (it seems that wider Sicily strait is also
quite shallow, which makes the friction important).
Involvement of Ag, which should also be proportional to
the magnitude of the volume flow Qg, seriously compli-
cates the system of equations, and terms like AgAg appear
on the way to the amplitude equations for both volume
flows. But although the uniqueness of the solutions should
be verified, they would perhaps be in a better agreement
with measurements at frequencies above 8 x 1073 cph.

This should perhaps be one of the 1mprovements in the

" model for future work.

Another possibility of improving the model would be the
introduction of the Fourier series of the bottom friction
slress with higher odd harmonics. But, since the energy lost
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are needed to examine the behaviour of the straits at low
frequency range. An attempt might be made to combine
both mechanisms, the geostrophic control and the lineariza-
tion of friction which provides the correct energy dissipa-
tion within one cycle, by simply allowing A to be the sum of
a constant part according to the geostrophic control, toge-
ther with a frequency-dependent part, which is proportional
to the volume flow through the strait. This would actually
be tantamount to considering A to be a “generic form of
constraint” (CWB). The amplitude equation similar to
(2.19) could probably be solved. But, in addition to other
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