Three-dimensional modelling of wave-induced current from the surf zone to the inner shelf

Type Publication
Publication date 2012
Language English
Copyright Author(s) 2012. CC Attribution 3.0 License.
Author(s) Michaud H1, 2, Marsaleix P2, Leredde Y.1, Estournel C2, Bourrin F.3, Lyard Florent4, Mayet Clement4, Ardhuin FabriceORCID5
Affiliation(s) 1 : Univ Montpellier 2 Sci & Tech, CNRS, Geosci Montpellier, UMR5243, F-34095 Montpellier 5, France.
2 : Univ Toulouse, CNRS, Lab Aerol, UMR5560, F-31400 Toulouse, France.
3 : Univ Perpignan, CNRS, Ctr Format & Rech Environm Marin, UMR5110, F-66860 Perpignan, France.
4 : CNRS CNES IRD UPS, Lab Etud Geophys & Oceanog Spatiales, F-31400 Toulouse, France.
5 : IFREMER, Ctr Brest, Lab Oceanog Spatiale, F-29280 Plouzane, France.
Source Ocean Science (1812-0784) (Copernicus Gesellschaft Mbh), 2012 , Vol. 8 , N. 4 , P. 657-681
DOI 10.5194/os-8-657-2012
WOS© Times Cited 14
Abstract We develop and implement a new method to take into account the impact of waves into the 3-D circulation model SYMPHONIE (Marsaleix et al., 2008, 2009a) following the simplified equations of Bennis et al. (2011), which use glm2z-RANS theory (Ardhuin et al., 2008c). These adiabatic equations are completed by additional parameterizations of wave breaking, bottom friction and wave-enhanced vertical mixing, making the forcing valid from the surf zone through to the open ocean. The wave forcing is performed by wave generation and propagation models WAVEWATCH III (R) (Tolman, 2008, 2009; Ardhuin et al., 2010) and SWAN (Booij et al., 1999). The model is tested and compared with other models for a plane beach test case, previously tested by Haas and Warner (2009) and Uchiyama et al. (2010). A comparison is also made with the laboratory measurements of Haller et al. (2002) of a barred beach with channels. Results fit with previous simulations performed by other models and with available observational data. Finally, a realistic case is simulated with energetic waves travelling over a coast of the Gulf of Lion (in the northwest of the Mediterranean Sea) for which currents are available at different depths as well as an accurate bathymetric database of the 0-10 m depth range. A grid nesting approach is used to account for the different forcings acting at different spatial scales. The simulation coupling the effects of waves and currents is successful to reproduce the powerful northward littoral drift in the 0-15 m depth zone. More precisely, two distinct cases are identified: When waves have a normal angle of incidence with the coast, they are responsible for complex circulation cells and rip currents in the surf zone, and when they travel obliquely, they generate a northward littoral drift. These features are more complicated than in the test cases, due to the complex bathymetry and the consideration of wind and non-stationary processes. Wave impacts in the inner shelf are less visible since wind and regional circulation seem to be the predominant forcings. Besides, a discrepancy between model and observations is noted at that scale, possibly linked to an underestimation of the wind stress. This three-dimensional method allows a good representation of vertical current profiles and permits the calculation of the shear stress associated with waves and currents. Future work will focus on the combination with a sediment transport model.
Full Text
File Pages Size Access
Publisher's official version 25 17 MB Open access
Top of the page