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Abstract:  
 
In this paper we evaluate to which extent the activity of ocean fronts can be retrieved from the 
geometric regularity of ocean tracer observations. Applied to sea surface temperature (SST), we 
propose a method for the characterization of this geometric regularity from curvature-based statistics 
along temperature level- lines in front regions. To assess the effectiveness of the proposed 
descriptors, we used 6 years (from 2003 to 2008) of daily SST observations of the regions of Agulhas 
in the South of Africa, and of Malvinas off the southern Brazilian coast. These experiments stress the 
relevance of geometric regularity features of tracer observation at ocean surface to characterize 
seasonal variations in ocean regimes. 
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processing ; ocean temperature ; oceans ; sea surface ; Barium ; radio frequency ; satellites 
 
 
 

1 Introduction 
 
Today, satellite passive imagery provides routine measurements of ocean color and sea surface 
temperature (SST) to offer global or local pictures of patterns at different scales, as small as 1 km. 
These observations often reveal the richness, the complexity, as well as the high variability of the 
upper ocean biology and dynamics. Accordingly, the statistical properties of these scalar quantities, 
such as sea surface satellite-sensed concentration of phytoplankton and temperature, has long been 
thought to provide direct practical descriptions of the dynamical properties of the ocean circulation. 
 
For common tools, such as spectral analysis, structure functions and probability density functions, the 
literature is immense. Since the first available satellite images, these techniques have been applied 
and used to retrieve the statistical characterization of the oceanic turbulence [1,2]. Using large swath 
satellite data, the observations can reveal a wide range of sizes and a variety of shapes, with a large 
occurrence of frontal systems. Consequently, this textural richness often leads to continuous spectral 
estimates that span a very wide range of scales. Variances of these different scales are further often 
found to follow constant power-law distributions. Yet, spectral forms may only be very weak 
constraints concerning the structure of the underlying flows, as coherent structures essentially sign in 
the phase information of the satellite snapshots [3, 4]. To gain more insights, the analysis of the 
geometry and complexity of delineated structures, for instance as derived from the 
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analysis of level sets, can then be proposed to help the characterization and interpretation of the underlying

flow properties. Indeed, line stretching and bending are generally driven by both local small scales and non

local larger scales of the velocity fields [5]. Surface contour statistics can thus further help to better understand

the internal organization of the flow, as earlier suggested by Lesieur and Sadourny in [6] and more recently

rationalized by Lapeyre and Klein in [7] under the use of the surface quasi-geostrophy dynamics.

In this letter, we thus follow some recent attempts to characterize ocean turbulence based on numerical

simulations (see [8]) to focus on the analysis of the regularity of satellite derived SST level-lines in highly

dynamical ocean provinces, namely, the Brazil-Malvinas confluence zone and the Great Agulhas Current region.

As implemented, we propose and test local curvature based descriptors to characterize SST regularity. Our

objectives are then to experimentally assess the efficiency of these descriptors by measuring their ability to

capture expected mesoscale seasonal variations. Accordingly, we thus further evaluate the relevance of the

curvature statistics to perform a robust classification of ocean dynamical regimes.

The remainder of this paper is organized as follows. Section 2 presents the proposed SST image regularity

descriptors. Experiments and results conducted to assess the effectiveness of the proposed descriptors are

presented in Section 3. Final discussion and conclusion are given in Section 4.

2 SST Image Regularity extraction

2.1 Iso-temperature extraction

As recently discussed in [8], it is not clear how solely spectral analysis can help in studying ocean surface

turbulence, and more particularly help in characterizing the complexity of front strengths and alignments. An

alternative effective means to better distinguish between the length and the scale of discontinuity near fronts,

is to consider local curvature statistics along level-lines of the SST images. As understood, the characterization

of the geometric regularity in front regions may involve relevant analysis both at local or nonlocal scales. Thus,

for a scale based analysis, a pre-processing step involving an anisotropic diffusion with various scale parameters

is applied to the SST images. We applied a diffusion by mean curvature motion (MCM) that guarantees the

topology of the hierarchical image level set representation to be maintained [9]. The extraction of the level-lines

of SST images is then based on the fast level-set transform proposed in [10]. The MCM smoothing of an image

u0(x, y) is based on the resolution of the partial differential equation (PDE):

{

ut = |∇u|div
(

∇u
|∇u|

)

u(x, y, 0) = u0(x, y)
(1)

where u(x, y, t) is the image smoothed at the required scale t, ∇u is the image gradient. The gradient operator

is defined as ∇u =

(

ux

uy

)

where ux is the partial derivative of the image with respect to the component x. |.|

is the Euclidean norm, and div(.) is the divergence operator. The scale parameter t gives the number of time

the PDE in Eq.1 is applied to the original image.

2.2 SST Image Regularity Descriptors

For each SST image, we consider the main front which is the isoline supporting the highest gradient energy.

Fig.1 gives an example of main front for the region of Agulhas. Descriptors of the geometric regularity of the

front are then computed from the marginal distributions of the local curvatures along the curve. It might be

stressed that as the considered descriptors are computed curvature/orientation statistics along SST level-lines,

these descriptors do not depend on the strength of the gradient across the front. Therefore only information

about the geometry of the front is captured. We followed three approaches extracting the local curvatures.

Local tangents derivatives: The curvature of the level lines can be computed from the variations of the
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Figure 1: SST front sample: Agulhas main front defined as the isoline supporting the highest cumulated

gradient magnitude.

directions of the level line local tangents. If we denote by f(s) = (x(s), y(s)) the level line parameterized by its

curvilinear abscissa s, the orientation of the local tangent is given by θ(s) =
∣

∣

∣
arctan

(

ẏ(s)
ẋ(s)

)∣

∣

∣
where ẋ(s) is the

derivative of x with respect to s. An estimate of the local curvature can be obtained by the difference between

the direction of the local tangents κ(s) = |θ(s) − θ(s − 1)|.

Direct curvature computation: Rather than computing the derivatives of the local tangents orientation,

the curvature of the level line f(s) = (x(s), y(s)) can be directly computed according to the formula κ(s) =
ẍ(s)ẏ(s)−ẋ(s)ÿ(s)

(ẋ2(s)+ẏ2(s))
3

2

where ẍ(s) is the second derivative of x(s) w.r.t. the curvilinear abscissa.

SST image divergence: The curvature of the level lines can also be derived as a partial differential operator

applied to the SST image. This operator is given as the divergence of the normalized image gradient:

curv(u) = div

( ∇u

|∇u|

)

=
uxxu2

y − 2uxyuxuy + uyyu2
x

|∇u|3 (2)

3 Experiments

In this section we describe the experiments we conducted to assess the relevance of the proposed descriptors

for the statistical characterization of ocean regimes in highly dynamical ocean provinces, namely, the Brazil-

Malvinas confluence zone and the Great Agulhas Current region. We investigated to which extent the proposed

descriptors can capture distinct seasonal variations.

3.1 Evaluation Protocol

A quantitative evaluation is carried out from the Remote Sensing System (REMSS) SST TMI-AMRE-OI

database [11]. This database is publicly available at http://remss.com/sst/. These products consist in daily

25km resolution global SST images recorded since the June 2002 to the present. The 25km image resolution

allows us to resolve only mesoscale phenomena. For our experiments we used data from 2003 to 2008, with a

20 day buffer between seasons. For our two regions of interest the Agulhas region is localized in the South of

Africa between [−30◦,−50◦] of latitudes and [10◦, 70◦] of longitudes. The Malvinas area between [−30◦,−60◦]

of latitudes and [290◦, 330◦] of longitudes is off the Argentinian and Brazilian coasts. Let us point out that

the seasons are denominated according to the South hemisphere terminology: September to October refers to

Spring, December to March to Summer, March to June to Autumn and June to September to Winter.

With a view to assessing the relevance of the proposed descriptors for the characterization of ocean regimes in

front regions through their efficiency to be seasonally discriminant, we tested for significant differences among

seasons and evaluated season classification performances.

3.2 Statistical variabilities of the descriptors

The statistical significance of the proposed descriptors was evaluated using the following non parametric ap-

proach. The main motivation of these non-parametric tests is that they are valid even when the marginals of

3
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(a) Agulhas - NNR (b) Agulhas - RF

(c) Malvinas - NNR (d) Malvinas - RF

Figure 2: Average recognition rates in % using a nearest neighbors or a random forest classification method fed

with the marginal of level line orientation difference (OD), the curvatures (CURV) and the image divergence

(DIV). The item all scales corresponds to the situation where descriptors from all the image scales (2 to 14)

are used as observation.

the considered descriptors do not conform to standard parametric distributions, typically Gaussian laws. Given

two classes, S1 and S2, and associated SST samples characterized respectively by descriptors p1,i and p2,j , we

tested for the significance of the difference between the two classes according to the following criterion, inspired

from the Fisher statistics,

F =
ρ(µ1, µ2)

√

1
|S1|

∑

i ρ(p1,i, µ1) + 1
|S2|

∑

j∈C2
ρ(p2,j , µ2)

(3)

where µ1 and µ2 are the average descriptors within each class, and ρ, the Battacharya distance between two

distributions p = (pk, k = 1, ..,K) et q = (q,k = 1, ..,K), is defined as ρ(p, q) =
√

1 −∑K

k=1

√
pk
√

qk. We used

the Battacharya distance because it is well suited to compare histograms [12]. Note that similar performances

were obtained when using the Kullback-Liebler divergence. The non-parametric test first evaluates the dis-

tribution of criterion (3) for the null hypothesis, i.e. the absence of meaningful differences, as follows. Given

the set formed by the samples of the two classes denoted by S12, we sample Fisher statistics by generating

two bootstrapped classes uniformly sampled from set S12. From these bootstrapped samples, we evaluate the

partition function PH0
(F > ǫ) of measure F in Eq.3 under the null hypothesis. The two original classes are

then regarded as significantly different if the likelihood that the associated discrimination measure F1,2 has

been generated from the null hypothesis is very low, i.e. if pH0
(F > F1,2) < ǫ were ǫ is typically set to 0.01 or

0.001. This statistical test can be seen as a Mantel test using the Fisher criterion [13].

Based on this non-parametric test, we showed that significant differences among seasons (p(F > F1,2) <

0.001) were exhibited by all the proposed SST observations geometric regularity descriptors for the two selected

regions. Thus, we can conclude that SST images regularity depicts significant seasonal differences in accordance
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with the seasonal front activities. This conclusion is in agreement with [14] which showed that the distribution

of SST observations flow vorticities depict seasonal variations. It might be noted that using a parametric

Student test led to the same conclusions.

3.3 Categorization of ocean regimes from curvature statistics

We further evaluated the discrimination power of the considered curvature statistics for the seasonal classi-

fication of ocean turbulence patterns. More precisely, given the dataset of SST images, each sample being

assigned to a class, i.e. the season corresponding to the observation date, we apply supervised classification

strategies from the proposed feature space. We used two classification methods: a generative method which

makes easier the interpretation of the results, and a discriminative method known to depict greater classification

performances.

The generative method proceeds as follows. For a given class, the geometric regularity of the class is modeled

as the average feature, here marginals of curvature statistics, over the samples of the class. The classification

of a new SST observation is achieved using a nearest neighbor criterion, according to the Battacharya distance.

Note that similar performances were achieved for the Kullback-Liebler divergence. The nearest neighbor classi-

fication rule (NNR) assigns the class with the minimal distance between the curvature marginals of the classes

and of the observation. We applied this generative classification strategy with a view to providing some insights

on the relevance of the different types of descriptors. We also analyzed to which extent scaling effects were of

interest. For the discriminative method, we considered random forests (RF) which are ensembles of classifica-

tion trees [15]. Experiments not reported in this note also demonstrated that other discriminative classifiers

such multi-layer perceptron (MLP) and a support vector machine (SVM) achieve similar performances [16].

The number of trees in the RF were estimated using cross-validation. A key advantage of learning scheme

such as RF is that they directly allow to combine information (descriptors) at different scales to predict the

seasonality. Labeled training samples are used to learn the classifier which, given the descriptors of an input

test image predicts the corresponding season. Fig.2 reports, as a function of the processing scale, the classifi-

cation performances achieved by the nearest neighbor and random forest classifiers with the descriptors given

in Section 2.2. Curvature statistics issued from the local orientations of the SST level-lines clearly outperform

those computed from the divergence operator. The lower recognition rate obtained with the latter might be

explained by the numerical instability of the computation of this operator. These results (see Fig.2) advocate

for a direct computation of the front local curvatures from the SST level lines. Besides, better classification

performance are reported for the region of Malvinas compared to the region of Agulhas. The results in Fig.2

show that the characteristic scales are different for Agulhas and Malvinas. While for Agulhas the best perfor-

mances are achieved for a scale of 6, for Malvinas the best results are obtained for a scale of 14. This might be

explained by larger geometric structures in the region of Malvinas.

Fig.3 gives the performance of the nearest neighbor classifier and the random forest using the curvature

descriptor. The results in this figure show that the RF achieves better performances than the nearest neighbor

criterion. The improvements can be explained by intrinsic discriminative nature of RFs which are better

suited to the discrimination task than the nearest neighbors criterion which was built without considering any

discrimination criterion. When analyzing the results we can notice that for the two regions, performances

are scale dependent, and there is no procedure to infer a priori the optimal scale value. This issue could be

addressed by adopting an integrated multi-scale approach.

Fig.2, 3, and 4 also report the performances of a multi-scale strategy. These results show that, except for

NNR classifier using the divergence features of the region of Agulhas, the multi-scale approach either performs

similarly or outperforms the single scale approach. The better performances of the multi-scale approach can be

explained by the intrinsically multi-scale nature of the underlying frontogenesis phenomenon associated with

turbulent dynamics. Thus multi-scale information improves the characterization of the seasonal front activity.

The performances of the nearest-neighbor classifier for the region of Agulhas where the single scale approach
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(a) Agulhas (b) Malvinas

Figure 3: Average recognition rates in % for a NNR and an RF classification method using as observations the

marginal of the level line curvatures.

(a) Agulhas (b) Malvinas

Figure 4: Yearly multi-scale season classification rates in % for the NNR and the RF for regions of Agulhas

and Malvinas. The RF systematically achieves better performance than the NNR method. However for a given

method high yearly performance variations occur specially for the region of Agulhas.

outperformed the multi-scale approach may be explained by the multi-scale descriptor fusion procedure. Con-

sidering directly the average of the distance across scales may not be an optimal criterion, as the distance at

one given scale may be dominant in the resulting average. The distance across scales could be defined in a

better way by taking into account the final classification task using distance learning procedures as proposed

in [17]. This would make the generative model more suited to classification task. However, the possibility to

directly interpret the models, as shown in Fig.5, would be lost.

We also analyzed the performances of the multi-scale regularity-based methods at a yearly level and at

a season level. Fig.4 reports the mean yearly classification performances from 2003 to 2006. These results

confirmed the better performance of the RF method over the NNR classifier. They also showed variability.

Tab.1 and 2 give the average confusion tables for the region of Agulhas. These confusions tables show that

Summer and Winter are better recognized (up to 85% for the RF method) and confusions mainly occur between

neighboring seasons. The better performances obtained for Summer and Winter can be understood from an

analysis of the cumulative distribution of the average marginal distribution for each season given in Fig.5. We

can notice that Winter is the season for which the SST are the less regular because its marginal distribution

exhibits the slowest decay. While Summer is the most regular season. These two seasons were, as expected, the

two extremes situations in terms of geometric regularity resulting in greater discrimination performances. It

might however be noted that despite the weakly apparent differences in the distribution of regularity features
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Figure 5: Local tangent orientation difference cumulative distributions.

Summer Autumn Winter Spring

Summer 82.8 12.9 0 4.3

Autumn 18.8 53.4 19.1 8.6

Winter 0 2.6 78.5 18.9

Spring 11.3 1.0 23.7 64.0

Table 1: Average confusion in % for the multi-scale NNR for Agulhas. Better performances are achieved for

summer and winter and confusion occurs mainly between neighboring seasons.

intermediate Spring and Autumn were also correctly discriminated with an average rate greater than 68%

for RF method in Tab.2. These results indicate that Spring and Autumn also depict specific discriminative

regularity features.

4 Conclusions

In this paper, we investigated the potential of satellite observations of ocean tracers to characterize ocean

mesoscale turbulence regimes. Following numerical simulations of ocean turbulence [8], we evaluated descriptive

statistics of the regularity of SST level-lines as descriptors of the underlying flow dynamics in active front regions.

The reported experiments for 6 years of daily SST observations in two highly dynamical ocean provinces,

namely, the Brazil-Malvinas confluence zone and the Great Agulhas Current region, clearly showed that,

beyond spectral analysis, multiscale regularity statistics of SST level-lines relevantly captured the seasonal

variabilities of frontogenesis activities.

These results advocate for further explorations of the potential of satellite observations of ocean surface,

including high resolution SST observations, altimetry data and ocean colour, to refine and improve the proposed

characterization of the mesoscale ocean turbulence regimes, and study its generalization to sub-mesoscale

feature characterization. Also, as prospective future work, we will explore the use of such regularity-based

statistical description as geometric priors in missing data interpolation of ocean observations, especially for the

reconstruction of fine-scale textured structures which are poorly resolved by operational products [18,19].
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Summer Autumn Winter Spring

Summer 85.6 13.8 0 0.6

Autumn 14.2 75.6 3.4 6.8

Winter 0 4.8 84.3 10.9

Spring 5.7 5.3 20.7 68.3

Table 2: Average confusion in % for the multi-scale RF for Agulhas. Better performances are achieved for

summer and winter and confusion occurs mainly between neighboring seasons.
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